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Abstract: Pragmatic ability assessment holds significant importance in 
language teaching and related fields, yet existing methods fail to capture and 
utilise the characteristics and information across different modalities. To 
address this, this paper optimises graph neural networks through multi-stage 
adaptive fusion. By decomposing the graph neural network into a multi-stage 
training format, higher-order features of graph data are progressively integrated 
into shallow models across multiple stages, thereby training a more robust 
shallow model. Subsequently, a pragmatic competence prediction model based 
on an improved graph neural network and multi-feature fusion is proposed. 
First, modal information is progressively integrated to ensure comprehensive 
fusion. Then, long-range pragmatic information is captured and incorporated 
into sentence-level information, enabling the model to better understand global 
features. Experimental results demonstrate that the proposed model achieves at 
least a 3.46% improvement in pragmatic competence test accuracy, facilitating 
more precise assessment of pragmatic competence levels. 
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1 Introduction 

Pragmatic competency, as a core component of linguistic ability, encompasses an 
individual’s capacity to understand and use language effectively for communication in 
specific contexts. It involves not only the mastery of grammatical rules but also 
emphasises precise comprehension of the underlying social culture and communicative 
intentions (Prasatyo et al., 2023). In the era of deep integration between globalisation and 
informatisation, good pragmatic competency is essential for cross-cultural 
communication. However, traditional methods of pragmatic competency assessment face 
numerous challenges (Kentmen et al., 2023). On one hand, existing assessments often 
focus on language forms and simple semantics, making it difficult to comprehensively 
and thoroughly evaluate an individual’s pragmatic performance in real complex contexts 
(Fathi et al., 2025). On the other hand, traditional assessment methods have limitations in 
dealing with the complexity and diversity of pragmatic data. Pragmatic phenomena are 
influenced by multiple factors, including linguistic and cultural background, the 
relationship between the interlocutors, and specific situations, which intertwine to make 
the features of pragmatic data highly nonlinear and interrelated (Alsuhaibani, 2022). 
Traditional statistical methods and machine learning models often struggle to fully 
extract potential information from this kind of complex data, affecting the accuracy and 
reliability of assessment results (Planques and Julián, 2018). Therefore, how to construct 
an efficient model to improve the accuracy of pragmatic competency assessment remains 
a crucial scientific issue. 

Improving the accuracy of pragmatic competency assessment primarily relies on 
enhancing the accuracy of pragmatic competency prediction. Early researchers mainly 
adopted a technical approach based on manual feature engineering and classical machine 
learning algorithms. Typical implementation schemes included Naïve Bayes classifiers 
(Flores et al., 2014), support vector machines (Li et al., 2023), and decision tree models 
(Chowanda et al., 2021). This technical paradigm usually requires a complex text 
preprocessing workflow to construct traditional feature representation methods such as 
term frequency-inverse document frequency and bag-of-words models (Wahlster, 2023). 
Although these methods demonstrate good performance under limited datasets and  
low-dimensional feature spaces, their inherent architecture struggles to effectively 
capture long-distance contextual dependencies in pragmatic phenomena, and their 
capability to model deep semantic relationships is insufficient. Moreover, these systems 
are highly sensitive to language noise and semantic ambiguity, resulting in poor stability 
and generalisation performance in real-world application environments. 
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In recent years, deep learning algorithms have become the primary method for 
pragmatic competency prediction. Deep learning-based methods for predicting pragmatic 
competence exhibit characteristics such as automated feature engineering, robust context 
modelling, understanding of non-literal meanings, end-to-end learning, and multimodal 
fusion. Underpinning these features is the core principle of leveraging massive datasets 
through distributed representations, relying on context-aware architectures centred on the 
Transformer self-attention mechanism, and addressing complex pragmatic challenges via 
the pre-training-fine-tuning paradigm. Deep learning models typically consist of  
multi-layer neural networks, with the core focus on learning and extracting feature 
representations of various real-world entities from large datasets. These features can not 
only be used in various computational models but can also be directly processed and 
applied by computers. Due to the superior performance of deep learning models in 
natural language processing, numerous scholars have conducted research on pragmatic 
competency prediction using deep learning (Eragamreddy, 2025). Dai and Zhao (2022) 
utilised convolutional neural networks (CNN) for text processing and produced pragmatic 
competency predictions through a fully connected network. Kim et al. (2019) considered 
complex sentence structures and introduced tree-structured long short-term memory 
(LSTM) for pragmatic competency classification. To effectively model the representation 
of pragmatic documents, Ai et al. (2024) used CNN and LSTM to obtain sentence 
representations, and then employed gated recurrent neural networks (RNNs) to encode 
sentence semantics and their intrinsic relationships. Parola et al. (2021) developed a 
hierarchical attention network for pragmatic competency classification tasks, using an 
attention mechanism to help the network select important words and sentences. In 
addition to pragmatic competency prediction via text, researchers have also explored 
pragmatic competency prediction in psychiatry patients through images and speech. 
Sinclair et al. (2021) proposed a pragmatic competency prediction method based on 
foreground and background segmentation. This method is based on the YOLOv5 
framework and introduces the ConvNeXt module and attention module for feature 
extraction and fusion, respectively, to improve pragmatic competency prediction 
accuracy. Zainal et al. (2024) applied the Transformer to pragmatic competency 
prediction, using a fused input of log-mel spectrograms and their first-order differential 
features, and utilised the Transformer to extract hierarchical speech representations, 
analysing the effects of changes in the number of attention heads and encoder layers on 
prediction accuracy. 

Most of the aforementioned deep learning-based pragmatic competency prediction 
models are based on a single modality. Integrating features from different modalities, 
thereby achieving fusion of multimodal information, plays a crucial role in enhancing 
model training accuracy and compensating for the shortcomings of features from a single 
modality. The multimodal pragmatic competence assessment model’s most significant 
advantage lies in its ability to transcend textual limitations, repositioning the evaluation 
anchor from language itself to the complete context in which language is used. This 
enables it to capture nuanced pragmatic subtleties that are often implicit rather than 
explicit, thereby far surpassing unimodal models in terms of assessment accuracy, depth, 
and human-centredness. Salamanti et al. (2023) incorporated both temporal and semantic 
consistency into the multimodal pragmatic competency prediction task, achieving 
pragmatic competency prediction through fine-grained temporal alignment and  
cross-modal semantic interaction. Chen (2023) proposed a multimodal deep regression 
Bayesian network (MMDRBN) to calculate the relationship between audio and visual 



   

 

   

   
 

   

   

 

   

   136 T. Xie et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

modalities in the pragmatic competency prediction task and incorporated domain 
knowledge from the video; however, the prediction accuracy is not high. graph neural 
network (GNN) is based on graph-structured data and can effectively capture complex 
relationships between nodes and global information. Through information propagation 
and aggregation operations on the graph, GNN can learn feature representations of nodes 
at local and global levels, thus better understanding the intrinsic structure and semantic 
information of the data. He et al. (2022) proposed a pragmatic competency prediction 
model based on a heterogeneous graph, which is based on a heterogeneous GNN and 
performs unified modelling on multi-source information such as facial expressions, 
audio, and personality traits, thereby predicting pragmatic competency. Yan and Chen 
(2024) proposed a pragmatic competency prediction model based on a graph attention 
network and used a gated recurrent unit to capture complex interaction relationships 
between multimodal features, thereby improving the accuracy of pragmatic competency 
prediction. 

Based on the analysis of current pragmatic competency prediction models, the 
existing methods have relatively simple modal fusion methods that cannot fully capture 
and utilise the characteristics and information of different modalities. Additionally, these 
methods focus more on capturing local contexts, especially when processing long 
conversations, often ignoring the integration of distant pragmatic features of speakers. To 
address these challenges, this paper proposes a pragmatic competency testing 
enhancement method based on GNN and multi-feature fusion. First, to address the issue 
where graph convolutional network (GCN) incurs excessive time and space consumption 
when the model depth increases, this paper proposes a GNN based on multi-stage 
adaptive fusion, called MSFGCN. MSFGCN divides the deep GNN model into a  
multi-stage training mode, with each stage containing several feature extraction layers. 
The main function of the deep learning module based on multi-stage training is to 
gradually integrate deep graph data information into a shallow model to train a more 
powerful shallow model. Then, a pragmatic competency prediction model based on 
MSFGCN and multi-modal feature fusion is proposed. This model consists of a  
multi-modal fusion module and a long-range sentiment fusion module. The multi-modal 
fusion module consists of three bi-directional fusion modules. Each bi-directional fusion 
module integrates multi-modal information from both forward and reverse directions, 
gradually fusing modal information to ensure thorough integration. The long-range 
feature fusion module first constructs sentence information from the pragmatic context, 
then captures long-range pragmatic information, and incorporates it into the sentence 
information, enabling the model to better understand global features. Finally, the Softmax 
function is used to obtain the pragmatic competency assessment results. Experimental 
results show that the accuracy and AUC of the proposed pragmatic competency 
assessment model significantly outperform those of baseline models, achieving precise 
pragmatic competency testing. 

2 Relevant theory 

2.1 Graph neural network 

GNN has been widely applied in natural language processing tasks such as text sequence 
modelling and knowledge graph construction, thanks to its superior performance in 
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handling unstructured data. Compared to traditional sequence-based deep learning 
methods like RNN and LSTM, GNN effectively captures the complex dependencies 
between text sequences by explicitly modelling nodes and their topological structures, 
thereby extracting deeper semantic feature representations. The information propagation 
process of GNN is shown in Figure 1. The core idea of GNN is to define nodes and their 
neighbourhoods, iteratively using the features of neighbouring nodes as the learning 
targets for each node. It utilises an update function to iteratively aggregate and update 
node states, thereby generating node representations that incorporate information from 
neighbouring nodes and graph topological structures. The formal representation of the 
above process is as follows (Zhou et al., 2022). 

{ }( )( )( ) ( 1) ( 1), : ( ) ,k k k
v v u vh f h aggregate h u N v X− −= ∈  (1) 

where ( )k
vh  represents the hidden state of node v at the kth layer, N(v) represents the 

neighbour set of node v, aggregate(⋅) is the aggregation function for neighbour 
information, and f(⋅) is the nonlinear update function. For the implementation of the node 
update function f(⋅) in GNN, researchers have proposed GCN and graph attentional neural 
networks (GAT) (Verma et al., 2023). 

GCN learns node embedding representations by aggregating the features of 
neighbouring nodes, a process called convolution or neighbour aggregation. It can 
effectively utilise the features of nodes and their local information for prediction, thus 
demonstrating unique advantages in handling graph-structured data. However, as the 
number of layers in GCN increases, the embedding representations of nodes may become 
similar, causing the model to lose its discriminative capability. This issue is particularly 
pronounced in deep GCN. GAT uses a self-attention mechanism to enable each node in 
the graph to dynamically aggregate information from its neighbouring nodes based on 
their importance. This mechanism allows GAT to adaptively focus on more important 
neighbours for the current node, thus learning better node representations. Because GAT 
needs to compute attention weights for each node and all its neighbours, its 
computational cost is relatively high. Especially when dealing with large-scale graphs, 
the computational cost significantly increases. Therefore, in practical applications, 
appropriate GNN variants should be selected based on the specific scenario for research. 

2.2 Feature fusion theory 

Feature fusion is the process of merging multiple modal feature sets into a unified feature 
set. Through feature fusion, the complementarity of various features can be fully utilised, 
compensating for the limitations of single features and enhancing the model’s ability to 
handle complex issues. Feature fusion is divided into early fusion, late fusion, and  
model-level fusion (Ma et al., 2016). 

1 Early fusion. First, the original features need to be extracted from multiple 
modalities. Subsequently, fusion operations such as concatenation and summation 
are performed on these features to form the final feature representation. Simple 
concatenation or summation operations can easily introduce noise, which may have a 
negative impact on the final prediction. 
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2 Late fusion. It first involves separately training different modalities. Each modality is 
equipped with a dedicated classifier, enabling it to independently learn and extract 
modality-specific information. Fusion after each modality is processed independently 
may lead to the loss of some modality-specific information, thereby reducing the 
system’s comprehensive understanding of the overall information. 

3 Model-level fusion. Effective fusion of multiple modalities in dialogues is achieved 
through deep learning models, enabling mutual interaction and enhancement of 
information. As a comprehensive approach to multimodal fusion, model-level fusion 
enhances the performance of deep learning models in multimodal tasks by 
considering the correlations between models and promoting information interaction 
among different modalities (Li et al., 2025). 

Early fusion directly concatenates or overlays multimodal features at the model input 
layer, forming a single feature vector for subsequent network processing. While simple 
and efficient, this approach suffers from modality heterogeneity and noise sensitivity 
issues. Late-stage fusion independently models each modality’s features before 
integrating results at the decision layer. However, intermodal interactions occur only at 
the decision layer, failing to capture cross-modal correlations in shallow or intermediate 
layers. Model-level fusion enables dynamic intermodal interactions through mechanisms 
like attention layers or GNNs in intermediate layers, combining the advantages of early 
and late fusion. This paper employs model-level fusion for multimodal integration. 

3 Optimisation of graph neural networks based on multi-stage adaptive 
fusion 

To address the issue of excessive time and space consumption caused by deepening the 
number of layers in GCN, this paper proposes a GNN based on multi-stage adaptive 
fusion, called MSFGCN. MSFGCN divides GCN into a multi-stage training format, 
gradually integrating high-order features of graph data into a shallow model through 
multiple stages, thus training a more powerful shallow model. In addition, MSFGCN 
designs an adaptive fusion module based on an attention mechanism, which can 
adaptively train the fusion weights between deep features and shallow features. 

Suppose the graph is defined in the form of G = (V, E), where V is the set of nodes 
indexed starting from 1, and E is the set of edges between nodes in G. N = |V| and m = |E| 
represent the number of nodes and edges, respectively. In this section, we only consider 
an undirected and unweighted graph. The topological information of the entire graph is 
described by the adjacency matrix A∈Rn×n, where A(i,j) = 1 if there is an edge between 
node i and node j, otherwise A(i,j) = 0. The diagonal matrix representing the node degrees 
is denoted as D∈Rn×n, where ( , ) ( , ).i i i jj

D A=  Ni indicates the set of adjacent nodes of 

node i. An attribute graph has a node feature matrix X∈Rn×n, where each row xi∈Rd 
represents the feature vector of node i, and d is the dimension of node features. 

Since each layer of the GCN model is equivalent to a low-pass filter, the graph data 
features after multiple low-pass filters become similar, that is, the over-smoothing 
problem. To alleviate this problem, this paper introduces the initial residual connections 
and identity mapping operations into the deep GCN to obtain deep features of the graph 
data, as shown below. 
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( ) ) ( )( )( )( 1) ( ) ( ) ( ) (0) ( ) ( ) ( )ˆ1 1l l l l l l l
nH σ γ PH γ H β I β W+ = − − ++  (2) 

where ( ) ( ) ( )1/2 1/21/2 1/2ˆˆ ˆ ,ˆ
n n nP DD A I A I DD I− −− −= = + + +  A is the adjacency matrix of 

the graph, and D is the degree matrix of the adjacency matrix. W(l) is the learnable 
parameters of the lth level network. H(l) is the hidden features learned by the lth level of 
the model. γ and β are hyperparameters that need to be manually set, and β = log(λ/l + 1), 
H(0) are the initial features of the graph data, which are obtained from the original data 
through a fully connected network for dimensionality reduction. The dimensionality 
reduction operation is defined as follows. 

( )(0) (0)( ), ,n d n fH MLP X X R H R f d× ×= ∈ ∈ <  (3) 

Since the GCN needs to compute the gradients of all nodes in the entire graph and also 
needs to store the embedding representations of all nodes, it will lead to a linear 
relationship between the time and space consumption required for model training and 
testing and the number of model layers. To address this, this paper proposes to split the 
deep feature extraction model into a multi-stage training approach and integrate the deep 
features of each stage into the shallow backbone model. 

This paper divides the deep model into m stages, with each stage consisting of l/m 
graph convolution levels. Each stage can extract features of l/m levels. We then integrate 
the deep features extracted at each stage into the corresponding feature extraction layer of 
the shallow backbone model, as shown below. 

( ) ) ( )( )( )( , ) ( , ) ( , ) ( , ) (0) ( , ) ( , ) ( , )ˆ1 (1m l m l m l m l m l m l m l
nH σ γ PH γ H I W

′ ′ ′ ′ ′ ′ ′
= − + − +β β  (4) 

( )( ) ( ) ( , ),m m m lF fusion H H
′

=   (5) 

where H(m,j) is the lth graph convolution layer of the mth stage. ( )mH  is the shallow 
backbone feature of the mth stage, fusion() is the fusion operation, and F(m) represents the 
feature after the fusion in the mth stage. 

After completing the deep feature extraction at each stage, we obtain two groups of 
features, which are the deep data features H(l) and the shallow backbone features ( ).lH  
The attention mechanism can be used to adaptively learn their fusion weights. 

( ) ( )( ) ( ), ,l l
d s att H H=α α  (6) 

where αd and αs are the learned fusion weights of the deep features H(l) and the shallow 
backbone features ( ) ,lH  respectively. att() is the attention mechanism. 

Based on the above operations, MSFGCN adaptively learns the fusion weights of 
deep features and shallow backbone features, and features with higher importance have 
larger fusion weights, which can better fuse the two sets of features. In MSFGCN, the 
deep model and the shallow backbone model are trained in parallel during training. 
During testing, this paper splits the deep sub-model from the backbone model and uses 
only the backbone model for testing, at which point the model degenerates into a 
traditional GCN model. Taking GCN as an example, its space complexity is O(LND), 
time complexity is O(L||A||0D + LND2), where L is the number of model layers, N is the 
number of nodes, and D is the number of hidden channels. From time and space 
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complexity, it can be seen that the time and space costs of GCN are proportional to the 
number of model layers. MSFGCN retains only a few convolutional layers when testing, 
but retains all training parameters during the training phase, so the performance of the 
model during testing can approach deep graph convolution models, but the time and 
space costs are close to shallow graph convolution models. 

4 Pragmatic competence test based on MSFGCN and multimodal feature 
fusion 

4.1 Overview of the pragmatic competence test model 

This paper proposes a pragmatic ability test method based on MSFGCN and multimodal 
feature fusion. This method mainly consists of two modules: a multimodal fusion module 
and a long-range sentiment fusion module. The multimodal fusion module consists of 
three bidirectional fusion modules (BFM) for fusing unimodal features. The long-range 
sentiment fusion module is used to build sentence information, capture long-range 
speaker information, and fuse these two types of information. During the sentence 
information construction process, the edges in the graph are enhanced through a 
knowledge base. 

Figure 1 Pragmatic competence assessment model based on MSFGCN and multimodal feature 
fusion (see online version for colours) 
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In the pragmatic ability test task, a set of pragmatic information consists of N consecutive 
utterances, defining the dialogue as sequence U = {u1, u2, …, uN} where ui represents the 
ith utterance in the dialogue. A set of dialogues corresponds to M speakers, defining the 
speakers as sequence S = {s1, s2, …, SM}, where si represents the speaker corresponding 
to statement ui. Utterance ui contains text t, audio a, and visual v modalities, whose 
feature representations are denoted as ,t

iu  ,a
iu  and .v

iu  In this paper, 

{ }1 2 ,, ,...,t t
t

t
NU u u u=  { }1 2 ,, ,...,a a

t
a
NU u u u=  { }1 2, , ...,v v v

v NU u u u=  represent the text, audio, 
and visual modality sequences of all statements in the entire dialogue. The objective of 
the pragmatic ability test task is to predict the ability label of each utterance ui based on 
predefined ability categories from these modality features. To this end, the model needs 
to comprehensively utilise the contextual information of pragmatic information, the 
multimodal features of utterances, and the information of the speakers to achieve accurate 
classification of the pragmatic ability of each speaker. 

4.2 Bidirectional integration module 

To avoid the loss and confusion of information that may occur during one-time fusion, 
the bidirectional fusion module gradually introduces multimodal information into the 
model, helping the module to fully utilise the information of different modalities at each 
stage, performing more refined feature extraction and interaction to improve the fusion 
effect and overall performance of the model. For the input three modality features m1, m2, 
and m3, where m1 = Ut, m2 = Ua, m3 = Uv. This module is responsible for first forwardly 
fusing two of the modalities, and then gradually introducing the third modality and 
performing backward fusion, as shown in Figure 2, where each BFM performs fusion 
with the third modality as the main input, so during the fusion process, the first two 
modalities undergo one Transformer encoding (Foumani et al., 2024), while the third 
modality undergoes two encodings, ultimately forming a comprehensive multimodal 
feature representation. This module includes two submodules: the forward fusion 
submodule and the backward fusion submodule. 

The forward fusion submodule first takes modalities m1 and m2 as inputs and obtains 
the output o1 after going through the Transformer encoder, as shown in equation (7). 

( )1 1 2,o Transformer m m=  (7) 

Then, o1 and the third modality m3 are taken as inputs, and pass through two transformer 
encoders consecutively to obtain the output o3, as shown in equation (8). 

( )( )3 1 3 3, ,o Transformer Transformer o m m=  (8) 

The backward fusion submodule first takes m1 and m3 as inputs and obtains the output o4 
after passing through two transformer encoders, as shown in equation (9). 

( )( )4 1 3 3, ,o Transformer Transformer m m m=  (9) 

Finally, o4 and modality m2 are taken as inputs and pass through the transformer encoder 
to obtain the output o5. By fusing o3 and o5, the final output representation 1

finalo  of the 
bidirectional fusion module is formed, as shown in equation (10), where W0 are trainable 
parameters and b is the bias term. 
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[ ]1
0 5 3,finalo W o o b= +  (10) 

Since this paper adopts three BFM to fuse the initial features, and the characteristics of 
different modality combinations may have different contributions to sentiment 
classification, a weight adaptive module is designed to dynamically measure the impact 
of each modality on the final output. This module performs weighted fusion on the 
multimodal features and finally generates a comprehensive feature representation. Given 
the output vectors 1 ,finalo  2 ,finalo  and 3

finalo  of the three modules, they are processed 
through an unbiased linear transformation for each output vector’s representation, and the 
softmax operation is applied to the processed multimodal representation to obtain the 
weight nsoftmax of each output, as shown in equation (11), where W1, W2 and W3 represent 
weights corresponding to different modalities, used to adjust the importance of different 
modalities, is the vector multiplication operation. 

( )1 2 3
softmax 1 2 3softmax , ,final final finaln W o W o W o = ⊗ ⊗ ⊗   (11) 

Use the weights nsoftmax to weight and sum the output vectors to obtain the final fused 
representation N′, as shown in equation (12), where ( ) ( ) ,i i

finaln o=    are element-wise 
products. 

3
( )

 softmax
1

i

i

N n n
=

′ =  (12) 

4.3 Long-distance integration module 

In the pragmatics test task, accurately capturing and understanding the global context and 
the speaker’s specific information is essential for identifying pragmatic competence. 
Therefore, the distant sentiment fusion module first utilises a GNN to represent 
pragmatics information in the graph form to construct sentence information, and it uses 
MSFGCN to capture the distant context information of the speaker. Finally, the  
above-mentioned sentence information and speaker information are fused. This paper 
constructs the pragmatic information of the speaker into an undirected graph G = (V, E), 
where V represents the nodes of the three modalities in each utterance, and E represents 
the edges between each pair of relational nodes. 

MSFGCN updates the hidden state of the nodes by aggregating the representations of 
its neighbouring nodes according to the type of connected edges, and introduces a 
distance-aware attention mechanism to enhance the capability of MSFGCN. The process 
of updating pragmatic information nodes is shown in equation (13). 

, , 4
r
i

i i j ij r i
r R j N

h σ c x W h
∈ ∈

 ′ = +
 
 
   (13) 

where σ represents the activation function, R represents the set of relations, hi is the input 
representation of node vi, '

ih  is the output representation of node vi, r
iN  belongs to the 

neighbour set vi under the relation r∈R, W4 is a trainable parameter, and ci,j is a  
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question-specific normalisation constant, usually assigned as the number of neighbours 
under the relation r. 

The node representation ( )l
ih  of each pragmatic information node vi is updated 

through equation (14). 

( )( 1) ( )
, 6

( )

1l l
i i j j ii i

j N i

h m W h+

∈

 
 = −
 
 
β α β  (14) 

where N(i) is the set of source nodes connected to the target node i, mj is the information 
passed from the source nodes, αi,j is the attention score, βi is the gating parameter of the 
residual connection, and W6 is the mapping weight. Based on the above node update 
rules, the final representations of all nodes in the pragmatic information can be obtained. 
The final output representation of the pragmatic information is H. 

To learn contextual representations at the speaker level, the MSFGCN model employs 
a Transformer network to capture the self-dependencies between adjacent utterances of a 
speaker. Given the fused features ni of each utterance, the speaker-level contextual 
representation pi is computed as shown in equation (15), where hλ,j is the jth hidden state 
of speaker pλ, derived from the speaker-level transformer network. Finally, the attention 
mechanism fuses H and pi to obtain the final fused features Hi. 

( ),Transformer ,i i λ jp n h=  (15) 

4.4 Model training and prediction results output 

The linear layer processes the fused features Hi extracted by the long-range feature fusion 
module, then applies the ReLU activation function and a Softmax layer to Hi in order to 
predict the pragmatic competence corresponding to the utterances. 

( )7 1ReLUi iH W H b′ = +  (16) 

( )7 2Softmaxi iD W H b′= +  (17) 

( )ˆ arg maxi iy D=  (18) 

where iH ′  represents the features after linear transformation and ReLU activation, W7 
represents the weight matrix during linear transformation, b1 and b2 denote the bias 
vectors during linear transformation, Di represents the output of the Softmax layer, and 
ˆiy  represents the final predicted pragmatic competence category. 

This article uses the cross-entropy function (Ho and Wookey, 2019) to compute the 
loss L(θ) as shown in equation (19), where N is the number of pragmatic information 
samples, c(i) is the number of utterances in the ith dialogue, pi,j is the emotion label 
probability of the jth utterance in the ith dialogue, is the label of the jth utterance in the ith 
dialogue, and θ is a trainable parameter. 

[ ]
( )

, ,
1 1

( ) log
c iN

i j i j
i j

L θ P y
= =

= −  (19) 
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5 Experimental results and performance analysis 

5.1 Convergence analysis of the pragmatic competence test model 

This article conducts experiments on the public dataset MELD (Rasgado-Toledo et al., 
2021). This dataset contains pragmatic data from three modalities: text, audio, and image, 
covering a variety of competency categories, and is widely used to evaluate the 
performance of pragmatic competence prediction methods. MELD includes 136,743 
statements, with pragmatic competence test results categorised as excellent, good, and 
weak. The MELD dataset is divided into training, validation, and test sets at a ratio of 
8:1:1. The experiment uses the Adam optimiser. To prevent overfitting, dropout is 
applied after the fully connected layer with a dropout value of 0.1, a learning rate of 
0.001, and 100 epochs. All experiments were conducted on a Windows 10 system 
equipped with an Intel® Core™ i5-6300HQ CPU with 16GB RAM and an NVIDIA 
GeForce GTX 950M GPU with 4GB VRAM. PyTorch 1.7.0 and CUDA 11.0 toolkits 
were employed. 

Figure 2 Convergence analysis of the MSFGCN training process, (a) training set and validation 
set scores, (b) training loss analysis (see online version for colours) 
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Figure 2 presents the convergence analysis results of the proposed MSFGCN model 
during training, divided into the following two parts. As shown in Figure 2(a), during the 
early training phase, the training set score increases rapidly, rising from approximately 40 
points to around 70 points by epoch 5. The growth trend then gradually slows down, 
stabilising at around 90 points by epoch 20. The validation set score, however, increases 
relatively steadily. Starting from slightly above 40 points, it gradually rises to 
approximately 75 points and remains stable. The training set score is higher than the 
validation set score, with both showing steady improvement. This indicates that the 
model continuously learns during training and possesses a certain degree of 
generalisation capability for new data. As shown in Figure 2(b), the training loss analysis 
depicts the variation of training loss over training epochs. At the start of training, the loss 
value is relatively high, around 20. It then rapidly decreases, dropping to approximately 5 
around epoch 5. Subsequently, the rate of decrease gradually slows down. After epoch 
15, the loss value stabilises, settling at around 2.5. This indicates that as training 
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progresses and epochs increase, the model’s loss value continuously decreases, ultimately 
reaching a relatively stable state. This reflects the model’s gradual convergence during 
training. 

5.2 Practical competence test accuracy analysis 

To further verify the practical competence test accuracy of different models, this paper 
selects the indicators accuracy, F1, mean absolute error (MAE), root mean square error 
(RMSE), and ROC curve to evaluate the ECTRANS, TASC, MMDRBN, HFGNN, 
GATGRU, and MSFGCN models, as shown in Table 1. The accuracy and F1 of 
MSFGCN are 94.85% and 93.56%, respectively, which are improved by at least 3.46% 
and 2.5% compared to the baseline models. The MAE and RMSE of MSFGCN are 
0.0826 and 0.1153, respectively, which are reduced by at least 21.48% and 22.67% 
compared to ECTRANS, TASC, MMDRBN, HFGNN, and GATGRU. The MSFGCN 
model not only optimises the GNN based on a multi-stage adaptive fusion method but 
also applies the optimised GNN to practical competence tests, significantly improving the 
test accuracy. 
Table 1 Accuracy comparison of different methods in pragmatic ability testing 

Model Accuracy (%) F1 (%) MAE RMSE 
ECTRANS 82.71 81.49 0.1864 0.2037 
TASC 85.21 86.34 0.1739 0.1892 
MMDRBN 88.63 87.29 0.1423 0.1683 
HFGNN 89.21 90.82 0.1152 0.1475 
GATGRU 91.39 91.06 0.1052 0.1391 
MSFGCN 94.85 93.56 0.0826 0.1153 

The ROC curves of different models are shown in Figure 3, with AUC values for 
ECTRANS, TASC, MMDRBN, HFGNN, GATGRU, and MSFGCN being 0.7852, 
0.8236, 0.8401, 0.9029, 0.9374, and 0.9756, respectively. MSFGCN improves by 
24.25%, 18.46%, 16.13%, 8.05%, and 4.08% compared to ECTRANS, TASC, 
MMDRBN, HFGNN, and GATGRU, respectively. ECTRANS uses a transformer model 
to implement a pragmatic ability test, but the performance of transformer models highly 
depends on the quality and diversity of the training data. If the training data does not 
adequately cover different language backgrounds, cultural customs, or social scenes, the 
model may not accurately evaluate the pragmatic abilities of specific groups. TASC 
performs pragmatic ability prediction through fine-grained temporal alignment and  
cross-modal semantic interaction. However, fine-grained temporal alignment requires 
precise matching of corresponding relationships across modalities on the timeline, but 
existing datasets often lack such high-precision annotations. MMDRBN involves 
multimodal data such as speech, text, and body language, and the synchronisation of 
these data on the timeline is crucial. However, the sampling frequency and start time of 
different modalities may vary, leading to difficulties in temporal alignment. HFGNN’s 
pragmatic ability prediction model based on heterogeneous graphs integrates multiple 
types of nodes and complex relational edges, but in pragmatic ability data, certain 
pragmatic behaviours may have very few samples, leading to sparsity in the 
corresponding nodes and edges in the heterogeneous graph. The GATGRU pragmatic 
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ability prediction model based on GAT captures complex interaction relationships by 
dynamically assigning attention weights between nodes. However, the context in 
pragmatic ability tests may change rapidly, but GAT is typically based on static graph 
structures, making it difficult to update node features or attention weights in real-time to 
reflect dynamic changes. MSFGCN improves prediction accuracy by introducing a 
multimodal fusion module and a long-range feature fusion module. 

Figure 3 ROC curve for the pragmatic competence test method (see online version for colours) 
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Figure 4 Visualisation results for the three-category task in the pragmatic competence test,  
(a) distribution of raw pragmatic competence data, (b) distribution of raw pragmatic 
competence data processed by MSFGCN (see online version for colours) 
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Furthermore, Figure 4 shows the visualisation results of the three-class task in the 
pragmatic ability test task. The three colours represent different types of pragmatic ability 
categories. Figure 4(a) displays the original visualisation of the data, where feature points 
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of different categories are intertwined and difficult to distinguish clearly. However, in 
Figure 4(b), the feature points after processing by MSFGCN show a more distinct 
clustering effect, and clear boundaries are formed between feature points of different 
pragmatic ability categories. This fully demonstrates that the introduction of the 
multimodal fusion module and the long-range feature fusion module not only enables the 
model to fully utilise multimodal information but also significantly improves the model’s 
expressive capacity and classification efficiency in complex pragmatic ability test tasks. 

6 Conclusions 

Current methods of pragmatic ability tests focus more on the capture of local contexts 
and often overlook the integration of long-range pragmatic features when handling 
extended pragmatic information. To address these issues, this paper first proposes a GNN 
based on multi-stage adaptive fusion, called MSFGCN. MSFGCNN decomposes the deep 
GNN model into a multi-stage training framework, where each stage contains several 
feature extraction layers. The main function of the deep learning module based on  
multi-stage training is to gradually incorporate deep graph information into a shallow 
model for training a more powerful shallow model. Subsequently, a pragmatic ability 
prediction model based on MSFGCN and multimodal feature fusion is proposed. The 
model consists of: a multimodal fusion module and a long-range sentiment fusion 
module. The multimodal fusion module consists of three BFM units for fusing unimodal 
features. The long-range feature fusion module is used to construct sentence information, 
capture long-range speaker pragmatic information, and fuse these two types of 
information. During the sentence information construction process, the edges in the graph 
are enhanced through a knowledge base. Experimental results show that the pragmatic 
ability test accuracy and AUC of the proposed model are 94.85% and 0.9756, 
respectively, which are improved by at least 3.46% and 4.08% compared to baseline 
models, thereby positively promoting the development of language teaching and natural 
language processing applications. 

Although the proposed model has achieved high accuracy in pragmatic ability tests, 
the current method of constructing pragmatic data into graph structures still has room for 
improvement in terms of node and edge definitions. Future research can explore more 
refined node partitioning strategies, for example, not only using words and sentences as 
nodes, but also incorporating abstract concepts such as pragmatic rules and pragmatic 
strategies as nodes, so that the graph structure can more comprehensively and accurately 
reflect the complexity of pragmatic relationships. At the same time, the method for 
calculating edge weights can also be further optimised, with a dynamic weight 
mechanism introduced to adjust edge weights in real-time according to different 
pragmatic scenarios and tasks, thereby better capturing the dynamic associations between 
pragmatic information. 
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