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Abstract: This paper addresses the task of emotion recognition in children’s 
drama performances by proposing an attention-based multimodal feature  
fusion model. The model extracts fine-grained facial expression features from 
the visual modality using a pre-trained deep network, and derives  
Mel-spectrograms and acoustic parameters from the audio modality.  
These feature streams are then dynamically calibrated and integrated via a 
cross-modal attention fusion module to capture key emotional cues in dramatic 
contexts. Evaluated on the public RAVDESS dataset of dramatised  
speech clips, our model achieves a weighted accuracy of 79.4% and an  
F1-score of 0.782, demonstrating a significant improvement over feature 
concatenation-based baseline fusion methods. The results indicate that the 
model effectively perceives subtle emotional dynamics in theatrical settings, 
offering a reliable tool for children’s affective computing. 

Keywords: multimodality; children’s theatre; emotion recognition; attentional 
mechanisms. 
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1 Introduction 

Affective computing, as an important branch in the field of artificial intelligence, aims to 
give machines the ability to recognise, understand, interpret and respond to human 
emotions (Li et al., 2021). It shows great application potential in many fields such as 
human-computer interaction, intelligent education, and mental health assessment. 
Especially in the field of children’s education, accurate emotion recognition technology 
can provide key technical support for personalised teaching, emotional intervention for 
children on the autism spectrum, and immersive interactive entertainment experiences. 
As a comprehensive art form, children’s theatre performance integrates language, vocal 
tone, facial expression, and body movement, and is one of the most concentrated and rich 
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scenes for children’s emotional expression (Lange and Scheve, 2021). However, 
children’s emotional expression is often more exaggerated, variable and implicit 
compared to adults, and their facial expressions and vocal tone changes have higher 
complexity and uncertainty, which poses a significant challenge to traditional emotion 
recognition models (Wei et al., 2012). 

In recent years, with the rapid development of deep learning technology,  
unimodal-based emotion recognition research has made great progress. In audio 
modality, researchers have widely used features such as Mel frequency cepstrum 
coefficients (MFCCs) and Spectrograms, and utilised convolutional neural networks 
(CNNs) and recurrent neural networks for temporal modelling, which have achieved 
considerable results. In terms of visual modality, facial expression recognition techniques 
based on CNNs have matured and are able to effectively extract emotionally relevant 
spatial features from still images or video sequences. However, unimodal approaches 
have inherent limitations: audio information tends to fail in ambient noisy or silent 
scenes, while visual information is overly sensitive to lighting conditions, occlusion, and 
head pose. The theatre performance environment is precisely such a variable and 
complex scene, making it difficult for any single modality to provide a comprehensive 
and reliable basis for emotion judgment. 

In order to overcome the limitations of unimodality, multimodal emotion recognition 
(MER) emerged and quickly became a mainstream paradigm in current research (Dong  
et al., 2024). The core idea is to obtain more robust and accurate recognition results by 
fusing complementary information from different modalities. Pan et al. (2023) proposed a 
lightweight fully convolutional neural network for efficient extraction of speech  
emotion features. For the electroencephalogram branch, they proposed a tree-like long 
and short-term memory model capable of fusing multi-stage features for 
electroencephalogram emotion feature extraction. Jia et al. (2022) explored the accuracy 
of MER by using deep learning methods to extract different emotion features from 
speech, video and motion capture, and designed a matching emotion recognition model – 
facial motion speech emotion recognition. 

Early fusion strategies have mostly focused on feature concatenation or majority 
voting, which are simple and easy to implement, but tend to ignore the temporal 
alignment relationship between modalities and the asymmetry of contributions. For 
example, in theatre performances, the emotion at one moment may be more dependent on 
exaggerated facial expressions, while another moment may be dominated by changes in 
pitch. In recent years, fusion strategies based on attentional mechanisms have shown 
great advantages in that they are able to dynamically assess the importance of different 
modalities and different time-step features to achieve a more fine-grained fusion. Zhang 
et al. (2023) proposed a framework for a hybrid audio- and text-based attentional 
network. The framework combines three different attention mechanisms, such as local 
intramodal attention, cross-modal attention, and global intermodal attention, which 
enables effective learning of both intramodal and intermodal emotionally salient features. 
Li et al. (2024) proposed a sparse interactive attention network (SIA-Net) for MER. In 
SIA-Net, the sparse interactive attention module mainly consists of intra-modal sparsity 
and inter-modal sparsity. Intramodal sparsity provides sparse but effective unimodal 
features for multimodal fusion. Intermodal sparsity adaptively sparsifies intra and 
intermodal interactions and encodes them as sparse interaction notes. Sparse interaction 
attention with a small number of non-zero weights then acts on multimodal features to 
highlight a few but important features and suppress a large number of redundant features. 
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In addition, intra-modal sparsity and inter-modal sparsity are deeply sparse 
representations that do not require complex optimisation to make unimodal features and 
multimodal interactions sparse. 

Nevertheless, most of the existing multimodal studies have focused on adult 
interviews or movie clip scenes, and there has been insufficient research on the specific 
context of children, especially children’s dramatic performances. There are differences 
between dramatised expressions and natural emotions, and it is often difficult to achieve 
the desired results by directly applying models designed for adults. 

Therefore, this paper is devoted to constructing a MER model based on the attention 
mechanism applicable to children’s dramatic performance scenarios. The main 
contributions of this paper include 

1 designing a dual-stream feature extraction network that extracts discriminative 
spatial features of facial expressions from video and rich acoustic temporal features 
from audio, respectively 

2 introducing a cross-modal attention fusion module, which is able to adaptively learn 
the interaction between audio and visual modalities and dynamically weight and 
integrate the key information, thus effectively capturing the subtle changes in 
dramatic emotional expressions 

3 a systematic experimental validation is conducted on the publicly available Ryerson 
audio-visual database of emotional speech and song (RAVDESS) dataset of 
dramatised speech clips. 

The results show that compared with the excellent baseline model, the proposed method 
in this paper achieves significant and reasonable improvement in both recognition 
accuracy and F1 score, which verifies the effectiveness of the model on this specific task. 

2 Relevant technologies 

2.1 Attention mechanism foundations and core concepts 

Attention mechanism, as an important machine learning method, is inspired by the 
inherent biological cognitive properties of human beings. In complex information 
environments, the human brain possesses a unique ability to automatically filter a large 
amount of redundant information and selectively focus on the most relevant key 
information for the current task, thus realising efficient allocation of cognitive resources. 
This cognitive mechanism of selective attention enables humans to maintain efficient 
information processing in an information overloaded environment (Niu et al., 2021). 

From a computational perspective, the attention mechanism is essentially a resource 
allocation strategy whose core goal is to assign different importance weights to different 
components when processing information. In deep learning frameworks, this mechanism 
enables the model to dynamically and selectively focus on specific parts of the input 
information instead of processing all information equally. This mechanism breaks 
through the limitation of treating all input features equally in traditional neural network 
structures and greatly improves the expressiveness and flexibility of the model (Guo  
et al., 2022). 
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2.2 Computational principles and implementation of the attention mechanism 

The computational process of the attentional mechanism can be understood as a refined 
information screening process (Soydaner, 2022). The process starts with the evaluation of 
the relevance of individual elements of the input information to the task at hand. The 
system generates preliminary attention scores by measuring the strength of association 
between the query information and each key piece of information through a specific 
similarity calculation. These scores reflect the importance of different information 
components for the current processing task. 

Subsequently, the system converts these scores into probability distributions through 
a normalisation process so that the sum of all attention weights is positive and uniform, 
thus forming formal attention weights (Lu et al., 2023). This conversion process ensures 
that the weights are standardised and comparable. In the final stage, the system weights 
and fuses these weights with the corresponding value information to generate a context 
vector containing the attention information. This context vector is no longer a simple 
listing of the original information, but an intelligently filtered and enhanced synthesis of 
the information, which is better suited to the actual needs of the task at hand (Liu et al., 
2021). 

2.3 Self-attention mechanisms and internal relationship modelling 

Self-attention mechanisms are an important evolved form of attention mechanisms, 
characterised by self-referencing and correlation of information within the system (Choi 
et al., 2018). In this mechanism, all three elements, query, key and value, are derived 
from the same input sequence and are generated through different transformations 
(Brauwers and Frasincar, 2021). This design allows the system to autonomously discover 
and establish complex correlations between elements within the input sequence. 

The core value of the self-attention mechanism lies in its ability to directly capture the 
dependency between any two positions within the sequence, regardless of the distance of 
these positions in the sequence. This feature effectively solves the classical problem of 
distance-dependent decay in long sequence modelling, and provides a new technical path 
for processing long sequence data (Li et al., 2023). The self-att ention mechanism is not 
only able to identify local pattern features, but also able to establish global semantic 
associations, thus realising the deep understanding and characterisation of the input 
information. 

2.4 Multiple attention and multidimensional feature capture 

The multiple attention mechanism is an important extension and refinement of the basic 
attention function (Hernández and Amigó, 2021). The mechanism employs a parallel 
processing strategy to run multiple independent attention computation processes 
simultaneously, each focusing on a different aspect and feature dimension of the input 
information. This parallel architecture is similar to the human cognitive approach of 
analysing a problem from multiple perspectives at the same time (Li et al., 2020a). 

Each attention head is responsible for extracting information from a particular 
representational subspace, focusing on different feature dimensions of the input data. 
These attention heads work independently to produce their own information filtering 
results (Li et al., 2020b). Eventually, the system integrates and fuses these decentralised 
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attention results to form a comprehensive output (DeRose et al., 2020). This design 
enables the model to capture multiple types of associations and features in the input 
information simultaneously, greatly enhancing the expressiveness of the model and the 
comprehensiveness of feature capture. 

2.5 Theoretical value and significance of attentional mechanisms 

The proposal and development of the attention mechanism has had a profound impact on 
the field of deep learning (Ghaffarian et al., 2021). From the theoretical level, this 
mechanism provides an explicit information selection mechanism for neural network 
models, enabling the models to mimic the human cognitive attention allocation process. 
This mechanism not only improves the performance of the model when dealing with long 
sequences and complex data, but more importantly enhances the interpretability of the 
model (Rodriguez et al., 2019). 

By analysing the distribution pattern of the attention weights, researchers can 
visualise the information regions and features that the model focuses on during the 
decision-making process, which provides a valuable window into understanding the 
internal working mechanism of complex neural networks (Lv et al., 2022). The 
successful application of the attention mechanism promotes the evolution of deep 
learning models from the black-box style to the direction of explainability and 
comprehensibility, and lays an important theoretical foundation for the construction of 
more transparent and reliable artificial intelligence systems. 

3 Affect recognition model based on cross-modal attention fusion 

The core architecture of the multimodal feature fusion-based emotion recognition model 
for children’s drama proposed in this paper aims to efficiently process and fuse the 
temporal information from visual and audio modalities, and ultimately realise the 
accurate classification of rich emotions in children’s drama performances. The overall 
framework of the model consists of four core components: visual feature extraction 
module, audio feature extraction module, cross-modal attention fusion module, and 
emotion classification module. The overall design of the model follows the logical 
process from bottom-up, from feature extraction to advanced semantic fusion, and its 
overall structure is shown in Figure 1. 

3.1 Visual feature extraction module 

Children’s emotions are mainly conveyed through rich and exaggerated facial 
expressions in theatre performances. In order to capture these subtle and dynamically 
changing visual information, this model employs a visual feature extraction process based 
on deep CNNs (Kheradpisheh et al., 2018). The process first pre-processes the input raw 
video sequence for face detection and alignment, and subsequently extracts highly 
discriminative facial representations from each frame. 

Given a video clip containing T frames V = {v1, v2, …, vT} we first process each 
frame using an advanced face detector such as MTCNN (Ku and Dong, 2020) vt to 
accurately localise and crop out the face region images ft This pre-processing step 
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effectively removes the background interference, allowing the model to focus on the 
facial information that is most relevant to emotion. 

Figure 1 Methodology structure diagram (see online version for colours) 

Visual feature extraction
CNN + Bi-LSTM + Intra-

Attention

Audio feature extraction
Bi-LSTM + Intra-Attention

Cross-modal attention fusion

Emotion classification (MLP)

Video Frames Audio WaveformHvis

HaudZfusion

Audio-Guided Visual-Guided

Output: Happy, Sad, ...  

Subsequently, we input the cropped face image sequence into a deep convolutional neural 
network pre-trained on a large face dataset. After removing its top fully connected 
classification layer, the network acts as a powerful feature extractor. For each frame of a 
face image ft, the network outputs a high-dimensional deep feature vector vis

th  whose 
dimension is denoted as Dv: 

( );Θ , 1, 2,...,vis
t t CNNh CNN f t T= =  (1) 

where ΘCNN denotes the parameters of the pre-trained CNN network. Up to this point, we 
have obtained a sequence of visual frame-level features { }1 2, , ....,vis vis vis vis

TH h h h=  
However, the expression of emotion is a continuous and dynamic process, and a 

single frame image cannot capture its contextual information evolving over time. For this 
reason, we introduce a bi-directional long short-term memory (Bi-LSTM) network to 
model the temporal dependence of visual features (Suebsombut et al., 2021). The  
Bi-LSTM is able to capture the contextual information of the sequence in both forward 
and backward directions simultaneously, which is crucial for understanding the onset, 
peak, and fade processes of expressions. 

Visual temporal feature modelling 

( )_ _
1, ;Θvis lstm vis vis lstm

t t t LSTMh LSTM h h −= 
 

 (2) 

( )_ _
1, ;Θvis lstm vis vis lstm

t t t LSTMh LSTM h h −= 
 

 (3) 

Visual temporal feature splicing: 
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_ _ _;vis bi vis lstm vis lstm
t t th h h =  

 
 (4) 

where _vis lstm
th


 and _vis lstm
th


 represent the hidden states of the forward and backward 
LSTM at moment t, respectively, and [;] denotes the vector splicing operation.  
Finally, we obtain the temporal context-rich visual feature sequence 

{ }_ _ _ _
1 2, , ...,vis bi vis lstm vis lstm vis lstm

TH h h h=  with dimension DvL. 

3.2 Audio feature extraction module 

Parallel to the visual modality, the audio channel provides indispensable paralinguistic 
information such as pitch, volume and speech rate, which are all important cues for 
emotion recognition. 

First, the raw audio signal synchronised with the video is pre-processed, including 
standard steps such as pre-emphasis, frame-splitting, and windowing. Subsequently, we 
extract two complementary acoustic features: the MFCCs and the log-mel spectrogram 
(Nguyen et al., 2023). The MFCCs are able to characterise the spectral envelope of the 
sound well, which is closely related to human auditory perception; while the Log-Mel 
Spectrogram retains richer time-frequency information. 

Let the audio signal be divided into T time windows (aligned with the video frames), 
and each time window is extracted to obtain an MFCC feature vector  mfcc

ta  and a  

Log-Mel feature vector  .mel
ta  We splice them to form a joint audio feature vector at at 

time t. The MFCC feature vector  mfcc
ta  and the Log-Mel feature vector  mel

ta  are 
extracted from each time window: 

;mfcc mel
t t ta a a =    (5) 

As a result, we obtain the original audio feature sequence A = {a1, a2, …, aT} with 
dimension Da. 

Similar to visual features, audio emotion information has a strong temporal 
dependency. Therefore, we similarly employ a bi-directional LSTM network to learn the 
temporal context model of audio features (Graves and Schmidhuber, 2005). 

( )_ _
1, ;Θ

a

aud lstm aud lstm
t t t LSTMh LSTM h h −= 
 

 (6) 

( )_ _
1, ;Θ

a

aud lstm aud lstm
t t t LSTMh LSTM h h += 
 

 (7) 

_ _ _;aud bi aud lstm aud lstm
t t th h h =  

 
 (8) 

Finally, we obtain the audio feature sequence { }_ _ _ _
1 2, ,...,aud bi aud bi aud bi aud bi

TH h h h=  rich 
in temporal context with dimension DaL. 
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3.3 Cross-modal attention fusion module 

This is the core innovation of the model in this paper. Simple feature splicing or weighted 
averaging cannot dynamically capture the differences in the contributions of different 
modalities to the affective state at different moments. This module introduces a  
cross-modal attention mechanism, which aims to allow the features of one modality to 
dynamically guide the feature selection and fusion of another modality (Chen et al., 
2022). 

The module is divided into two phases: intra-modal attention (IMA) and inter-modal 
attention. 

First, we compute self-attention for visual and audio feature sequences separately. 
Taking the visual modality as an example, we compute an attention weight vector that 
measures the importance of each time-step feature to the final visual representation. 

Attention weights within visual modality. 

( )_vis T vis bi
t v v t ve u tanh W h b= ⋅ ⋅ +  (9) 

Normalisation of attentional weights within the visual modality: 

( )
( )1

vis
tvis

t T vis
jj

exp e

exp e
=

=


α  (10) 

where Wv is a weight matrix, uv is a context vector, and bv is the bias term, all of which 
are trainable parameters vis

tα . That is, the attentional weights of the visual features at 
moment t. The weights of the visual features are summed to obtain a visual context 
vector. The weighted summation yields the visual context vector cvis weighted by the 
intramodal attention: 

_

1

T
vis vis vis bi

t t
t

c h
=

=α  (11) 

Similarly, we perform exactly the same operation on the audio feature sequence Haud_bi to 
obtain the weighted audio context vector caud. 

Next, we perform inter-modal attention interaction. We design bidirectional cross-
modal attention (Rabinovich et al., 2013). 

Audio as query, visual as key: we use the context vector caud of audio as a query, 
which is computed with the features _vis bi

th  of each time step in the visual sequence, 
to generate a set of audio information-guided visual attention weights. 

Audio-guided visual attention scores: 

( )_
T caud

a v q k vis bi
t a v t a va v a v

s v tanh W W h b−>
−> −>−> −>

= ⋅ + +  (12) 

Audio-directed visual attention weighting. 

( )
( )1

a v
ta v

t T a v
jj

exp s

exp s

−>
−>

−>
=

=


β  (13) 
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Audio-guided visual representations: 

_

1

T
a v a v vis bi

t t
t

z h−> −>

=

=β  (14) 

Vector za→v represents the most relevant visual information to the current audio 
sentiment, guided by the audio information and filtered from the visual modality. 

Visual as query, audio as key value: similarly, we use the visual context vector as a 
query to guide the filtering of audio features. 

Visual-guided audio attention score: 

( )_v a T q vis k aud bi
t v a v a v a t v as v tanh W c W h b−>

−> −> −> −>= ⋅ + +  (15) 

Visually guided audio attention weighting: 

( )
( )1

v a
tv a

t T v a
jj

exp s

exp s

−>
−>

−>
=

=


β  (16) 

Visually guided audio representation: 

_

1

T
v a v a aud bi

t t
t

z h−> −>

=

=β  (17) 

Vector z v → a represents the audio information most relevant to the current visual emotion 
filtered from the audio modality guided by the visual information. 

Finally, we splice the two original intramodal context vectors cvis, caud and two new 
representations z v → a, za →v after cross-modal guidance to form the final multimodal 
fusion feature vector zfusion: 

; ; ;fusion vis aud a v v az c c z z−> −> =    (18) 

This vector contains both pure modal information, significant information within 
modalities, and complementary information guided by intermodal interactions, forming 
the final basis for sentiment classification. 

3.4 Sentiment classification module 

The fused high-dimensional feature vectors zfusion are fed into a simple multilayer 
perceptron classifier for sentiment classification. This classifier usually consists of one or 
more fully connected layers and uses dropout techniques to prevent overfitting (Castro  
et al., 2017). 

Sentiment classification: 

( )( )( )fusion
pred y f f yy Softmax W Dropout ReLU W z b b= ⋅ ⋅ + +  (19) 

where Wf, bf, Wy, by is the trainable weight and bias of the classifier. ypred is the 
probability distribution of sentiment categories predicted by the model. 
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The training objective of the model is to minimise the cross-entropy loss function 
between the predicted probability distribution and the true label. 

The loss function is: 

( ), ,
1 1

1 N C
true pred
i c i c

i c

L y log y
N = =

= −   (20) 

where N is the number of training samples, C is the number of sentiment categories, ,
true
i cy  

is the true label of sample i on category c, and is the probability that sample i belongs to 
category c as predicted by the model. 

In summary, this chapter details the MER model proposed in this paper. The model 
extracts in-depth temporal features of audiovisual modalities through a well-designed 
two-stream network, and innovatively introduces a two-way cross-modal attention fusion 
mechanism to dynamically and adaptively capture complex inter-modal interactions, 
which lays a solid foundation for the final accurate emotion recognition. 

4 Experimental results and analyses 

In order to comprehensively assess the effectiveness and superiority of the MER model 
based on cross-modal attention fusion proposed in this paper, we designed and conducted 
a series of rigorous experiments. This chapter will elaborate on the datasets used in the 
experiments, the specific data preprocessing process, the performance evaluation metrics 
employed, the baseline models used for comparison, and the detailed experimental results 
and analysis. Through in-depth discussion of the results and ablation experiments, we 
systematically validate the contributions of each component of the model. 

4.1 Experimental setup 

A high-quality dataset is the basis for effective model training and fair performance 
comparison. In this study, RAVDESS, a widely used and well-recognised public dataset 
in the field of affective computing, is selected. The dataset contains audio-visual 
recordings of 24 professional actors performing eight different emotions, each with two 
linguistic intensities, with very high performance quality and emotional purity. Although 
it was not specifically designed for children, the exaggerated and dramatic expressions 
used by the actors in performing the ‘strong’ emotions are highly consistent with the 
emotional outwardness of children’s theatrical performances, and thus are very suitable 
for use as an experimental baseline for this study. From the ‘strong’ intensity clips of all 
the actors, we selected ‘happy’, ‘sad’, ‘angry’ ‘sadness’, ‘happiness’, ‘anger’, ‘fear’, 
‘surprise’, and ‘neutrality’, which are the six most common emotion categories in 
children’s theatre, with a total of 864 valid samples. We performed a hierarchical division 
according to actor IDs to ensure that different samples of the same actor would not 
appear in the training and testing sets at the same time, resulting in a 70% training set, a 
15% validation set and a 15% testing set. 

In the data pre-processing stage, we processed the audio and video streams separately. 
For the video stream, we use the OpenFace toolkit to perform automated face detection, 
68 keypoint localisation and face alignment for each video frame, and uniformly scale the 
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aligned face images to a size of 224 × 224 pixels. For the audio stream, we downsampled 
it from the original 48kHz to 16kHz, and after strict alignment with the video stream, the 
frames were split using a 25ms Hamming window and a 10ms frame shift. For each audio 
frame, we extracted features containing the 13-dimensional static MFCC and its first- and 
second-order differences (39 dimensions in total), along with 64-dimensional log-Meier 
spectrogram features, and stitched the two together to form a 103-dimensional joint audio 
feature vector. 

In this experiment, weighted accuracy (WA) and weighted F1-score (WF1) were used 
as the core assessment metrics. WA mitigates the evaluation bias caused by category 
imbalance by calculating the weighted average of the accuracy in each category (the 
weight is the true sample size of the category), while F1-score is the reconciled average 
of precision and recall, and the weighted average version of which comprehensively 
reflects the overall performance of the model in each category. 

In order to fairly verify the advantages of the models in this paper, we choose several 
representative state-of-the-art models as baselines for comparison:  

• Concatenated feature LSTM (CF-LSTM): a simple late fusion baseline. The 
temporal information of the audiovisual features is extracted using Bi-LSTM 
respectively, and the final hidden states of the two modalities are spliced at the end 
of the sequence and fed into the classifier. 

• Tensor fusion network (TFN): a classical multimodal fusion model based on tensor 
outer products that explicitly models inter- and intra-modal interactions. 

• Late fusion LSTM (LF-LSTM): audio-visual features are spliced at each time step 
and fed into the LSTM for time-step-by-time-step fusion. 

• Memory fusion network (MFN): a fusion model that utilises multi-view recurrent 
networks and dynamic memory networks to capture long temporal dependencies 
across modalities. 

• Recurrent attended variation embedding network (RAVEN): a model that employs 
an attentional mechanism for cross-modal alignment and fusion. 

All models are run on the same training, validation, and test sets using the Adam 
optimiser with an early-stopping strategy to prevent overfitting and ensure fairness in 
comparisons. 

4.2 Results and analysis 

We have compared the performance of the proposed model with the above baseline 
model on the test set and the results are shown in Table 1. 

As can be clearly seen from the table, the cross-modal attention fusion-based model 
proposed in this paper achieves the best performance in both metrics, with a WA of 
79.4% and a weighted F1 score of 0.782. Compared with the most powerful baseline 
model, RAVEN, our model achieves an improvement of 1.4 percentage points in 
accuracy and 0.013 in F1 score, respectively. This improvement, while not huge, is a 
significant and practically meaningful advancement on a public dataset that has been 
extensively studied and is close to saturation in performance, and it validates the 
effectiveness of our proposed fusion mechanism. 
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Table 1 Model performance comparison results 

Mould WA WF1 
CF-LSTM 73.8% 0.728 
LF-LSTM 75.1% 0.742 
TFN 76.5% 0.758 
MFN 77.2% 0.763 
RAVEN 78.0% 0.769 
Ours 79.4% 0.782 

By analysing the baseline model, we can identify some valuable trends: simple splicing 
fusion has the lowest performance, which illustrates that simple and brute force feature 
merging is not an optimal solution in multimodal learning. Time-step-by-time-step fusion 
and tensor fusion with explicitly modelled interactions bring steady performance gains. 
The models that introduced the memory mechanism and attention mechanism performed 
even better, demonstrating the importance of dynamic, selective information fusion. It is 
on this basis that our model is designed with a more refined and bi-directional  
cross-modal attention-guiding mechanism, which achieves a further breakthrough in 
performance. 

To gain a deeper understanding of the model’s decision-making behaviour, we 
visualise the cross-modal attentional weights of a test sample, as shown in Figure 2. The 
sample shows a performance of the emotion ‘anger’. As can be observed from the 
heatmap, the model assigns higher weights to the actor’s grim facial expression (visual 
information) at moments when the actor raises the pitch and increases the tone of his 
voice (audio information is salient), and vice versa for moments when the actor makes a 
specific angry expression (visual information is salient), the model focuses on acoustic 
features at that moment accordingly. This synergistic pattern of ‘back-and-forth’ attention 
is a vivid illustration of the model’s ability to capture fine-grained cross-modal 
correlations, rather than static averaging. 

Figure 2 Heat map of cross-modal attention weights (see online version for colours) 
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4.3 Ablation experiment 

In order to verify the necessity of each key component in the model and its contribution, 
we designed an exhaustive ablation experiment (Ablation Study). The results are shown 
in Table 2 and Figure 3. 
Table 2 Quantitative comparison of the performance of each model variant of the ablation 

experiment 

Model variant WA WF1 
Model A 65.2% 0.642 
Model B 73.8% 0.728 
Model C 76.5% 0.758 
Model D 77.1% 0.762 
Model E 79.4% 0.782 

Figure 3 Histogram of ablation experiments (see online version for colours) 

 

We first constructed a baseline model A: only frame-level features not processed by Bi-
LSTM are used and directly classified after splicing. Subsequently, we add components 
step by step:  

• Model B: on the basis of A, Bi-LSTM timing modelling modules are added for both 
modalities separately. The results show a substantial improvement in both WA and 
WF1, which fully demonstrates the extreme importance of modelling temporal 
context for emotion recognition. 

• Model C: based on B, the IMA mechanism is added. The performance is further 
slightly improved, showing that focusing on the keyframe information inside each 
modality is effective. 
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• Model D: i.e., our complete model with the introduction of the IMA fusion module 
IMA on top of C. The performance of the model D is improved by the addition of the 
Inter-modal Attention fusion module IMA. The performance reaches the peak among 
all ablation variants, which strongly demonstrates that the core innovation of our 
model – the use of inter-modal guidance for information complementarity – is the 
key to improving performance. 

In addition, we tested model E: based on B, using only unidirectional cross-modal 
attention (audio-only guided vision, or vision-only guided audio). Its performance was 
significantly lower than that of the full bidirectional model D, which illustrates the 
reciprocal nature of intermodal influences in emotional expression, where bidirectional 
guidance is necessary and justified by design. 

The results of these ablation experiments are presented in the form of bar charts, 
which clearly demonstrate the incremental performance improvement brought about by 
the inclusion of each technique from the baseline to the full model, thus systematically 
validating the rationality of the model design and the effectiveness of each module. 

4.4 Model decision interpretability analysis 

Although deep learning models have achieved excellent performance in emotion 
recognition tasks, their decision-making process is usually regarded as a ‘black box’, 
which limits their application in scenarios requiring high confidence, such as educational 
assessment and clinical assistance. In order to reveal the internal working mechanism of 
the model and verify whether its decision-making is consistent with human cognition, 
this experiment introduces the gradient-weighted class activation mapping (Grad-CAM) 
technique to visualise and analyse the decision-making basis of the model. 

We used the Grad-CAM technique to generate saliency maps for audiovisual 
modalities. For visual modalities, we compute the gradient of the target emotion category 
with respect to the last convolutional layer feature map and generate a heat map by 
weighted combination, which highlights the image regions that contribute most to the 
model decision. For audio modalities, we treat their time-frequency spectrograms as  
two-dimensional images and use a similar approach to generate saliency maps that 
identify the temporal and frequency components that are most critical for sentiment 
classification. 

Multiple samples of four typical emotions (happiness, sadness, anger, and surprise) 
were randomly selected from the test set, and their audiovisual saliency maps were 
generated and displayed overlaid with the original data for qualitative analysis. 

The visualisation results are shown in Figure 4, which provides us with a window into 
the ‘thinking’ of the model. On the visual side, the saliency map clearly shows that the 
model’s attention is highly focused on the facial organs that are most relevant to the 
expression of emotions when judging emotions. For example, in the happy emotion 
sample, the model focused significantly on the corners of the mouth and eyes, which is 
highly consistent with the way humans judge happy emotions through smiles and crow’s 
feet. In the sample of angry emotions, the model’s attention, on the other hand, was 
focused on the eyebrow, eye, and nose regions, which are precisely the key areas of the 
human face that exhibit angry features such as frowning and glaring. For the sadness 
emotion, the model focused on the medial uplift of the eyebrows and the downward pull 
of the corners of the mouth. And in the emotion of surprise, wide-open eyes and open 
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mouth became the main basis for the model’s decision. This highly coincident pattern of 
attention is strong evidence that our model is not making judgments by memorising 
irrelevant features of the dataset, but has actually learned to extract biologically 
meaningful emotional features that are consistent with human cognition. 

Figure 4 Model decision significant plot visualisation (see online version for colours) 

 

On the audio side, saliency analysis of temporal spectrograms shows that the model is 
able to acutely capture key acoustic events. For example, in the emotions of anger and 
surprise, the model assigns high weights to sudden high-energy transients (e.g., bursts of 
sound, high pitch), while in the emotion of sadness, the model pays more attention to 
sustained resonance in low-frequency regions and slow intonation changes. This suggests 
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that the audio branch of the model is effective in recognising acoustic attributes 
associated with emotions. 

This interpretability analysis experiment provides an intrinsic, cognitive  
science-compliant explanation for the model’s superior quantitative performance through 
a qualitative visualisation approach. The results show that the multimodal fusion model 
proposed in this paper is not only an efficient prediction tool, but also an intelligent 
system capable of understanding emotional information in a manner consistent with 
human intuition. This interpretability greatly enhances the credibility of the model and 
lays a solid foundation for its safe and reliable application in real-world sensitive 
scenarios. 

4.5 Discussion and error analysis 

Despite the superior performance achieved by the model in this paper, we have analysed 
its error cases in depth. Figure 5 shows the confusion matrix of the model on the six 
categories of emotions. It can be found that the most significant confusions of the model 
occur between ‘fear’ and ‘sadness’, ‘anger’ and ‘surprise’, and ‘anger’ and ‘surprise’. 
between ‘fear’ and ‘sadness’, ‘anger’ and ‘surprise’. This is consistent with the common 
sense of human perception: both ‘fear’ and ‘sadness’ may be characterised by a furrowed 
brow in facial expression and a trembling tone in acoustic features; while strong ‘anger’ 
and ‘surprise’ may be characterised by a frown in facial expression. Both ‘anger’ and 
‘surprise’ may be characterised by widening of the eyes and raising of the volume of the 
voice. These cases of confusion illustrate the challenging nature of emotion recognition 
in children’s drama. 

Figure 5 Confusion matrix (see online version for colours) 
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The limitations of the model are mainly in two aspects: first, its dependence on  
pre-trained face detection and feature extraction models, and the reliability of visual 
features decreases under extreme lighting, large occlusions, or non-frontal postures. 
Second, current models mainly focus on transient correlations between tones and facial 
expressions, and their ability to comprehend rhythms rhythms and narrative contexts on 
longer temporal sequences remains to be explored. 

In summary, this chapter fully demonstrates the effectiveness and sophistication of 
the cross-modal attention fusion model proposed in this paper through rigorous 
experimental comparisons, detailed ablation studies, and in-depth error analysis. The 
experimental results not only show its improvement in quantitative indexes, but also 
reveal the rationality of its inner working mechanism through visualisation means, which 
provides a useful reference and a solid foundation for subsequent research. 

5 Conclusions 

In this paper, a deep learning model based on cross-modal attention fusion is proposed 
for the emotion recognition task in children’s drama performance scenes. The core of this 
study is to make full use of the complementary information between audio and visual 
modalities in dramatic performances, and to cope with the challenges posed by children’s 
exaggerated and variable emotional expressions through a refined fusion mechanism. 

First, a dual-stream temporal feature extraction network is designed in this paper. On 
the visual side, a pre-trained deep convolutional network is used to extract frame-level 
facial features, and a bi-directional long and short-term memory network (Bi-LSTM) is 
utilised to capture the dynamic evolution of expressions. On the audio side, MFCC and 
log-Mel spectral features are comprehensively extracted and their long time-series 
dependencies are modelled by Bi-LSTM as well. This move lays the foundation of  
high-quality features for subsequent fusion. 

Second, the core contribution of this paper is to propose a hierarchical cross-modal 
attention fusion module. This module not only reinforces the key frame information 
within each modality through an IMA mechanism, but more importantly introduces a 
bidirectional cross-modal attention mechanism. The mechanism is guided by the global 
contextual information of one modality and dynamically and selectively focuses on the 
most relevant temporal fragments in the other modality, thus realising the adaptive  
fine-grained inter-modal fusion and generating a unified representation rich in 
complementary information. 

Experimental results show that on the dramatised speech subset of the publicly 
available dataset RAVDESS, this paper’s model achieves a WA of 79.4% with an F1 
score of 0.782, which outperforms a variety of state-of-the-art baseline models and 
validates the effectiveness of the proposed fusion strategy. An exhaustive ablation study 
further confirms that each component of the model, Bi-LSTM, within-modality attention, 
and cross-modality attention, are all key to performance improvement. Visual analysis of 
the confusion matrix and attention weights shows that the model is able to capture cross-
modal interaction patterns that are consistent with human cognition, and also reveals that 
confusing emotion pairs such as ‘fear-sadness’ and ‘anger-surprise’ are the key 
challenges to be solved in the future. The model proposed in this paper has achieved good 
results. 
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Although the model proposed in this paper has achieved good results, there are still 
some limitations that need to be further studied in future work. First, the current model 
mainly relies on facial expressions and acoustic features, and in the future, multimodal 
information such as body movements and script context can be incorporated to build a 
more comprehensive emotion understanding framework. Second, the performance of the 
model relies to some extent on the accuracy of the face detection and pre-training models, 
and its robustness in dealing with complex scenes such as extreme poses, occlusion, or 
low-lighting needs to be strengthened. Finally, future work can explore more explanatory 
fusion mechanisms and try to apply the model to real educational or medical intervention 
scenarios for clinical validation. 

In summary, this paper provides an effective solution for children’s dramatic emotion 
recognition by innovatively constructing a cross-modal attention fusion model, which 
provides a useful reference for the application and development of multimodal affective 
computing in this field. 
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