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Abstract: Basketball player action optimisation is key to improving
competitive performance. To address the issue of insufficient mining of
biomechanical features and poor action optimisation effects in current research,
this paper first conducts biomechanical data analysis of basketball players and
constructs a motion state equation for capturing and analysing key data. Then,
it integrates image and biomechanical motion data to provide comprehensive
multimodal perception information. A multimodal feature extraction and fusion
module based on self-attention mechanism is designed. Secondly, the pose
action decision-making task of the athlete is modelled as a deep reinforcement
learning (DRL) problem. Finally, a hybrid reward function is designed to
achieve efficient training of the model and action strategy optimisation.
Experimental outcome indicates that the high model improves the action
optimisation success rate by at least 5% compared to the baseline model,
demonstrating good action optimisation effects.
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1 Introduction

In the intense confrontation and precise competition of basketball, every detail of an
athlete’s movement may turn into a crucial element in deciding the game’s result (Ren
and Wang, 2021). Traditional methods of improving movements based on experience
accumulation have become tough to meet the requirements of high-level training.
Biomechanics provides a scientific framework for analysing the internal mechanisms of
basketball movements, and by collecting kinematic data of athletes, researchers can
quantitatively evaluate the biomechanical characteristics of movements and identify
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potential unreasonable force patterns (Lam et al., 2022). However, single-modal data
often only reflects the local characteristics of movements, but fails to explain the causal
relationship between the force value and movement stability (Wang et al., 2024a). The
fusion analysis of multimodal biomechanical data can build a more comprehensive
movement evaluation model, but how to mine effective information from massive
heterogeneous data for movement optimisation remains a current research challenge
(Cheng and Cheng, 2024). DRL learns optimal decision-making strategies through
continuous interaction between the agent and the environment, and its strong nonlinear
fitting ability and sequence decision-making advantages are exactly suitable for the needs
of basketball movement optimisation (Zhang and Tao, 2023). Therefore, how to combine
biomechanical modelling data and reinforcement learning (RL) theory to develop
efficient methods for optimising basketball athletes’ movements has important
application value.

Traditional methods for optimising basketball athletes’ movements are based on
machine learning methods. Typical statistical learning methods include SVM (Pradhan,
2012), AdaBoost (Wang and Sun, 2021), etc. Liu and Wang (2023) used the relative
position and velocity of athletes as inputs to train a support vector machine (SVM) for
optimising athlete movement decisions. Zhu (2022) adopted a sports movement
optimisation method based on particle swarm optimisation SVM, using Bayesian
parameter optimisation to better determine parameters. In addition to the SVM method,
Xie and Wu (2024) applied AdaBoost to athlete movement optimisation, using a series of
athlete movements as inputs and selecting the optimal strategy as the output, but the
practicality was weak. Li (2025) defined an appropriate objective function based on the
biomechanical principles of athlete movements, transforming the generation of
movements into a specific offline spatiotemporal optimisation problem to calculate joint
torques, and obtained the optimised movement results through decision trees. Wang
(2023) adopted a low-dimensional physical model method, simplifying complex athletes
into a low-dimensional model to simulate athlete movements, and used random forests as
classifiers to predict the optimal movement output.

Deep learning approaches share similarities with conventional machine learning
techniques. The key distinction is that deep learning employs neural networks to
automatically capture data characteristics, thereby improving the performance of
optimised design. By harnessing deep learning’s capabilities in image processing, a
sports movement enhancement system was created. In most cases, sensor-recorded
movement data is processed by a trained deep learning model to yield optimised outputs.
Javadpour et al. (2022) employed monocular front-view motion sequences as input data,
utilising a convolutional neural network for end-to-end policy learning to derive
optimised movement strategies. Yoon et al. (2019) developed an attention branch
network (ABN) architecture for sports motion optimisation decision-making. First, the
original visual image was input, and the network architecture incorporated an attention
mechanism that produced a characteristic attention map at its intermediate level. Finally,
the attention map of the original image was combined with the convolutional features of
the self-expected action to generate the optimised sports movement. Yan (2024)
combined motion matching with deep learning, and proposed learned motion matching,
which reduces the storage space required by motion matching through a learning
approach, while ensuring that the output movements can be mapped to the motion library.
Xiao (2024) extracted features from motion images and motion videos using a multi-scale
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CNN, and used an attention mechanism to integrate multi-modal characteristics, and
output the results of sports movement prediction.

RL enables agents to progressively learn optimal policies through trial-and-error
interactions with the environment, maximising cumulative rewards. This characteristic
holds significant potential for optimising athletes’ movements. The agent’s kinematics,
athletic scenarios, and biomechanical constraints are encoded into the environmental state
space. Deep neural networks are employed to construct policy functions, taking the
current state as input and generating action parameters as output. Through end-to-end
learning, states are directly mapped to optimal actions, circumventing the limitations of
manually designed features in traditional approaches. The current model undergoes
cyclical refinement through iterative updates incorporating both historical data and newly
acquired environmental exploration data, achieving the optimisation of athletes’
movements. Chen et al. (2021) used an adversarial learning framework to train a policy
network as a generator to generate motion sequences, and used an adversarial
discriminator to the kinematic plausibility of synthesised motions. Liu and Hodgins
(2018) utilised the reward mechanism and strong decision-making ability of DRL to
quickly calculate the joint torque of athletes, effectively overcoming the problems of poor
generality and real-time performance in traditional methods. Wang et al. (2024b) used the
proximal policy optimisation algorithm combined with motion trajectory optimisation to
train a virtual character to learn basketball dribbling actions, making it closer to the real
actions of athletes. Arumugam (2025) designed a basketball player’s action optimisation
method based on an improved deep Q network, achieving a high level of optimisation
accuracy. Chang et al. (2025) used transformer to extract and fuse the action features of
different athletes, simulating the athletes’ movement environment, and using DRL to
make decisions on the optimal athlete action strategy, which has good robustness.

From the above in-depth analysis of action optimisation methods, it can be seen that
traditional action analysis methods rely on expert experience and limited biomechanical
indicators, making it difficult to achieve personalised and real-time action optimisation.
Existing research has problems such as insufficient mining of biomechanical features and
unsatisfactory action optimisation effects. To address these issues, this article puts
forward a basketball player action optimisation model based on DRL and multimodal
biomechanical modelling. First, biomechanical data analysis and interpolation
reconstruction of basketball players are performed to build a motion state equation for
capturing and analysing key data for basketball movement modelling. Then, a basketball
player action optimisation model is designed. The model contains a policy network and a
Q-value network, whose core is the multimodal feature extraction and fusion module.
The policy network is composed of a multimodal characteristic extraction and integration
module, a fully linked network, and a fully connected layer, which is used to generate the
action probability distribution in the action space. The Q-value network adopts a
completely consistent network structure, composed of a multimodal feature extraction
and fusion module and a fully linked network. The parameters of these target Q-value
networks are dynamically updated from the corresponding Q-value networks through a
soft update mechanism, which is adopted to collaboratively complete the model’s
optimisation and decision-making tasks. Through the collaborative effect of the policy
network and the Q-value network, the training efficiency and decision-making
performance are significantly improved, ensuring the efficiency and stability of the model
in the basketball movement action optimisation task. Experimental outcome indicates that
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the action optimisation success rate and average reward function of the proposed model
are better than those of the baseline model, significantly improving the efficiency of
action optimisation.

2 Relevant technologies

2.1 Deep reinforcement learning algorithm

Traditional RL is prone to falling into the myopia trap when handling long-term
sequential decision making. For instance, conventional policy gradient methods update
policies solely based on the ‘current step reward’, failing to account for the cumulative
benefits of future steps and resulting in locally optimal policies. DRL overcomes the
limitations of traditional RL in handling high-dimensional state spaces and complex
decision problems by integrating deep neural networks with RL. It achieves a direct
mapping from raw inputs to optimal actions through a single neural network. This
end-to-end optimisation reduces information loss and enhances policy robustness. The
fundamental architecture of DRL comprises an intelligent agent interacting with its
environment. The agent engages in dynamic exchanges with its environment.
Environmental states evolve as a direct consequence of the agent’s interventions.
Environmental states may evolve through intrinsic dynamics without agent intervention.
The agent obtains a reward signal from the environment, which conveys to the agent an
assessment of whether the current environmental state is favourable or unfavourable
(Wang et al., 2022). During the entire interaction process, the agent’s goal is to maximise
the cumulative reward obtained. Next, several concepts in RL will be introduced.

1 State and observation: a state is generally denoted by s, and the state space is
generally denoted by S, which is used to describe the state information of the
environment. Observation , pertains to the environmental state information that is
perceptible to the agent. Usually, a portion of the environmental state information
remains concealed.

2 Policy: the policy of the agent is divided into deterministic policy and stochastic
policy. A deterministic policy is generally denoted by y, as shown below:

at:,u(st) (1

3 Trajectory: a trajectory 7 is a sequence of states and actions in the environment, 7 =
(s0, o, s1, a1, ...). The initial state of the environment py is randomly selected from
the initial state distribution So.

4  Reward and return: the reward function R holds significant importance in the domain
of reinforcement learning. Its value is contingent upon the present state of the
environment, the action that has just been executed, and the subsequent state of the
environment, as shown below:

I =R(St, a, st+1) )]

DRL algorithm can be classified into model-based approaches and model-free methods
according to whether the agent can access the environment model. Model-based methods
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allow the agent to think and plan in advance, and the agent can distil the results of the
pre-planned strategy into a learning strategy.

2.2 Attention mechanism

The attention mechanism is a neural network component that dynamically weights input
features, mimicking human cognitive attention patterns. We do not pay attention to all
information at the same time, but focus on some key information according to the needs
of the task. The integration of attention mechanisms enables neural networks to learn
dynamic weight distributions across input features, enhancing their capacity for complex
pattern recognition (Brauwers and Frasincar, 2021). The fundamental concept underlying
the attention mechanism is the dynamic allocation of resources, enabling the model to
concentrate on the most pertinent segments of the input. The structure of the attention
mechanism is implied in Figure 1.

Figure 1 The structure of the attention mechanism (see online version for colours)
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In its most basic form, the attention mechanism can be viewed as a mapping function of
queries, keys, and values. For a given query, the similarity or matching degree between
the query and a set of keys is calculated, and then these similarity scores are used to
weight the corresponding values, and finally the sum of the weighted values is output.
This process can be summarised as below:

Attention(Q, K, V') = sofimax oK™ V 3)
N

where Q is the query matrix, K is the key matrix, and V is the value matrix. dy is the
dimension of the key vector, used to scale the dot product result, preventing large dot
product values from causing the softmax function to be in the saturation region, thus
affecting the propagation of gradients. The softmax function serves the purpose of
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transforming the outcome of the dot-product operation into a probability distribution,
which delineates the weight assigned to each individual value.

Attention mechanisms enhance models’ ability to process long sequences and
high-dimensional data in deep learning tasks by dynamically allocating weights to focus
on key information. Based on the continuity and determinism of weight distribution,
attention mechanisms can be categorised into soft attention and hard attention. Soft
attention adjusts feature weights across channels to improve image classification
performance. Hard attention reduces noise by ignoring irrelevant information but may
result in the loss of global context.

3 Analysis of biomechanical data for basketball athletes

3.1 Collection of biomechanical data for basketball athletes

Common methods for collecting biomechanical data include Acclaim skeleton
file/Acclaim motion capture data (ASF/AMC) and Biovision Hierarchy (Scibek and
Carcia, 2013). Given the nonlinearity and stochastic nature of basketball biomechanical
data, this study employs the ASF/AMC skeletal animation format for standardised motion
parameter representation. The biosensor’s kinematic state output at discrete timestep £ is
denoted as w; =[w; w, .]", the output of the posture information of the basketball

athlete calculated by the accelerometer and magnetometer is bf =[a, a, a.]", and

the output of the motion attitude angle is b}" =[m, m, m.]". Assuming the reference

coordinate system is the geodetic coordinate system, under the influence of the gravity
vector and the geomagnetic vector, in the high-dimensional space of the basketball
athlete’s biomechanical movement, the mechanical measurement data of the basketball
athlete’s movement are obtained through accurate posture estimation as
=[0 0 —g]” and [hcosax O —hsinex]", where g is the absolute value of

gravitational acceleration, h and & are the tracking errors of the sensor data with the
geomagnetic dip angle.

When the basketball athlete is performing movements such as walking, jumping, and
handstands, a closed set of spatial motion equations for the basketball athlete’s
biomechanical data is obtained as follows:

m(ii—lt/chosa—X—mgsinH 4)
dé .

mVE=Ps1na+Y—mgcosﬁ ®)]
do. 2 2

J. o +(Jy = Ji) o0, + Ty (0} —w?) =M. (6)

dx

— =V cosf 7

% O]

d—y=Vsin9 8)

dt
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4o _

9, ©
a=0-0 (10)
d.=f(e) (11)

where 6 is the jumping tilt angle of the movement, ¢} is the pitch forward tilt angle of the
athlete when running, & quantifies the superior-inferior body displacement in the sagittal
plane during the sideways handstand position, x, y are horizontal and vertical positions of
the posture during movement, w,, w, are the torques on the coordinate system Ox;, Oy
axes when in non-accelerated motion state, J. is the body angle deviation at any posture,
e1 is the control error of longitudinal motion; m is the mass of the athlete; X, ¥ are the air
resistance, lift, and lateral force of the human body in running and jumping movements,
M. is the pitch torque, J; is the moment of inertia of the human body during movement
with coordinate system transformation; J,, is the moment of inertia of the human body’s
motion space model with respect to the velocity coordinate system Oz;.

3.2 Interpolation reconstruction of basketball athlete movement

According to the above motion equations and data capture results, perform motion
interpolation reconstruction, and obtain the following biomechanical data observation
equation for basketball movement under global search.

At
Gk +1 =D _?Ikgk

) (12)
0=Hj1qr+ —E[k&?;fﬂ

where k indexes the discrete-time sampling instants in the system, g is the unit
quaternion encoding the orientation state of the basketball motion capture system in the
local carrier coordinates at sample k, @, maps vectors from body coordinates to the
navigation frame, and the motion data for two adjacent key frames is determined through
the application of approach wy, Hi+ is the observation ¢ and 0b},, are the observation

disturbances during the basketball motion modelling process; [ is the disturbance
coefficient matrix, and the Newtonian mechanics coefficient g is obtained by processing
the raw motion capture data and solving the inverse kinematics equations.

The kinematic state equations for basketball motion reconstruction incorporate
nonlinear attitude representations derived through rigid-body transformation methods,
expressed as below:

—g®
18 (13)
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where @=[0 ] serves as the quaternion formulation of the output vector; ¢, & and 7

are the attitude information output by the basketball motion attitude equation
respectively.

To ensure the linearity of the observation equation, the captured data of basketball
motion biomechanics bf,, and b, is obtained through second-order filtering, and is

calculated by the Gauss-Newton iterative algorithm. Read the sensor data worn on the
athlete for error analysis, and through the interpolation reconstruction method, the
stochastic filtering equations for basketball trajectory features in perceptual space yield
the following Kalman representation.

At
k1 = DPrqi _7lk5k
14
{bzﬂchqm 0 }H{} (o
el 0 CP(qr1) || Tm Vi

where C’(qi+1) constitutes the state estimation pertaining to the attitude information
within the reference coordinate system, v¢,,, v}, denote the errors in attitude alteration

that occur during the basketball’s motion trajectory under the influence of the
gravitational acceleration vector.

4 Basketball athlete action optimisation based on deep reinforcement
learning and multimodal biomechanics

4.1 Feature extraction of multimodal biomechanical information

After modelling the basketball athlete’s biomechanical data, to solve the problem that
existing research does not fully extract the action features of the basketball athlete,
leading to low efficiency in action optimisation, this paper proposes a basketball athlete
action optimisation model based on DRL and multimodal biomechanics. The model aims
to efficiently integrate multimodal biomechanical information, optimise the execution of
autonomous sensor perception tasks and intelligent decision-making capabilities. As
shown in Figure 2, the model architecture includes a policy network and a Q-value
network, whose core is the multimodal feature extraction and fusion module. The neural
network sizes contained in each network structure are detailed in Figure 2. The policy
network consists of a multimodal feature extraction and fusion module, a fully linked
network, and a softmax layer, used to generate the action probability distribution in the
action space. The Q-value network adopts a completely consistent network structure,
consisting of a multimodal feature extraction and fusion module and a fully linked
network. To simplify the diagram, the target Q-value network is not shown in the figure.
The parameters of these target Q-value networks are dynamically updated from the
corresponding Q-value networks through a soft update mechanism, used to
collaboratively complete the model’s optimisation and decision-making tasks.

The multimodal biomechanical information feature extraction and fusion module
extracts spatial and temporal features from multimodal information through the ResNet-
18 (Thongpance et al., 2023) module and the long short-term memory (LSTM) (Li et al.,
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2024) module, and completes feature fusion using the self-attention mechanism and
global average pooling with a fully connected layer, providing a unified feature
representation for each network. The following details the working principle of this
module from two aspects: feature extraction and feature fusion.

The system input includes camera images, camera images, and biomechanical sensor
data. Image data processing uses multimodal data to construct an image time series, and
the ResNet-18 module is used for feature extraction. The residual connections in
ResNet-18 mitigate gradient vanishing through identity mapping pathways, enabling
stable backpropagation in deep architectures, enhancing the feature learning ability.
For different modal data, this paper customises the ResNet-18: the image input is
180 x 260 x 3 x 9, and the last layer is replaced with a fully connected layer, with the
output being F.

Figure 2 Basketball player movement optimisation framework (see online version for colours)
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The data acquisition frequency of the biomechanical sensor is 1,000 Hz, and the LSTM
network is used to process the six-dimensional tactile data. The LSTM network is widely
used in sequence data processing due to its advantages in time series modelling and
handling long-term dependencies. The recent sensor sequence 6 x 900 is used as input,
and the last layer of the LSTM network is connected to a fully linked level, with the
output being Faeie, ensuring the full capture of the temporal features of the tactile data.

4.2  Multimodal feature fusion based on self-attention mechanism

The self-attention mechanism (SAM) can capture the mechanism of mutual relationships
between elements in the input sequence (Zhang et al., 2025). The features of each
modality are concatenated by time steps to form a unified input feature matrix
X= [FUS; Fcaml; FcamZ; Ftactile]T~
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In this paper, given an input sequence X, SAM calculates the weighted representation
of the input features by introducing three matrices: query Q, key K and value V. The input
feature matrix is transformed linearly to generate the query, key, and value matrices.

0=XWy ,K=XWy.,V=XW (15)

where Wy, Wy, Wy are studied linear transformation weight matrices, dp, dx and dy stand
for the feature dimensions of the query, key, and value, respectively. This paper sets
do = dx = dy = d to simplify the calculation.

The correlation between the query and the key is calculated by the dot product, and
the outcome is normalised by the Softmax function to generate the attention weights. The
specific equation is as follows.

A(Q, K, V)= softmax(QKT ]V (16)

N7l

where QKT is the dot product similarity matrix between the query and the key, d is the
scaling factor, A(Q, K, V) is the fused feature representation, with a dimension of R"
(where n is the sequence length and d is the characteristic dimension), which contains the
spatiotemporal correlation information of the multimodal features.

The generated feature representation is processed by global average pooling, as
implied in the following equation:

Z=(mY." AQ.K.V) (17)
Then, it is mapped to the target feature dimension through softmax, as shown below:
F=O'(Wf'Z+bf) (18)

The dimension of Wy is 128 x 102, bs is a 128-dimensional bias, o(-) s the ReLU
activation operation; the final characteristic vector F is the final output of the multimodal
feature extraction and fusion module.

4.3 Establishment of the reinforcement learning model

The task of optimising the basketball player’s movement is modelled as a Markov
decision process under the reinforcement learning framework. This framework defines
the state space S, the action space A4, the reward function R(s;, a;), and the termination
condition, comprehensively describing the decision-making process in the task of
optimising the basketball player’s movement. The agent interacts with the environment
through selecting an action a, in light of the current state s, € S, and continuously
optimises the strategy according to the feedback reward signal, ultimately achieving
precise optimisation of the target movement.

a  State space S: S integrates multimodal information, including the front camera image
C,, the side camera image C,,, and the force sensor data F;. The state space is
defined as s, = {C\, Co4, Fi}.

b Action space A4: basketball actions involve continuous control (such as movement
and dribbling strength) and discrete decisions (such as when to shoot or pass), so a
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hybrid action space design is usually adopted. Basketball actions can be decomposed
into dribbling height, strength, direction, and whether to switch the ball-hand, and
the action space is represented as 4 = {ai, ay, ..., a:}.

The position action is denoted as increments along the x, y and z axes, with each
action corresponding to a small displacement. The position of the basketball
movement is represented by accumulating the displacement as follows:

P+t = pr £ Ap, (19)

where p; = (x;, y1, z;) stands for the position of the probe at time step ¢, and

Ap: = (Axy, Ay, Az;) stands for the displacement offset at the current time step. The
displacement distance decreases linearly with the number of steps. The posture
action is achieved by accumulating the rotation matrix, and the posture is updated
based on rotations around the x, y, and z axes, as shown below:

R =R R, (2£0,) R, (2+0, ) R.(2+0.) (20)

where R, is the rotation matrix of the motion posture at time step ¢, Ry, R, and R are
the rotation matrices around the x, y, and z axes, respectively; 6,,, 0,, and 0., are

the corresponding rotation angles. The stop command in the action space is used to
indicate the completion of the task, ensuring that the action remains stable after
reaching the optimal policy.

Design of the hybrid reward function and termination conditions: to imitate the
actions of a basketball player, the hybrid reward function takes into account factors
such as the current position, posture, image quality, applied force, and task
completion, encouraging the agent to minimise position error, maintain a reasonable
posture, achieve high-quality imaging, and safe interaction. The hybrid reward
function is defined as follows:

R (St 5 Qi ) = WpRposition + WoRorientation + Wy RSSIM + W/'R/brce + WcRcompletion (2 1)

where Ryositions Rorientations Rssivt, Riorce a0d Reompierion are the reward functions set
considering the action position, probe posture, collected image quality, interaction
force in the action space, and the completion of the action optimisation task,
respectively, wy, wo, Wy, wrand w, are the weights of each reward component.

The position reward is based on the change in the Euclidean distance among the
athlete’s current position and the target position. Let d; represent the Euclidean
distance between the athlete’s current position and the target position at time step ¢.
The reward is defined as below:
+0.2 ifd <d
Rposition =41-04 if dt 2 dt—l (22)
-1.0 ifd, >30cm

The posture reward needs to guide the basketball player to move within a reasonable
range of motion postures. Let Af,,, A0, , A0, represent the differences between the
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current posture angles around the x, y and z axes at time step ¢ and their target
posture angles. The posture reward is defined as follows.

This reward penalises postures that exceed the reasonable range, encouraging the
ultrasound probe to remain within a safe and reasonable angle range.

0 if|A6,],|A8,|,|A0,|<15°

. (23)
—1.0 otherwise

Rorientation = {

The image quality reward aims to guide the probe to adjust its pose to maximise the
ultrasound image quality. The structural similarity index (SSIM) is adopted to assess
the similarity between the currently acquired ultrasound image / and the target image
T, as an image quality metric, with the following calculation equation:

(2#1/1T +Cl)( 207 +Cz)
(13 +12 +c) o} +02 +c2)

SSIM(I,T)= (24)

where u; and ur stand for the means of the current picture and the target image,

respectively; o7 and o? are the variances; o;r is the covariance of the two images;

c1 and ¢; are the stability constants. The SSIM-based reward function is defined as
follows:

(25)

(401 if SSIM, > SSIM,,
SSIMTN 0.1 if SSIM, < SSIM,_,

During the optimisation process, behaviours that improve image quality are
rewarded, while appropriate penalties are given for the opposite. The biomechanical
reward function ensures that the force applied by the probe to the tissue membrane
remains within a safe and effective range. Let F. represent the force along the z-axis
(vertical pressure), F, and F), represent the forces along the x-axis and y-axis,
respectively; 7y, 7, and 7. represent the torques around these axes

0 if 2 N <|F.|<15N

Rporce, =9-1.0 if F.>15N (26)
-0.5 ifF,<2N
0, if |F|,|F,|<15N
R forceners = | | (27)
—0.5, otherwise
The force reward function is the sum of the z-axis force reward and other force
rewards, as shown below:
Riorce = Rppree = R force T R forcengiers (28)

Experience is dynamically prioritised based on the TD error and immediate reward
that are updated in real time. The immediate reward reflects the learning value of the
experience and can measure the contribution of the experience to the current learning
stage, thereby enabling the basketball player to focus on experiences that are more
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critical for policy optimisation, accelerating the learning process, and improving the
stability of the action optimisation strategy.

5 Experimental results and analyses

This paper uses the BallPlay dataset, which contains 52,973 kinematic data (position,
velocity, angle), dynamic data, and contact graphs (CG) of basketball skills, covering
full-body actions such as shooting and passing. The dataset is divided into training set,
test set, and validation set in a ratio of 6:3:1. The experimental platform uses an Intel R
Core TM 19-12900K processor and an NVIDIA RTX 3080 Ti GPU, Python 3.8, 16 GB of
running memory, and the PyTorch framework for deep learning calculations, with Adam
as the optimiser. In the experiment, the training batch size is set to 64, the capacity of the
dynamic priority experience replay pool is 30,000, #= 1, and the number of training and
validation rounds for all models is 300. The discount factor is 0.99 for all models, and the
network learning rate is set to 3 x 1074,

Figure 3 MBM-DRL strategy network feature visualisation (see online version for colours)
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The feature visualisation results of various basketball movement actions optimised in the
proposed MBM-DRL model are shown in Figure 3. The feature visualisation of the fully
connected layer of the MBM-DRL policy network is processed using the T-SNE
algorithm, as shown in Figure 3. This figure shows the feature information extracted by
the model from the data, where each point represents a sample, and different colors
represent different sample labels. By observing, it is found that samples of different types
are scattered in relatively independent local areas, and there are clear boundaries between
these areas. This result indicates that the basketball action optimisation method based on
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MBM-DRL can effectively extract action features and accurately distinguish different
types of actions.

Figure 4 Average cumulative rewards per round for different models (see online version
for colours)
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This paper selects GAN-RL (Chen et al., 2021), DRL (Liu and Hodgins, 2018), DPPO
(Wang et al., 2024b), EDQN (Arumugam, 2025), TRDRL (Chang et al., 2025) as
comparison models, and analyses the average accumulated reward of different models, as
shown in Figure 4. Improving the accumulated reward per round is the goal of model
training and also a direct reflection of whether the model converges. The round reward
curve of D stabilises after about the 180th round, while the round reward curve of
MBM-DRL stabilizes at the 50th round. DRL stabilises at the 251st round, showing poor
performance. EDQN stabilises after the 90th round, with performance lower than
MBM-DRL but higher than DPPO. These results indicate that compared to the literature
GAN-RL, DRL, DPPO, EDQN, TRDRL, MBM-DRL not only has stable and excellent
learning ability, but the introduced dynamic priority experience replay mechanism
significantly improves the training speed and model stability.

The training time, average reward, success rate, and average steps of different models
are compared in Table 1. The proposed model has the shortest training time, the highest
success rate, and the fewest execution steps. The action optimisation success rate of
MBM-DRL is 97%, which is 24%, 17%, 12%, 8% and 5% higher than the other five
models, respectively. The average reward value of MBM-DRL is also 0.5, 1.68, 1.04,
0.89 and 0.17 higher than GAN-RL, DRL, DPPO, EDQN, TRDRL, respectively.

Although GAN-RL embeds a deep learning framework into DRL, the model does not
consider the multimodal biomechanical characteristics of basketball players. DRL models
the biomechanics of athletes through DRL, which can quickly calculate the joint torque
of athletes, but the extraction of multimodal features is insufficient, so its action
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optimisation effect is worse than that of MBM-DRL. DPPO optimises the movement
trajectory of athletes through the proximal policy optimisation algorithm, but does not
introduce a relevant mechanism to optimise the stability of the model, resulting in poor
action optimisation effect. EDQN designs an action optimisation method for basketball
players based on the improved deep Q network, but does not extract the multimodal
biomechanical characteristics of athletes. TRDRL extracts and fuses the action features of
different athletes through the transformer, but does not consider biomechanical
characteristics, so its action optimisation effect is worse than that of MBM-DRL.
Comprehensive analysis above, the MBM-DRL model achieves effective feature
extraction and fusion of multimodal biomechanical information, improving the effect of
basketball movement action optimisation.

Table 1 Rationality indices for layout optimisation
Model Training cycle Average reward Success rate
GAN-RL 960 5.41 73%
DRL 820 423 80%
DPPO 600 4.87 85%
EDQN 450 5.02 89%
TRDRL 90 5.74 92%
MBM-DRL 50 591 97%

6 Conclusions

Intending to the issues of insufficient mining of biomechanical characteristics and poor
effect of action optimisation in existing approaches for optimising basketball movements,
this paper proposes a basketball player action optimisation model based on DRL and
multimodal biomechanical modelling. First, biomechanical data analysis and
interpolation reconstruction of basketball players are conducted to build a motion state
equation for capturing and analysing key data for basketball movement modelling. Then,
an action optimisation model for basketball players is designed. The model includes a
policy network and a Q-value network, both of which are based on a multimodal feature
extraction and fusion module. The policy network is composed of a multimodal feature
extraction and fusion module and a fully linked layer, adopted to generate the action
probability distribution in the action space. The Q-value network adopts an identical
network structure, consisting of a multimodal feature extraction and fusion module and a
fully connected network. To accurately capture the spatiotemporal information in
multimodal data and achieve efficient fusion of multimodal features, a multimodal
feature extraction and fusion module in light of SAM is designed. Through the
collaborative effect of the policy network and the Q-value network, the training
efficiency and decision-making performance are significantly improved, ensuring the
efficiency and stability of the model in the task of optimising basketball movement
actions. Experimental outcome indicates that the success rate of the proposed model’s
action optimisation is 97%, demonstrating the best action optimisation efficiency.
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