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Abstract: Pragmatic ability assessment holds significant importance in
language teaching and related fields, yet existing methods fail to capture and
utilise the characteristics and information across different modalities. To
address this, this paper optimises graph neural networks through multi-stage
adaptive fusion. By decomposing the graph neural network into a multi-stage
training format, higher-order features of graph data are progressively integrated
into shallow models across multiple stages, thereby training a more robust
shallow model. Subsequently, a pragmatic competence prediction model based
on an improved graph neural network and multi-feature fusion is proposed.
First, modal information is progressively integrated to ensure comprehensive
fusion. Then, long-range pragmatic information is captured and incorporated
into sentence-level information, enabling the model to better understand global
features. Experimental results demonstrate that the proposed model achieves at
least a 3.46% improvement in pragmatic competence test accuracy, facilitating

more precise assessment of pragmatic competence levels.
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1 Introduction

Pragmatic competency, as a core component of linguistic ability, encompasses an
individual’s capacity to understand and use language effectively for communication in
specific contexts. It involves not only the mastery of grammatical rules but also
emphasises precise comprehension of the underlying social culture and communicative
intentions (Prasatyo et al., 2023). In the era of deep integration between globalisation and
informatisation, good pragmatic competency is essential for cross-cultural
communication. However, traditional methods of pragmatic competency assessment face
numerous challenges (Kentmen et al., 2023). On one hand, existing assessments often
focus on language forms and simple semantics, making it difficult to comprehensively
and thoroughly evaluate an individual’s pragmatic performance in real complex contexts
(Fathi et al., 2025). On the other hand, traditional assessment methods have limitations in
dealing with the complexity and diversity of pragmatic data. Pragmatic phenomena are
influenced by multiple factors, including linguistic and cultural background, the
relationship between the interlocutors, and specific situations, which intertwine to make
the features of pragmatic data highly nonlinear and interrelated (Alsuhaibani, 2022).
Traditional statistical methods and machine learning models often struggle to fully
extract potential information from this kind of complex data, affecting the accuracy and
reliability of assessment results (Planques and Julian, 2018). Therefore, how to construct
an efficient model to improve the accuracy of pragmatic competency assessment remains
a crucial scientific issue.

Improving the accuracy of pragmatic competency assessment primarily relies on
enhancing the accuracy of pragmatic competency prediction. Early researchers mainly
adopted a technical approach based on manual feature engineering and classical machine
learning algorithms. Typical implementation schemes included Naive Bayes classifiers
(Flores et al., 2014), support vector machines (Li et al., 2023), and decision tree models
(Chowanda et al., 2021). This technical paradigm usually requires a complex text
preprocessing workflow to construct traditional feature representation methods such as
term frequency-inverse document frequency and bag-of-words models (Wabhlster, 2023).
Although these methods demonstrate good performance under limited datasets and
low-dimensional feature spaces, their inherent architecture struggles to effectively
capture long-distance contextual dependencies in pragmatic phenomena, and their
capability to model deep semantic relationships is insufficient. Moreover, these systems
are highly sensitive to language noise and semantic ambiguity, resulting in poor stability
and generalisation performance in real-world application environments.
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In recent years, deep learning algorithms have become the primary method for
pragmatic competency prediction. Deep learning-based methods for predicting pragmatic
competence exhibit characteristics such as automated feature engineering, robust context
modelling, understanding of non-literal meanings, end-to-end learning, and multimodal
fusion. Underpinning these features is the core principle of leveraging massive datasets
through distributed representations, relying on context-aware architectures centred on the
Transformer self-attention mechanism, and addressing complex pragmatic challenges via
the pre-training-fine-tuning paradigm. Deep learning models typically consist of
multi-layer neural networks, with the core focus on learning and extracting feature
representations of various real-world entities from large datasets. These features can not
only be used in various computational models but can also be directly processed and
applied by computers. Due to the superior performance of deep learning models in
natural language processing, numerous scholars have conducted research on pragmatic
competency prediction using deep learning (Eragamreddy, 2025). Dai and Zhao (2022)
utilised convolutional neural networks (CNN) for text processing and produced pragmatic
competency predictions through a fully connected network. Kim et al. (2019) considered
complex sentence structures and introduced tree-structured long short-term memory
(LSTM) for pragmatic competency classification. To effectively model the representation
of pragmatic documents, Ai et al. (2024) used CNN and LSTM to obtain sentence
representations, and then employed gated recurrent neural networks (RNNs) to encode
sentence semantics and their intrinsic relationships. Parola et al. (2021) developed a
hierarchical attention network for pragmatic competency classification tasks, using an
attention mechanism to help the network select important words and sentences. In
addition to pragmatic competency prediction via text, researchers have also explored
pragmatic competency prediction in psychiatry patients through images and speech.
Sinclair et al. (2021) proposed a pragmatic competency prediction method based on
foreground and background segmentation. This method is based on the YOLOVS5
framework and introduces the ConvNeXt module and attention module for feature
extraction and fusion, respectively, to improve pragmatic competency prediction
accuracy. Zainal et al. (2024) applied the Transformer to pragmatic competency
prediction, using a fused input of log-mel spectrograms and their first-order differential
features, and utilised the Transformer to extract hierarchical speech representations,
analysing the effects of changes in the number of attention heads and encoder layers on
prediction accuracy.

Most of the aforementioned deep learning-based pragmatic competency prediction
models are based on a single modality. Integrating features from different modalities,
thereby achieving fusion of multimodal information, plays a crucial role in enhancing
model training accuracy and compensating for the shortcomings of features from a single
modality. The multimodal pragmatic competence assessment model’s most significant
advantage lies in its ability to transcend textual limitations, repositioning the evaluation
anchor from language itself to the complete context in which language is used. This
enables it to capture nuanced pragmatic subtleties that are often implicit rather than
explicit, thereby far surpassing unimodal models in terms of assessment accuracy, depth,
and human-centredness. Salamanti et al. (2023) incorporated both temporal and semantic
consistency into the multimodal pragmatic competency prediction task, achieving
pragmatic competency prediction through fine-grained temporal alignment and
cross-modal semantic interaction. Chen (2023) proposed a multimodal deep regression
Bayesian network (MMDRBN) to calculate the relationship between audio and visual
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modalities in the pragmatic competency prediction task and incorporated domain
knowledge from the video; however, the prediction accuracy is not high. graph neural
network (GNN) is based on graph-structured data and can effectively capture complex
relationships between nodes and global information. Through information propagation
and aggregation operations on the graph, GNN can learn feature representations of nodes
at local and global levels, thus better understanding the intrinsic structure and semantic
information of the data. He et al. (2022) proposed a pragmatic competency prediction
model based on a heterogeneous graph, which is based on a heterogenecous GNN and
performs unified modelling on multi-source information such as facial expressions,
audio, and personality traits, thereby predicting pragmatic competency. Yan and Chen
(2024) proposed a pragmatic competency prediction model based on a graph attention
network and used a gated recurrent unit to capture complex interaction relationships
between multimodal features, thereby improving the accuracy of pragmatic competency
prediction.

Based on the analysis of current pragmatic competency prediction models, the
existing methods have relatively simple modal fusion methods that cannot fully capture
and utilise the characteristics and information of different modalities. Additionally, these
methods focus more on capturing local contexts, especially when processing long
conversations, often ignoring the integration of distant pragmatic features of speakers. To
address these challenges, this paper proposes a pragmatic competency testing
enhancement method based on GNN and multi-feature fusion. First, to address the issue
where graph convolutional network (GCN) incurs excessive time and space consumption
when the model depth increases, this paper proposes a GNN based on multi-stage
adaptive fusion, called MSFGCN. MSFGCN divides the deep GNN model into a
multi-stage training mode, with each stage containing several feature extraction layers.
The main function of the deep learning module based on multi-stage training is to
gradually integrate deep graph data information into a shallow model to train a more
powerful shallow model. Then, a pragmatic competency prediction model based on
MSFGCN and multi-modal feature fusion is proposed. This model consists of a
multi-modal fusion module and a long-range sentiment fusion module. The multi-modal
fusion module consists of three bi-directional fusion modules. Each bi-directional fusion
module integrates multi-modal information from both forward and reverse directions,
gradually fusing modal information to ensure thorough integration. The long-range
feature fusion module first constructs sentence information from the pragmatic context,
then captures long-range pragmatic information, and incorporates it into the sentence
information, enabling the model to better understand global features. Finally, the Softmax
function is used to obtain the pragmatic competency assessment results. Experimental
results show that the accuracy and AUC of the proposed pragmatic competency
assessment model significantly outperform those of baseline models, achieving precise
pragmatic competency testing.

2 Relevant theory

2.1 Graph neural network

GNN has been widely applied in natural language processing tasks such as text sequence
modelling and knowledge graph construction, thanks to its superior performance in
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handling unstructured data. Compared to traditional sequence-based deep learning
methods like RNN and LSTM, GNN effectively captures the complex dependencies
between text sequences by explicitly modelling nodes and their topological structures,
thereby extracting deeper semantic feature representations. The information propagation
process of GNN is shown in Figure 1. The core idea of GNN is to define nodes and their
neighbourhoods, iteratively using the features of neighbouring nodes as the learning
targets for each node. It utilises an update function to iteratively aggregate and update
node states, thereby generating node representations that incorporate information from
neighbouring nodes and graph topological structures. The formal representation of the
above process is as follows (Zhou et al., 2022).

WO =f (hv(k_l) ,aggregate ({hf‘k_l) ‘ue N(v)}) , XV) 1)

where A%

") represents the hidden state of node v at the k™ layer, N(v) represents the
neighbour set of node v, aggregate(:) is the aggregation function for neighbour
information, and f{*) is the nonlinear update function. For the implementation of the node
update function f{-) in GNN, researchers have proposed GCN and graph attentional neural
networks (GAT) (Verma et al., 2023).

GCN learns node embedding representations by aggregating the features of
neighbouring nodes, a process called convolution or neighbour aggregation. It can
effectively utilise the features of nodes and their local information for prediction, thus
demonstrating unique advantages in handling graph-structured data. However, as the
number of layers in GCN increases, the embedding representations of nodes may become
similar, causing the model to lose its discriminative capability. This issue is particularly
pronounced in deep GCN. GAT uses a self-attention mechanism to enable each node in
the graph to dynamically aggregate information from its neighbouring nodes based on
their importance. This mechanism allows GAT to adaptively focus on more important
neighbours for the current node, thus learning better node representations. Because GAT
needs to compute attention weights for each node and all its neighbours, its
computational cost is relatively high. Especially when dealing with large-scale graphs,
the computational cost significantly increases. Therefore, in practical applications,
appropriate GNN variants should be selected based on the specific scenario for research.

2.2 Feature fusion theory

Feature fusion is the process of merging multiple modal feature sets into a unified feature
set. Through feature fusion, the complementarity of various features can be fully utilised,
compensating for the limitations of single features and enhancing the model’s ability to
handle complex issues. Feature fusion is divided into early fusion, late fusion, and
model-level fusion (Ma et al., 2016).

1 Early fusion. First, the original features need to be extracted from multiple
modalities. Subsequently, fusion operations such as concatenation and summation
are performed on these features to form the final feature representation. Simple
concatenation or summation operations can easily introduce noise, which may have a
negative impact on the final prediction.
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2 Late fusion. It first involves separately training different modalities. Each modality is
equipped with a dedicated classifier, enabling it to independently learn and extract
modality-specific information. Fusion after each modality is processed independently
may lead to the loss of some modality-specific information, thereby reducing the
system’s comprehensive understanding of the overall information.

3 Model-level fusion. Effective fusion of multiple modalities in dialogues is achieved
through deep learning models, enabling mutual interaction and enhancement of
information. As a comprehensive approach to multimodal fusion, model-level fusion
enhances the performance of deep learning models in multimodal tasks by
considering the correlations between models and promoting information interaction
among different modalities (Li et al., 2025).

Early fusion directly concatenates or overlays multimodal features at the model input
layer, forming a single feature vector for subsequent network processing. While simple
and efficient, this approach suffers from modality heterogeneity and noise sensitivity
issues. Late-stage fusion independently models each modality’s features before
integrating results at the decision layer. However, intermodal interactions occur only at
the decision layer, failing to capture cross-modal correlations in shallow or intermediate
layers. Model-level fusion enables dynamic intermodal interactions through mechanisms
like attention layers or GNNs in intermediate layers, combining the advantages of early
and late fusion. This paper employs model-level fusion for multimodal integration.

3 Optimisation of graph neural networks based on multi-stage adaptive
fusion

To address the issue of excessive time and space consumption caused by deepening the
number of layers in GCN, this paper proposes a GNN based on multi-stage adaptive
fusion, called MSFGCN. MSFGCN divides GCN into a multi-stage training format,
gradually integrating high-order features of graph data into a shallow model through
multiple stages, thus training a more powerful shallow model. In addition, MSFGCN
designs an adaptive fusion module based on an attention mechanism, which can
adaptively train the fusion weights between deep features and shallow features.

Suppose the graph is defined in the form of G = (V, E), where V is the set of nodes
indexed starting from 1, and E is the set of edges between nodes in G. N = |V] and m = |E|
represent the number of nodes and edges, respectively. In this section, we only consider
an undirected and unweighted graph. The topological information of the entire graph is
described by the adjacency matrix 4 R™", where A, = 1 if there is an edge between
node i and node j, otherwise 4 = 0. The diagonal matrix representing the node degrees

is denoted as De R™", where D(l. H= Z ,A([ e Ni indicates the set of adjacent nodes of
, 7

node i. An attribute graph has a node feature matrix Xe R™", where each row x;€ R?
represents the feature vector of node 7, and d is the dimension of node features.

Since each layer of the GCN model is equivalent to a low-pass filter, the graph data
features after multiple low-pass filters become similar, that is, the over-smoothing
problem. To alleviate this problem, this paper introduces the initial residual connections
and identity mapping operations into the deep GCN to obtain deep features of the graph
data, as shown below.
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24420 :6(((1_},(1))1311(1) +OHO)(1- D)1, +ﬁ(”W<’))) )

where P=D"?4D™"? =(D+1, )_1/2 (A+1,)(D+1, )_1/2 , A is the adjacency matrix of

the graph, and D is the degree matrix of the adjacency matrix. W® is the learnable
parameters of the /™ level network. H® is the hidden features learned by the /™ level of
the model. yand f are hyperparameters that need to be manually set, and S= log(A/] + 1),
HO are the initial features of the graph data, which are obtained from the original data
through a fully connected network for dimensionality reduction. The dimensionality
reduction operation is defined as follows.

H® = MLP(X),(Xe R™ HO e R™ f <d) ©)

Since the GCN needs to compute the gradients of all nodes in the entire graph and also
needs to store the embedding representations of all nodes, it will lead to a linear
relationship between the time and space consumption required for model training and
testing and the number of model layers. To address this, this paper proposes to split the
deep feature extraction model into a multi-stage training approach and integrate the deep
features of each stage into the shallow backbone model.

This paper divides the deep model into m stages, with each stage consisting of I/m
graph convolution levels. Each stage can extract features of //m levels. We then integrate
the deep features extracted at each stage into the corresponding feature extraction layer of
the shallow backbone model, as shown below.

o) = a(((l—y('"”')) PE™ 15D O (1= gm0 4 ﬁ(m,z'>W(m,z’>)) )

Fm = fusion(l:l(m),H(m’ll)) 5)

where H"J is the I graph convolution layer of the m® stage. H™ is the shallow
backbone feature of the m™ stage, fusion() is the fusion operation, and F' represents the
feature after the fusion in the m™ stage.

After completing the deep feature extraction at each stage, we obtain two groups of

features, which are the deep data features H® and the shallow backbone features H".
The attention mechanism can be used to adaptively learn their fusion weights.

(e,0,)=att(HD,H") (6)

where oy and o are the learned fusion weights of the deep features H”) and the shallow
backbone features H”, respectively. att() is the attention mechanism.

Based on the above operations, MSFGCN adaptively learns the fusion weights of
deep features and shallow backbone features, and features with higher importance have
larger fusion weights, which can better fuse the two sets of features. In MSFGCN, the
deep model and the shallow backbone model are trained in parallel during training.
During testing, this paper splits the deep sub-model from the backbone model and uses
only the backbone model for testing, at which point the model degenerates into a
traditional GCN model. Taking GCN as an example, its space complexity is O(LND),
time complexity is O(L||4||oD + LND?), where L is the number of model layers, N is the
number of nodes, and D is the number of hidden channels. From time and space



140 T. Xie et al.

complexity, it can be seen that the time and space costs of GCN are proportional to the
number of model layers. MSFGCN retains only a few convolutional layers when testing,
but retains all training parameters during the training phase, so the performance of the
model during testing can approach deep graph convolution models, but the time and
space costs are close to shallow graph convolution models.

4 Pragmatic competence test based on MSFGCN and multimodal feature
fusion

4.1 Overview of the pragmatic competence test model

This paper proposes a pragmatic ability test method based on MSFGCN and multimodal
feature fusion. This method mainly consists of two modules: a multimodal fusion module
and a long-range sentiment fusion module. The multimodal fusion module consists of
three bidirectional fusion modules (BFM) for fusing unimodal features. The long-range
sentiment fusion module is used to build sentence information, capture long-range
speaker information, and fuse these two types of information. During the sentence
information construction process, the edges in the graph are enhanced through a
knowledge base.

Figure 1 Pragmatic competence assessment model based on MSFGCN and multimodal feature
fusion (see online version for colours)
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In the pragmatic ability test task, a set of pragmatic information consists of N consecutive
utterances, defining the dialogue as sequence U = {u, u, ..., un} where u; represents the
i utterance in the dialogue. A set of dialogues corresponds to M speakers, defining the
speakers as sequence S = {si, 52, ..., Si}, where s; represents the speaker corresponding
to statement u;. Utterance u; contains text ¢, audio a, and visual v modalities, whose

t a v

feature representations are denoted as wu;, wu’, and . In this paper,

U, ={uf,u§,...,u§v}, U, ={uf,u§,...,ufv}, U, ={uf,u§,...,ufv} represent the text, audio,
and visual modality sequences of all statements in the entire dialogue. The objective of
the pragmatic ability test task is to predict the ability label of each utterance u; based on
predefined ability categories from these modality features. To this end, the model needs
to comprehensively utilise the contextual information of pragmatic information, the
multimodal features of utterances, and the information of the speakers to achieve accurate
classification of the pragmatic ability of each speaker.

4.2 Bidirectional integration module

To avoid the loss and confusion of information that may occur during one-time fusion,
the bidirectional fusion module gradually introduces multimodal information into the
model, helping the module to fully utilise the information of different modalities at each
stage, performing more refined feature extraction and interaction to improve the fusion
effect and overall performance of the model. For the input three modality features m, mo,
and m3, where m; = U, my = U,, m3 = U,. This module is responsible for first forwardly
fusing two of the modalities, and then gradually introducing the third modality and
performing backward fusion, as shown in Figure 2, where each BFM performs fusion
with the third modality as the main input, so during the fusion process, the first two
modalities undergo one Transformer encoding (Foumani et al., 2024), while the third
modality undergoes two encodings, ultimately forming a comprehensive multimodal
feature representation. This module includes two submodules: the forward fusion
submodule and the backward fusion submodule.

The forward fusion submodule first takes modalities m; and m; as inputs and obtains
the output o; after going through the Transformer encoder, as shown in equation (7).

o, = Transformer (. m;,m, ) (7

Then, o and the third modality m; are taken as inputs, and pass through two transformer
encoders consecutively to obtain the output 03, as shown in equation (8).

0y = Transformer (Transformer (o,,my ), m, ) (3)

The backward fusion submodule first takes m; and m3 as inputs and obtains the output o4
after passing through two transformer encoders, as shown in equation (9).

o, = Transformer (Transformer ( my,my),ms) )

Finally, o4 and modality m, are taken as inputs and pass through the transformer encoder
to obtain the output 0s. By fusing o3 and os, the final output representation Oklfinal of the

bidirectional fusion module is formed, as shown in equation (10), where W, are trainable
parameters and b is the bias term.
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Okl/‘ina/ :VVO[OS’O3]+b (10)

Since this paper adopts three BFM to fuse the initial features, and the characteristics of
different modality combinations may have different contributions to sentiment
classification, a weight adaptive module is designed to dynamically measure the impact
of each modality on the final output. This module performs weighted fusion on the
multimodal features and finally generates a comprehensive feature representation. Given

the output vectors o‘lﬁnal, O;na,, and ojg,ml of the three modules, they are processed

through an unbiased linear transformation for each output vector’s representation, and the
softmax operation is applied to the processed multimodal representation to obtain the
weight 7fmar 0f €ach output, as shown in equation (11), where W, W, and W3 represent
weights corresponding to different modalities, used to adjust the importance of different
modalities, is the vector multiplication operation.

= softmax ([Wl ® o_lfinal W) ® o_?ina/ W ® 0_;1‘%1 ]) (11)

Ao fimax

Use the weights nyimee to weight and sum the output vectors to obtain the final fused

representation N, as shown in equation (12), where 7" =0(f§2,a;, © are element-wise

products.

3
N’ = Zn softmaxn(l) (12)
i=1

4.3 Long-distance integration module

In the pragmatics test task, accurately capturing and understanding the global context and
the speaker’s specific information is essential for identifying pragmatic competence.
Therefore, the distant sentiment fusion module first utilises a GNN to represent
pragmatics information in the graph form to construct sentence information, and it uses
MSFGCN to capture the distant context information of the speaker. Finally, the
above-mentioned sentence information and speaker information are fused. This paper
constructs the pragmatic information of the speaker into an undirected graph G = (V, E),
where V represents the nodes of the three modalities in each utterance, and £ represents
the edges between each pair of relational nodes.

MSFGCN updates the hidden state of the nodes by aggregating the representations of
its neighbouring nodes according to the type of connected edges, and introduces a
distance-aware attention mechanism to enhance the capability of MSFGCN. The process
of updating pragmatic information nodes is shown in equation (13).

h{=a[ZC[JZxUJ+W4h[j (13)

reR jeN’r

where orepresents the activation function, R represents the set of relations, #4; is the input
representation of node v;, % is the output representation of node v;, N/ belongs to the

neighbour set v; under the relation reR, W, is a trainable parameter, and c;; is a
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question-specific normalisation constant, usually assigned as the number of neighbours
under the relation r.

The node representation A" of each pragmatic information node v; is updated
through equation (14).

K = (1-/3’1-)( > %,jmf]/fi%h,-‘” (14)

JeN(i)

where N(i) is the set of source nodes connected to the target node i, m; is the information
passed from the source nodes, ¢;; is the attention score, /3 is the gating parameter of the
residual connection, and Ws is the mapping weight. Based on the above node update
rules, the final representations of all nodes in the pragmatic information can be obtained.
The final output representation of the pragmatic information is H.

To learn contextual representations at the speaker level, the MSFGCN model employs
a Transformer network to capture the self-dependencies between adjacent utterances of a
speaker. Given the fused features n; of each utterance, the speaker-level contextual
representation p; is computed as shown in equation (15), where %4, is the j hidden state
of speaker ps, derived from the speaker-level transformer network. Finally, the attention
mechanism fuses A and p; to obtain the final fused features H;.

pi = Transformer (n;, %, ;) (15)

4.4 Model training and prediction results output

The linear layer processes the fused features H; extracted by the long-range feature fusion
module, then applies the ReLU activation function and a Softmax layer to H; in order to
predict the pragmatic competence corresponding to the utterances.

H{=ReLU(W:H,; +b) (16)
D; =Softmax (W, H/ +b, ) 17)
Vi =argmax (D) (18)

where H| represents the features after linear transformation and ReLU activation, W
represents the weight matrix during linear transformation, b, and b, denote the bias
vectors during linear transformation, D; represents the output of the Softmax layer, and
¥; represents the final predicted pragmatic competence category.

This article uses the cross-entropy function (Ho and Wookey, 2019) to compute the
loss L(6) as shown in equation (19), where N is the number of pragmatic information
samples, c(i) is the number of utterances in the i dialogue, p;; is the emotion label
probability of the /" utterance in the i dialogue, is the label of the /™ utterance in the it
dialogue, and @1is a trainable parameter.

N c(i)

L(O0)==Y_> logh;[v:,] (19)

i=l j=1
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5 Experimental results and performance analysis

5.1 Convergence analysis of the pragmatic competence test model

This article conducts experiments on the public dataset MELD (Rasgado-Toledo et al.,
2021). This dataset contains pragmatic data from three modalities: text, audio, and image,
covering a variety of competency categories, and is widely used to evaluate the
performance of pragmatic competence prediction methods. MELD includes 136,743
statements, with pragmatic competence test results categorised as excellent, good, and
weak. The MELD dataset is divided into training, validation, and test sets at a ratio of
8:1:1. The experiment uses the Adam optimiser. To prevent overfitting, dropout is
applied after the fully connected layer with a dropout value of 0.1, a learning rate of
0.001, and 100 epochs. All experiments were conducted on a Windows 10 system
equipped with an Intel® Core™ i5-6300HQ CPU with 16GB RAM and an NVIDIA
GeForce GTX 950M GPU with 4GB VRAM. PyTorch 1.7.0 and CUDA 11.0 toolkits
were employed.

Figure 2 Convergence analysis of the MSFGCN training process, (a) training set and validation
set scores, (b) training loss analysis (see online version for colours)
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Figure 2 presents the convergence analysis results of the proposed MSFGCN model
during training, divided into the following two parts. As shown in Figure 2(a), during the
early training phase, the training set score increases rapidly, rising from approximately 40
points to around 70 points by epoch 5. The growth trend then gradually slows down,
stabilising at around 90 points by epoch 20. The validation set score, however, increases
relatively steadily. Starting from slightly above 40 points, it gradually rises to
approximately 75 points and remains stable. The training set score is higher than the
validation set score, with both showing steady improvement. This indicates that the
model continuously learns during training and possesses a certain degree of
generalisation capability for new data. As shown in Figure 2(b), the training loss analysis
depicts the variation of training loss over training epochs. At the start of training, the loss
value is relatively high, around 20. It then rapidly decreases, dropping to approximately 5
around epoch 5. Subsequently, the rate of decrease gradually slows down. After epoch
15, the loss value stabilises, settling at around 2.5. This indicates that as training
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progresses and epochs increase, the model’s loss value continuously decreases, ultimately
reaching a relatively stable state. This reflects the model’s gradual convergence during
training.

5.2 Practical competence test accuracy analysis

To further verify the practical competence test accuracy of different models, this paper
selects the indicators accuracy, F1, mean absolute error (MAE), root mean square error
(RMSE), and ROC curve to evaluate the ECTRANS, TASC, MMDRBN, HFGNN,
GATGRU, and MSFGCN models, as shown in Table 1. The accuracy and F1 of
MSFGCN are 94.85% and 93.56%, respectively, which are improved by at least 3.46%
and 2.5% compared to the baseline models. The MAE and RMSE of MSFGCN are
0.0826 and 0.1153, respectively, which are reduced by at least 21.48% and 22.67%
compared to ECTRANS, TASC, MMDRBN, HFGNN, and GATGRU. The MSFGCN
model not only optimises the GNN based on a multi-stage adaptive fusion method but
also applies the optimised GNN to practical competence tests, significantly improving the
test accuracy.

Table 1 Accuracy comparison of different methods in pragmatic ability testing
Model Accuracy (%) FI1 (%) MAE RMSE
ECTRANS 82.71 81.49 0.1864 0.2037
TASC 85.21 86.34 0.1739 0.1892
MMDRBN 88.63 87.29 0.1423 0.1683
HFGNN 89.21 90.82 0.1152 0.1475
GATGRU 91.39 91.06 0.1052 0.1391
MSFGCN 94.85 93.56 0.0826 0.1153

The ROC curves of different models are shown in Figure 3, with AUC values for
ECTRANS, TASC, MMDRBN, HFGNN, GATGRU, and MSFGCN being 0.7852,
0.8236, 0.8401, 0.9029, 0.9374, and 0.9756, respectively. MSFGCN improves by
24.25%, 18.46%, 16.13%, 8.05%, and 4.08% compared to ECTRANS, TASC,
MMDRBN, HFGNN, and GATGRU, respectively. ECTRANS uses a transformer model
to implement a pragmatic ability test, but the performance of transformer models highly
depends on the quality and diversity of the training data. If the training data does not
adequately cover different language backgrounds, cultural customs, or social scenes, the
model may not accurately evaluate the pragmatic abilities of specific groups. TASC
performs pragmatic ability prediction through fine-grained temporal alignment and
cross-modal semantic interaction. However, fine-grained temporal alignment requires
precise matching of corresponding relationships across modalities on the timeline, but
existing datasets often lack such high-precision annotations. MMDRBN involves
multimodal data such as speech, text, and body language, and the synchronisation of
these data on the timeline is crucial. However, the sampling frequency and start time of
different modalities may vary, leading to difficulties in temporal alignment. HFGNN’s
pragmatic ability prediction model based on heterogeneous graphs integrates multiple
types of nodes and complex relational edges, but in pragmatic ability data, certain
pragmatic behaviours may have very few samples, leading to sparsity in the
corresponding nodes and edges in the heterogeneous graph. The GATGRU pragmatic
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ability prediction model based on GAT captures complex interaction relationships by
dynamically assigning attention weights between nodes. However, the context in
pragmatic ability tests may change rapidly, but GAT is typically based on static graph
structures, making it difficult to update node features or attention weights in real-time to
reflect dynamic changes. MSFGCN improves prediction accuracy by introducing a
multimodal fusion module and a long-range feature fusion module.

Figure 3 ROC curve for the pragmatic competence test method (see online version for colours)
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Figure 4 Visualisation results for the three-category task in the pragmatic competence test,
(a) distribution of raw pragmatic competence data, (b) distribution of raw pragmatic
competence data processed by MSFGCN (see online version for colours)
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Furthermore, Figure 4 shows the visualisation results of the three-class task in the
pragmatic ability test task. The three colours represent different types of pragmatic ability
categories. Figure 4(a) displays the original visualisation of the data, where feature points
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of different categories are intertwined and difficult to distinguish clearly. However, in
Figure 4(b), the feature points after processing by MSFGCN show a more distinct
clustering effect, and clear boundaries are formed between feature points of different
pragmatic ability categories. This fully demonstrates that the introduction of the
multimodal fusion module and the long-range feature fusion module not only enables the
model to fully utilise multimodal information but also significantly improves the model’s
expressive capacity and classification efficiency in complex pragmatic ability test tasks.

6 Conclusions

Current methods of pragmatic ability tests focus more on the capture of local contexts
and often overlook the integration of long-range pragmatic features when handling
extended pragmatic information. To address these issues, this paper first proposes a GNN
based on multi-stage adaptive fusion, called MSFGCN. MSFGCNN decomposes the deep
GNN model into a multi-stage training framework, where each stage contains several
feature extraction layers. The main function of the deep learning module based on
multi-stage training is to gradually incorporate deep graph information into a shallow
model for training a more powerful shallow model. Subsequently, a pragmatic ability
prediction model based on MSFGCN and multimodal feature fusion is proposed. The
model consists of: a multimodal fusion module and a long-range sentiment fusion
module. The multimodal fusion module consists of three BFM units for fusing unimodal
features. The long-range feature fusion module is used to construct sentence information,
capture long-range speaker pragmatic information, and fuse these two types of
information. During the sentence information construction process, the edges in the graph
are enhanced through a knowledge base. Experimental results show that the pragmatic
ability test accuracy and AUC of the proposed model are 94.85% and 0.9756,
respectively, which are improved by at least 3.46% and 4.08% compared to baseline
models, thereby positively promoting the development of language teaching and natural
language processing applications.

Although the proposed model has achieved high accuracy in pragmatic ability tests,
the current method of constructing pragmatic data into graph structures still has room for
improvement in terms of node and edge definitions. Future research can explore more
refined node partitioning strategies, for example, not only using words and sentences as
nodes, but also incorporating abstract concepts such as pragmatic rules and pragmatic
strategies as nodes, so that the graph structure can more comprehensively and accurately
reflect the complexity of pragmatic relationships. At the same time, the method for
calculating edge weights can also be further optimised, with a dynamic weight
mechanism introduced to adjust edge weights in real-time according to different
pragmatic scenarios and tasks, thereby better capturing the dynamic associations between
pragmatic information.

Acknowledgements
This work is supported by the National Social Science Fund of China ‘The Relationship

Between Pragmatic Ability and Executive Function in Preschool Children and Its
Applications’ (No. 23KY1026).



148 T. Xie et al.
Declarations

All authors declare that they have no conflicts of interest.

References

Ai, W., Shou, Y., Meng, T. and Li, K. (2024) ‘DER-GCN: dialog and event relation-aware graph
convolutional neural network for multimodal dialog emotion recognition’, [EEE Transactions
on Neural Networks and Learning Systems, Vol. 36, No. 3, pp.4908—4921.

Alsuhaibani, Z. (2022) ‘Developing EFL students’ pragmatic competence: the case of compliment
responses’, Language Teaching Research, Vol. 26, No. 5, pp.847-866.

Chen, J. (2023) ‘A novel model for language training assessment based on data mining and
Bayesian network’, Tehnicki Vjesnik, Vol. 30, No. 3, pp.771-778.
Chowanda, A., Sutoyo, R. and Tanachutiwat, S. (2021) ‘Exploring text-based emotions recognition

machine learning techniques on social media conversation’, Procedia Computer Science,
Vol. 179, pp.821-828.

Dai, H. and Zhao, T. (2022) ‘Intelligent analysis strategy of pragmatic failure in cross-cultural
communication based on convolution neural network’, Mobile Information Systems, Vol. 20,
No. 3, pp.78-91.

Eragamreddy, N. (2025) ‘The impact of Al on pragmatic competence’, Journal of Teaching
English for Specific and Academic Purposes, Vol. 8, pp.169-189.

Fathi, M.J., Kafipour, R., Kashefian-Naeeini, S. and Shahsavar, Z. (2025) ‘The impact of reflective
teaching on EFL learners through implicit and explicit pragmatic competence instructions’,
Reflective Practice, Vol. 26, No. 2, pp.292-310.

Flores, M.J., Gamez, J.A. and Martinez, A.M. (2014) ‘Domains of competence of the semi-naive
Bayesian network classifiers’, Information Sciences, Vol. 260, pp.120-148.

Foumani, N.M., Tan, C.W., Webb, G.I. and Salehi, M. (2024) ‘Improving position encoding of
transformers for multivariate time series classification’, Data Mining and Knowledge
Discovery, Vol. 38, No. 1, pp.22-48.

He, Z., Li, W. and Yan, Y. (2022) ‘Modeling knowledge proficiency using multi-hierarchical
capsule graph neural network’, Applied Intelligence, Vol. 52, No. 7, pp.7230-7247.

Ho, Y. and Wookey, S. (2019) ‘The real-world-weight cross-entropy loss function: modeling the
costs of mislabeling’, IEEE Access, Vol. 8, pp.4806-4813.

Kentmen, H., Debreli, E. and Yavuz, M.A. (2023) ‘Assessing tertiary Turkish EFL learners’
pragmatic competence regarding speech acts and conversational implicatures’, Sustainability,
Vol. 15, No. 4, pp.38-52.

Kim, B., Chung, K., Lee, J., Seo, J. and Koo, M-W. (2019) ‘A Bi-LSTM memory network
for end-to-end goal-oriented dialog learning’, Computer Speech and Language, Vol. 53,
pp-217-230.

Li, W., Chen, Q., Gu, G. and Sui, X. (2025) ‘Object matching of visible—infrared image based on
attention mechanism and feature fusion’, Pattern Recognition, Vol. 158, pp.11-20.

Li, Z., Lin, W. and Zhang, Y. (2023) ‘Drive-by bridge damage detection using Mel-frequency
cepstral coefficients and support vector machine’, Structural Health Monitoring, Vol. 22,
No. 5, pp.3302-3319.

Ma, G., Yang, X., Zhang, B. and Shi, Z. (2016) ‘Multi-feature fusion deep networks’,
Neurocomputing, Vol. 218, pp.164—171.

Parola, A., Gabbatore, 1., Berardinelli, L., Salvini, R. and Bosco, F.M. (2021) ‘Multimodal
assessment of communicative-pragmatic features in schizophrenia: a machine learning
approach’, Nature Partner Journal Schizophrenia, Vol. 7, No. 1, pp.28—43.



Enhancing accuracy of pragmatic ability tests 149

Planques, V. and Julian, M. (2018) ‘English language learners’ spoken interaction: what a
multimodal perspective reveals about pragmatic competence’, System, Vol. 77, pp.80-90.

Prasatyo, B.A., Ali, H.V. and Hidayati, D. (2023) ‘Current studies on pragmatics competence in
EFL learning context: a review’, Jurnal Sinestesia, Vol. 13, No. 2, pp.985-994.

Rasgado-Toledo, J., Lizcano-Cortés, F., Olalde-Mathieu, V.E., Licea-Haquet, G., Zamora-Ursulo,
M.A., Giordano, M. and Reyes-Aguilar, A. (2021) ‘A dataset to study pragmatic language and
its underlying cognitive processes’, Frontiers in Human Neuroscience, Vol. 15, pp.66—80.

Salamanti, E., Park, D., Ali, N. and Brown, S. (2023) ‘The efficacy of collaborative and
multimodal learning strategies in enhancing English language proficiency among ESL/EFL
Learners: a quantitative analysis’, Research Studies in English Language Teaching and
Learning, Vol. 1, No. 2, pp.78-89.

Sinclair, J., Jang, E.E. and Rudzicz, F. (2021) ‘Using machine learning to predict children’s reading
comprehension from linguistic features extracted from speech and writing’, Journal of
Educational Psychology, Vol. 113, No. 6, pp.24-35.

Verma, A.K., Saxena, R., Jadeja, M., Bhateja, V. and Lin, J.C-W. (2023) ‘Bet-GAT: an efficient
centrality-based graph attention model for semi-supervised node classification’, Applied
Sciences, Vol. 13, No. 2, pp.84-107.

Wahlster, W. (2023) ‘Understanding computational dialogue understanding’, Philosophical
Transactions of the Royal Society A, Vol. 381, No. 22, pp.49-63.

Yan, B-C. and Chen, B. (2024) ‘An effective hierarchical graph attention network modeling
approach for pronunciation assessment’, I[EEE/ACM Transactions on Audio, Speech, and
Language Processing, Vol. 32, pp.3974-3985.

Zainal, A.G., Misba, M., Pathak, P., Patra, 1., Gopi, A., El-Ebiary, Y.A.B. and Prema, S. (2024)
‘Cross-cultural language proficiency scaling using transformer and attention mechanism
hybrid model’, International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, pp.74-89.

Zhou, Y., Zheng, H., Huang, X., Hao, S., Li, D. and Zhao, J. (2022) ‘Graph neural networks:

Taxonomy, advances, and trends’, ACM Transactions on Intelligent Systems and Technology
(TIST), Vol. 13, No. 1, pp.1-54.



