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Abstract: Personalised sports training has emerged as a critical component in 
optimising athletic performance and minimising injury risks. Nevertheless, 
conventional approaches predominantly depend on coaches’ subjective 
expertise, which often falls short in delivering dynamically precise adaptations. 
In response, this study introduces a reinforcement learning-based framework 
for generating individualised training regimens. By formulating the training 
process as a Markov decision process, the system enables an intelligent agent to 
interact with a simulated training environment, producing optimised training 
actions derived from real-time user status information. Evaluations conducted 
on the public FitRec dataset indicate that, relative to conventional baseline 
techniques, the proposed system yields an average improvement of 15% in 
predicted performance indicators, while concurrently lowering the incidence of 
training overload by 30%. These findings highlight the potential of the 
proposed framework as an effective new paradigm for automated and 
individualised sports science training. 
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1 Introduction 

As national fitness initiatives gain momentum and the pursuit of healthy lifestyles 
becomes increasingly prevalent, the demand for scientific and individualised sports 
training has moved to the forefront of exercise science. Conventional training programs, 
often designed with a one-size-fits-all philosophy, fail to accommodate the considerable 
variations among individuals in terms of physiological traits, recovery ability, and 
performance goals (Akenhead and Nassis, 2016). Such limitations not only hinder the 
optimal development of athletic potential but also elevate the risk of injury caused by 
inappropriate training loads (Halson, 2014). Common injuries stemming from 
inappropriate loads include musculoskeletal overuse conditions like muscle strains, stress 
fractures, and tendinopathies. If mismanaged, excessive training can also lead to non-
functional overreaching and overtraining syndrome, significantly hindering athletic 
development. Consequently, there is a compelling need to develop intelligent systems 
capable of generating adaptive training plans that align closely with users’ evolving 
physiological states. Although coaches’ expertise currently serves as the primary means 
of personalisation, this approach is inherently subjective, difficult to scale, and 
inadequate for processing high-volume, multi-dimensional physiological data in real-time 
– posing a major obstacle to the broad implementation of tailored training methodologies. 

The rapid evolution of wearable sensor technology in recent years has enabled 
continuous, large-scale acquisition of physiological and kinematic data – such as heart 
rate, blood oxygen saturation, acceleration, and global positioning system (GPS) 
trajectories – from athletes and fitness participants (Cossich et al., 2023). This capability 
provides a robust technical foundation for data-driven training design. In this context, 
researchers have increasingly turned to computational intelligence to advance sports 
science. Early attempts included expert systems that operated on predefined rule sets to 
generate recommendations, yet their rigidity limited applicability in complex, 
dynamically changing training environments. Subsequent adoption of traditional machine 
learning techniques, including support vector machines and random forests, allowed for 
predictions of training outcomes or injury risks (Claudino et al., 2019). However, these 
models primarily performed static, single-timepoint predictions, failing to conceptualise 
training as a continuous and adaptive decision-making sequence. As a result, they were 
unable to resolve the essential sequential decision problem: ‘What is the optimal action to 
take in the current state to maximise long-term training benefits? ‘ – which lies at the 
heart of true personalisation. These inherent shortcomings motivate the pursuit of more 
expressive and dynamic modelling paradigms. 

Amid this exploration, reinforcement learning (RL) has emerged as a promising 
machine learning framework specialised in sequential decision-making. At its core, RL 
operates through an agent that progressively learns an optimal policy by interacting with 
an environment and maximising cumulative rewards via trial and error. This learning 
mechanism bears a natural resemblance to the decision-making process of a coach, who 
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continuously adapts training content (actions) according to an athlete’s real-time 
physiological feedback (state) in pursuit of long-term performance gains (reward). 
Notably, RL has already achieved significant success in healthcare applications – such as 
personalised dosage optimisation and chronic disease management – demonstrating its 
strength in handling long-horizon, uncertain sequential decisions that require a careful 
balance between benefits and risks (Mulani et al., 2019). Nevertheless, the direct 
application of RL to sports training prescription entails several domain-specific 
challenges: how to construct a state space that accurately captures the user’s 
physiological status and accumulated fatigue; how to design reward functions that 
promote performance gains while mitigating overtraining risks; and how to overcome 
issues of data sparsity and privacy in real-world deployment. Practical implementation 
faces barriers such as the requirement for high-quality, continuous physiological data and 
non-trivial computational resources. Furthermore, integration into existing coaching 
infrastructures presents a significant adoption hurdle. 

This study is motivated by the need to overcome the challenges outlined above 
(Ghosh et al., 2023). We posit that an effective personalised training system must account 
for the longitudinal, dynamic, and safety-critical nature of athletic development. To that 
end, this work investigates both methodological advances and practical applications of 
RL in this context. Central to our approach is the construction of a Markov decision 
process (MDP) framework, built around a multidimensional state representation that 
combines real-time physiological indicators with historical training loads, as well as a 
composite reward function designed to balance immediate training stimuli against long-
term adaptation, and performance gains against injury prevention. By integrating 
systematic environment modelling with judicious algorithm selection, our goal is to equip 
the learning agent with the capability to emulate the decision quality of an expert coach – 
producing personalised training plans that are scientifically grounded, safe, and adaptive. 

2 Related work 

2.1 Research status of personalised sports training systems 

The development of personalised training plans has long been a central pursuit in 
exercise science and sports engineering. Early computer-aided training systems were 
predominantly built on rule-based expert systems, which formalised the empirical 
knowledge of expert coaches into deterministic logic – for instance, ‘if heart rate exceeds 
threshold X, reduce intensity’ (Bonidia et al., 2018). Early systems, such as the research 
prototype TRAINER and commercial technologies like Firstbeat, formalised expert rules 
– for instance, using heart rate thresholds to recommend intensity adjustments – laying 
the groundwork for automated training prescription. While these systems introduced a 
degree of automation, their rigidity made them ill-suited to handle complex or unforeseen 
scenarios beyond predefined rules, and they incurred substantial costs in knowledge 
engineering and maintenance. With the rise of machine learning, researchers turned to 
static predictive models to support personalisation (Rein and Memmert, 2016). 
Regression techniques, for example, were used to forecast performance under varying 
training loads, while classification models helped estimate injury risk (Lames and 
McGarry, 2007). Yet, these methods largely focused on isolated, single-step predictions, 
treating each training session as an independent event rather than part of a continuous, 
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adaptive process. By failing to model training as a sequential decision-making problem 
with long-term dependencies, such systems cannot dynamically adapt future sessions in 
response to an athlete’s evolving state – a fundamental limitation in pursuing truly 
optimised, long-term training planning. In current practice, coaches often compensate for 
this limitation through periodic reassessments and manual plan adjustments. However, 
this approach is inherently subjective, difficult to scale, and lacks the dynamic 
responsiveness of an automated system. 

2.2 Applications of reinforcement learning in health and management 

RL has attracted considerable interest and achieved notable successes in healthcare and 
personalised management, owing to its strengths in solving sequential decision-making 
problems – offering valuable references for potential applications in sports training. In 
clinical settings, RL has been utilised to create tailored treatment regimens, such as 
optimising chemotherapy dosages to balance therapeutic effects against side effects, or 
devising adaptive insulin administration strategies for diabetic patients. In clinical 
settings, RL has shown promise in areas like personalised insulin dosing for diabetes 
management and optimised chemotherapy scheduling in oncology. These successes 
demonstrate its capability for adaptive, long-term decision-making based on individual 
patient states. In the realm of health behaviour management, RL has also been applied to 
generate individualised nutrition plans or psychological intervention strategies to promote 
sustained healthy habits (Gottesman et al., 2019). These applications share a fundamental 
characteristic: the need to make sequential decisions over extended periods, maximising 
cumulative benefits based on the user’s dynamically changing state – such as 
physiological indicators and behavioural feedback (Yu et al., 2021). These achievements 
underscore RL’s adaptability and efficacy in addressing personalised, temporal decision 
tasks. That said, sports training presents distinct challenges compared to clinical contexts: 
performance improvements – as reward signals – are often more delayed and harder to 
quantify (Bartlett et al., 2015). Moreover, the state representation must integrate not only 
physiological parameters but also complex motor performance metrics, all while ensuring 
high levels of training safety in real-time (Buchheit and Simpson, 2017). As a result, 
direct transfer of medical RL models is infeasible; domain-specific innovations are 
required (Clifton and Laber, 2020). 

2.3 Applicable to reinforcement learning algorithms for training generation 

The selection of RL algorithms plays a decisive role in determining the performance and 
reliability of the resulting system. In training plan generation tasks, where the action 
space – encompassing variables such as intensity and duration – is inherently continuous, 
classical algorithms such as Q-learning and deep Q-network (DQN) become unsuitable 
due to their limitation to discrete action domains. While deep deterministic policy 
gradient (DDPG) and its variants can handle continuous control, they often exhibit 
sensitivity to hyperparameter settings and are prone to training instability. In contrast, 
proximal policy optimisation (PPO) introduces a clipped objective function that 
constrains policy update steps, thereby significantly improving training stability and 
sample efficiency without compromising performance (Wang et al., 2020). Training 
stability is paramount in this domain to prevent the generation of erratic and potentially 
harmful training plans. PPO’s constrained policy updates ensure consistent and safe 
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recommendations, directly supporting athlete well-being. This attribute makes PPO 
particularly suitable for sports training applications, where data availability is often 
limited – such as in athlete-specific cases – and operational safety is paramount. As a 
result, PPO and its derivatives are frequently adopted in studies demanding robust 
performance under complex and constrained conditions. Ultimately, algorithm selection 
must carefully balance problem characteristics, data scale, and stringent requirements for 
safety and stability. Our methodological section will subsequently elaborate on the 
specific algorithmic choices and enhancements made in this work. 

3 Methodology 

3.1 Problem formulation: a Markov decision process framework 

To transform the problem of generating personalised training plans into one solvable by 
RL, we first formalise it as a MDP (Sutton and Barto, 1998). An MDP can be represented 
by a quintuple: ( , , , , )R γ   . This formulation mirrors a coach’s intuitive process: 
evaluating the athlete’s current condition (state), selecting a training regimen (action), 
and aiming for long-term performance peaks (maximising cumulative reward), thereby 
structuring this adaptive decision-making loop. Here,   represents the state space, 
encompassing all information that can describe the user’s state;   represents the action 
space, i.e., all possible training actions the system can recommend; ,( |  )s s a′  is the 
state transition probability, indicating the probability of transitioning from state s to state 
s′ after executing action a in state s; R(s, a) is the reward function, quantifying the quality 
of performing action a in state s; γ∈(0, 1) is the discount factor, balancing the importance 
of immediate rewards versus future long-term rewards. 

Within this framework, the agent (our system) observes the current state of the 
environment ts ∈  at each discrete time step t (typically representing a training day or 
cycle) (Mnih et al., 2015). Based on this state, the agent takes an action ta ∈  (i.e., 
generates a training plan). The environment (i.e., the user model or simulator) transitions 
to a new state ( )1 1~ | ,t t t ts s s a+ +  according to this action and provides the agent with a 
scalar reward feedback ri = R(si, ai). The agent’s objective is to learn a policy π(a|s) that 
maximises the expected cumulative discounted reward obtained starting from the initial 

state, i.e., the return 
0

k
t t k

k

G γ r
∞

+
=

= . 

( , , , , )R γ    (1) 

where   represents the state space, encompassing all information that can describe the 
user’s state;   represents the action space, i.e., all possible training actions that the 
system can recommend; ,( |  )s s a′  denotes the state transition probability, representing 
the likelihood of transitioning from state s ∈  to state s′∈  after executing action 

; ( , )a R s a∈  is the reward function, quantifying the immediate reward obtained by 
executing action a in state s; γ∈(0, 1) is the discount factor, used to balance the 
importance of immediate rewards versus future long-term rewards. 
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3.2 State space design 

State st must comprehensively and effectively characterise the user’s physical condition, 
fatigue level, and training history at time t (Bourdon et al., 2017). Our state space design 
incorporates two major categories of features: instantaneous features and historical 
window features. 

Let Ft denote the set of all instantaneous physiological and subjective features 
observable at time step t, with dimension m. Simultaneously, we consider a historical 
window of length L, containing historical features and action information from time steps 
t–L to t–1. The state vector st is formed by concatenating these features: 

( ),t t ts F H=  (2) 

where ( )1 2, , , m
t t t tF f f f= …  contains the current instantaneous features, such as: 1

tf  is 

resting heart rate (RHR); 2
tf  is heart rate variability (HRV); 3

tf  is previous day’s Rate 

of Perceived Exhaustion (RPE); 4
tf  is sleep quality score after the previous training 

session; H is represents historical features, computed by calculating statistics (such as 
mean and standard deviation) from data over the past L days, for example: 1

tH  is average 

training load over the past 7 days; 2
tH  is variability of training load over the past 7 days 

(standard deviation); 3
tH  is acute-to-chronic workload ratio (ACWR) over the past 3 

days relative to the past 28 days, used to quantify injury risk; 4
tH  is total training 

duration over the past week. 
This design ensures that the state not only reflects the user’s immediate response but 

also encodes their recent training trends and accumulated fatigue, providing a robust 
basis for the agent to make informed decisions (Scott et al., 2016). Instantaneous features 
provide a snapshot of the user’s immediate physiological state and readiness. In contrast, 
historical features encapsulate recent training trends and accumulated fatigue, together 
offering a holistic view crucial for robust decision-making. 

3.3 Action space design 

Action at represents the personalised training plan generated for the user at time step t. 
We define it as a continuous, multidimensional action vector to enable fine-grained 
control. 

( )int, ,type ensity duration
t t t ta a a a=  (3) 

where , [0,1] :type
ta ∈  A continuous value representing the training type bias. 0 denotes 

pure aerobic endurance training, 1 denotes pure strength training, and intermediate values 
represent mixed training. , [0,1] :intensity

ta ∈  A continuous value representing the relative 
intensity of the training session. 0 corresponds to extremely low intensity (e.g., active 
recovery), while 1 corresponds to extremely high intensity (e.g., interval sprints). This 
value can be mapped to a specific percentage range of the user’s maximum heart rate 
(HRmax) or maximum oxygen uptake (VO2max). [0,1] :duration

ta ∈  A continuous value 
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representing the relative duration of the training session. 0 corresponds to the shortest 
training duration (e.g., 20 minutes), while 1 corresponds to the longest training duration 
(e.g., 120 minutes). This value will be linearly mapped to a predefined duration range. 

Continuous action spaces offer finer-grained and more flexible control capabilities 
than discrete actions (such as ‘low, medium, high’), enabling agents to generate an 
infinite variety of possible training plan combinations. While continuous action spaces 
provide finer control and greater flexibility, they can introduce higher computational 
complexity and demand more interaction data for the policy to converge effectively 
compared to discrete action representations. 

3.4 Reward function design 

The reward function R(s, a) is key to guiding the agent in learning correct behaviours (Ng 
et al., 1999). Our goal is to simultaneously enhance athletic performance and ensure 
training safety, so the reward function is designed as a weighted sum of multiple  
sub-rewards. 

( ) ( ) ( ) ( ), , , ,t t perf perf t t safe safe t t pref pref t tR s a w R s a w R s a w R s a= ⋅ + ⋅ + ⋅  (4) 

• Performance reward: this reward incentivises actions that effectively enhance users’ 
physical fitness (Moesch et al., 2018). Since performance improvements are long-
term and delayed, we employ a proxy metric based on state changes. For example, 
we can utilise the predicted outputs from validated fitness models (such as the 
Banister model) as the foundation for rewards. 

( ), Δ Δperf t tR s a Fitness predicted Fatigue predicted= −  (5) 

• Safety reward: this reward is applied to penalise actions that may lead to overtraining 
or excessive injury risk (Gabbett, 2016). It functions as a penalty. 

( ) ( ) ( ),safe t t high rpeR s a ACWR θ RPE θ= − > ⋅ − > ⋅α β   (6) 

• Preference reward: this reward makes the plan more aligned with the user’s personal 
preferences, such as encouraging the selection of training types historically preferred 
by the user to enhance plan adherence (Deci and Ryan, 2000). 

( ) ( ), ,type
pref t t t p typeR s a similarity a user ref=  (7) 

3.5 Algorithm: proximal policy optimisation 

We employ the PPO algorithm to learn the optimal policy πθ(a|s). PPO is a policy 
gradient algorithm widely favoured for its training stability, sample efficiency, and ease 
of parameter tuning. Its core principle involves constraining the magnitude of change 
between the new and old policies at each update to prevent disruptive policy shifts. 

PPO updates the policy parameters θ by maximising a surrogate objective function: 

 ( )( )ˆ ˆ( ) min ( ) , ( ),1 ,1CLIP
t t t t tL θ r θ A clip r θ A= − ∈ + ∈ 
   (8) 
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where ( )
( )

|
( )

|
old

θ t t
t

θ t t

π a s
r θ

π a s
=  is the probability ratio, representing the change in the 

probability of selecting an action under the new policy relative to the old policy. ˆ
tA  is the 

estimated value of the advantage function at time step t, measuring the relative strength 
of action at compared to the average. We employ generalised advantage estimation 
(GAE) to compute ˆ

tA  (Li and He, 2023). 

( ) ( )( , )
1

ˆ 0 ( )GAE γ λ l
t l t t t tAt l γλ δ δ r γV s V s∞
+ += = = + − φ φ  (9) 

where Vφ(s) is a state value function network parameterised by φ, which estimates the 
expected return obtainable starting from state s. The network is updated by minimising 
the mean squared error between its output and the target return: 

 ( )2arg( ) ( )VF t
t tL t V s V = − φ φ  (10) 

where is the target value of the value function. 
Ultimately, the overall objective function of the PPO is the sum of the clipped 

surrogate objective, the value function loss term, and the policy entropy reward term 
(Williams, 1992): 


1 2( , ) ( ) ( )Total CLIP VF

t θL θ j L θ c L j c Sπ= − +   (11) 

where ( )argt
t old tAt VV s= + φ  denotes the entropy of policy πe in state st, serving to 

incentivise exploration; c1 and c2 are coefficients. 

Figure 1 The architecture of the proposed reinforcement learning-based personalised training 
plan generation system (see online version for colours) 
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3.6 System architecture and training 

Our system architecture is shown in Figure 1, with the training process conducted within 
a simulated environment. This environment is constructed based on historical data from 
public datasets, where the state transition function   is implemented by a pre-trained 
probabilistic model (such as a recurrent neural network or Gaussian process). This model 
predicts the next state st+1 and immediate reward rt based on the current state st and action 
at. The agent (PPO algorithm) interacts with this simulated environment, collecting 
experience traces (st, at, rt, st+1). It continuously updates the policy network πe and value 
network Vφ using this data until the policy converges. 

4 Experimental verification 

To comprehensively evaluate the performance of this system (hereafter referred to as 
PPO-TP), we designed a series of experiments aimed at addressing the following key 
questions:  

1 Does PPO-TP demonstrate superior advantages over existing methods in enhancing 
athletic performance and ensuring safety? 

2 Are all components of the designed reward function both necessary and effective? 

3 Can the system generate genuinely personalised training plans? 

4.1 Experimental setup 

4.1.1 Dataset and pre-processing 
This experiment utilises the publicly available FitRec dataset (Liu et al., 2023). This 
dataset contains activity watch records from over a thousand users, covering multiple 
exercise modes such as running and cycling. Data dimensions include heart rate, speed, 
elevation, GPS tracks, and user-reported metadata such as height, weight, and RHR. We 
performed rigorous data pre-processing: First, we selected active user samples with 
complete records and continuous activity exceeding 90 days. Second, we filled missing 
values using linear interpolation from preceding and subsequent time steps. Finally, we 
calculated the training load for each training day based on the training impulse algorithm 
and exercise duration, further deriving key features such as the ACWR (Banister and 
Calvert, 1980). After pre-processing, we obtained a total of 18,000 valid training days 
from 200 users. We allocated 80% of the user data for training, 10% for validation, and 
the remaining 10% for final testing. 

4.1.2 Baseline methods 
For fair comparison, we selected the following representative baseline methods: 

1 Rule-based (ACWR): a baseline based on widely accepted rules in the field of 
exercise science (Hulin et al., 2016). It recommends training load levels based on the 
user’s real-time ACWR value range (< 0.8: decrease; 0.8–1.3: maintain; > 1.3: 
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increase). This rule is widely used for load management in professional athletes and 
serves as a robust empirical baseline. 

2 XGBoost: a powerful gradient-boosted tree model. We employ it as a static 
prediction model, inputting the current state to predict the ‘optimal’ training action 
for the next training day. This baseline is used to contrast the performance 
differences between sequential decision methods and static prediction approaches. 

3 DDPG: a classic DDPG algorithm, representing a leading approach for continuous 
action space RL problems. We train it using the exact same state space and reward 
function as PPO-TP. 

4 A2C: an actor-critic synchronous policy gradient algorithm, serving as another 
advanced policy gradient method for comparison with PPO. 

4.1.3 Evaluation metrics 
Since genuine long-term physiological feedback cannot be obtained in the simulation 
environment, we employ the following domain-validated proxy metrics for assessment: 

1 Performance metric (higher is better): evaluate the cumulative value of predicted 
fitness gains (predicted fitness gain) at the end of the entire testing cycle using a  
pre-trained predictive model (e.g., a model predicting VO₂max changes) on a 
retained test set. 

2 Safety metric (lower is better): percentage of days during the entire testing cycle 
where the user’s state shows ACWR > 1.5 (high-risk threshold). 

3 Personalisation metric (higher is better): calculate the cosine similarity between the 
generated plan sequence and the user’s historical preference sequence (e.g., training 
type distribution). 

4.1.4 Implementation details 
Both the strategy network and the value network of PPO-TP are two-layer fully 
connected neural networks (256–128 neurons) using the rectified linear unit (ReLU) 
activation function. The discount factor γ = 0.99, the GAE parameter λ = 0.95, and the 
tailoring range ∈ = 0.2. The reward function weights are set to wperf = 1.0, wsafe = 0.6, and 
wpref = 0.3. All RL baselines are trained with the same network structure and reward 
function. 

4.2 Results and analyses 

4.2.1 Comparative experimental analysis 
The average performance of all methods on the test set is shown in Table 1. 

Analysis of Table 1 reveals that our proposed PPO-TP method significantly 
outperforms all baseline methods in both physical fitness gain prediction and 
personalised similarity metrics. Simultaneously, it matches the best rule-based method in 
safety metrics while substantially outperforming other data-driven approaches. 
Specifically: rule-based methods exhibit the highest safety but the lowest performance 
gains, indicating that conservative rules mitigate risks while simultaneously limiting 
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training effectiveness maximisation; XGBoost static models achieve notable performance 
gains but demonstrate the poorest safety. This stems from their lack of long-term 
planning capabilities, making them prone to recommending plans that appear effective in 
the short term but accumulate excessive risks over extended periods; The performance of 
DDPG and A2C confirms the effectiveness of RL methods for this task, though both are 
less stable than PPO (DDPG’s high standard deviation reflects its training instability). 
PPO achieves more robust performance and higher safety through its clipping 
mechanism. 
Table 1 Comparison of average performance across methods on the test set (mean ± standard 

deviation) 

Methodologies Predicted fitness 
gains (Arbitrary unit) 

Proportion of days with 
ACWR > 1.5 (%) 

Personalised 
similarity 

Rule-based (ACWR) 100.0 ± 10.5 5.2 ± 2.1 0.65 ± 0.12 
XGBoost 118.3 ± 11.2 15.7 ± 3.8 0.71 ± 0.10 
DDPG 125.6 ± 19.8 8.5 ± 3.5 0.68 ± 0.14 
A2C 130.1 ± 12.6 7.1 ± 2.9 0.73 ± 0.11 
PPO-TP (Ours) 138.5 ± 9.7 4.8 ± 1.9 0.79 ± 0.08 

4.2.2 Training stability and convergence analysis 
We plotted the average reward per round over training for PPO-TP alongside DDPG and 
A2C, as shown in Figure 2. 

Figure 2 Comparison of average episode reward during training (see online version for colours) 
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Notes: The solid lines represent the mean over 5 random seeds, and the shaded regions 
represent the standard deviation 

It can be observed that the reward curve of PPO-TP exhibits the smoothest and most 
stable upward trend throughout the training process, ultimately converging to the highest 
value. In contrast, the DDPG curve fluctuates dramatically and experiences performance 
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collapse in the later stages, confirming its well-known instability issues. Although A2C 
converges rapidly, its final performance falls below that of PPO-TP. 

4.2.3 Personalised generation case study 
To visually demonstrate personalised outcomes, we selected three distinct user profiles 
from the test dataset:  

a Beginner user: low historical load, prefers low-intensity aerobic exercise 

b Advanced runner: high historical load, prefers high-intensity interval training 

c Recovery-phase user: recent ACWR elevated, requiring load reduction. 

Figure 3 presents grouped bar charts illustrating the distribution of training intensity 
across weekly plans generated by PPO-TP and the rule-based baseline for three 
representative user types. 

Figure 3 Weekly training intensity distribution for three user types (see online version  
for colours) 

 

The results in Figure 3 clearly demonstrate the personalised adaptation of PPO-TP 
compared to the rule-based method. While the rule-based approach generates nearly 
identical plans across all user categories with only minor ACWR-based adjustments, 
PPO-TP produces distinctly tailored plans: for novice users, it emphasises low-
intensity training (4 days per week); for advanced runners, it incorporates substantial 
high-intensity sessions (4 days per week); and for recovery-phase users, it 
significantly reduces overall training load by eliminating high-intensity sessions 
altogether. This demonstrates PPO-TP’s exceptional personalisation capabilities and 
adherence to safety constraints. 

• Ablation study: to validate the necessity of each component in the reward function, 
we conducted ablation experiments, with results shown in Table 2. 
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Table 2 Melting experiment results 

Model variant Predicted fitness gains (Arbitrary 
unit) 

Proportion of days with ACWR > 
1.5 (%) 

PPO-TP (Full) 138.5 ± 9.7 4.8 ± 1.9 
w/o Rsafe 142.1 ± 11.3 18.2 ± 4.5 
w/o Rpref 135.2 ± 10.1 5.1 ± 2.0 
w/o Rsafe and Rpref  145.0 ± 20.1 22.5 ± 5.8 

Experiments demonstrate that removing the safety reward (w/o Rsafe ) yields slightly 
higher performance gains for the model, but its risk (proportion of days with  
ACWR > 1.5) surges dramatically, proving that Rsafe is crucial for constraining model 
behaviour and ensuring safety. Removing the preference reward (w/o Rpref) resulted in 
performance and safety metrics that were largely comparable to the full model, but 
personalised similarity significantly decreased (from 0.79 to 0.68, not shown in the table), 
indicating that this component primarily enhances the alignment of the plan. 
Simultaneously removing both rewards caused the model to become extremely 
aggressive and unstable, validating the necessity of multi-objective reward function 
design. 

4.3 Discussion and limitations 

The experimental findings confirm the effectiveness and reliability of our proposed  
PPO-TP system in generating personalised training plans. This success stems from three 
key factors: 

1 the accurate formulation of the training planning problem as a MDP 

2 the design of a multi-objective reward function that effectively balances 
performance, safety, and user preference 

3 the adoption of the stable and sample-efficient PPO algorithm. 

Nevertheless, several limitations should be acknowledged. First, the experimental 
validation was conducted in a simulated environment, where system performance is 
inherently dependent on the accuracy of the state transition prediction model. Although 
we utilised a publicly available dataset with rigorous pre-processing, the generalisability 
of our conclusions requires further verification through real-world clinical trials with 
human participants. Second, the current system implementation primarily incorporates 
physiological indicators; future enhancements could integrate additional multimodal data 
streams – such as movement posture information captured by inertial sensors or computer 
vision techniques – to further refine training prescriptions and mitigate injury risks. 

5 Conclusions 

This study presents the design and implementation of a personalised training plan 
generation system (PPO-TP) based on the PPO algorithm, which formulates training 
prescription as a MDP. By constructing a carefully designed state representation, 
continuous action space, and a composite reward function that incorporates performance, 
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safety, and user preference objectives, the system learns to produce long-term training 
strategies that dynamically adjust according to the athlete’s evolving status. Evaluation 
on the public FitRec dataset shows that PPO-TP outperforms both rule-based methods 
and traditional machine learning models in terms of predicted performance gains, while 
simultaneously maintaining lower levels of injury risk and demonstrating stronger 
personalisation capability. Ablation studies further confirm the contribution of each 
reward component, supporting the rationality of the multi-objective optimisation strategy. 

The main theoretical contribution of this work is a RL-based framework for  
data-driven personalised training generation. This framework not only illustrates the 
capability of deep RL in addressing complex sequential decision-making tasks, but its 
MDP formulation and reward design – such as using ACWR to model injury risk – also 
provide meaningful references for other domains involving adaptive personalised 
planning. 

On the practical side, this study offers a viable technical pathway toward building 
intelligent training assistance systems. The proposed approach can serve as a decision 
support tool for professional coaches or as the core reasoning module in fitness 
applications, delivering scientifically-grounded, individualised training guidance that 
promotes performance improvement and reduces injury incidence. 

Despite these promising results, this work has several limitations. The experimental 
evaluation was conducted primarily in simulation, and the actual efficacy of the system 
needs to be further verified in real-world settings through longitudinal user studies. 
Future efforts will focus on deployment in practical training environments and the 
incorporation of multimodal data sources – such as movement technique analysis from 
video – to improve the precision and applicability of the generated plans. 
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