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Abstract: Personalised sports training has emerged as a critical component in
optimising athletic performance and minimising injury risks. Nevertheless,
conventional approaches predominantly depend on coaches’ subjective
expertise, which often falls short in delivering dynamically precise adaptations.
In response, this study introduces a reinforcement learning-based framework
for generating individualised training regimens. By formulating the training
process as a Markov decision process, the system enables an intelligent agent to
interact with a simulated training environment, producing optimised training
actions derived from real-time user status information. Evaluations conducted
on the public FitRec dataset indicate that, relative to conventional baseline
techniques, the proposed system yields an average improvement of 15% in
predicted performance indicators, while concurrently lowering the incidence of
training overload by 30%. These findings highlight the potential of the
proposed framework as an effective new paradigm for automated and
individualised sports science training.
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1 Introduction

As national fitness initiatives gain momentum and the pursuit of healthy lifestyles
becomes increasingly prevalent, the demand for scientific and individualised sports
training has moved to the forefront of exercise science. Conventional training programs,
often designed with a one-size-fits-all philosophy, fail to accommodate the considerable
variations among individuals in terms of physiological traits, recovery ability, and
performance goals (Akenhead and Nassis, 2016). Such limitations not only hinder the
optimal development of athletic potential but also elevate the risk of injury caused by
inappropriate training loads (Halson, 2014). Common injuries stemming from
inappropriate loads include musculoskeletal overuse conditions like muscle strains, stress
fractures, and tendinopathies. If mismanaged, excessive training can also lead to non-
functional overreaching and overtraining syndrome, significantly hindering athletic
development. Consequently, there is a compelling need to develop intelligent systems
capable of generating adaptive training plans that align closely with users’ evolving
physiological states. Although coaches’ expertise currently serves as the primary means
of personalisation, this approach is inherently subjective, difficult to scale, and
inadequate for processing high-volume, multi-dimensional physiological data in real-time
— posing a major obstacle to the broad implementation of tailored training methodologies.

The rapid evolution of wearable sensor technology in recent years has enabled
continuous, large-scale acquisition of physiological and kinematic data — such as heart
rate, blood oxygen saturation, acceleration, and global positioning system (GPS)
trajectories — from athletes and fitness participants (Cossich et al., 2023). This capability
provides a robust technical foundation for data-driven training design. In this context,
researchers have increasingly turned to computational intelligence to advance sports
science. Early attempts included expert systems that operated on predefined rule sets to
generate recommendations, yet their rigidity limited applicability in complex,
dynamically changing training environments. Subsequent adoption of traditional machine
learning techniques, including support vector machines and random forests, allowed for
predictions of training outcomes or injury risks (Claudino et al., 2019). However, these
models primarily performed static, single-timepoint predictions, failing to conceptualise
training as a continuous and adaptive decision-making sequence. As a result, they were
unable to resolve the essential sequential decision problem: ‘What is the optimal action to
take in the current state to maximise long-term training benefits? ° — which lies at the
heart of true personalisation. These inherent shortcomings motivate the pursuit of more
expressive and dynamic modelling paradigms.

Amid this exploration, reinforcement learning (RL) has emerged as a promising
machine learning framework specialised in sequential decision-making. At its core, RL
operates through an agent that progressively learns an optimal policy by interacting with
an environment and maximising cumulative rewards via trial and error. This learning
mechanism bears a natural resemblance to the decision-making process of a coach, who
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continuously adapts training content (actions) according to an athlete’s real-time
physiological feedback (state) in pursuit of long-term performance gains (reward).
Notably, RL has already achieved significant success in healthcare applications — such as
personalised dosage optimisation and chronic disease management — demonstrating its
strength in handling long-horizon, uncertain sequential decisions that require a careful
balance between benefits and risks (Mulani et al., 2019). Nevertheless, the direct
application of RL to sports training prescription entails several domain-specific
challenges: how to construct a state space that accurately captures the user’s
physiological status and accumulated fatigue; how to design reward functions that
promote performance gains while mitigating overtraining risks; and how to overcome
issues of data sparsity and privacy in real-world deployment. Practical implementation
faces barriers such as the requirement for high-quality, continuous physiological data and
non-trivial computational resources. Furthermore, integration into existing coaching
infrastructures presents a significant adoption hurdle.

This study is motivated by the need to overcome the challenges outlined above
(Ghosh et al., 2023). We posit that an effective personalised training system must account
for the longitudinal, dynamic, and safety-critical nature of athletic development. To that
end, this work investigates both methodological advances and practical applications of
RL in this context. Central to our approach is the construction of a Markov decision
process (MDP) framework, built around a multidimensional state representation that
combines real-time physiological indicators with historical training loads, as well as a
composite reward function designed to balance immediate training stimuli against long-
term adaptation, and performance gains against injury prevention. By integrating
systematic environment modelling with judicious algorithm selection, our goal is to equip
the learning agent with the capability to emulate the decision quality of an expert coach —
producing personalised training plans that are scientifically grounded, safe, and adaptive.

2 Related work

2.1 Research status of personalised sports training systems

The development of personalised training plans has long been a central pursuit in
exercise science and sports engineering. Early computer-aided training systems were
predominantly built on rule-based expert systems, which formalised the empirical
knowledge of expert coaches into deterministic logic — for instance, ‘if heart rate exceeds
threshold X, reduce intensity’ (Bonidia et al., 2018). Early systems, such as the research
prototype TRAINER and commercial technologies like Firstbeat, formalised expert rules
— for instance, using heart rate thresholds to recommend intensity adjustments — laying
the groundwork for automated training prescription. While these systems introduced a
degree of automation, their rigidity made them ill-suited to handle complex or unforeseen
scenarios beyond predefined rules, and they incurred substantial costs in knowledge
engineering and maintenance. With the rise of machine learning, researchers turned to
static predictive models to support personalisation (Rein and Memmert, 2016).
Regression techniques, for example, were used to forecast performance under varying
training loads, while classification models helped estimate injury risk (Lames and
McGarry, 2007). Yet, these methods largely focused on isolated, single-step predictions,
treating each training session as an independent event rather than part of a continuous,
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adaptive process. By failing to model training as a sequential decision-making problem
with long-term dependencies, such systems cannot dynamically adapt future sessions in
response to an athlete’s evolving state — a fundamental limitation in pursuing truly
optimised, long-term training planning. In current practice, coaches often compensate for
this limitation through periodic reassessments and manual plan adjustments. However,
this approach is inherently subjective, difficult to scale, and lacks the dynamic
responsiveness of an automated system.

2.2 Applications of reinforcement learning in health and management

RL has attracted considerable interest and achieved notable successes in healthcare and
personalised management, owing to its strengths in solving sequential decision-making
problems — offering valuable references for potential applications in sports training. In
clinical settings, RL has been utilised to create tailored treatment regimens, such as
optimising chemotherapy dosages to balance therapeutic effects against side effects, or
devising adaptive insulin administration strategies for diabetic patients. In clinical
settings, RL has shown promise in areas like personalised insulin dosing for diabetes
management and optimised chemotherapy scheduling in oncology. These successes
demonstrate its capability for adaptive, long-term decision-making based on individual
patient states. In the realm of health behaviour management, RL has also been applied to
generate individualised nutrition plans or psychological intervention strategies to promote
sustained healthy habits (Gottesman et al., 2019). These applications share a fundamental
characteristic: the need to make sequential decisions over extended periods, maximising
cumulative benefits based on the user’s dynamically changing state — such as
physiological indicators and behavioural feedback (Yu et al., 2021). These achievements
underscore RL’s adaptability and efficacy in addressing personalised, temporal decision
tasks. That said, sports training presents distinct challenges compared to clinical contexts:
performance improvements — as reward signals — are often more delayed and harder to
quantify (Bartlett et al., 2015). Moreover, the state representation must integrate not only
physiological parameters but also complex motor performance metrics, all while ensuring
high levels of training safety in real-time (Buchheit and Simpson, 2017). As a result,
direct transfer of medical RL models is infeasible; domain-specific innovations are
required (Clifton and Laber, 2020).

2.3 Applicable to reinforcement learning algorithms for training generation

The selection of RL algorithms plays a decisive role in determining the performance and
reliability of the resulting system. In training plan generation tasks, where the action
space — encompassing variables such as intensity and duration — is inherently continuous,
classical algorithms such as Q-learning and deep Q-network (DQN) become unsuitable
due to their limitation to discrete action domains. While deep deterministic policy
gradient (DDPG) and its variants can handle continuous control, they often exhibit
sensitivity to hyperparameter settings and are prone to training instability. In contrast,
proximal policy optimisation (PPO) introduces a clipped objective function that
constrains policy update steps, thereby significantly improving training stability and
sample efficiency without compromising performance (Wang et al., 2020). Training
stability is paramount in this domain to prevent the generation of erratic and potentially
harmful training plans. PPO’s constrained policy updates ensure consistent and safe
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recommendations, directly supporting athlete well-being. This attribute makes PPO
particularly suitable for sports training applications, where data availability is often
limited — such as in athlete-specific cases — and operational safety is paramount. As a
result, PPO and its derivatives are frequently adopted in studies demanding robust
performance under complex and constrained conditions. Ultimately, algorithm selection
must carefully balance problem characteristics, data scale, and stringent requirements for
safety and stability. Our methodological section will subsequently elaborate on the
specific algorithmic choices and enhancements made in this work.

3 Methodology

3.1 Problem formulation: a Markov decision process framework

To transform the problem of generating personalised training plans into one solvable by
RL, we first formalise it as a MDP (Sutton and Barto, 1998). An MDP can be represented
by a quintuple: (S,A,P,R,y). This formulation mirrors a coach’s intuitive process:
evaluating the athlete’s current condition (state), selecting a training regimen (action),
and aiming for long-term performance peaks (maximising cumulative reward), thereby
structuring this adaptive decision-making loop. Here, S represents the state space,
encompassing all information that can describe the user’s state; .4 represents the action
space, i.e., all possible training actions the system can recommend; P(s’|s, a) is the
state transition probability, indicating the probability of transitioning from state s to state
s” after executing action « in state s; R(s, a) is the reward function, quantifying the quality
of performing action « in state s; (0, 1) is the discount factor, balancing the importance
of immediate rewards versus future long-term rewards.

Within this framework, the agent (our system) observes the current state of the
environment s, € S at each discrete time step ¢ (typically representing a training day or
cycle) (Mnih et al., 2015). Based on this state, the agent takes an action a,€ A (i.e.,

generates a training plan). The environment (i.e., the user model or simulator) transitions
to a new state s,,; ~ P (s, |s,,a,) according to this action and provides the agent with a

scalar reward feedback »; = R(s;, a;). The agent’s objective is to learn a policy z(als) that
maximises the expected cumulative discounted reward obtained starting from the initial

state, i.e., the return G, = Zykr,+k .
k=0

(S, A,P,R,y) 1)

where S represents the state space, encompassing all information that can describe the
user’s state; A represents the action space, i.e., all possible training actions that the
system can recommend; P(s’|s, @) denotes the state transition probability, representing

the likelihood of transitioning from state se€ S to state s'e S after executing action
a€ A;R(s,a) is the reward function, quantifying the immediate reward obtained by

executing action a in state s; (0, 1) is the discount factor, used to balance the
importance of immediate rewards versus future long-term rewards.
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3.2 State space design

State s, must comprehensively and effectively characterise the user’s physical condition,
fatigue level, and training history at time ¢ (Bourdon et al., 2017). Our state space design
incorporates two major categories of features: instantaneous features and historical
window features.

Let F, denote the set of all instantaneous physiological and subjective features
observable at time step ¢, with dimension m. Simultaneously, we consider a historical
window of length L, containing historical features and action information from time steps
t—L to t—1. The state vector s, is formed by concatenating these features:

St:(Ft’Ht) )

where F, = ( 7 f,z,...,f,’”) contains the current instantaneous features, such as: f,' is
resting heart rate (RHR); f,2 is heart rate variability (HRV); ft3 is previous day’s Rate

of Perceived Exhaustion (RPE); ft4 is sleep quality score after the previous training
session; H is represents historical features, computed by calculating statistics (such as
mean and standard deviation) from data over the past L days, for example: H, tl is average

training load over the past 7 days; H, tz is variability of training load over the past 7 days
(standard deviation); Hf is acute-to-chronic workload ratio (ACWR) over the past 3

days relative to the past 28 days, used to quantify injury risk; Ht4 is total training

duration over the past week.

This design ensures that the state not only reflects the user’s immediate response but
also encodes their recent training trends and accumulated fatigue, providing a robust
basis for the agent to make informed decisions (Scott et al., 2016). Instantaneous features
provide a snapshot of the user’s immediate physiological state and readiness. In contrast,
historical features encapsulate recent training trends and accumulated fatigue, together
offering a holistic view crucial for robust decision-making.

3.3 Action space design

Action a, represents the personalised training plan generated for the user at time step ¢.
We define it as a continuous, multidimensional action vector to enable fine-grained
control.

_( .type _intensity _duration )
a, = (a, ,a ,a 3)
type

where a;

,€[0,1]: A continuous value representing the training type bias. 0 denotes

pure aerobic endurance training, 1 denotes pure strength training, and intermediate values

intensity

represent mixed training. q,

,€ [0,1]: A continuous value representing the relative

intensity of the training session. 0 corresponds to extremely low intensity (e.g., active
recovery), while 1 corresponds to extremely high intensity (e.g., interval sprints). This
value can be mapped to a specific percentage range of the user’s maximum heart rate

duration

(HRmax) or maximum oxygen uptake (VO,max). «, €[0,1]: A continuous value
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representing the relative duration of the training session. 0 corresponds to the shortest
training duration (e.g., 20 minutes), while 1 corresponds to the longest training duration
(e.g., 120 minutes). This value will be linearly mapped to a predefined duration range.

Continuous action spaces offer finer-grained and more flexible control capabilities
than discrete actions (such as ‘low, medium, high’), enabling agents to generate an
infinite variety of possible training plan combinations. While continuous action spaces
provide finer control and greater flexibility, they can introduce higher computational
complexity and demand more interaction data for the policy to converge effectively
compared to discrete action representations.

3.4 Reward function design

The reward function R(s, a) is key to guiding the agent in learning correct behaviours (Ng
et al., 1999). Our goal is to simultaneously enhance athletic performance and ensure
training safety, so the reward function is designed as a weighted sum of multiple
sub-rewards.

R(s,,a,)= Woerr R (s,,a,)+ Wete * Roare (s,.a,)+ Worer Ry (s,.a,) )

e Performance reward: this reward incentivises actions that effectively enhance users’
physical fitness (Moesch et al., 2018). Since performance improvements are long-
term and delayed, we employ a proxy metric based on state changes. For example,
we can utilise the predicted outputs from validated fitness models (such as the
Banister model) as the foundation for rewards.

R, (8:,a,) = AFitness predicted — AFatigue predicted Q)

e  Safety reward: this reward is applied to penalise actions that may lead to overtraining
or excessive injury risk (Gabbett, 2016). It functions as a penalty.

R (s,.0,)=-T(ACWR>6,,,)- a~1(RPE>0,,) B (6)

e Preference reward: this reward makes the plan more aligned with the user’s personal
preferences, such as encouraging the selection of training types historically preferred
by the user to enhance plan adherence (Deci and Ryan, 2000).

R, (s:,a,) = similarity (at’ype Juser,ref, ., ) (7)

3.5 Algorithm: proximal policy optimisation

We employ the PPO algorithm to learn the optimal policy m«(als). PPO is a policy
gradient algorithm widely favoured for its training stability, sample efficiency, and ease
of parameter tuning. Its core principle involves constraining the magnitude of change
between the new and old policies at each update to prevent disruptive policy shifts.

PPO updates the policy parameters 8 by maximising a surrogate objective function:

1CHP () = B [min (};((9)/1, ,clip(r,(0),1-€,1+€) ‘at ):| ®)
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Ty (at | St)
ﬂeu,d (at |St)

probability of selecting an action under the new policy relative to the old policy. /:1; is the

where r,(0)= is the probability ratio, representing the change in the

estimated value of the advantage function at time step ¢, measuring the relative strength
of action a, compared to the average. We employ generalised advantage estimation

(GAE) to compute 1:1, (Li and He, 2023).

A

AN =1 =07(02) 0,40, =1, + 7V (5,0) =V (5,) ©)

where V4(s) is a state value function network parameterised by @, which estimates the
expected return obtainable starting from state s. The network is updated by minimising
the mean squared error between its output and the target return:

17 (9) = Bal (Vs - v | (10)

where is the target value of the value function.

Ultimately, the overall objective function of the PPO is the sum of the clipped
surrogate objective, the value function loss term, and the policy entropy reward term
(Williams, 1992):

LTotal (9, j) — ]:/E\:l[ [LCL]P(Q) _ CILVF (]) + CZSH,'H:| (1 1)

where V"¢ = At+V¢,, (s,) denotes the entropy of policy 7 in state s, serving to

incentivise exploration; ¢; and c¢; are coefficients.

Figure 1 The architecture of the proposed reinforcement learning-based personalised training
plan generation system (see online version for colours)
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3.6 System architecture and training

Our system architecture is shown in Figure 1, with the training process conducted within
a simulated environment. This environment is constructed based on historical data from
public datasets, where the state transition function P is implemented by a pre-trained
probabilistic model (such as a recurrent neural network or Gaussian process). This model
predicts the next state s+ and immediate reward 7, based on the current state s; and action
a;. The agent (PPO algorithm) interacts with this simulated environment, collecting
experience traces (s;, a, i, Si+1). It continuously updates the policy network 7z and value
network Vs using this data until the policy converges.

4 Experimental verification

To comprehensively evaluate the performance of this system (hereafter referred to as
PPO-TP), we designed a series of experiments aimed at addressing the following key
questions:

1 Does PPO-TP demonstrate superior advantages over existing methods in enhancing
athletic performance and ensuring safety?

2 Are all components of the designed reward function both necessary and effective?

3 Can the system generate genuinely personalised training plans?

4.1 Experimental setup

4.1.1 Dataset and pre-processing

This experiment utilises the publicly available FitRec dataset (Liu et al., 2023). This
dataset contains activity watch records from over a thousand users, covering multiple
exercise modes such as running and cycling. Data dimensions include heart rate, speed,
elevation, GPS tracks, and user-reported metadata such as height, weight, and RHR. We
performed rigorous data pre-processing: First, we selected active user samples with
complete records and continuous activity exceeding 90 days. Second, we filled missing
values using linear interpolation from preceding and subsequent time steps. Finally, we
calculated the training load for each training day based on the training impulse algorithm
and exercise duration, further deriving key features such as the ACWR (Banister and
Calvert, 1980). After pre-processing, we obtained a total of 18,000 valid training days
from 200 users. We allocated 80% of the user data for training, 10% for validation, and
the remaining 10% for final testing.

4.1.2 Baseline methods
For fair comparison, we selected the following representative baseline methods:

1 Rule-based (ACWR): a baseline based on widely accepted rules in the field of
exercise science (Hulin et al., 2016). It recommends training load levels based on the
user’s real-time ACWR value range (< 0.8: decrease; 0.8—1.3: maintain; > 1.3:
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increase). This rule is widely used for load management in professional athletes and
serves as a robust empirical baseline.

2 XGBoost: a powerful gradient-boosted tree model. We employ it as a static
prediction model, inputting the current state to predict the ‘optimal’ training action
for the next training day. This baseline is used to contrast the performance
differences between sequential decision methods and static prediction approaches.

3 DDPG: a classic DDPG algorithm, representing a leading approach for continuous
action space RL problems. We train it using the exact same state space and reward
function as PPO-TP.

4 A2C: an actor-critic synchronous policy gradient algorithm, serving as another
advanced policy gradient method for comparison with PPO.

4.1.3 Evaluation metrics

Since genuine long-term physiological feedback cannot be obtained in the simulation
environment, we employ the following domain-validated proxy metrics for assessment:

1 Performance metric (higher is better): evaluate the cumulative value of predicted
fitness gains (predicted fitness gain) at the end of the entire testing cycle using a
pre-trained predictive model (e.g., a model predicting VO2max changes) on a
retained test set.

2 Safety metric (lower is better): percentage of days during the entire testing cycle
where the user’s state shows ACWR > 1.5 (high-risk threshold).

3 Personalisation metric (higher is better): calculate the cosine similarity between the
generated plan sequence and the user’s historical preference sequence (e.g., training
type distribution).

4.1.4 Implementation details

Both the strategy network and the value network of PPO-TP are two-layer fully
connected neural networks (256—128 neurons) using the rectified linear unit (ReLU)
activation function. The discount factor y= 0.99, the GAE parameter A = 0.95, and the
tailoring range € = 0.2. The reward function weights are set to Wpey = 1.0, Wyqre = 0.6, and
Wprer = 0.3. All RL baselines are trained with the same network structure and reward
function.

4.2 Results and analyses

4.2.1 Comparative experimental analysis

The average performance of all methods on the test set is shown in Table 1.

Analysis of Table 1 reveals that our proposed PPO-TP method significantly
outperforms all baseline methods in both physical fitness gain prediction and
personalised similarity metrics. Simultaneously, it matches the best rule-based method in
safety metrics while substantially outperforming other data-driven approaches.
Specifically: rule-based methods exhibit the highest safety but the lowest performance
gains, indicating that conservative rules mitigate risks while simultaneously limiting
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training effectiveness maximisation; XGBoost static models achieve notable performance
gains but demonstrate the poorest safety. This stems from their lack of long-term
planning capabilities, making them prone to recommending plans that appear effective in
the short term but accumulate excessive risks over extended periods; The performance of
DDPG and A2C confirms the effectiveness of RL methods for this task, though both are
less stable than PPO (DDPG’s high standard deviation reflects its training instability).
PPO achieves more robust performance and higher safety through its clipping
mechanism.

Table 1 Comparison of average performance across methods on the test set (mean + standard
deviation)
Methodologies cains rbivary ity AR 1500 somlariy
Rule-based (ACWR) 100.0 +10.5 52+2.1 0.65+0.12
XGBoost 1183+ 11.2 15.7+3.8 0.71£0.10
DDPG 125.6 +19.8 85+3.5 0.68+0.14
A2C 130.1 +£12.6 7.1+£29 0.73+0.11
PPO-TP (Ours) 138.5+9.7 48+1.9 0.79 +0.08

4.2.2 Training stability and convergence analysis

We plotted the average reward per round over training for PPO-TP alongside DDPG and
A2C, as shown in Figure 2.

Figure 2 Comparison of average episode reward during training (see online version for colours)

Algorithm
== A2C
160 = DDPG
= PPO-TP

=)
S

Average Episode Reward
g

40

0 400 800 1200 1600 2000
Training Episode

Notes: The solid lines represent the mean over 5 random seeds, and the shaded regions
represent the standard deviation

It can be observed that the reward curve of PPO-TP exhibits the smoothest and most
stable upward trend throughout the training process, ultimately converging to the highest
value. In contrast, the DDPG curve fluctuates dramatically and experiences performance
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collapse in the later stages, confirming its well-known instability issues. Although A2C
converges rapidly, its final performance falls below that of PPO-TP.

4.2.3 Personalised generation case study

To visually demonstrate personalised outcomes, we selected three distinct user profiles
from the test dataset:

a  Beginner user: low historical load, prefers low-intensity aerobic exercise
b  Advanced runner: high historical load, prefers high-intensity interval training
¢ Recovery-phase user: recent ACWR elevated, requiring load reduction.

Figure 3 presents grouped bar charts illustrating the distribution of training intensity
across weekly plans generated by PPO-TP and the rule-based baseline for three
representative user types.

Figure 3 Weekly training intensity distribution for three user types (see online version
for colours)
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Rule-Based
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The results in Figure 3 clearly demonstrate the personalised adaptation of PPO-TP
compared to the rule-based method. While the rule-based approach generates nearly
identical plans across all user categories with only minor ACWR-based adjustments,
PPO-TP produces distinctly tailored plans: for novice users, it emphasises low-
intensity training (4 days per week); for advanced runners, it incorporates substantial
high-intensity sessions (4 days per week); and for recovery-phase users, it
significantly reduces overall training load by eliminating high-intensity sessions
altogether. This demonstrates PPO-TP’s exceptional personalisation capabilities and
adherence to safety constraints.

e Ablation study: to validate the necessity of each component in the reward function,
we conducted ablation experiments, with results shown in Table 2.
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Table 2 Melting experiment results

Model variant Predicted fitness gains (Arbitrary Proportion of days with ACWR >

unit) 1.5 (%)
PPO-TP (Full) 138.5+£9.7 48+19
W/0 Rsafe 142.1£11.3 182+45
W/0 Rpref 135.2+10.1 5.1+£2.0
W/0 Rsafe and Rpref 145.0 £20.1 22.5+£5.8

Experiments demonstrate that removing the safety reward (w/o Ry ) yields slightly
higher performance gains for the model, but its risk (proportion of days with
ACWR > 1.5) surges dramatically, proving that Ry, is crucial for constraining model
behaviour and ensuring safety. Removing the preference reward (w/o R, resulted in
performance and safety metrics that were largely comparable to the full model, but
personalised similarity significantly decreased (from 0.79 to 0.68, not shown in the table),
indicating that this component primarily enhances the alignment of the plan.
Simultaneously removing both rewards caused the model to become extremely
aggressive and unstable, validating the necessity of multi-objective reward function
design.

4.3 Discussion and limitations

The experimental findings confirm the effectiveness and reliability of our proposed
PPO-TP system in generating personalised training plans. This success stems from three
key factors:

1 the accurate formulation of the training planning problem as a MDP

2 the design of a multi-objective reward function that effectively balances
performance, safety, and user preference

3 the adoption of the stable and sample-efficient PPO algorithm.

Nevertheless, several limitations should be acknowledged. First, the experimental
validation was conducted in a simulated environment, where system performance is
inherently dependent on the accuracy of the state transition prediction model. Although
we utilised a publicly available dataset with rigorous pre-processing, the generalisability
of our conclusions requires further verification through real-world clinical trials with
human participants. Second, the current system implementation primarily incorporates
physiological indicators; future enhancements could integrate additional multimodal data
streams — such as movement posture information captured by inertial sensors or computer
vision techniques — to further refine training prescriptions and mitigate injury risks.

5 Conclusions

This study presents the design and implementation of a personalised training plan
generation system (PPO-TP) based on the PPO algorithm, which formulates training
prescription as a MDP. By constructing a carefully designed state representation,
continuous action space, and a composite reward function that incorporates performance,
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safety, and user preference objectives, the system learns to produce long-term training
strategies that dynamically adjust according to the athlete’s evolving status. Evaluation
on the public FitRec dataset shows that PPO-TP outperforms both rule-based methods
and traditional machine learning models in terms of predicted performance gains, while
simultaneously maintaining lower levels of injury risk and demonstrating stronger
personalisation capability. Ablation studies further confirm the contribution of each
reward component, supporting the rationality of the multi-objective optimisation strategy.

The main theoretical contribution of this work is a RL-based framework for
data-driven personalised training generation. This framework not only illustrates the
capability of deep RL in addressing complex sequential decision-making tasks, but its
MDP formulation and reward design — such as using ACWR to model injury risk — also
provide meaningful references for other domains involving adaptive personalised
planning.

On the practical side, this study offers a viable technical pathway toward building
intelligent training assistance systems. The proposed approach can serve as a decision
support tool for professional coaches or as the core reasoning module in fitness
applications, delivering scientifically-grounded, individualised training guidance that
promotes performance improvement and reduces injury incidence.

Despite these promising results, this work has several limitations. The experimental
evaluation was conducted primarily in simulation, and the actual efficacy of the system
needs to be further verified in real-world settings through longitudinal user studies.
Future efforts will focus on deployment in practical training environments and the
incorporation of multimodal data sources — such as movement technique analysis from
video — to improve the precision and applicability of the generated plans.
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