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Abstract: Basketball player action optimisation is key to improving 
competitive performance. To address the issue of insufficient mining of 
biomechanical features and poor action optimisation effects in current research, 
this paper first conducts biomechanical data analysis of basketball players and 
constructs a motion state equation for capturing and analysing key data. Then, 
it integrates image and biomechanical motion data to provide comprehensive 
multimodal perception information. A multimodal feature extraction and fusion 
module based on self-attention mechanism is designed. Secondly, the pose 
action decision-making task of the athlete is modelled as a deep reinforcement 
learning (DRL) problem. Finally, a hybrid reward function is designed to 
achieve efficient training of the model and action strategy optimisation. 
Experimental outcome indicates that the high model improves the action 
optimisation success rate by at least 5% compared to the baseline model, 
demonstrating good action optimisation effects. 

Keywords: basketball action optimisation; deep reinforcement learning; 
biomechanical modelling; multimodal feature fusion; attention mechanism. 
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1 Introduction 

In the intense confrontation and precise competition of basketball, every detail of an 
athlete’s movement may turn into a crucial element in deciding the game’s result (Ren 
and Wang, 2021). Traditional methods of improving movements based on experience 
accumulation have become tough to meet the requirements of high-level training. 
Biomechanics provides a scientific framework for analysing the internal mechanisms of 
basketball movements, and by collecting kinematic data of athletes, researchers can 
quantitatively evaluate the biomechanical characteristics of movements and identify 
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potential unreasonable force patterns (Lam et al., 2022). However, single-modal data 
often only reflects the local characteristics of movements, but fails to explain the causal 
relationship between the force value and movement stability (Wang et al., 2024a). The 
fusion analysis of multimodal biomechanical data can build a more comprehensive 
movement evaluation model, but how to mine effective information from massive 
heterogeneous data for movement optimisation remains a current research challenge 
(Cheng and Cheng, 2024). DRL learns optimal decision-making strategies through 
continuous interaction between the agent and the environment, and its strong nonlinear 
fitting ability and sequence decision-making advantages are exactly suitable for the needs 
of basketball movement optimisation (Zhang and Tao, 2023). Therefore, how to combine 
biomechanical modelling data and reinforcement learning (RL) theory to develop 
efficient methods for optimising basketball athletes’ movements has important 
application value. 

Traditional methods for optimising basketball athletes’ movements are based on 
machine learning methods. Typical statistical learning methods include SVM (Pradhan, 
2012), AdaBoost (Wang and Sun, 2021), etc. Liu and Wang (2023) used the relative 
position and velocity of athletes as inputs to train a support vector machine (SVM) for 
optimising athlete movement decisions. Zhu (2022) adopted a sports movement 
optimisation method based on particle swarm optimisation SVM, using Bayesian 
parameter optimisation to better determine parameters. In addition to the SVM method, 
Xie and Wu (2024) applied AdaBoost to athlete movement optimisation, using a series of 
athlete movements as inputs and selecting the optimal strategy as the output, but the 
practicality was weak. Li (2025) defined an appropriate objective function based on the 
biomechanical principles of athlete movements, transforming the generation of 
movements into a specific offline spatiotemporal optimisation problem to calculate joint 
torques, and obtained the optimised movement results through decision trees. Wang 
(2023) adopted a low-dimensional physical model method, simplifying complex athletes 
into a low-dimensional model to simulate athlete movements, and used random forests as 
classifiers to predict the optimal movement output. 

Deep learning approaches share similarities with conventional machine learning 
techniques. The key distinction is that deep learning employs neural networks to 
automatically capture data characteristics, thereby improving the performance of 
optimised design. By harnessing deep learning’s capabilities in image processing, a 
sports movement enhancement system was created. In most cases, sensor-recorded 
movement data is processed by a trained deep learning model to yield optimised outputs. 
Javadpour et al. (2022) employed monocular front-view motion sequences as input data, 
utilising a convolutional neural network for end-to-end policy learning to derive 
optimised movement strategies. Yoon et al. (2019) developed an attention branch 
network (ABN) architecture for sports motion optimisation decision-making. First, the 
original visual image was input, and the network architecture incorporated an attention 
mechanism that produced a characteristic attention map at its intermediate level. Finally, 
the attention map of the original image was combined with the convolutional features of 
the self-expected action to generate the optimised sports movement. Yan (2024) 
combined motion matching with deep learning, and proposed learned motion matching, 
which reduces the storage space required by motion matching through a learning 
approach, while ensuring that the output movements can be mapped to the motion library. 
Xiao (2024) extracted features from motion images and motion videos using a multi-scale 
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CNN, and used an attention mechanism to integrate multi-modal characteristics, and 
output the results of sports movement prediction. 

RL enables agents to progressively learn optimal policies through trial-and-error 
interactions with the environment, maximising cumulative rewards. This characteristic 
holds significant potential for optimising athletes’ movements. The agent’s kinematics, 
athletic scenarios, and biomechanical constraints are encoded into the environmental state 
space. Deep neural networks are employed to construct policy functions, taking the 
current state as input and generating action parameters as output. Through end-to-end 
learning, states are directly mapped to optimal actions, circumventing the limitations of 
manually designed features in traditional approaches. The current model undergoes 
cyclical refinement through iterative updates incorporating both historical data and newly 
acquired environmental exploration data, achieving the optimisation of athletes’ 
movements. Chen et al. (2021) used an adversarial learning framework to train a policy 
network as a generator to generate motion sequences, and used an adversarial 
discriminator to the kinematic plausibility of synthesised motions. Liu and Hodgins 
(2018) utilised the reward mechanism and strong decision-making ability of DRL to 
quickly calculate the joint torque of athletes, effectively overcoming the problems of poor 
generality and real-time performance in traditional methods. Wang et al. (2024b) used the 
proximal policy optimisation algorithm combined with motion trajectory optimisation to 
train a virtual character to learn basketball dribbling actions, making it closer to the real 
actions of athletes. Arumugam (2025) designed a basketball player’s action optimisation 
method based on an improved deep Q network, achieving a high level of optimisation 
accuracy. Chang et al. (2025) used transformer to extract and fuse the action features of 
different athletes, simulating the athletes’ movement environment, and using DRL to 
make decisions on the optimal athlete action strategy, which has good robustness. 

From the above in-depth analysis of action optimisation methods, it can be seen that 
traditional action analysis methods rely on expert experience and limited biomechanical 
indicators, making it difficult to achieve personalised and real-time action optimisation. 
Existing research has problems such as insufficient mining of biomechanical features and 
unsatisfactory action optimisation effects. To address these issues, this article puts 
forward a basketball player action optimisation model based on DRL and multimodal 
biomechanical modelling. First, biomechanical data analysis and interpolation 
reconstruction of basketball players are performed to build a motion state equation for 
capturing and analysing key data for basketball movement modelling. Then, a basketball 
player action optimisation model is designed. The model contains a policy network and a 
Q-value network, whose core is the multimodal feature extraction and fusion module. 
The policy network is composed of a multimodal characteristic extraction and integration 
module, a fully linked network, and a fully connected layer, which is used to generate the 
action probability distribution in the action space. The Q-value network adopts a 
completely consistent network structure, composed of a multimodal feature extraction 
and fusion module and a fully linked network. The parameters of these target Q-value 
networks are dynamically updated from the corresponding Q-value networks through a 
soft update mechanism, which is adopted to collaboratively complete the model’s 
optimisation and decision-making tasks. Through the collaborative effect of the policy 
network and the Q-value network, the training efficiency and decision-making 
performance are significantly improved, ensuring the efficiency and stability of the model 
in the basketball movement action optimisation task. Experimental outcome indicates that 
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the action optimisation success rate and average reward function of the proposed model 
are better than those of the baseline model, significantly improving the efficiency of 
action optimisation. 

2 Relevant technologies 

2.1 Deep reinforcement learning algorithm 

Traditional RL is prone to falling into the myopia trap when handling long-term 
sequential decision making. For instance, conventional policy gradient methods update 
policies solely based on the ‘current step reward’, failing to account for the cumulative 
benefits of future steps and resulting in locally optimal policies. DRL overcomes the 
limitations of traditional RL in handling high-dimensional state spaces and complex 
decision problems by integrating deep neural networks with RL. It achieves a direct 
mapping from raw inputs to optimal actions through a single neural network. This  
end-to-end optimisation reduces information loss and enhances policy robustness. The 
fundamental architecture of DRL comprises an intelligent agent interacting with its 
environment. The agent engages in dynamic exchanges with its environment. 
Environmental states evolve as a direct consequence of the agent’s interventions. 
Environmental states may evolve through intrinsic dynamics without agent intervention. 
The agent obtains a reward signal from the environment, which conveys to the agent an 
assessment of whether the current environmental state is favourable or unfavourable 
(Wang et al., 2022). During the entire interaction process, the agent’s goal is to maximise 
the cumulative reward obtained. Next, several concepts in RL will be introduced. 

1 State and observation: a state is generally denoted by s, and the state space is 
generally denoted by S, which is used to describe the state information of the 
environment. Observation o pertains to the environmental state information that is 
perceptible to the agent. Usually, a portion of the environmental state information 
remains concealed. 

2 Policy: the policy of the agent is divided into deterministic policy and stochastic 
policy. A deterministic policy is generally denoted by μ, as shown below: 

( )t ta μ s=  (1) 

3 Trajectory: a trajectory τ is a sequence of states and actions in the environment, τ = 
(s0, a0, s1, a1, …). The initial state of the environment ρ0 is randomly selected from 
the initial state distribution S0. 

4 Reward and return: the reward function R holds significant importance in the domain 
of reinforcement learning. Its value is contingent upon the present state of the 
environment, the action that has just been executed, and the subsequent state of the 
environment, as shown below: 

( )1, ,t t t tr R s a s +=  (2) 

DRL algorithm can be classified into model-based approaches and model-free methods 
according to whether the agent can access the environment model. Model-based methods 
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allow the agent to think and plan in advance, and the agent can distil the results of the 
pre-planned strategy into a learning strategy. 

2.2 Attention mechanism 

The attention mechanism is a neural network component that dynamically weights input 
features, mimicking human cognitive attention patterns. We do not pay attention to all 
information at the same time, but focus on some key information according to the needs 
of the task. The integration of attention mechanisms enables neural networks to learn 
dynamic weight distributions across input features, enhancing their capacity for complex 
pattern recognition (Brauwers and Frasincar, 2021). The fundamental concept underlying 
the attention mechanism is the dynamic allocation of resources, enabling the model to 
concentrate on the most pertinent segments of the input. The structure of the attention 
mechanism is implied in Figure 1. 

Figure 1 The structure of the attention mechanism (see online version for colours) 
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In its most basic form, the attention mechanism can be viewed as a mapping function of 
queries, keys, and values. For a given query, the similarity or matching degree between 
the query and a set of keys is calculated, and then these similarity scores are used to 
weight the corresponding values, and finally the sum of the weighted values is output. 
This process can be summarised as below: 

( , , )
T

k

QKAttention Q K V softmax V
d

 =  
 

 (3) 

where Q is the query matrix, K is the key matrix, and V is the value matrix. dk is the 
dimension of the key vector, used to scale the dot product result, preventing large dot 
product values from causing the softmax function to be in the saturation region, thus 
affecting the propagation of gradients. The softmax function serves the purpose of 
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transforming the outcome of the dot-product operation into a probability distribution, 
which delineates the weight assigned to each individual value. 

Attention mechanisms enhance models’ ability to process long sequences and  
high-dimensional data in deep learning tasks by dynamically allocating weights to focus 
on key information. Based on the continuity and determinism of weight distribution, 
attention mechanisms can be categorised into soft attention and hard attention. Soft 
attention adjusts feature weights across channels to improve image classification 
performance. Hard attention reduces noise by ignoring irrelevant information but may 
result in the loss of global context. 

3 Analysis of biomechanical data for basketball athletes 

3.1 Collection of biomechanical data for basketball athletes 

Common methods for collecting biomechanical data include Acclaim skeleton 
file/Acclaim motion capture data (ASF/AMC) and Biovision Hierarchy (Scibek and 
Carcia, 2013). Given the nonlinearity and stochastic nature of basketball biomechanical 
data, this study employs the ASF/AMC skeletal animation format for standardised motion 
parameter representation. The biosensor’s kinematic state output at discrete timestep k is 
denoted as [ ] ,T

k k y zω ω ω ω=  the output of the posture information of the basketball 
athlete calculated by the accelerometer and magnetometer is [ ] ,a T

x y zkb a a a=  and 
the output of the motion attitude angle is [ ] .m T

x y zkb m m m=  Assuming the reference 
coordinate system is the geodetic coordinate system, under the influence of the gravity 
vector and the geomagnetic vector, in the high-dimensional space of the basketball 
athlete’s biomechanical movement, the mechanical measurement data of the basketball 
athlete’s movement are obtained through accurate posture estimation as 

[0 0 ]T
ar g= −  and [ cos 0 sin ] ,Th h−α α  where g is the absolute value of 

gravitational acceleration, h and α  are the tracking errors of the sensor data with the 
geomagnetic dip angle. 

When the basketball athlete is performing movements such as walking, jumping, and 
handstands, a closed set of spatial motion equations for the basketball athlete’s 
biomechanical data is obtained as follows: 

d cos sin
d
Vm P X mg θ
t

= − −α  (4) 

d sin cos
d
θmV P Y mg θ
t

= + −α  (5) 

( ) ( )2 2d
d

z
z y x y x xy y x z
ωJ J J ω ω J ω ω M
t

+ − + − =  (6) 

d cos
d
x V θ
t

=  (7) 

d sin
d
y V θ
t

=  (8) 
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d
d zωt

=ϑ  (9) 

θ= −α ϑ  (10) 

( )1zδ f e=  (11) 

where θ is the jumping tilt angle of the movement, ϑ is the pitch forward tilt angle of the 
athlete when running, α quantifies the superior-inferior body displacement in the sagittal 
plane during the sideways handstand position, x, y are horizontal and vertical positions of 
the posture during movement, wx, wy are the torques on the coordinate system Ox1, Oy1 
axes when in non-accelerated motion state, δz is the body angle deviation at any posture, 
e1 is the control error of longitudinal motion; m is the mass of the athlete; X, Y are the air 
resistance, lift, and lateral force of the human body in running and jumping movements, 
Mz is the pitch torque, Jz is the moment of inertia of the human body during movement 
with coordinate system transformation; Jxy is the moment of inertia of the human body’s 
motion space model with respect to the velocity coordinate system Oz1. 

3.2 Interpolation reconstruction of basketball athlete movement 

According to the above motion equations and data capture results, perform motion 
interpolation reconstruction, and obtain the following biomechanical data observation 
equation for basketball movement under global search. 

1

1 1 1

ΔΦ
2
10
2

k k k k k

x
k k k k

tq q I ε

H q I δb

+

+ + +

 = −

 = −


 (12) 

where k indexes the discrete-time sampling instants in the system, qk is the unit 
quaternion encoding the orientation state of the basketball motion capture system in the 
local carrier coordinates at sample k, Φk maps vectors from body coordinates to the 
navigation frame, and the motion data for two adjacent key frames is determined through 
the application of approach wk, Hk+1 is the observation εk and 1

x
kδb +  are the observation 

disturbances during the basketball motion modelling process; Ik is the disturbance 
coefficient matrix, and the Newtonian mechanics coefficient qk is obtained by processing 
the raw motion capture data and solving the inverse kinematics equations. 

The kinematic state equations for basketball motion reconstruction incorporate 
nonlinear attitude representations derived through rigid-body transformation methods, 
expressed as below: 

ˆ

1 1

1 0
2

ˆ

ωω ετ τ
q q

ω ω ξ
q q η

 −    −   = +       ⊗    
     

= +     
     














ω  (13) 
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where [0 ]Tω ω=  serves as the quaternion formulation of the output vector; ε, ξ and η 
are the attitude information output by the basketball motion attitude equation 
respectively. 

To ensure the linearity of the observation equation, the captured data of basketball 
motion biomechanics 1

a
kb +  and 1

m
kb +  is obtained through second-order filtering, and is 

calculated by the Gauss-Newton iterative algorithm. Read the sensor data worn on the 
athlete for error analysis, and through the interpolation reconstruction method, the 
stochastic filtering equations for basketball trajectory features in perceptual space yield 
the following Kalman representation. 

1

11 1

11 1

ΔΦ
2

( ) 0
0 ( )

k k k k k

a ab
ar kk k

m mb
mr kk k

tq q I ε

rb vC q
rb vC q

+

++ +

++ +

= −

      
= +      

   















 (14) 

where 1( )b
r kC q +  constitutes the state estimation pertaining to the attitude information 

within the reference coordinate system, 1,a
kv +  1

m
kv +  denote the errors in attitude alteration 

that occur during the basketball’s motion trajectory under the influence of the 
gravitational acceleration vector. 

4 Basketball athlete action optimisation based on deep reinforcement 
learning and multimodal biomechanics 

4.1 Feature extraction of multimodal biomechanical information 

After modelling the basketball athlete’s biomechanical data, to solve the problem that 
existing research does not fully extract the action features of the basketball athlete, 
leading to low efficiency in action optimisation, this paper proposes a basketball athlete 
action optimisation model based on DRL and multimodal biomechanics. The model aims 
to efficiently integrate multimodal biomechanical information, optimise the execution of 
autonomous sensor perception tasks and intelligent decision-making capabilities. As 
shown in Figure 2, the model architecture includes a policy network and a Q-value 
network, whose core is the multimodal feature extraction and fusion module. The neural 
network sizes contained in each network structure are detailed in Figure 2. The policy 
network consists of a multimodal feature extraction and fusion module, a fully linked 
network, and a softmax layer, used to generate the action probability distribution in the 
action space. The Q-value network adopts a completely consistent network structure, 
consisting of a multimodal feature extraction and fusion module and a fully linked 
network. To simplify the diagram, the target Q-value network is not shown in the figure. 
The parameters of these target Q-value networks are dynamically updated from the 
corresponding Q-value networks through a soft update mechanism, used to 
collaboratively complete the model’s optimisation and decision-making tasks. 

The multimodal biomechanical information feature extraction and fusion module 
extracts spatial and temporal features from multimodal information through the ResNet-
18 (Thongpance et al., 2023) module and the long short-term memory (LSTM) (Li et al., 
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2024) module, and completes feature fusion using the self-attention mechanism and 
global average pooling with a fully connected layer, providing a unified feature 
representation for each network. The following details the working principle of this 
module from two aspects: feature extraction and feature fusion. 

The system input includes camera images, camera images, and biomechanical sensor 
data. Image data processing uses multimodal data to construct an image time series, and 
the ResNet-18 module is used for feature extraction. The residual connections in  
ResNet-18 mitigate gradient vanishing through identity mapping pathways, enabling 
stable backpropagation in deep architectures, enhancing the feature learning ability.  
For different modal data, this paper customises the ResNet-18: the image input is  
180 × 260 × 3 × 9, and the last layer is replaced with a fully connected layer, with the 
output being Fus. 

Figure 2 Basketball player movement optimisation framework (see online version for colours) 

Robot Interaction

Basketball images 
180×260×3×9

Lateral Camera Image 
155×220×3×9

Frontal Camera Image 
155×220×3×9

6D Force/Torque 
Sensor 6×900

Multimodal Information DSAC-PERDP Model Network

Optimization of Basketball Movements

C
oncatenation

9×102

Self-A
ttention M

echanism
 M

odule

G
lobal A

verage Pooling

Z

Fully Connected Layer 
+ ReLU Activation Fully Connected Layer Fully Connected Layer 

+ Softmax

Action Space

Policy Network

Q-Network 1

Target Q-Network 1

Qmin

Q-Network 2

Target Q-Network 2

ResNet-18

ResNet-18

ResNet-18

LSTM

X

m
in

Δpt
Δθt

48×9

24×9

24×9

6×9

256
128

64
13

256
128

64
13

256
128

64
13

Multimodal Feature Extraction and Fusion Module

Data Flow

 

The data acquisition frequency of the biomechanical sensor is 1,000 Hz, and the LSTM 
network is used to process the six-dimensional tactile data. The LSTM network is widely 
used in sequence data processing due to its advantages in time series modelling and 
handling long-term dependencies. The recent sensor sequence 6 × 900 is used as input, 
and the last layer of the LSTM network is connected to a fully linked level, with the 
output being Ftactile, ensuring the full capture of the temporal features of the tactile data. 

4.2 Multimodal feature fusion based on self-attention mechanism 

The self-attention mechanism (SAM) can capture the mechanism of mutual relationships 
between elements in the input sequence (Zhang et al., 2025). The features of each 
modality are concatenated by time steps to form a unified input feature matrix  
X = [FUS; Fcam1; Fcam2; Ftactile]T. 
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In this paper, given an input sequence X, SAM calculates the weighted representation 
of the input features by introducing three matrices: query Q, key K and value V. The input 
feature matrix is transformed linearly to generate the query, key, and value matrices. 

, ,Q K VQ XW K XW V XW= = =  (15) 

where WQ, WK, WV are studied linear transformation weight matrices, dQ, dK and dV stand 
for the feature dimensions of the query, key, and value, respectively. This paper sets  
dQ = dK = dV = d to simplify the calculation. 

The correlation between the query and the key is calculated by the dot product, and 
the outcome is normalised by the Softmax function to generate the attention weights. The 
specific equation is as follows. 

T
( , , ) softmax QKA Q K V V

d
 =  
 

 (16) 

where QKT is the dot product similarity matrix between the query and the key, d is the 
scaling factor, A(Q, K, V) is the fused feature representation, with a dimension of Rn×d 
(where n is the sequence length and d is the characteristic dimension), which contains the 
spatiotemporal correlation information of the multimodal features. 

The generated feature representation is processed by global average pooling, as 
implied in the following equation: 

1
(1 ) ( , , )

n
i

i
Z n A Q K V

=
=   (17) 

Then, it is mapped to the target feature dimension through softmax, as shown below: 

( )f fF σ W Z b= +  (18) 

The dimension of Wf is 128 × 102, bf is a 128-dimensional bias, σ(·) s the ReLU 
activation operation; the final characteristic vector F is the final output of the multimodal 
feature extraction and fusion module. 

4.3 Establishment of the reinforcement learning model 

The task of optimising the basketball player’s movement is modelled as a Markov 
decision process under the reinforcement learning framework. This framework defines 
the state space S, the action space A, the reward function R(st, at), and the termination 
condition, comprehensively describing the decision-making process in the task of 
optimising the basketball player’s movement. The agent interacts with the environment 
through selecting an action at in light of the current state st ∈ S, and continuously 
optimises the strategy according to the feedback reward signal, ultimately achieving 
precise optimisation of the target movement. 

a State space S: S integrates multimodal information, including the front camera image 
C1,t, the side camera image C2,t, and the force sensor data Ft. The state space is 
defined as st = {C1,t, C2,t, Ft}. 

b Action space A: basketball actions involve continuous control (such as movement 
and dribbling strength) and discrete decisions (such as when to shoot or pass), so a 
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hybrid action space design is usually adopted. Basketball actions can be decomposed 
into dribbling height, strength, direction, and whether to switch the ball-hand, and 
the action space is represented as A = {a1, a2, …, at}. 

The position action is denoted as increments along the x, y and z axes, with each 
action corresponding to a small displacement. The position of the basketball 
movement is represented by accumulating the displacement as follows: 

1 Δt t tp p p+ = ±  (19) 

where pt = (xt, yt, zt) stands for the position of the probe at time step t, and  
Δpt = (Δxt, Δyt, Δzt) stands for the displacement offset at the current time step. The 
displacement distance decreases linearly with the number of steps. The posture 
action is achieved by accumulating the rotation matrix, and the posture is updated 
based on rotations around the x, y, and z axes, as shown below: 

( ) ( ) ( )1 2 2 2t t tt t x x y y z zR R R θ R θ R θ+ = ⋅ ± ⋅ + ⋅ +  (20) 

where Rt is the rotation matrix of the motion posture at time step t, Rx, Ry and Rz are 
the rotation matrices around the x, y, and z axes, respectively; ,txθ  tyθ  and tzθ  are 
the corresponding rotation angles. The stop command in the action space is used to 
indicate the completion of the task, ensuring that the action remains stable after 
reaching the optimal policy. 

c Design of the hybrid reward function and termination conditions: to imitate the 
actions of a basketball player, the hybrid reward function takes into account factors 
such as the current position, posture, image quality, applied force, and task 
completion, encouraging the agent to minimise position error, maintain a reasonable 
posture, achieve high-quality imaging, and safe interaction. The hybrid reward 
function is defined as follows: 

( )   ,t t p position o orientation s SSIM f force c completionR s a w R w R w R w R w R= + + + +  (21) 

where Rposition, Rorientation, RSSIM, Rforce and Rcompletion are the reward functions set 
considering the action position, probe posture, collected image quality, interaction 
force in the action space, and the completion of the action optimisation task, 
respectively, wp, wo, ws, wf and wc are the weights of each reward component. 

The position reward is based on the change in the Euclidean distance among the 
athlete’s current position and the target position. Let dt represent the Euclidean 
distance between the athlete’s current position and the target position at time step t. 
The reward is defined as below: 

1

1

0.2 if
0.4 if
1.0 if 30 cm

t t

position t t

t

d d
R d d

d

−

−

+ <
= −
− >

  (22) 

The posture reward needs to guide the basketball player to move within a reasonable 
range of motion postures. Let ,Δ Δ Δ,t t tx y zθ θ θ  represent the differences between the 
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current posture angles around the x, y and z axes at time step t and their target 
posture angles. The posture reward is defined as follows. 

This reward penalises postures that exceed the reasonable range, encouraging the 
ultrasound probe to remain within a safe and reasonable angle range. 

0 if Δ , Δ , Δ 15
1.0 otherwise

t t tx y z
orientation

θ θ θ
R


= −


 (23) 

The image quality reward aims to guide the probe to adjust its pose to maximise the 
ultrasound image quality. The structural similarity index (SSIM) is adopted to assess 
the similarity between the currently acquired ultrasound image I and the target image 
T, as an image quality metric, with the following calculation equation: 

( ) ( )
( )( )

1 2
2 2 2 2

1 2

2 2
( , ) I T IT

I T I T

μ μ c σ c
SSIM I T

μ μ c σ σ c
+ +

=
+ + + +

 (24) 

where μI and μT stand for the means of the current picture and the target image, 
respectively; 2

Iσ  and 2
Tσ  are the variances; σIT is the covariance of the two images; 

c1 and c2 are the stability constants. The SSIM-based reward function is defined as 
follows: 

1

1

0.1 if 
0.1 if 

t t
SSIM

t t

SSIM SSIM
R

SSIM SSIM
−

−

+ >
= −   (25) 

During the optimisation process, behaviours that improve image quality are 
rewarded, while appropriate penalties are given for the opposite. The biomechanical 
reward function ensures that the force applied by the probe to the tissue membrane 
remains within a safe and effective range. Let Fz represent the force along the z-axis 
(vertical pressure), Fx and Fy represent the forces along the x-axis and y-axis, 
respectively; τx, τy and τz represent the torques around these axes 

0 if 2 15 N
1.0 if 15 N
0.5 if 2 N

Z

z

force z

z

N F
R F

F


= − >
− <

 
 (26) 

0, if , 15 N
0.5, otherwiseothers

x y
force

F F
R


= −


 (27) 

The force reward function is the sum of the z-axis force reward and other force 
rewards, as shown below: 

othersforce force force forceR R R R= − +  (28) 

Experience is dynamically prioritised based on the TD error and immediate reward 
that are updated in real time. The immediate reward reflects the learning value of the 
experience and can measure the contribution of the experience to the current learning 
stage, thereby enabling the basketball player to focus on experiences that are more 
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critical for policy optimisation, accelerating the learning process, and improving the 
stability of the action optimisation strategy. 

5 Experimental results and analyses 

This paper uses the BallPlay dataset, which contains 52,973 kinematic data (position, 
velocity, angle), dynamic data, and contact graphs (CG) of basketball skills, covering 
full-body actions such as shooting and passing. The dataset is divided into training set, 
test set, and validation set in a ratio of 6:3:1. The experimental platform uses an Intel R 
Core TM i9-12900K processor and an NVIDIA RTX 3080 Ti GPU, Python 3.8, 16 GB of 
running memory, and the PyTorch framework for deep learning calculations, with Adam 
as the optimiser. In the experiment, the training batch size is set to 64, the capacity of the 
dynamic priority experience replay pool is 30,000, β = 1, and the number of training and 
validation rounds for all models is 300. The discount factor is 0.99 for all models, and the 
network learning rate is set to 3 × 10–4. 

Figure 3 MBM-DRL strategy network feature visualisation (see online version for colours) 
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The feature visualisation results of various basketball movement actions optimised in the 
proposed MBM-DRL model are shown in Figure 3. The feature visualisation of the fully 
connected layer of the MBM-DRL policy network is processed using the T-SNE 
algorithm, as shown in Figure 3. This figure shows the feature information extracted by 
the model from the data, where each point represents a sample, and different colors 
represent different sample labels. By observing, it is found that samples of different types 
are scattered in relatively independent local areas, and there are clear boundaries between 
these areas. This result indicates that the basketball action optimisation method based on 
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MBM-DRL can effectively extract action features and accurately distinguish different 
types of actions. 

Figure 4 Average cumulative rewards per round for different models (see online version  
for colours) 
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This paper selects GAN-RL (Chen et al., 2021), DRL (Liu and Hodgins, 2018), DPPO 
(Wang et al., 2024b), EDQN (Arumugam, 2025), TRDRL (Chang et al., 2025) as 
comparison models, and analyses the average accumulated reward of different models, as 
shown in Figure 4. Improving the accumulated reward per round is the goal of model 
training and also a direct reflection of whether the model converges. The round reward 
curve of D stabilises after about the 180th round, while the round reward curve of  
MBM-DRL stabilizes at the 50th round. DRL stabilises at the 251st round, showing poor 
performance. EDQN stabilises after the 90th round, with performance lower than  
MBM-DRL but higher than DPPO. These results indicate that compared to the literature 
GAN-RL, DRL, DPPO, EDQN, TRDRL, MBM-DRL not only has stable and excellent 
learning ability, but the introduced dynamic priority experience replay mechanism 
significantly improves the training speed and model stability. 

The training time, average reward, success rate, and average steps of different models 
are compared in Table 1. The proposed model has the shortest training time, the highest 
success rate, and the fewest execution steps. The action optimisation success rate of 
MBM-DRL is 97%, which is 24%, 17%, 12%, 8% and 5% higher than the other five 
models, respectively. The average reward value of MBM-DRL is also 0.5, 1.68, 1.04, 
0.89 and 0.17 higher than GAN-RL, DRL, DPPO, EDQN, TRDRL, respectively. 

Although GAN-RL embeds a deep learning framework into DRL, the model does not 
consider the multimodal biomechanical characteristics of basketball players. DRL models 
the biomechanics of athletes through DRL, which can quickly calculate the joint torque 
of athletes, but the extraction of multimodal features is insufficient, so its action 
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optimisation effect is worse than that of MBM-DRL. DPPO optimises the movement 
trajectory of athletes through the proximal policy optimisation algorithm, but does not 
introduce a relevant mechanism to optimise the stability of the model, resulting in poor 
action optimisation effect. EDQN designs an action optimisation method for basketball 
players based on the improved deep Q network, but does not extract the multimodal 
biomechanical characteristics of athletes. TRDRL extracts and fuses the action features of 
different athletes through the transformer, but does not consider biomechanical 
characteristics, so its action optimisation effect is worse than that of MBM-DRL. 
Comprehensive analysis above, the MBM-DRL model achieves effective feature 
extraction and fusion of multimodal biomechanical information, improving the effect of 
basketball movement action optimisation. 
Table 1 Rationality indices for layout optimisation 

Model Training cycle Average reward Success rate 
GAN-RL 960 5.41 73% 
DRL 820 4.23 80% 
DPPO 600 4.87 85% 
EDQN 450 5.02 89% 
TRDRL 90 5.74 92% 
MBM-DRL 50 5.91 97% 

6 Conclusions 

Intending to the issues of insufficient mining of biomechanical characteristics and poor 
effect of action optimisation in existing approaches for optimising basketball movements, 
this paper proposes a basketball player action optimisation model based on DRL and 
multimodal biomechanical modelling. First, biomechanical data analysis and 
interpolation reconstruction of basketball players are conducted to build a motion state 
equation for capturing and analysing key data for basketball movement modelling. Then, 
an action optimisation model for basketball players is designed. The model includes a 
policy network and a Q-value network, both of which are based on a multimodal feature 
extraction and fusion module. The policy network is composed of a multimodal feature 
extraction and fusion module and a fully linked layer, adopted to generate the action 
probability distribution in the action space. The Q-value network adopts an identical 
network structure, consisting of a multimodal feature extraction and fusion module and a 
fully connected network. To accurately capture the spatiotemporal information in 
multimodal data and achieve efficient fusion of multimodal features, a multimodal 
feature extraction and fusion module in light of SAM is designed. Through the 
collaborative effect of the policy network and the Q-value network, the training 
efficiency and decision-making performance are significantly improved, ensuring the 
efficiency and stability of the model in the task of optimising basketball movement 
actions. Experimental outcome indicates that the success rate of the proposed model’s 
action optimisation is 97%, demonstrating the best action optimisation efficiency. 
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