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Abstract: Emotional intervention plays a crucial role in mental health support,
yet traditional approaches often lack the dynamic adaptability to individual
states and contextual changes. To address these limitations, this study proposes
a value-guided meta-adaptive reinforcement learning framework. By
integrating meta-learning with deep reinforcement learning, this approach
enables intervention strategies to rapidly adapt to users’ real-time emotional
states and long-term needs. We design an attention-based meta-policy network
to extract shared representations across users and introduce a value function to
quantify long-term psychological benefits. Furthermore, the framework
employs proximal policy optimisation for policy training and dynamically
adjusts hyperparameters through a meta-adaptive mechanism to handle
non-stationary intervention environments. Experiments on simulated and
real-world user datasets demonstrate that the proposed method achieves
approximately 22% higher emotional improvement rates and 33% faster
convergence speed compared to the best baseline.
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1 Introduction

Mental health has emerged as a significant global public health challenge, and timely,
effective psychological and emotional interventions are crucial for alleviating symptoms
such as stress, anxiety, and depression. While traditional interventions like cognitive
behavioural therapy have proven effective, they often face limitations in accessibility,
high costs, and a ‘one-size-fits-all’ approach, making it difficult to address the
heterogeneous and time-varying needs individuals exhibit within their dynamically
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changing life contexts (Wenzel, 2017). In recent years, with the proliferation of mobile
health technologies, computationally driven personalised affective interventions have
demonstrated immense potential. The core challenge lies in constructing an intelligent
system capable of automatically learning and dynamically optimising intervention
strategies. Such strategies must not only respond to the user’s current state but also focus
on promoting long-term mental health benefits (Ng and Weisz, 2016).

Computational approaches for personalised emotional interventions have emerged as
a significant research direction in health informatics. Traditionally, rule-based systems
and statistical analyses have been employed to deliver static intervention content based
on users’ self-reported data, yet these methods lack dynamic adaptability (Nye et al.,
2023). The just-in-time adaptive interventions (JITAIs) paradigm has come about
because of improvements in mobile sensing and passive data collection technologies. Its
goal is to give effective interventions at the right time. Nahum-Shani et al. (2016)
methodically delineated the design principles of JITAIs, establishing a theoretical
framework for the development of adaptive intervention systems. Researchers
subsequently utilised machine learning techniques, including clustering and classification
algorithms, to ascertain user states from previous data or to forecast intervention time.
For example, Mohr et al. (2017) used logistic regression models to predict times when
depressed people would feel low, which led to interventions. However, most of these
approaches focus on state recognition or short-term prediction rather than sequential
decision optimisation, failing to fully account for the potential long-term cumulative
effects of interventions.

The introduction of reinforcement learning into this field aims to directly optimise
sequential decision problems and achieve personalised intervention strategies. Early
studies modelled the intervention problem as a contextual multi-armed bandit, balancing
exploration (trying new interventions) and exploitation (selecting the currently optimal
intervention) to optimise immediate gains. For instance, Goniil et al. (2021) employed
Thompson sampling to select notification types that maximise immediate user
engagement. However, the contextual multi-armed bandit (CBM) (Cannelli et al., 2023)
can only handle instantaneous rewards and cannot plan for long-term objectives. To
address this, deep reinforcement learning (DRL) methods such as deep Q-networks
(DQNs) (Barto, 2021) and policy gradient algorithms (Koo et al., 2010) have been
applied to more complex intervention scenarios. Their advantage lies in capturing
long-term value through value function approximations. Yang et al. (2024) demonstrated
DRL potential for designing treatment plans for multiple chronic disease patients in
simulated environments. Nevertheless, standard DRL methods typically require extensive
interaction data with the environment to converge, which is neither cost-effective nor
ethically feasible in intervention studies involving real users. Furthermore, strategies
learned from one user cohort often struggle to generalise directly to new users, presenting
a ‘cold start’ problem.

In recent years, the framework of meta-learning, or ‘learning to learn’ has offered a
promising path to address data efficiency and rapid adaptation (Hospedales et al., 2021).
Its core idea is to extract shared knowledge from a series of related tasks, enabling rapid
adaptation to new tasks with minimal samples. Model-agnostic meta-learning (MAML)
algorithms have garnered significant attention for their flexibility and have been applied
in healthcare. For instance, Singh and Malhotra (2023) explored using MAML to rapidly
personalise digital intervention strategies for different patients. In affective computing,
preliminary attempts have also been made to apply meta-learning for cross-subject
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adaptation of emotion recognition models, though these efforts primarily focus on state
recognition (perception) rather than decision-making (intervention) (Zhang et al., 2022).
A more critical limitation lies in existing research combining meta-learning with RL for
interventions. Most studies implicitly optimise algorithmically predefined reward signals,
failing to explicitly adopt user-centric ‘values’ grounded in psychological theory and
aligned with long-term well-being as the core objective (Kazdin, 2017). Defining,
quantifying, and effectively integrating such long-term value into meta-reinforcement
learning frameworks remains an open challenge.

To address these challenges, this paper proposes a value-oriented meta-adaptive
reinforcement learning framework. The core contributions of this research are threefold:
first, we design a novel meta-adaptive reinforcement learning paradigm that deeply
integrates meta-learning algorithms like MAML with proximal policy optimisation
(PPO). This enables the central policy model to extract shared knowledge from diverse
user groups and rapidly personalise intervention strategies for new users. Second, we
introduce a specially designed value function that not only quantifies immediate
emotional state feedback but, more importantly, incorporates long-term well-being
assessment metrics grounded in psychological theory. This ensures the learned
intervention strategies are genuinely ‘value-oriented’ committed to maximising users’
lifetime psychological well-being. Finally, we conducted extensive experimental
validation across simulated environments incorporating multidimensional emotional
signals and real-world datasets. Results demonstrate that compared to existing
reinforcement learning and static intervention baselines, our proposed method exhibits
significant advantages in intervention effectiveness, strategy adaptability for new users,
and overall sample efficiency.

2 Related theoretical research

2.1 Computational emotion intervention

The computationalisation of emotional interventions aims to leverage data-driven models
and algorithms to provide quantifiable, scalable, and personalised solutions for mental
health support and promotion (Ramdoss et al., 2012). The emergence of this field relies
heavily on the rapid advancement of mobile computing and sensing technologies,
enabling continuous, passive collection of multimodal data across diverse contexts. This
includes geolocation, physical activity, and communication patterns captured via
smartphones, alongside physiological signals such as heart rate variability monitored
through wearable devices. This granular data establishes the foundation for constructing
dynamic computational models of user psychological states, transcending traditional
evaluation methods reliant on discrete self-report questionnaires and enabling
near-real-time perception of individual emotional shifts.

Early computational intervention methods mostly utilised rule-based static logic
(Partala and Surakka, 2004). These systems usually included preset criteria based on
clinical knowledge. For example, they might send an encouraging message or suggest a
relaxation exercise when they noticed a big drop in social activity or when self-reported
emotional ratings fell below a certain level. These systems had fixed intervention logic
that could not change based on long-term user feedback, even though they were able to
automate some tasks. They had a hard time adjusting to how different people were and
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how complicated state evolution was. To fix this problem, the JITAIs framework was
suggested. Its core principle involves delivering the most appropriate intervention type at
the most effective moment to maximise intervention efficacy. The theoretical framework
of JITAIs emphasises dynamic modelling of users’ internal states (e.g., emotions, stress),
external environments (e.g., location, social settings), and the historical effectiveness of
interventions themselves. This marks a significant shift in affective intervention research
from static approaches toward adaptive systems.

With the growth of available data, machine learning methods have naturally been
introduced to enhance JITAIs’ decision-making capabilities. Early research primarily
focused on using supervised learning models, such as logistic regression and support
vector machines, to learn from historical data and predict the optimal timing for
interventions or users’ short-term responses. For instance, some studies employed
classification models to predict users’ stressful events or moments of low mood as signals
to trigger interventions. These approaches significantly improved predictive accuracy for
the ‘when to intervene’ question. However, they essentially decomposed intervention
decisions into a series of independent prediction tasks, failing to treat intervention as a
continuous decision-making process — that is, they ignored the potential long-term impact
of current interventions on users’ future states. Reinforcement learning naturally models
personalised interventions as a sequential decision problem. Its objective is to directly
learn a strategy that maximises long-term cumulative rewards through interaction with
the environment, theoretically offering a way to overcome the short-sightedness of
previous approaches.

Nevertheless, the overall development of computational emotional interventions still
faces numerous challenges. These include ensuring model reliability in scenarios with
small sample sizes and guaranteeing that learned strategies are not only effective but also
ethically sound.

2.2 Application of reinforcement learning in personalised interventions

Reinforcement learning, owing to its inherent advantages in sequential decision-making
problems, has emerged as the core technological paradigm for achieving personalised
interventions. This framework formalises the intervention process as an interaction
between an agent (the intervention system) and an environment (the user): at each
decision point, the agent selects an intervention action a, based on the current user state s,
after which the environment transitions to a new state s, and generates an immediate
reward 7. Its ultimate goal is to learn a policy z(a|s) that maximises the long-term
cumulative reward.

s[X] <

where y represents the discount factor. This formalisation enables RL to transcend
immediate benefits and directly optimise long-term impacts on user health outcomes,
thereby addressing the ‘myopia’ issue inherent in traditional approaches.

The CBM model was the main focus of early RL applications. CBM is a simpler
version of RL that finds the best balance between exploration and exploitation to get the
most immediate rewards. These strategies are straightforward to use and do not take up a
lot of computer power. They work best in situations when treatments have quick benefits
but weak long-term consequences. The main problem with CBM models is that they



Value-oriented meta-adaptive reinforcement learning 39

cannot simulate state transitions and long-term returns, which makes it hard to deal with
possible delayed or sequential effects of treatments. The advantages of a solitary
cognitive restructuring exercise may only become apparent after many days.

To capture this long-term dependency, research has progressively shifted toward
employing the full Markov decision process (MDP) framework and DRL algorithms.
Value-based methods, such as DQN (Mnih et al., 2015), formulate policies by
approximating the optimal action-value function Q*(s, @) through neural networks. In
contrast, policy-based methods like PPO (Gu et al., 2021) directly parameterise and
optimise the policy action 7s(als), often demonstrating advantages when handling
continuous action spaces or requiring more stable training. PPO ensures training stability
by limiting the step size of policy updates, with its objective function typically
formulated as:

[P (0) = B[ min (7(0) 4. clip(r:(0).1-0,1+0) 4, )| ()

where r(6) represents the policy probability ratio, and 4, denotes the value function
estimator. Such algorithms can learn more complex, state-dependent stochastic policies —
for instance, adaptively adjusting the intensity and type of intervention content based on
the user’s current stress level and historical responses.

Even though DRL has a lot of potential, it has a lot of problems when it comes to
real-world intervention applications. The main problem is sample efficiency: DRL
usually needs a lot of interaction data to work, which is hard to get when you have to
follow ethical rules and keep costs low when using real users. Second, there is a conflict
between safety and exploration; in sensitive areas like mental health, exploring without
knowing what you’re doing could put you in danger.

2.3 Meta learning and application in healthcare

Meta-learning, or ‘learning to learn’, aims to design models capable of extracting shared
knowledge or experience from a series of related tasks. This enables rapid adaptation to
new tasks with minimal samples or interactions. This paradigm provides powerful
theoretical tools for addressing the widespread challenges of data scarcity and model
generalisation in real-world machine learning scenarios. Among various meta-learning
algorithms, MAML (Finn et al., 2018) has garnered significant attention for its versatility
and simplicity. MAML aims to discover an initial set of model parameters that enables
excellent performance on a new task 7; after just one or a few gradient updates using
minimal data. Its core optimisation objective can be formalised as:

min > Ly (fi) 3
Ti~p(T)
9;=9—0(V9LT,.(f9) (4)

where 6 represents the shared initial parameters sought by the meta-learner, ¢ denotes the
inner-layer learning rate, and L; signifies the task’s loss function. By conducting

meta-training across diverse task distributions, MAML endows the model with an innate
ability to rapidly adapt to new tasks.
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In the healthcare field, meta-learning’s ability to quickly adjust is quite useful.
Medical data often displays ‘small-sample’ traits, indicating that labelled data for
particular diseases or individual patients is severely restricted, yet extensive data is
available across various diseases or patients — this situation is ideally suited to
meta-learning’s ‘multi-task’ framework. For example, in the diagnosis of medical
images, researchers used the MAML framework to consider classification jobs as discrete
tasks during meta-training. These tasks were based on different illness categories or
datasets from different medical centres. The resulting model quickly reached a high level
of diagnostic accuracy with just a few new disease-type picture slices. This greatly
reduced the need for massive amounts of labelled data and opened up new ways to help
with the identification of rare diseases.

However, applying meta-learning to healthcare, particularly clinical decision support,
still faces significant challenges. The first is defining and aligning task distributions —
ensuring sufficient similarity between meta-training tasks and novel meta-testing tasks to
guarantee effective knowledge transfer. Second is the challenge of model interpretability
and safety. The inherent complexity of meta-learning models makes their
decision-making logic harder to trace and validate, potentially limiting their clinical
adoption in healthcare settings where tolerance for error is extremely low.

3 Methodology

3.1 Problem formulation

This paper formalises the personalised emotional intervention problem as a partially
observable Markov decision process (POMDP) (Littman, 2009), a framework that
effectively captures the uncertainty and partial observability inherent in the intervention
process. A POMDP can be defined by a tuple (S, 4, O, T, Q, R, y), where each element
holds specific meaning within the context of emotional intervention. The state space S
represents the user’s actual mental health state — a latent variable inaccessible directly,
potentially encompassing dimensions such as emotional state, cognitive patterns,
physiological arousal levels, and environmental context. Since the complete state cannot
be directly observed, the agent (i.e., the intervention system) can only infer the user’s
state through information in the observation space O. These observations typically
originate from mobile device sensor data, user-reported mood scores, interaction logs,
etc. Their relationship with the true state is determined by the observation function Q(o|s,
a), which defines the probability of observing o after executing action a in state s.

The action space 4 represents all intervention options the system can execute, such as
sending specific types of messages, adjusting intervention frequency or intensity, or even
choosing not to intervene at a given moment. The state transition function 7(s|s, a)
describes the dynamic changes in the user’s state under the influence of intervention
actions, i.e., the probability of transitioning from the current state s to a new state s’ after
executing action a. This captures both the randomness of intervention effects and the
complexity of user state evolution.

Within the POMDP framework, the agent must maintain a belief state b/(s) — a
probability distribution over the state space S—representing the confidence in the current
true state s given the observed history and action sequence. The belief state updates
according to Bayesian rules:
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by (87) o< Q(or+1|s', at)ZSEST(s'h, a, )bt (s) 5)

Strategy 7(a|b) is a function that maps the current belief state to a probability distribution
over the action space.

The reward function R(s, a) is central to the model design, quantifying the immediate
payoff from executing action a in state s. In this study, we designed it to be
value-oriented, meaning the reward reflects not only short-term emotional improvement
(e.g., reduced self-reported negative emotions) but also includes proxy measures of long-
term psychological well-being (e.g., enhanced resilience, improved social functioning).
The objective of the POMDP is to find an optimal policy 7" that maximises the expected
cumulative discounted reward:

E[ZZO)/‘R(S[, a )} (0)

where y € [0, 1) is the discount factor used to balance the importance of immediate
versus future returns.

3.2 VG-MARL framework overview

The proposed value-guided meta-adaptive reinforcement learning (VG-MARL)
framework is a hierarchical learning system whose core objective is to rapidly generate
personalised, long-term-benefit-oriented emotional intervention strategies for unknown
new users. As shown in Figure 1, the framework comprises two main phases: an offline
meta-training phase and an online meta-adaptation phase. During the meta-training phase,
the system leverages a source domain containing historical interaction data from multiple
users. Through a MAML mechanism, it extracts common patterns across different user
intervention tasks, thereby learning an optimal set of initial parameters 6" and ¢" for the
policy network 7y and value network V.

The first core design principle of the framework is value-guided. This means the
optimisation objective throughout the entire decision-making process is explicitly
anchored to maximising users’ long-term psychological well-being, rather than
short-term engagement metrics (such as click-through rates). This principle is realised
through a long-term value function that incorporates psychologically grounded
dimensions (such as emotional stability and enhanced social connectedness) into the
reward signals. Technically, this value function not only serves as the basis for advantage
estimation to guide policy updates but also functions as an independent critic. It
continuously evaluates and steers the evolution of policies throughout the meta-learning
process, ensuring that the learned meta-strategy inherently embeds a preference for long-
term value from the outset.

The framework’s second core design principle is meta-adaptive. This addresses
reinforcement learning’s ‘cold start’ challenge in intervention scenarios. When deployed
to a new user (target domain), it does not directly apply offline-learned meta-strategies
but initiates a rapid meta-adaptation process. During this process, the system leverages
the initial small amount of interaction data generated by the new user to perform several
gradient updates on the meta-initial parameters 8" and ¢". This enables the base policy to
rapidly specialise, capturing the unique behavioural patterns and response characteristics
of that specific user. Consequently, personalised intervention strategies are achieved
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within an extremely short timeframe. This design endows VG-MARL with both strong
generalisation capabilities (derived from meta-training) and powerful personalisation
capabilities (derived from meta-adaptation).

Figure 1 Structure of VG-MARL (see online version for colours)
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3.3 Metastrategy networks and adaptive mechanisms

The core innovation of the meta-strategy network designed in this paper lies in
introducing an attention-based belief state encoder. This encoder dynamically balances
the importance of different time steps within historical observation data, enabling more
precise estimation of users’ latent mental states. Traditional recurrent neural networks are
prone to gradient vanishing or explosion when processing long sequences and struggle to
capture long-range dependencies. To address this issue, we employ a self-attention
mechanism to enhance the representational capacity of belief states. Specifically, given a
sequence {(0rr, ar-r), ..., (0r-1, ar1)} of historical observations and actions of length L,
we first map each tuple to a feature vector x; through an embedding layer. Subsequently,
the self-attention mechanism generates weighted contextual representations by computing
query, key, and value vectors:

Attention(Q, K, V') = softmax oK V @)
Vi

where O, K and V" are obtained through linear transformations of the input sequence,
while dj represents the dimension of the key vector. The weighted sum output by this
mechanism constitutes the belief state b, at the current time step. This state focuses on
historical segments most relevant to the current decision — such as users’ long-term
response patterns to specific intervention types — effectively addressing challenges posed
by partial observability.

The meta-learning training process follows the two-stage optimisation paradigm of
MAML, aiming to find an initial set of parameters for the policy network that can rapidly
adapt to new tasks. The process comprises two phases: an inner loop update and an outer
loop meta-update. In the inner loop, for each sampled task, the policy network interacts
with the task environment using its current parameters as a starting point, collecting
experience data. Subsequently, one or more gradient update steps are computed using the
PPO algorithm to obtain task-specific adapted parameters:

9,, =60- OEVQLITJ[PO (77,'9 ) (8)

where o denotes the inner-loop learning rate, and L™’ represents the objective function
of PPO. Crucially, this inner-loop update aims to simulate rapid adaptation when
encountering new users.

The meta-objective function is defined as the expected loss of the adapted strategy
across all sampled tasks:

min D L (zg) ©)
Ti~p(T)

Meta-optimisation is achieved by calculating the gradient of the objective function with
respect to the initial parameters and updating them accordingly.

0—0-pVyY Ly () (10)
T
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where [ is the meta-learning rate. This process iterates repeatedly, ultimately optimising
the initial parameters 6" to a position from which only a few gradient steps are required to
achieve excellent performance on unknown new user tasks.

When the model is deployed for new users, the meta-adaptive mechanism is
activated. The system uses the learned meta-initial parameters as a starting point and
executes the inner loop update process described above (i.e., performing several PPO
updates) using the initial small amount of real-time interaction data generated by this new
user. This rapid meta-adaptation process enables the base policy network to swiftly adjust
its parameters to capture the unique behavioural characteristics of this user, thereby
achieving truly personalised intervention. This effectively addresses the cold-start and
data inefficiency challenges reinforcement learning faces in real-world scenarios.

3.4 Long-term value function design

The long-term value function design in this study closely integrates theoretical
foundations from positive psychology and mental health research, aiming to provide
reinforcement learning algorithms with a reward signal that approximates users’ long-
term psychological well-being. Its construction does not rely on a single, instantaneous
affect score but instead is based on a multidimensional utility framework. This
framework draws upon established theories such as the PERMA model, conceptualising
long-term value as the composite manifestation of multiple observable or inferable
dimensions.

Specifically, long-term value is realised through a composite reward function R,
which generates a scalar reward value at each time step ¢ This function integrates

immediate rewards 7™ and delayed rewards r*® triggered by key psychological
events, formalised as follows:

i delay
Rt — },}Imm +ylong 7 elay (1 1)

where 7™ primarily captures users’ immediate engagement and emotional responses to
current interventions, such as message view rates and self-reported brief emotional
uplifts. However, % is the value-oriented key metric, quantifying more meaningful

psychological progress observed over extended timeframes. These delayed rewards are
tied to specific, theoretically grounded psychological events. For instance, a positive
delayed reward is triggered when the system detects a significant reduction in the
variance of negative emotional expressions over a week, or when a user spontaneously
completes a previously avoided social activity. Discount factor y;n, specifically balances
the weighting between immediate feedback and these delayed yet clinically more
significant signals.

Ultimately, the long-term value function V#(s) is defined as the sum of expected
cumulative discounted rewards obtainable from state s under policy 7:

V(s)=E, {iykzeﬁkh, = s} (12)
k=0

The overall discount factor y here determines how much weight the agent assigns to
future rewards. Through this design, the intrinsic meaning of the value function V7(s) is
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no longer a simple accumulation of emotional scores, but rather an estimate of the user’s
expected long-term psychological net benefit under strategy z. This theory-based
value-oriented design compels the agent to balance short-term interactions with long-term
health outcomes during learning. For instance, it may learn to forgo immediate
high-engagement feedback (e.g., sending a lighthearted but superficial emoji) at certain
moments, opting instead for interventions requiring greater user effort but fostering
long-term emotional regulation skills (e.g., guiding a cognitive diary exercise). This
approach ensures interventions genuinely prioritise the user’s enduring well-being.

3.5 Training algorithm based on near-end policy optimisation

The PPO algorithm is used for policy optimisation in this framework. The main benefit of
PPO is that it adds a clipping mechanism that limits the size of each policy change. This
stops sudden changes in policy from making training fail. When the difference between
old and new policies is too big, the clipping mechanism actively stops the goal function
from growing too much, making sure that the update step stays within a reasonable
confidence interval. This approach makes the training process easier and more
dependable, which makes it perfect for real-world intervention situations when collecting
data is expensive and consistent learning is important.

PPO is very important for task-specific adaptation in the inner loop of meta-training.
For every user task selected from the meta-training distribution, the agent initially
engages with the task environment utilising the initial parameters of the current
meta-policy, thereby gathering a collection of trajectory data. The PPO algorithm uses
this information to figure out an estimate called the advantage function, which tells you
how well a certain action works compared to the average in a certain state. After that, the
algorithm modifies the policy network’s parameters by maximising the clip-replacement
goal function indicated above, usually over a few number of iterations. This technique
makes it possible for the policy to quickly adjust to the needs of the current work. The
adapted policy parameters that it outputs are what the meta-updater uses to figure out
higher-order gradients.

Integrating PPO with a meta-learning framework further amplifies its advantages. In
standard reinforcement learning settings, policies typically learn from randomly
initialised parameters, requiring extensive interaction samples. Within our VG-MARL
framework, however, PPO starts with high-quality initial parameters optimised through
meta-learning, effectively providing a strong prior for rapid adaptation to each new task.
Consequently, PPO optimisation within the inner loop avoids starting from scratch,
instead performing efficient local fine-tuning that dramatically improves sample
efficiency. This integration ensures the framework can learn cross-user general patterns
from rich offline data while leveraging PPO’s stable online learning capabilities to tailor
precise intervention strategies for individual users. Ultimately, this achieves the goal of
long-term value-driven personalised interventions.
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4 Experiments and results analysis

4.1 Experimental setup

To comprehensively evaluate the effectiveness of the proposed VG-MARL framework,
we designed a systematic experimental protocol. The experiments were first conducted in
a highly controlled simulated environment built upon publicly available mental health
conversation datasets and user behaviour models. This environment simulates virtual
users exhibiting diverse personality traits and emotional fluctuation patterns. This
simulated environment enabled large-scale, repeatable testing with precise control over
confounding variables. Building upon this foundation, the experiment was further
validated on a real-world anonymised user interaction dataset. This dataset comprised
three months of user interactions with a mental health support application, including
self-reported emotions, app usage behaviours, and system-pushed intervention content.

Carefully selected baseline methods were chosen to represent current mainstream
technical approaches. These included rule-based static policies, standard DQN, PPO
algorithms, and a meta-reinforcement learning baseline (meta-PPO) (Niu et al., 2023)
without value-oriented design.

Evaluation metrics centred on three core dimensions. The intervention effectiveness
dimension primarily assessed the long-term cumulative reward achieved by strategies on
the test set, representing the most direct measure of the algorithm’s core objective (Li
et al,, 2019). The adaptability dimension focuses on learning curves for new tasks,
evaluating sample efficiency by comparing how quickly algorithms reach specified
performance levels within a finite number of interaction steps. Additionally, statistical
tests were employed to confirm the significance of performance differences.

All experiments were conducted on a unified computational platform, primarily
implemented using the PyTorch deep learning framework. Regarding network
architecture, both the policy network and value network are fully connected neural
networks with two hidden layers, where the belief state encoder incorporates an attention
mechanism. Key hyperparameters — such as inner and outer learning rates for
meta-learning, PPO clipping range, and discount factor — were optimised via grid search
on the validation set to ensure all comparison methods operated under their optimal
configurations.

4.2  Results analysis

To evaluate the overall effectiveness of the VG-MARL framework, we compared
VG-MARL with four baseline methods on an independent dataset comprising 500 test
users. All methods underwent hyperparameter tuning to achieve optimal performance.
Figures 2 and 3 illustrate the differences in learning curves across the methods.
Experimental results demonstrate that the VG-MARL framework exhibits significant
advantages across all metrics. The learning curves reveal that VG-MARL not only
converges fastest but also achieves the highest final performance level. This validates the
effective synergy between value-guided design and meta-adaptive mechanisms.
Compared to meta-PPO without value guidance, VG-MARL achieves a substantial
improvement in long-term cumulative reward. This indicates that while meta-learning
alone enhances adaptability, truly optimised long-term intervention effects can only be
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achieved under explicit value guidance. Compared to standard PPO, VG-MARL’s rapid
convergence highlights the value of meta-learning in addressing cold-start problems.

Figure 2 Performance metrics comparison of various methods, (a) cumulative reward

(b) improvement rate (c) user engagement (d) converge steps (see online version
for colours)
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Notably, VG-MARL exhibits relatively small standard deviations across metrics,
indicating robust stability across different users — a critical factor for reliability in
practical applications. Statistical tests further confirm that all differences between
VG-MARL and baseline methods are highly statistically significant.

4.3 Melting experiment

This ablation study systematically evaluates the effectiveness of the meta-adaptive
mechanism within the VG-MARL framework by comparing the full model with three
ablation variants:

e  VG-MARL (full model): The complete framework incorporating both meta-adaptive
and value-guided components.
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e  VG-MARL (no meta-adaptive): Removes the meta-adaptive mechanism, using only
the pre-trained policy.

e  VG-MARL (no meta-adaptive): Removes value-guided optimisation, retaining only
meta-adaptive learning.

e Standard PPO: A baseline method trained from scratch.

Figure 3 Average return comparison across methods (see online version for colours)
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Figure 4 Melting experiment (cumulative reward), (a) (see online version for colours)
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Experimental results are shown in Figures 4 and 5. The full VG-MARL significantly
outperforms other variants during the early adaptation phase (first 100 steps),
demonstrating the meta-adaptive mechanism’s effectiveness in addressing cold-start
challenges. The full model converges in far fewer steps (1,500 steps) than variants
without meta-adaptation (4,500 steps), validating meta-learning’s role in accelerating
personalisation. Under limited sample budgets, the full model achieves near-optimal
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performance faster, making it particularly suitable for data-scarce real-world applications.
Value guidance and meta-adaptation exhibit clear synergistic effects; removing either
component alone degrades performance.

Figure 5 Melting experiment (convergence steps and performance), (a) convergence time
distribution (b) sample efficiency comparison (see online version for colours)
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These results conclusively demonstrate the critical role of meta-adaptive mechanisms in
achieving rapid, efficient personalised emotional interventions.

5 Conclusions

This study addresses a critical challenge in personalised emotional intervention — how to
rapidly adapt intervention strategies to individual users while ensuring long-term
effectiveness — by proposing a VG-MARL framework. Methodologically, we
successfully integrate meta-learning mechanisms with DRL, enabling efficient extraction
and transfer of cross-user knowledge through an attention-based meta-policy network. At
the algorithmic design level, we innovatively developed a long-term value function
incorporating psychological theories, enabling reward signals to accurately reflect
sustainable mental health benefits. At the engineering implementation level, we
combined PPO algorithms with meta-adaptive mechanisms to ensure training stability
and rapid policy adaptation.

Systematic experimental validation demonstrates that the VG-MARL framework
exhibits significant advantages across multiple dimensions. Regarding intervention
effectiveness, VG-MARL achieves approximately 22% higher long-term cumulative
reward metrics and 13.4% greater user engagement compared to baseline methods.
Ablation studies further validate the necessity of each framework component: the
meta-adaptive mechanism enables rapid strategy adjustment for new users, while the
value-oriented design ensures long-term intervention efficacy. These results fully
demonstrate VG-MARL’s effectiveness in balancing personalised adaptation with long-
term benefits in emotional interventions.
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Despite these positive findings, several limitations warrant future exploration. First,
the current model relies primarily on unimodality behavioural and self-reported data.
Future work should integrate multimodal physiological signals (e.g., heart rate variability,
electroencephalogram) to comprehensively perceive user states. Second, the framework’s
safety and robustness require further enhancement, particularly when confronting edge
cases like sudden user deterioration or adversarial inputs, necessitating stricter safety
constraint mechanisms. Additionally, the current value function design remains
dependent on expert knowledge; future research could explore data-driven approaches
based on inverse reinforcement learning to automatically learn reward functions from
successful intervention cases.
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