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Abstract: Emotional intervention plays a crucial role in mental health support, 
yet traditional approaches often lack the dynamic adaptability to individual 
states and contextual changes. To address these limitations, this study proposes 
a value-guided meta-adaptive reinforcement learning framework. By 
integrating meta-learning with deep reinforcement learning, this approach 
enables intervention strategies to rapidly adapt to users’ real-time emotional 
states and long-term needs. We design an attention-based meta-policy network 
to extract shared representations across users and introduce a value function to 
quantify long-term psychological benefits. Furthermore, the framework 
employs proximal policy optimisation for policy training and dynamically 
adjusts hyperparameters through a meta-adaptive mechanism to handle  
non-stationary intervention environments. Experiments on simulated and  
real-world user datasets demonstrate that the proposed method achieves 
approximately 22% higher emotional improvement rates and 33% faster 
convergence speed compared to the best baseline. 

Keywords: meta-adaptive reinforcement learning; affective computing; 
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1 Introduction 

Mental health has emerged as a significant global public health challenge, and timely, 
effective psychological and emotional interventions are crucial for alleviating symptoms 
such as stress, anxiety, and depression. While traditional interventions like cognitive 
behavioural therapy have proven effective, they often face limitations in accessibility, 
high costs, and a ‘one-size-fits-all’ approach, making it difficult to address the 
heterogeneous and time-varying needs individuals exhibit within their dynamically 
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changing life contexts (Wenzel, 2017). In recent years, with the proliferation of mobile 
health technologies, computationally driven personalised affective interventions have 
demonstrated immense potential. The core challenge lies in constructing an intelligent 
system capable of automatically learning and dynamically optimising intervention 
strategies. Such strategies must not only respond to the user’s current state but also focus 
on promoting long-term mental health benefits (Ng and Weisz, 2016). 

Computational approaches for personalised emotional interventions have emerged as 
a significant research direction in health informatics. Traditionally, rule-based systems 
and statistical analyses have been employed to deliver static intervention content based 
on users’ self-reported data, yet these methods lack dynamic adaptability (Nye et al., 
2023). The just-in-time adaptive interventions (JITAIs) paradigm has come about 
because of improvements in mobile sensing and passive data collection technologies. Its 
goal is to give effective interventions at the right time. Nahum-Shani et al. (2016) 
methodically delineated the design principles of JITAIs, establishing a theoretical 
framework for the development of adaptive intervention systems. Researchers 
subsequently utilised machine learning techniques, including clustering and classification 
algorithms, to ascertain user states from previous data or to forecast intervention time. 
For example, Mohr et al. (2017) used logistic regression models to predict times when 
depressed people would feel low, which led to interventions. However, most of these 
approaches focus on state recognition or short-term prediction rather than sequential 
decision optimisation, failing to fully account for the potential long-term cumulative 
effects of interventions. 

The introduction of reinforcement learning into this field aims to directly optimise 
sequential decision problems and achieve personalised intervention strategies. Early 
studies modelled the intervention problem as a contextual multi-armed bandit, balancing 
exploration (trying new interventions) and exploitation (selecting the currently optimal 
intervention) to optimise immediate gains. For instance, Gönül et al. (2021) employed 
Thompson sampling to select notification types that maximise immediate user 
engagement. However, the contextual multi-armed bandit (CBM) (Cannelli et al., 2023) 
can only handle instantaneous rewards and cannot plan for long-term objectives. To 
address this, deep reinforcement learning (DRL) methods such as deep Q-networks 
(DQNs) (Barto, 2021) and policy gradient algorithms (Koo et al., 2010) have been 
applied to more complex intervention scenarios. Their advantage lies in capturing  
long-term value through value function approximations. Yang et al. (2024) demonstrated 
DRL potential for designing treatment plans for multiple chronic disease patients in 
simulated environments. Nevertheless, standard DRL methods typically require extensive 
interaction data with the environment to converge, which is neither cost-effective nor 
ethically feasible in intervention studies involving real users. Furthermore, strategies 
learned from one user cohort often struggle to generalise directly to new users, presenting 
a ‘cold start’ problem. 

In recent years, the framework of meta-learning, or ‘learning to learn’ has offered a 
promising path to address data efficiency and rapid adaptation (Hospedales et al., 2021). 
Its core idea is to extract shared knowledge from a series of related tasks, enabling rapid 
adaptation to new tasks with minimal samples. Model-agnostic meta-learning (MAML) 
algorithms have garnered significant attention for their flexibility and have been applied 
in healthcare. For instance, Singh and Malhotra (2023) explored using MAML to rapidly 
personalise digital intervention strategies for different patients. In affective computing, 
preliminary attempts have also been made to apply meta-learning for cross-subject 
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adaptation of emotion recognition models, though these efforts primarily focus on state 
recognition (perception) rather than decision-making (intervention) (Zhang et al., 2022). 
A more critical limitation lies in existing research combining meta-learning with RL for 
interventions. Most studies implicitly optimise algorithmically predefined reward signals, 
failing to explicitly adopt user-centric ‘values’ grounded in psychological theory and 
aligned with long-term well-being as the core objective (Kazdin, 2017). Defining, 
quantifying, and effectively integrating such long-term value into meta-reinforcement 
learning frameworks remains an open challenge. 

To address these challenges, this paper proposes a value-oriented meta-adaptive 
reinforcement learning framework. The core contributions of this research are threefold: 
first, we design a novel meta-adaptive reinforcement learning paradigm that deeply 
integrates meta-learning algorithms like MAML with proximal policy optimisation 
(PPO). This enables the central policy model to extract shared knowledge from diverse 
user groups and rapidly personalise intervention strategies for new users. Second, we 
introduce a specially designed value function that not only quantifies immediate 
emotional state feedback but, more importantly, incorporates long-term well-being 
assessment metrics grounded in psychological theory. This ensures the learned 
intervention strategies are genuinely ‘value-oriented’ committed to maximising users’ 
lifetime psychological well-being. Finally, we conducted extensive experimental 
validation across simulated environments incorporating multidimensional emotional 
signals and real-world datasets. Results demonstrate that compared to existing 
reinforcement learning and static intervention baselines, our proposed method exhibits 
significant advantages in intervention effectiveness, strategy adaptability for new users, 
and overall sample efficiency. 

2 Related theoretical research 

2.1 Computational emotion intervention 

The computationalisation of emotional interventions aims to leverage data-driven models 
and algorithms to provide quantifiable, scalable, and personalised solutions for mental 
health support and promotion (Ramdoss et al., 2012). The emergence of this field relies 
heavily on the rapid advancement of mobile computing and sensing technologies, 
enabling continuous, passive collection of multimodal data across diverse contexts. This 
includes geolocation, physical activity, and communication patterns captured via 
smartphones, alongside physiological signals such as heart rate variability monitored 
through wearable devices. This granular data establishes the foundation for constructing 
dynamic computational models of user psychological states, transcending traditional 
evaluation methods reliant on discrete self-report questionnaires and enabling  
near-real-time perception of individual emotional shifts. 

Early computational intervention methods mostly utilised rule-based static logic 
(Partala and Surakka, 2004). These systems usually included preset criteria based on 
clinical knowledge. For example, they might send an encouraging message or suggest a 
relaxation exercise when they noticed a big drop in social activity or when self-reported 
emotional ratings fell below a certain level. These systems had fixed intervention logic 
that could not change based on long-term user feedback, even though they were able to 
automate some tasks. They had a hard time adjusting to how different people were and 
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how complicated state evolution was. To fix this problem, the JITAIs framework was 
suggested. Its core principle involves delivering the most appropriate intervention type at 
the most effective moment to maximise intervention efficacy. The theoretical framework 
of JITAIs emphasises dynamic modelling of users’ internal states (e.g., emotions, stress), 
external environments (e.g., location, social settings), and the historical effectiveness of 
interventions themselves. This marks a significant shift in affective intervention research 
from static approaches toward adaptive systems. 

With the growth of available data, machine learning methods have naturally been 
introduced to enhance JITAIs’ decision-making capabilities. Early research primarily 
focused on using supervised learning models, such as logistic regression and support 
vector machines, to learn from historical data and predict the optimal timing for 
interventions or users’ short-term responses. For instance, some studies employed 
classification models to predict users’ stressful events or moments of low mood as signals 
to trigger interventions. These approaches significantly improved predictive accuracy for 
the ‘when to intervene’ question. However, they essentially decomposed intervention 
decisions into a series of independent prediction tasks, failing to treat intervention as a 
continuous decision-making process – that is, they ignored the potential long-term impact 
of current interventions on users’ future states. Reinforcement learning naturally models 
personalised interventions as a sequential decision problem. Its objective is to directly 
learn a strategy that maximises long-term cumulative rewards through interaction with 
the environment, theoretically offering a way to overcome the short-sightedness of 
previous approaches. 

Nevertheless, the overall development of computational emotional interventions still 
faces numerous challenges. These include ensuring model reliability in scenarios with 
small sample sizes and guaranteeing that learned strategies are not only effective but also 
ethically sound. 

2.2 Application of reinforcement learning in personalised interventions 

Reinforcement learning, owing to its inherent advantages in sequential decision-making 
problems, has emerged as the core technological paradigm for achieving personalised 
interventions. This framework formalises the intervention process as an interaction 
between an agent (the intervention system) and an environment (the user): at each 
decision point, the agent selects an intervention action at based on the current user state st, 
after which the environment transitions to a new state st+1 and generates an immediate 
reward rt. Its ultimate goal is to learn a policy π(a|s) that maximises the long-term 
cumulative reward. 

0
t

tt
γ r

∞

=
 
    (1) 

where γ represents the discount factor. This formalisation enables RL to transcend 
immediate benefits and directly optimise long-term impacts on user health outcomes, 
thereby addressing the ‘myopia’ issue inherent in traditional approaches. 

The CBM model was the main focus of early RL applications. CBM is a simpler 
version of RL that finds the best balance between exploration and exploitation to get the 
most immediate rewards. These strategies are straightforward to use and do not take up a 
lot of computer power. They work best in situations when treatments have quick benefits 
but weak long-term consequences. The main problem with CBM models is that they 
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cannot simulate state transitions and long-term returns, which makes it hard to deal with 
possible delayed or sequential effects of treatments. The advantages of a solitary 
cognitive restructuring exercise may only become apparent after many days. 

To capture this long-term dependency, research has progressively shifted toward 
employing the full Markov decision process (MDP) framework and DRL algorithms. 
Value-based methods, such as DQN (Mnih et al., 2015), formulate policies by 
approximating the optimal action-value function Q*(s, a) through neural networks. In 
contrast, policy-based methods like PPO (Gu et al., 2021) directly parameterise and 
optimise the policy action πθ(a|s), often demonstrating advantages when handling 
continuous action spaces or requiring more stable training. PPO ensures training stability 
by limiting the step size of policy updates, with its objective function typically 
formulated as: 

( )( )min , , 1 , 1( ) ( ) ( )CLIP
t t t tL θ r θ A clip r θ ò ò A= − +    (2) 

where rt(θ) represents the policy probability ratio, and At denotes the value function 
estimator. Such algorithms can learn more complex, state-dependent stochastic policies – 
for instance, adaptively adjusting the intensity and type of intervention content based on 
the user’s current stress level and historical responses. 

Even though DRL has a lot of potential, it has a lot of problems when it comes to 
real-world intervention applications. The main problem is sample efficiency: DRL 
usually needs a lot of interaction data to work, which is hard to get when you have to 
follow ethical rules and keep costs low when using real users. Second, there is a conflict 
between safety and exploration; in sensitive areas like mental health, exploring without 
knowing what you’re doing could put you in danger. 

2.3 Meta learning and application in healthcare 

Meta-learning, or ‘learning to learn’, aims to design models capable of extracting shared 
knowledge or experience from a series of related tasks. This enables rapid adaptation to 
new tasks with minimal samples or interactions. This paradigm provides powerful 
theoretical tools for addressing the widespread challenges of data scarcity and model 
generalisation in real-world machine learning scenarios. Among various meta-learning 
algorithms, MAML (Finn et al., 2018) has garnered significant attention for its versatility 
and simplicity. MAML aims to discover an initial set of model parameters that enables 
excellent performance on a new task Ti after just one or a few gradient updates using 
minimal data. Its core optimisation objective can be formalised as: 

( )
( )

min i i

i

T θ
θ

T p T

L f ′
∼
  (3) 

( )ii θ T θθ θ L f′ = − ∇α  (4) 

where θ represents the shared initial parameters sought by the meta-learner, α denotes the 
inner-layer learning rate, and iTL  signifies the task’s loss function. By conducting  
meta-training across diverse task distributions, MAML endows the model with an innate 
ability to rapidly adapt to new tasks. 
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In the healthcare field, meta-learning’s ability to quickly adjust is quite useful. 
Medical data often displays ‘small-sample’ traits, indicating that labelled data for 
particular diseases or individual patients is severely restricted, yet extensive data is 
available across various diseases or patients – this situation is ideally suited to  
meta-learning’s ‘multi-task’ framework. For example, in the diagnosis of medical 
images, researchers used the MAML framework to consider classification jobs as discrete 
tasks during meta-training. These tasks were based on different illness categories or 
datasets from different medical centres. The resulting model quickly reached a high level 
of diagnostic accuracy with just a few new disease-type picture slices. This greatly 
reduced the need for massive amounts of labelled data and opened up new ways to help 
with the identification of rare diseases. 

However, applying meta-learning to healthcare, particularly clinical decision support, 
still faces significant challenges. The first is defining and aligning task distributions – 
ensuring sufficient similarity between meta-training tasks and novel meta-testing tasks to 
guarantee effective knowledge transfer. Second is the challenge of model interpretability 
and safety. The inherent complexity of meta-learning models makes their  
decision-making logic harder to trace and validate, potentially limiting their clinical 
adoption in healthcare settings where tolerance for error is extremely low. 

3 Methodology 

3.1 Problem formulation 

This paper formalises the personalised emotional intervention problem as a partially 
observable Markov decision process (POMDP) (Littman, 2009), a framework that 
effectively captures the uncertainty and partial observability inherent in the intervention 
process. A POMDP can be defined by a tuple (S, A, O, T, Ω, R, γ), where each element 
holds specific meaning within the context of emotional intervention. The state space S 
represents the user’s actual mental health state – a latent variable inaccessible directly, 
potentially encompassing dimensions such as emotional state, cognitive patterns, 
physiological arousal levels, and environmental context. Since the complete state cannot 
be directly observed, the agent (i.e., the intervention system) can only infer the user’s 
state through information in the observation space O. These observations typically 
originate from mobile device sensor data, user-reported mood scores, interaction logs, 
etc. Their relationship with the true state is determined by the observation function Ω(o|s, 
a), which defines the probability of observing o after executing action a in state s. 

The action space A represents all intervention options the system can execute, such as 
sending specific types of messages, adjusting intervention frequency or intensity, or even 
choosing not to intervene at a given moment. The state transition function T(s′|s, a) 
describes the dynamic changes in the user’s state under the influence of intervention 
actions, i.e., the probability of transitioning from the current state s to a new state s′ after 
executing action a. This captures both the randomness of intervention effects and the 
complexity of user state evolution. 

Within the POMDP framework, the agent must maintain a belief state bt(s) – a 
probability distribution over the state space S—representing the confidence in the current 
true state s given the observed history and action sequence. The belief state updates 
according to Bayesian rules: 
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( ) ( ) ( )1 1 , ( ),t t t t ts S
b s o s a T s s a b s+ + ∈

′ ∝ Ω ′ ′  (5) 

Strategy π(a|b) is a function that maps the current belief state to a probability distribution 
over the action space. 

The reward function R(s, a) is central to the model design, quantifying the immediate 
payoff from executing action a in state s. In this study, we designed it to be  
value-oriented, meaning the reward reflects not only short-term emotional improvement 
(e.g., reduced self-reported negative emotions) but also includes proxy measures of long-
term psychological well-being (e.g., enhanced resilience, improved social functioning). 
The objective of the POMDP is to find an optimal policy π* that maximises the expected 
cumulative discounted reward: 

( )
0

,t
t tt

γ R s a
∞

=
 
    (6) 

where γ ∈ [0, 1) is the discount factor used to balance the importance of immediate 
versus future returns. 

3.2 VG-MARL framework overview 

The proposed value-guided meta-adaptive reinforcement learning (VG-MARL) 
framework is a hierarchical learning system whose core objective is to rapidly generate 
personalised, long-term-benefit-oriented emotional intervention strategies for unknown 
new users. As shown in Figure 1, the framework comprises two main phases: an offline 
meta-training phase and an online meta-adaptation phase. During the meta-training phase, 
the system leverages a source domain containing historical interaction data from multiple 
users. Through a MAML mechanism, it extracts common patterns across different user 
intervention tasks, thereby learning an optimal set of initial parameters θ* and φ* for the 
policy network πθ and value network Vφ. 

The first core design principle of the framework is value-guided. This means the 
optimisation objective throughout the entire decision-making process is explicitly 
anchored to maximising users’ long-term psychological well-being, rather than  
short-term engagement metrics (such as click-through rates). This principle is realised 
through a long-term value function that incorporates psychologically grounded 
dimensions (such as emotional stability and enhanced social connectedness) into the 
reward signals. Technically, this value function not only serves as the basis for advantage 
estimation to guide policy updates but also functions as an independent critic. It 
continuously evaluates and steers the evolution of policies throughout the meta-learning 
process, ensuring that the learned meta-strategy inherently embeds a preference for long-
term value from the outset. 

The framework’s second core design principle is meta-adaptive. This addresses 
reinforcement learning’s ‘cold start’ challenge in intervention scenarios. When deployed 
to a new user (target domain), it does not directly apply offline-learned meta-strategies 
but initiates a rapid meta-adaptation process. During this process, the system leverages 
the initial small amount of interaction data generated by the new user to perform several 
gradient updates on the meta-initial parameters θ* and φ*. This enables the base policy to 
rapidly specialise, capturing the unique behavioural patterns and response characteristics 
of that specific user. Consequently, personalised intervention strategies are achieved 
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within an extremely short timeframe. This design endows VG-MARL with both strong 
generalisation capabilities (derived from meta-training) and powerful personalisation 
capabilities (derived from meta-adaptation). 

Figure 1 Structure of VG-MARL (see online version for colours) 
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3.3 Metastrategy networks and adaptive mechanisms 

The core innovation of the meta-strategy network designed in this paper lies in 
introducing an attention-based belief state encoder. This encoder dynamically balances 
the importance of different time steps within historical observation data, enabling more 
precise estimation of users’ latent mental states. Traditional recurrent neural networks are 
prone to gradient vanishing or explosion when processing long sequences and struggle to 
capture long-range dependencies. To address this issue, we employ a self-attention 
mechanism to enhance the representational capacity of belief states. Specifically, given a 
sequence {(ot–L, at–L), …, (ot–1, at–1)} of historical observations and actions of length L, 
we first map each tuple to a feature vector xi through an embedding layer. Subsequently, 
the self-attention mechanism generates weighted contextual representations by computing 
query, key, and value vectors: 

,( ),
T

k

QKAttention Q K V softmax V
d

 
 
 

=  (7) 

where Q, K and V are obtained through linear transformations of the input sequence, 
while dk represents the dimension of the key vector. The weighted sum output by this 
mechanism constitutes the belief state bt at the current time step. This state focuses on 
historical segments most relevant to the current decision – such as users’ long-term 
response patterns to specific intervention types – effectively addressing challenges posed 
by partial observability. 

The meta-learning training process follows the two-stage optimisation paradigm of 
MAML, aiming to find an initial set of parameters for the policy network that can rapidly 
adapt to new tasks. The process comprises two phases: an inner loop update and an outer 
loop meta-update. In the inner loop, for each sampled task, the policy network interacts 
with the task environment using its current parameters as a starting point, collecting 
experience data. Subsequently, one or more gradient update steps are computed using the 
PPO algorithm to obtain task-specific adapted parameters: 

( )
i

PPO
i θ θTθ θ L π′ = − ∇α  (8) 

where α denotes the inner-loop learning rate, and LPPO represents the objective function 
of PPO. Crucially, this inner-loop update aims to simulate rapid adaptation when 
encountering new users. 

The meta-objective function is defined as the expected loss of the adapted strategy 
across all sampled tasks: 

( )
( )

min i i

i

T θ
θ

T p T

L π ′
∼
  (9) 

Meta-optimisation is achieved by calculating the gradient of the objective function with 
respect to the initial parameters and updating them accordingly. 

( )i i

i

θ T θ
T

θ θ L π ′← − ∇ β  (10) 
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where β is the meta-learning rate. This process iterates repeatedly, ultimately optimising 
the initial parameters θ* to a position from which only a few gradient steps are required to 
achieve excellent performance on unknown new user tasks. 

When the model is deployed for new users, the meta-adaptive mechanism is 
activated. The system uses the learned meta-initial parameters as a starting point and 
executes the inner loop update process described above (i.e., performing several PPO 
updates) using the initial small amount of real-time interaction data generated by this new 
user. This rapid meta-adaptation process enables the base policy network to swiftly adjust 
its parameters to capture the unique behavioural characteristics of this user, thereby 
achieving truly personalised intervention. This effectively addresses the cold-start and 
data inefficiency challenges reinforcement learning faces in real-world scenarios. 

3.4 Long-term value function design 

The long-term value function design in this study closely integrates theoretical 
foundations from positive psychology and mental health research, aiming to provide 
reinforcement learning algorithms with a reward signal that approximates users’ long-
term psychological well-being. Its construction does not rely on a single, instantaneous 
affect score but instead is based on a multidimensional utility framework. This 
framework draws upon established theories such as the PERMA model, conceptualising 
long-term value as the composite manifestation of multiple observable or inferable 
dimensions. 

Specifically, long-term value is realised through a composite reward function Rt, 
which generates a scalar reward value at each time step t. This function integrates 
immediate rewards imm

tr  and delayed rewards delay
tr  triggered by key psychological 

events, formalised as follows: 
delayimm

t longt tR r γ r= + ⋅  (11) 

where imm
tr  primarily captures users’ immediate engagement and emotional responses to 

current interventions, such as message view rates and self-reported brief emotional 
uplifts. However, delay

tr  is the value-oriented key metric, quantifying more meaningful 
psychological progress observed over extended timeframes. These delayed rewards are 
tied to specific, theoretically grounded psychological events. For instance, a positive 
delayed reward is triggered when the system detects a significant reduction in the 
variance of negative emotional expressions over a week, or when a user spontaneously 
completes a previously avoided social activity. Discount factor γlong specifically balances 
the weighting between immediate feedback and these delayed yet clinically more 
significant signals. 

Ultimately, the long-term value function Vπ(s) is defined as the sum of expected 
cumulative discounted rewards obtainable from state s under policy π: 

0

( )π k
π t k t

k

V s γ R s s
∞

+
=

 
 
 

= =


  (12) 

The overall discount factor γ here determines how much weight the agent assigns to 
future rewards. Through this design, the intrinsic meaning of the value function Vπ(s) is 
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no longer a simple accumulation of emotional scores, but rather an estimate of the user’s 
expected long-term psychological net benefit under strategy π. This theory-based  
value-oriented design compels the agent to balance short-term interactions with long-term 
health outcomes during learning. For instance, it may learn to forgo immediate  
high-engagement feedback (e.g., sending a lighthearted but superficial emoji) at certain 
moments, opting instead for interventions requiring greater user effort but fostering  
long-term emotional regulation skills (e.g., guiding a cognitive diary exercise). This 
approach ensures interventions genuinely prioritise the user’s enduring well-being. 

3.5 Training algorithm based on near-end policy optimisation 

The PPO algorithm is used for policy optimisation in this framework. The main benefit of 
PPO is that it adds a clipping mechanism that limits the size of each policy change. This 
stops sudden changes in policy from making training fail. When the difference between 
old and new policies is too big, the clipping mechanism actively stops the goal function 
from growing too much, making sure that the update step stays within a reasonable 
confidence interval. This approach makes the training process easier and more 
dependable, which makes it perfect for real-world intervention situations when collecting 
data is expensive and consistent learning is important. 

PPO is very important for task-specific adaptation in the inner loop of meta-training. 
For every user task selected from the meta-training distribution, the agent initially 
engages with the task environment utilising the initial parameters of the current  
meta-policy, thereby gathering a collection of trajectory data. The PPO algorithm uses 
this information to figure out an estimate called the advantage function, which tells you 
how well a certain action works compared to the average in a certain state. After that, the 
algorithm modifies the policy network’s parameters by maximising the clip-replacement 
goal function indicated above, usually over a few number of iterations. This technique 
makes it possible for the policy to quickly adjust to the needs of the current work. The 
adapted policy parameters that it outputs are what the meta-updater uses to figure out 
higher-order gradients. 

Integrating PPO with a meta-learning framework further amplifies its advantages. In 
standard reinforcement learning settings, policies typically learn from randomly 
initialised parameters, requiring extensive interaction samples. Within our VG-MARL 
framework, however, PPO starts with high-quality initial parameters optimised through 
meta-learning, effectively providing a strong prior for rapid adaptation to each new task. 
Consequently, PPO optimisation within the inner loop avoids starting from scratch, 
instead performing efficient local fine-tuning that dramatically improves sample 
efficiency. This integration ensures the framework can learn cross-user general patterns 
from rich offline data while leveraging PPO’s stable online learning capabilities to tailor 
precise intervention strategies for individual users. Ultimately, this achieves the goal of 
long-term value-driven personalised interventions. 
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4 Experiments and results analysis 

4.1 Experimental setup 

To comprehensively evaluate the effectiveness of the proposed VG-MARL framework, 
we designed a systematic experimental protocol. The experiments were first conducted in 
a highly controlled simulated environment built upon publicly available mental health 
conversation datasets and user behaviour models. This environment simulates virtual 
users exhibiting diverse personality traits and emotional fluctuation patterns. This 
simulated environment enabled large-scale, repeatable testing with precise control over 
confounding variables. Building upon this foundation, the experiment was further 
validated on a real-world anonymised user interaction dataset. This dataset comprised 
three months of user interactions with a mental health support application, including  
self-reported emotions, app usage behaviours, and system-pushed intervention content. 

Carefully selected baseline methods were chosen to represent current mainstream 
technical approaches. These included rule-based static policies, standard DQN, PPO 
algorithms, and a meta-reinforcement learning baseline (meta-PPO) (Niu et al., 2023) 
without value-oriented design. 

Evaluation metrics centred on three core dimensions. The intervention effectiveness 
dimension primarily assessed the long-term cumulative reward achieved by strategies on 
the test set, representing the most direct measure of the algorithm’s core objective (Li  
et al., 2019). The adaptability dimension focuses on learning curves for new tasks, 
evaluating sample efficiency by comparing how quickly algorithms reach specified 
performance levels within a finite number of interaction steps. Additionally, statistical 
tests were employed to confirm the significance of performance differences. 

All experiments were conducted on a unified computational platform, primarily 
implemented using the PyTorch deep learning framework. Regarding network 
architecture, both the policy network and value network are fully connected neural 
networks with two hidden layers, where the belief state encoder incorporates an attention 
mechanism. Key hyperparameters – such as inner and outer learning rates for  
meta-learning, PPO clipping range, and discount factor – were optimised via grid search 
on the validation set to ensure all comparison methods operated under their optimal 
configurations. 

4.2 Results analysis 

To evaluate the overall effectiveness of the VG-MARL framework, we compared  
VG-MARL with four baseline methods on an independent dataset comprising 500 test 
users. All methods underwent hyperparameter tuning to achieve optimal performance. 
Figures 2 and 3 illustrate the differences in learning curves across the methods. 

Experimental results demonstrate that the VG-MARL framework exhibits significant 
advantages across all metrics. The learning curves reveal that VG-MARL not only 
converges fastest but also achieves the highest final performance level. This validates the 
effective synergy between value-guided design and meta-adaptive mechanisms. 

Compared to meta-PPO without value guidance, VG-MARL achieves a substantial 
improvement in long-term cumulative reward. This indicates that while meta-learning 
alone enhances adaptability, truly optimised long-term intervention effects can only be 
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achieved under explicit value guidance. Compared to standard PPO, VG-MARL’s rapid 
convergence highlights the value of meta-learning in addressing cold-start problems. 

Figure 2 Performance metrics comparison of various methods, (a) cumulative reward  
(b) improvement rate (c) user engagement (d) converge steps (see online version  
for colours) 

  
(a)     (b) 

  
(c)     (d) 

Notably, VG-MARL exhibits relatively small standard deviations across metrics, 
indicating robust stability across different users – a critical factor for reliability in 
practical applications. Statistical tests further confirm that all differences between  
VG-MARL and baseline methods are highly statistically significant. 

4.3 Melting experiment 

This ablation study systematically evaluates the effectiveness of the meta-adaptive 
mechanism within the VG-MARL framework by comparing the full model with three 
ablation variants: 

• VG-MARL (full model): The complete framework incorporating both meta-adaptive 
and value-guided components. 
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• VG-MARL (no meta-adaptive): Removes the meta-adaptive mechanism, using only 
the pre-trained policy. 

• VG-MARL (no meta-adaptive): Removes value-guided optimisation, retaining only 
meta-adaptive learning. 

• Standard PPO: A baseline method trained from scratch. 

Figure 3 Average return comparison across methods (see online version for colours) 

 

Figure 4 Melting experiment (cumulative reward), (a) (see online version for colours) 

  
(a)     (b) 

Experimental results are shown in Figures 4 and 5. The full VG-MARL significantly 
outperforms other variants during the early adaptation phase (first 100 steps), 
demonstrating the meta-adaptive mechanism’s effectiveness in addressing cold-start 
challenges. The full model converges in far fewer steps (1,500 steps) than variants 
without meta-adaptation (4,500 steps), validating meta-learning’s role in accelerating 
personalisation. Under limited sample budgets, the full model achieves near-optimal 
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performance faster, making it particularly suitable for data-scarce real-world applications. 
Value guidance and meta-adaptation exhibit clear synergistic effects; removing either 
component alone degrades performance. 

Figure 5 Melting experiment (convergence steps and performance), (a) convergence time 
distribution (b) sample efficiency comparison (see online version for colours) 

  
(a)     (b) 

These results conclusively demonstrate the critical role of meta-adaptive mechanisms in 
achieving rapid, efficient personalised emotional interventions. 

5 Conclusions 

This study addresses a critical challenge in personalised emotional intervention – how to 
rapidly adapt intervention strategies to individual users while ensuring long-term 
effectiveness – by proposing a VG-MARL framework. Methodologically, we 
successfully integrate meta-learning mechanisms with DRL, enabling efficient extraction 
and transfer of cross-user knowledge through an attention-based meta-policy network. At 
the algorithmic design level, we innovatively developed a long-term value function 
incorporating psychological theories, enabling reward signals to accurately reflect 
sustainable mental health benefits. At the engineering implementation level, we 
combined PPO algorithms with meta-adaptive mechanisms to ensure training stability 
and rapid policy adaptation. 

Systematic experimental validation demonstrates that the VG-MARL framework 
exhibits significant advantages across multiple dimensions. Regarding intervention 
effectiveness, VG-MARL achieves approximately 22% higher long-term cumulative 
reward metrics and 13.4% greater user engagement compared to baseline methods. 
Ablation studies further validate the necessity of each framework component: the  
meta-adaptive mechanism enables rapid strategy adjustment for new users, while the 
value-oriented design ensures long-term intervention efficacy. These results fully 
demonstrate VG-MARL’s effectiveness in balancing personalised adaptation with long-
term benefits in emotional interventions. 
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Despite these positive findings, several limitations warrant future exploration. First, 
the current model relies primarily on unimodality behavioural and self-reported data. 
Future work should integrate multimodal physiological signals (e.g., heart rate variability, 
electroencephalogram) to comprehensively perceive user states. Second, the framework’s 
safety and robustness require further enhancement, particularly when confronting edge 
cases like sudden user deterioration or adversarial inputs, necessitating stricter safety 
constraint mechanisms. Additionally, the current value function design remains 
dependent on expert knowledge; future research could explore data-driven approaches 
based on inverse reinforcement learning to automatically learn reward functions from 
successful intervention cases. 
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