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Abstract: This paper addresses the task of emotion recognition in children’s
drama performances by proposing an attention-based multimodal feature
fusion model. The model extracts fine-grained facial expression features from
the visual modality using a pretrained deep network, and derives
Mel-spectrograms and acoustic parameters from the audio modality.
These feature streams are then dynamically calibrated and integrated via a
cross-modal attention fusion module to capture key emotional cues in dramatic
contexts. Evaluated on the public RAVDESS dataset of dramatised
speech clips, our model achieves a weighted accuracy of 79.4% and an
Fl-score of 0.782, demonstrating a significant improvement over feature
concatenation-based baseline fusion methods. The results indicate that the
model effectively perceives subtle emotional dynamics in theatrical settings,

offering areliable tool for children’s affective computing.
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1 Introduction

Affective computing, as an important branch in the field of artificial intelligence, aims to
give machines the ability to recognise, understand, interpret and respond to human
emotions (Li et al., 2021). It shows great application potentia in many fields such as
human-computer interaction, intelligent education, and mental heath assessment.
Especialy in the field of children’s education, accurate emotion recognition technology
can provide key technical support for personalised teaching, emotional intervention for
children on the autism spectrum, and immersive interactive entertainment experiences.
As a comprehensive art form, children’s theatre performance integrates language, vocal
tone, facial expression, and body movement, and is one of the most concentrated and rich
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scenes for children's emotional expression (Lange and Scheve, 2021). However,
children's emotional expression is often more exaggerated, variable and implicit
compared to adults, and their facial expressions and vocal tone changes have higher
complexity and uncertainty, which poses a significant challenge to traditional emotion
recognition models (Wei et d., 2012).

In recent years, with the rapid development of deep learning technology,
unimodal-based emotion recognition research has made great progress. In audio
modality, researchers have widely used features such as Mel frequency cepstrum
coefficients (MFCCs) and Spectrograms, and utilised convolutional neural networks
(CNNs) and recurrent neural networks for temporal modelling, which have achieved
considerable results. In terms of visual modality, facial expression recognition techniques
based on CNNs have matured and are able to effectively extract emotionally relevant
spatial features from still images or video sequences. However, unimodal approaches
have inherent limitations. audio information tends to fail in ambient noisy or silent
scenes, while visua information is overly sensitive to lighting conditions, occlusion, and
head pose. The theatre performance environment is precisely such a variable and
complex scene, making it difficult for any single modality to provide a comprehensive
and reliable basis for emotion judgment.

In order to overcome the limitations of unimodality, multimoda emotion recognition
(MER) emerged and quickly became a mainstream paradigm in current research (Dong
et al., 2024). The core idea is to obtain more robust and accurate recognition results by
fusing complementary information from different modalities. Pan et al. (2023) proposed a
lightweight fully convolutional neural network for efficient extraction of speech
emotion features. For the electroencephalogram branch, they proposed a tree-like long
and short-term memory model capable of fusing multi-stage features for
electroencephal ogram emotion feature extraction. Jia et a. (2022) explored the accuracy
of MER by using deep learning methods to extract different emotion features from
speech, video and motion capture, and designed a matching emotion recognition model —
facial motion speech emotion recognition.

Early fusion srategies have mostly focused on feature concatenation or majority
voting, which are simple and easy to implement, but tend to ignore the temporal
alignment relationship between modalities and the asymmetry of contributions. For
example, in theatre performances, the emotion at one moment may be more dependent on
exaggerated facial expressions, while another moment may be dominated by changes in
pitch. In recent years, fusion strategies based on attentional mechanisms have shown
great advantages in that they are able to dynamically assess the importance of different
modalities and different time-step features to achieve a more fine-grained fusion. Zhang
et a. (2023) proposed a framework for a hybrid audio- and text-based attentional
network. The framework combines three different attention mechanisms, such as local
intramodal attention, cross-modal attention, and global intermoda attention, which
enables effective learning of both intramodal and intermodal emotionally salient features.
Li et al. (2024) proposed a sparse interactive attention network (SIA-Net) for MER. In
SIA-Net, the sparse interactive attention module mainly consists of intramodal sparsity
and inter-modal sparsity. Intramodal sparsity provides sparse but effective unimodal
features for multimodal fusion. Intermodal sparsity adaptively sparsifies intra and
intermodal interactions and encodes them as sparse interaction notes. Sparse interaction
attention with a small nhumber of non-zero weights then acts on multimodal features to
highlight a few but important features and suppress a large number of redundant features.
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In addition, intramodal sparsity and inter-modal sparsity are deeply sparse
representations that do not require complex optimisation to make unimodal features and
multimodal interactions sparse.

Nevertheless, most of the existing multimodal studies have focused on adult
interviews or movie clip scenes, and there has been insufficient research on the specific
context of children, especially children’s dramatic performances. There are differences
between dramatised expressions and natural emotions, and it is often difficult to achieve
the desired results by directly applying models designed for adults.

Therefore, this paper is devoted to constructing a MER model based on the attention
mechanism applicable to children's dramatic performance scenarios. The main
contributions of this paper include

1 designing a dual-stream feature extraction network that extracts discriminative
spatial features of facial expressions from video and rich acoustic temporal features
from audio, respectively

2 introducing a cross-modal attention fusion module, which is able to adaptively learn
the interaction between audio and visual modalities and dynamically weight and
integrate the key information, thus effectively capturing the subtle changesin
dramatic emotional expressions

3 asystematic experimental validation is conducted on the publicly available Ryerson
audio-visual database of emotional speech and song (RAVDESS) dataset of
dramatised speech clips.

The results show that compared with the excellent baseline model, the proposed method
in this paper achieves significant and reasonable improvement in both recognition
accuracy and F1 score, which verifies the effectiveness of the model on this specific task.

2 Relevant technologies

2.1 Attention mechanism foundations and core concepts

Attention mechanism, as an important machine learning method, is inspired by the
inherent biological cognitive properties of human beings. In complex information
environments, the human brain possesses a unique ability to automatically filter a large
amount of redundant information and selectively focus on the most relevant key
information for the current task, thus realising efficient allocation of cognitive resources.
This cognitive mechanism of selective attention enables humans to maintain efficient
information processing in an information overloaded environment (Niu et a., 2021).

From a computational perspective, the attention mechanism is essentially a resource
alocation strategy whose core goal is to assign different importance weights to different
components when processing information. In deep learning frameworks, this mechanism
enables the model to dynamicaly and selectively focus on specific parts of the input
information instead of processing al information equaly. This mechanism breaks
through the limitation of treating all input features equally in traditional neural network
structures and greatly improves the expressiveness and flexibility of the model (Guo
et a., 2022).
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2.2 Computational principles and implementation of the attention mechanism

The computational process of the attentional mechanism can be understood as a refined
information screening process (Soydaner, 2022). The process starts with the evaluation of
the relevance of individua elements of the input information to the task at hand. The
system generates preliminary attention scores by measuring the strength of association
between the query information and each key piece of information through a specific
similarity calculation. These scores reflect the importance of different information
components for the current processing task.

Subsequently, the system converts these scores into probability distributions through
a normalisation process so that the sum of all attention weights is positive and uniform,
thus forming formal attention weights (Lu et al., 2023). This conversion process ensures
that the weights are standardised and comparable. In the final stage, the system weights
and fuses these weights with the corresponding value information to generate a context
vector containing the attention information. This context vector is no longer a simple
listing of the original information, but an intelligently filtered and enhanced synthesis of
the information, which is better suited to the actual needs of the task at hand (Liu et a.,
2021).

2.3 Self-attention mechanisms and internal relationship modelling

Self-attention mechanisms are an important evolved form of attention mechanisms,
characterised by self-referencing and correlation of information within the system (Choi
et al., 2018). In this mechanism, all three elements, query, key and value, are derived
from the same input sequence and are generated through different transformations
(Brauwers and Frasincar, 2021). This design allows the system to autonomously discover
and establish complex correlations between elements within the input sequence.

The core value of the self-attention mechanism liesin its ability to directly capture the
dependency between any two positions within the sequence, regardless of the distance of
these positions in the sequence. This feature effectively solves the classical problem of
distance-dependent decay in long sequence modelling, and provides a new technical path
for processing long sequence data (Li et al., 2023). The self-att ention mechanism is not
only able to identify local pattern features, but also able to establish global semantic
associations, thus realising the deep understanding and characterisation of the input
information.

2.4 Multiple attention and multidimensional feature capture

The multiple attention mechanism is an important extension and refinement of the basic
attention function (Hernandez and Amigé, 2021). The mechanism employs a parallel
processing strategy to run multiple independent attention computation processes
simultaneously, each focusing on a different aspect and feature dimension of the input
information. This parallel architecture is similar to the human cognitive approach of
analysing a prablem from multiple perspectives at the sametime (Li et al., 2020a).

Each attention head is responsible for extracting information from a particular
representational subspace, focusing on different feature dimensions of the input data.
These attention heads work independently to produce their own information filtering
results (Li et al., 2020b). Eventually, the system integrates and fuses these decentralised
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attention results to form a comprehensive output (DeRose et al., 2020). This design
enables the model to capture multiple types of associations and features in the input
information simultaneoudly, greatly enhancing the expressiveness of the model and the
comprehensiveness of feature capture.

2.5 Theoretical value and significance of attentional mechanisms

The proposal and development of the attention mechanism has had a profound impact on
the field of deep learning (Ghaffarian et al., 2021). From the theoretical level, this
mechanism provides an explicit information selection mechanism for neural network
models, enabling the models to mimic the human cognitive attention allocation process.
This mechanism not only improves the performance of the model when dealing with long
sequences and complex data, but more importantly enhances the interpretability of the
model (Rodriguez et al., 2019).

By analysing the distribution pattern of the attention weights, researchers can
visualise the information regions and features that the model focuses on during the
decision-making process, which provides a valuable window into understanding the
internal working mechanism of complex neural networks (Lv et a., 2022). The
successful application of the attention mechanism promotes the evolution of deep
learning models from the black-box style to the direction of explainability and
comprehensibility, and lays an important theoretical foundation for the construction of
more transparent and reliable artificial intelligence systems.

3 Affect recognition model based on cross-modal attention fusion

The core architecture of the multimodal feature fusion-based emotion recognition model
for children’s drama proposed in this paper aims to efficiently process and fuse the
temporal information from visual and audio modalities, and ultimately realise the
accurate classification of rich emotions in children’s drama performances. The overal
framework of the model consists of four core components: visual feature extraction
module, audio feature extraction module, cross-modal attention fusion module, and
emotion classification module. The overall design of the model follows the logical
process from bottom-up, from feature extraction to advanced semantic fusion, and its
overall structure is shown in Figure 1.

3.1 Visual feature extraction module

Children’s emotions are mainly conveyed through rich and exaggerated facial
expressions in theatre performances. In order to capture these subtle and dynamically
changing visua information, this model employs avisual feature extraction process based
on deep CNNs (Kheradpisheh et al., 2018). The process first pre-processes the input raw
video sequence for face detection and alignment, and subsequently extracts highly
discriminative facial representations from each frame.

Given a video clip containing T frames V = {v1, V2, ..., vr} we first process each
frame using an advanced face detector such as MTCNN (Ku and Dong, 2020) v: to
accurately localise and crop out the face region images fi This pre-processing step
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effectively removes the background interference, alowing the model to focus on the
facial information that is most relevant to emotion.

Figurel Methodology structure diagram (see online version for colours)

Video Frames Hue Audio Waveform

o l, """ v l,
Visual feature extraction

i- Cross-modal attention fusion Audio feature extraction
NN+ BILSTM + nira: Bi-LSTM + Intra-Attention

Attention

1

1

]

I

: Z1u5i on
1 A

]

I

I

B

B Emotion classification (MLP) ===~ e
Audio-Guided Visual-Guided

\ 4

Output: Happy, Sad, ...

Subsequently, we input the cropped face image sequence into a deep convolutional neural
network pre-trained on a large face dataset. After removing its top fully connected
classification layer, the network acts as a powerful feature extractor. For each frame of a

face image f;, the network outputs a high-dimensional deep feature vector h“s whose
dimension isdenoted asD:

h' =CNN (f;Oqn ) t=12,..,T )

where Ocnn denotes the parameters of the pre-trained CNN network. Up to this point, we
have obtained a sequence of visual frame-level features H" ={h"s h¥'s, .. hys}.

However, the expression of emotion is a continuous and dynamic process, and a
single frame image cannot capture its contextual information evolving over time. For this
reason, we introduce a bi-directional long short-term memory (Bi-LSTM) network to
model the temporal dependence of visual features (Suebsombut et al., 2021). The
Bi-LSTM is able to capture the contextual information of the sequence in both forward
and backward directions simultaneously, which is crucial for understanding the onset,
peak, and fade processes of expressions.

Visual temporal feature modelling

W{ LSTM (h[VIS h[vns Istm. ®LSTM ) (2)

W LST™ (hws hws Istm. ®|_er ) 3

Visual temporal feature splicing:
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st [@; @] 4

where h"*-"""™ and h"S-'"™ represent the hidden states of the forward and backward

LSTM a moment t, respectively, and [;] denotes the vector splicing operation.
Findly, we obtan the temporal context-rich visua feature seguence

Hvisfbi: {hlvisflstm’ h;/isflstm’ - h}/isflstm} with dimension Dy

3.2 Audio feature extraction module

Parallel to the visual modality, the audio channel provides indispensable paralinguistic
information such as pitch, volume and speech rate, which are all important cues for
emotion recognition.

First, the raw audio signal synchronised with the video is pre-processed, including
standard steps such as pre-emphasis, frame-splitting, and windowing. Subsequently, we
extract two complementary acoustic features. the MFCCs and the log-mel spectrogram
(Nguyen et al., 2023). The MFCCs are able to characterise the spectral envelope of the
sound well, which is closely related to human auditory perception; while the Log-Mel
Spectrogram retains richer time-frequency information.

Let the audio signal be divided into T time windows (aligned with the video frames),

and each time window is extracted to obtain an MFCC feature vector 8™ and a

Log-Mel feature vector a{“e' . We splice them to form a joint audio feature vector a; at

time t. The MFCC feature vector 8™ and the Log-Mel feature vector a™ are
extracted from each time window:

|: rTTfCC :' (5)
As a result, we obtain the original audio feature sequence A = {&;, &, ..., ar} with
dimension D..

Similar to visual features, audio emotion information has a strong temporal
dependency. Therefore, we similarly employ a bi-directional LSTM network to learn the
temporal context model of audio features (Graves and Schmidhuber, 2005).

W LSTM (h haud Istm. ®|_snv| ) (6)
W = W(WW@LWE) (7)
heud _bi_ [@; @] ©)

Finally, we obtain the audio feature sequence H®-P={pd -5 paud_bi | pawd bl rich
in temporal context with dimension D, .
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3.3 Cross-modal attention fusion module

Thisisthe core innovation of the model in this paper. Simple feature splicing or weighted
averaging cannot dynamically capture the differences in the contributions of different
modalities to the affective state at different moments. This module introduces a
cross-modal attention mechanism, which aims to alow the features of one modality to
dynamically guide the feature selection and fusion of another modality (Chen et d.,
2022).

The module is divided into two phases: intramodal attention (IMA) and inter-modal
attention.

First, we compute self-attention for visual and audio feature sequences separately.
Taking the visual modality as an example, we compute an attention weight vector that
measures the importance of each time-step feature to the final visual representation.

Attention weights within visual modality.

"= u]-tanh(W, h**-"+h,) 9)
Normalisation of attentional weights within the visual modality:

o = t3><ID(‘%“S)W_ (10)
2. .0 (e

where W, is a weight matrix, uy is a context vector, and by is the bias term, al of which
are trainable parameters ¢;"*. That is, the attentional weights of the visual features at

moment t. The weights of the visual features are summed to obtain a visual context
vector. The weighted summation yields the visual context vector c¥s weighted by the
intramodal attention:

T
CViS — Za(wsht\/is_bi (11)
t=1

Similarly, we perform exactly the same operation on the audio feature sequence Hawd-bi to
obtain the weighted audio context vector caud,

Next, we perform inter-modal attention interaction. We design bidirectional cross-
modal attention (Rabinovich et a., 2013).

Audio as query, visual as key: we use the context vector ¢ of audio as aquery,
which is computed with the features h"*-" of each time step in the visual sequence,
to generate a set of audio information-guided visual attention weights.

Audio-guided visual attention scores:

= va_>vT.tanh(Wq PRRTTATN ba,w) (12)

a—>'
Audio-directed visual attention weighting.

ﬁta*>V: ?Xp ( S ) ) (13)

2 .e0(s)
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Audio-guided visual representations:
T
Za—>v — ,Bta_>v h[vis_ bi ( 1 4)

Vector 2V represents the most relevant visual information to the current audio
sentiment, guided by the audio information and filtered from the visual modality.

Visual as query, audio as key value: similarly, we use the visual context vector as a
query to guide the filtering of audio features.

Visual-guided audio attention score:
87 =V, - tanh (W e + W -, ) (15)
Visually guided audio attention weighting:

e &0(877)

t - T s (16)
2 .o(s7)
Visually guided audio representation:
T
28 — z ﬂtv—>ahlaud_bi (17)
t=1

Vector zV~ 2 represents the audio information most relevant to the current visual emotion
filtered from the audio modality guided by the visual information.

Finally, we splice the two original intramodal context vectors ¢¥is, c@d and two new
representations zV — &, 2 ~V after cross-modal guidance to form the final multimodal
fusion feature vector zuso;

qusion - |: Cvis; Caud : za—>v; Zv—>a:| (18)

This vector contains both pure modal information, significant information within
modalities, and complementary information guided by intermodal interactions, forming
the final basis for sentiment classification.

3.4 Sentiment classification module

The fused high-dimensional feature vectors zZuson are fed into a simple multilayer
perceptron classifier for sentiment classification. This classifier usually consists of one or
more fully connected layers and uses dropout techniques to prevent overfitting (Castro
et a., 2017).

Sentiment classification:

Yprea= Softmax(Wy- Dropout ( ReLU (W, 2" +b; )) + by) (19)

where W;, by, W, by is the trainable weight and bias of the classifier. yyed is the
probability distribution of sentiment categories predicted by the model.
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The training objective of the model is to minimise the cross-entropy loss function
between the predicted probability distribution and the true [abel.
Thelossfunctionis:

N C

= _%Z z yielog (yr) (20)

i=1 c=1

true

where N is the number of training samples, C is the number of sentiment categories, ;.

is the true label of sample i on category c, and is the probability that sample i belongs to
category c as predicted by the model.

In summary, this chapter details the MER model proposed in this paper. The model
extracts in-depth temporal features of audiovisua modalities through a well-designed
two-stream network, and innovatively introduces a two-way cross-modal attention fusion
mechanism to dynamically and adaptively capture complex inter-modal interactions,
which lays a solid foundation for the final accurate emotion recognition.

4 Experimental resultsand analyses

In order to comprehensively assess the effectiveness and superiority of the MER model
based on cross-modal attention fusion proposed in this paper, we designed and conducted
a series of rigorous experiments. This chapter will elaborate on the datasets used in the
experiments, the specific data preprocessing process, the performance evaluation metrics
employed, the baseline models used for comparison, and the detailed experimental results
and analysis. Through in-depth discussion of the results and ablation experiments, we
systematically validate the contributions of each component of the model.

4.1 Experimental setup

A high-quality dataset is the basis for effective model training and fair performance
comparison. In this study, RAVDESS, awidely used and well-recognised public dataset
in the field of affective computing, is selected. The dataset contains audio-visual
recordings of 24 professional actors performing eight different emotions, each with two
linguistic intensities, with very high performance quality and emotiona purity. Although
it was not specifically designed for children, the exaggerated and dramatic expressions
used by the actors in performing the ‘strong’ emotions are highly consistent with the
emotional outwardness of children’s theatrical performances, and thus are very suitable
for use as an experimental baseline for this study. From the ‘strong’ intensity clips of all
the actors, we selected ‘happy’, ‘sad’, ‘angry’ ‘sadness’, ‘happiness’, ‘anger’, ‘fear’,
‘surprise’, and ‘neutrality’, which are the six most common emotion categories in
children’ s theatre, with atotal of 864 valid samples. We performed a hierarchical division
according to actor IDs to ensure that different samples of the same actor would not
appear in the training and testing sets at the same time, resulting in a 70% training set, a
15% validation set and a 15% testing set.

In the data pre-processing stage, we processed the audio and video streams separately.
For the video stream, we use the OpenFace toolkit to perform automated face detection,
68 keypoint localisation and face alignment for each video frame, and uniformly scale the



Multimodal attentive fusion for emotion recognition model 123

aligned face images to a size of 224 x 224 pixels. For the audio stream, we downsampled
it from the original 48kHz to 16kHz, and after strict alignment with the video stream, the
frames were split using a 25ms Hamming window and a 10ms frame shift. For each audio
frame, we extracted features containing the 13-dimensiona static MFCC and its first- and
second-order differences (39 dimensions in total), along with 64-dimensional log-Meier
spectrogram features, and stitched the two together to form a 103-dimensional joint audio
feature vector.

In this experiment, weighted accuracy (WA) and weighted F1-score (WF1) were used
as the core assessment metrics. WA mitigates the evaluation bias caused by category
imbalance by calculating the weighted average of the accuracy in each category (the
weight is the true sample size of the category), while F1-score is the reconciled average
of precision and recall, and the weighted average version of which comprehensively
reflects the overall performance of the model in each category.

In order to fairly verify the advantages of the models in this paper, we choose several
representative state-of-the-art models as baselines for comparison:

e Concatenated feature LSTM (CF-LSTM): asimple late fusion baseline. The
temporal information of the audiovisual featuresis extracted using Bi-LSTM
respectively, and the final hidden states of the two modalities are spliced at the end
of the sequence and fed into the classifier.

e Tensor fusion network (TFN): aclassical multimodal fusion model based on tensor
outer products that explicitly modelsinter- and intra-modal interactions.

e Latefusion LSTM (LF-LSTM): audio-visual features are spliced at each time step
and fed into the LSTM for time-step-by-time-step fusion.

e  Memory fusion network (MFN): afusion model that utilises multi-view recurrent
networks and dynamic memory networks to capture long temporal dependencies
across modalities.

e Recurrent attended variation embedding network (RAVEN): amodel that employs
an attentional mechanism for cross-modal alignment and fusion.

All models are run on the same training, validation, and test sets using the Adam
optimiser with an early-stopping strategy to prevent overfitting and ensure fairness in
comparisons.

4.2 Resultsand analysis

We have compared the performance of the proposed model with the above baseline
model on the test set and the results are shown in Table 1.

As can be clearly seen from the table, the cross-modal attention fusion-based model
proposed in this paper achieves the best performance in both metrics, with a WA of
79.4% and a weighted F1 score of 0.782. Compared with the most powerful baseline
model, RAVEN, our model achieves an improvement of 1.4 percentage points in
accuracy and 0.013 in F1 score, respectively. This improvement, while not huge, is a
significant and practically meaningful advancement on a public dataset that has been
extensively studied and is close to saturation in performance, and it validates the
effectiveness of our proposed fusion mechanism.
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Tablel Model performance comparison results

Mould WA WF1
CF-LSTM 73.8% 0.728
LF-LSTM 75.1% 0.742
TFN 76.5% 0.758
MFN 77.2% 0.763
RAVEN 78.0% 0.769
Ours 79.4% 0.782

By anaysing the baseline model, we can identify some valuable trends: simple splicing
fusion has the lowest performance, which illustrates that simple and brute force feature
merging is not an optimal solution in multimodal learning. Time-step-by-time-step fusion
and tensor fusion with explicitly modelled interactions bring steady performance gains.
The models that introduced the memory mechanism and attention mechanism performed
even better, demonstrating the importance of dynamic, selective information fusion. It is
on this basis that our model is designed with a more refined and bi-directional
crosssmodal attention-guiding mechanism, which achieves a further breakthrough in
performance.

To gain a deeper understanding of the model’s decision-making behaviour, we
visualise the cross-modal attentional weights of a test sample, as shown in Figure 2. The
sample shows a performance of the emotion ‘anger’. As can be observed from the
heatmap, the model assigns higher weights to the actor’s grim facial expression (visual
information) at moments when the actor raises the pitch and increases the tone of his
voice (audio information is salient), and vice versa for moments when the actor makes a
specific angry expression (visual information is salient), the model focuses on acoustic
features at that moment accordingly. This synergistic pattern of ‘ back-and-forth’ attention
is a vivid illustration of the modé’s ability to capture fine-grained cross-modal
correlations, rather than static averaging.

Figure2 Heat map of cross-modal attention weights (see online version for colours)
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In order to verify the necessity of each key component in the model and its contribution,
we designed an exhaustive ablation experiment (Ablation Study). The results are shown

in Table 2 and Figure 3.
Table2 Quantitative comparison of the performance of each model variant of the ablation
experiment
Model variant WA WF1
Model A 65.2% 0.642
Model B 73.8% 0.728
Model C 76.5% 0.758
Model D 77.1% 0.762
Model E 79.4% 0.782

Figure3 Histogram of ablation experiments (see online version for colours)

We first constructed a baseline model A: only frame-level features not processed by Bi-
LSTM are used and directly classified after splicing. Subsequently, we add components

step by step:

e Model B: onthebasisof A, Bi-LSTM timing modelling modules are added for both
modalities separately. The results show a substantial improvement in both WA and

WF1, which fully demonstrates the extreme importance of modelling temporal

context for emotion recognition.

e Model C: based on B, the IMA mechanism is added. The performanceis further
slightly improved, showing that focusing on the keyframe information inside each

modality is effective.



126 Z. Cai

e Model D: i.e., our complete model with the introduction of the IMA fusion module
IMA on top of C. The performance of the model D isimproved by the addition of the
Inter-modal Attention fusion module IMA. The performance reaches the peak among
all ablation variants, which strongly demonstrates that the core innovation of our
model — the use of inter-modal guidance for information complementarity —is the
key to improving performance.

In addition, we tested model E: based on B, using only unidirectional cross-modal
attention (audio-only guided vision, or vision-only guided audio). Its performance was
significantly lower than that of the full bidirectiona model D, which illustrates the
reciprocal nature of intermodal influences in emotional expression, where bidirectional
guidance is necessary and justified by design.

The results of these ablation experiments are presented in the form of bar charts,
which clearly demonstrate the incremental performance improvement brought about by
the inclusion of each technique from the baseline to the full model, thus systematically
validating the rationality of the model design and the effectiveness of each module.

4.4 Model decision interpretability analysis

Although deep learning models have achieved excellent performance in emotion
recognition tasks, their decision-making process is usually regarded as a ‘black box’,
which limits their application in scenarios requiring high confidence, such as educational
assessment and clinical assistance. In order to reveal the internal working mechanism of
the model and verify whether its decision-making is consistent with human cognition,
this experiment introduces the gradient-weighted class activation mapping (Grad-CAM)
technique to visualise and analyse the decision-making basis of the model.

We used the Grad-CAM technique to generate saliency maps for audiovisua
modalities. For visual modalities, we compute the gradient of the target emotion category
with respect to the last convolutional layer feature map and generate a heat map by
weighted combination, which highlights the image regions that contribute most to the
model decision. For audio modalities, we treat their time-frequency spectrograms as
two-dimensional images and use a similar approach to generate saliency maps that
identify the temporal and frequency components that are most critical for sentiment
classification.

Multiple samples of four typical emotions (happiness, sadness, anger, and surprise)
were randomly selected from the test set, and their audiovisua saliency maps were
generated and displayed overlaid with the original data for qualitative anaysis.

The visualisation results are shown in Figure 4, which provides us with awindow into
the ‘thinking’ of the model. On the visual side, the saliency map clearly shows that the
model’s attention is highly focused on the facial organs that are most relevant to the
expression of emotions when judging emotions. For example, in the happy emotion
sample, the model focused significantly on the corners of the mouth and eyes, which is
highly consistent with the way humans judge happy emotions through smiles and crow’s
feet. In the sample of angry emotions, the model’s attention, on the other hand, was
focused on the eyebrow, eye, and nose regions, which are precisely the key areas of the
human face that exhibit angry features such as frowning and glaring. For the sadness
emoation, the model focused on the medial uplift of the eyebrows and the downward pull
of the corners of the mouth. And in the emotion of surprise, wide-open eyes and open
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mouth became the main basis for the model’s decision. This highly coincident pattern of
attention is strong evidence that our model is not making judgments by memorising
irrelevant features of the dataset, but has actually learned to extract biologically
meaningful emotional features that are consistent with human cognition.

Figure4 Model decision significant plot visualisation (see online version for colours)

On the audio side, saliency analysis of tempora spectrograms shows that the model is
able to acutely capture key acoustic events. For example, in the emotions of anger and
surprise, the model assigns high weights to sudden high-energy transients (e.g., bursts of
sound, high pitch), while in the emotion of sadness, the model pays more attention to
sustained resonance in low-frequency regions and slow intonation changes. This suggests
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that the audio branch of the model is effective in recognising acoustic attributes
associated with emotions.

This interpretability analysis experiment provides an intrinsic, cognitive
science-compliant explanation for the model’ s superior quantitative performance through
a qualitative visualisation approach. The results show that the multimodal fusion model
proposed in this paper is not only an efficient prediction tool, but also an intelligent
system capable of understanding emotiona information in a manner consistent with
human intuition. This interpretability greatly enhances the credibility of the model and
lays a solid foundation for its safe and reliable application in rea-world sensitive
scenarios.

45 Discussion and error analysis

Despite the superior performance achieved by the model in this paper, we have analysed
its error cases in depth. Figure 5 shows the confusion matrix of the model on the six
categories of emotions. It can be found that the most significant confusions of the model
occur between ‘fear’ and ‘sadness’, ‘anger’ and ‘surprise’, and ‘anger’ and ‘surprise’.
between ‘fear’ and ‘sadness’, ‘anger’ and ‘surprise’. This is consistent with the common
sense of human perception: both ‘fear’ and *sadness’ may be characterised by a furrowed
brow in facial expression and a trembling tone in acoustic features; while strong ‘anger’
and ‘surprise’ may be characterised by a frown in facial expression. Both ‘anger’ and
‘surprise’ may be characterised by widening of the eyes and raising of the volume of the
voice. These cases of confusion illustrate the challenging nature of emotion recognition
in children’s drama.

Figure5 Confusion matrix (see online version for colours)
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The limitations of the model are mainly in two aspects. first, its dependence on
pre-trained face detection and feature extraction models, and the reliability of visual
features decreases under extreme lighting, large occlusions, or non-frontal postures.
Second, current models mainly focus on transient correlations between tones and facia
expressions, and their ability to comprehend rhythms rhythms and narrative contexts on
longer temporal sequences remains to be explored.

In summary, this chapter fully demonstrates the effectiveness and sophistication of
the cross-modal attention fusion model proposed in this paper through rigorous
experimental comparisons, detailed ablation studies, and in-depth error anaysis. The
experimental results not only show its improvement in quantitative indexes, but also
reveal the rationality of itsinner working mechanism through visualisation means, which
provides a useful reference and a solid foundation for subsequent research.

5 Conclusions

In this paper, a deep learning model based on cross-modal attention fusion is proposed
for the emotion recognition task in children’s drama performance scenes. The core of this
study is to make full use of the complementary information between audio and visual
modalities in dramatic performances, and to cope with the challenges posed by children’s
exaggerated and variable emotional expressions through a refined fusion mechanism.

First, a dual-stream temporal feature extraction network is designed in this paper. On
the visual side, a pre-trained deep convolutional network is used to extract frame-level
facial features, and a bi-directional long and short-term memory network (Bi-LSTM) is
utilised to capture the dynamic evolution of expressions. On the audio side, MFCC and
log-Mel spectral features are comprehensively extracted and their long time-series
dependencies are modelled by Bi-LSTM as well. This move lays the foundation of
high-quality features for subsequent fusion.

Second, the core contribution of this paper is to propose a hierarchical cross-modal
attention fusion module. This module not only reinforces the key frame information
within each modality through an IMA mechanism, but more importantly introduces a
bidirectional cross-modal attention mechanism. The mechanism is guided by the global
contextual information of one modality and dynamically and selectively focuses on the
most relevant temporal fragments in the other modality, thus realising the adaptive
fine-grained inter-modal fusion and generating a unified representation rich in
complementary information.

Experimental results show that on the dramatised speech subset of the publicly
available dataset RAVDESS, this paper’s model achieves a WA of 79.4% with an F1
score of 0.782, which outperforms a variety of state-of-the-art baseline models and
validates the effectiveness of the proposed fusion strategy. An exhaustive ablation study
further confirms that each component of the model, Bi-LSTM, within-modality attention,
and cross-modality attention, are al key to performance improvement. Visual analysis of
the confusion matrix and attention weights shows that the model is able to capture cross-
modal interaction patterns that are consistent with human cognition, and also reveal s that
confusing emotion pairs such as ‘fear-sadness’ and ‘anger-surprise’ are the key
challengesto be solved in the future. The model proposed in this paper has achieved good
results.
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Although the model proposed in this paper has achieved good results, there are still
some limitations that need to be further studied in future work. First, the current model
mainly relies on facial expressions and acoustic features, and in the future, multimodal
information such as body movements and script context can be incorporated to build a
more comprehensive emotion understanding framework. Second, the performance of the
model relies to some extent on the accuracy of the face detection and pre-training models,
and its robustness in dealing with complex scenes such as extreme poses, occlusion, or
low-lighting needs to be strengthened. Finally, future work can explore more explanatory
fusion mechanisms and try to apply the model to real educational or medical intervention
scenarios for clinical validation.

In summary, this paper provides an effective solution for children’s dramatic emotion
recognition by innovatively constructing a cross-modal attention fusion model, which
provides a useful reference for the application and development of multimodal affective
computing in this field.
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