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Abstract: This research proposes a CLST architecture that integrates multiple
data sources using Siamese neural networks (SNN) to identify unusual financial
transactions. By leveraging spatial, temporal, and multimodal feature learning
alongside class imbalance handling, the model outperforms existing methods in
recall, Fl-score, and precision, enabling a robust early- warning system for
fraud prevention. Multisource data fusion enhances detection accuracy by
combining complementary information from diverse financial streams. While
prior studies have applied rule-based, or machine learning methods to unimodal
datasets, and recent multimodal approaches show promise, challenges remain
in complex financial networks. The proposed hybrid method combines CNNss,
LSTMs, MLPs, and SMOTE to address class imbalance, with SNN-based
feature extraction improving robustness. Experiments demonstrate maximum
precision of 0.937 and an F1-score of 0.787, with SNN + RF and SNN + SVM
outperforming traditional and SMOTE-based models. Statistical analysis
confirms SNN-based models achieve superior stability and balanced accuracy
in anomaly detection.
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1 Introduction

1.1 Definition of anomaly detection and its importance in real-world
applications

Finding data patterns that are really out of the ordinary is known as anomaly detection
(Herden, 2020). Problems with the system, security breaches, fraudulent transactions, or
even medical issues can be signalled by these outliers. A prompt and accurate detection
of anomalies is critical for preserving system integrity, lowering risks, and assuring
operational efficiency in domains such as transportation, healthcare, cybersecurity, and
finance.

1.2 Overview of multimodal data

Multimodal data is the result of the growing complexity and diversity of data streams
produced by modern systems (Hanchuk and Semerikov, 2025). Structured logs, pictures
(like security footage), sounds (like environmental noises or voice commands), data from
sensors (like Internet of Things readings), and text are all examples of this. Different
imaging modalities pick up on other parts of the system’s behaviour; when combined,
their distinct insights help fill in the gaps in our knowledge of typical and atypical
patterns.

1.3 Why traditional anomaly detection methods fall short with complex,
multisource data

Most anomaly detection methods have been developed for use with homogeneous or
single-modal data sets (Rella, 2022). The intricate interdependencies, high
dimensionality, and variability of multimodal datasets are too much for these approaches
to manage. Reduced detection accuracy and missed anomalies are typical results of their
inability to capture contextual cues that extend across several senses.

1.4 Purpose and significance of multimodal anomaly detection

In order to overcome these shortcomings, multimodal anomaly detection integrates data
from various sources, enabling more thorough contextual analysis and improved anomaly
detection accuracy (Chidibere, 2024). Not only does this method make detection more
accurate, but it also makes it more resilient when dealing with inadequate or noisy data. It
is feasible to find minor or concealed abnormalities that unimodal techniques would
overlook by utilising complementary modalities. Data extraction for anomaly detection is
one application of automated analysis. A pattern might be considered anomalous when it
arises in a sample that differs from the norm or the most common sample (Mikuni, 2024).
Inconsistent results, outliers, or anomalies describe these strange patterns. The statistical
community initially recognised the need for anomaly detection in the early 1800s, and
since then, numerous methods for its detection have been created. Back then, anomaly
identification had to be done by hand by experts in each discipline via eye inspection. But
there were issues with manual detection as well. The drawbacks of manual detection
include, but are not limited to, the following: uncertainty, long detection times, human
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mistakes, etc. Anomaly detection solutions that use machine learning techniques have
recently been developed as a result of those above (Shiva, 2024).

Recently, anomaly detection has emerged as a significant obstacle for deep learning
and machine learning. Modern landscapes rely heavily on automated anomaly detection
systems because human categorisation becomes impractical due to the sheer volume of
samples. Management, astronomical data, visible light curves, credit card fraud,
cybersecurity breaches, critical safety system defects, healthcare, insurance, military
surveillance, and many more applications are among the many that make use of anomaly
detection (Palakurti, 2024). This essay will take a close look at recent research on
anomaly detection. Use RNNs to identify outliers in production system time series data.
With this technology, makers could identify any irregularities that occurred while the
system was running. Using time-series data, the model was able to detect three common
types of irregularities in a diesel engine assembly process, which allowed for an
evaluation of its performance. In order to find outliers in univariate time series, they
suggested a split framework (Manafi, 2025). In this inquiry, time series forecasting was
the initial stage. The second stage centred on identifying outliers. To make predictions,
the study employed CNNs and LSTM networks (long short-term memory with
bidirectional functionality). After detection, the mean absolute error approach was used
consistently.

An RLAD (reinforcement learning from pixels for autonomous driving) hybrid deep
learning approach was used for anomaly identification. The security of industrial control
system (ICS) networks has long piqued the curiosity of academics around the globe, and
anomaly detection systems have recently grown in importance. The accuracy of assessing
the health state of industrial equipment has been significantly improved in recent years by
using anomaly detection approaches that rely on multi-physical quantity fusion (Riegler,
2021). Systematic investigations on communication protocol security and fuzzy testing
frameworks have illuminated new approaches to evaluating vulnerabilities in ICS
networks. Traditional anomaly detection approaches using offline processing or static
analysis are inadequate for meeting the needs of industrial control systems for real-time
monitoring and rapid response. There are usually extensive temporal relationships in ICS
network traffic data (Koay, 2023). Anomalies in traffic patterns can be effectively
detected by leveraging these relationships within time series. The requirement for ICS
network anomaly detection in real- time, along with these features, has led to the
emergence of real-time traffic prediction as an exciting area of study. This method offers
strong support for anomaly identification by enabling continuous monitoring and
prediction of ICS network traffic patterns. There are a number of obstacles that this line
of inquiry must overcome, though. Traffic data in ICS networks is heterogeneous,
nonlinear, and extremely noisy due to the many ways in which industrial control devices
operate (Lee, 2023).

Complicating real-time traffic analysis is the fact that data from different devices
frequently varies significantly in terms of size, frequency, and sampling methodologies.
Data from industrial control systems (ICS) traffic is also very dynamic, changing as
production tasks do. Due to these changes, traffic prediction-based anomaly detection
algorithms are becoming more and more challenging (Xu and Shang, 2025). Finding
abnormalities and correctly retrieving relevant data in real time across such a diverse and
ever-changing ICS environment is the main problem. Information about traffic
prediction-based real-time anomaly detection algorithms is lacking in the context of
industrial control networks. More so, the existing corpus of research is beset by the
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following issues. By utilising multisource financial data fusion, this research presents a
new method for abnormal transaction detection that overcomes the drawbacks of
conventional single-modality approaches. The significance of identifying irregularities,
such as fraud or system breakdowns, in real-time financial settings characterised by
diverse, multi-dimensional, and dynamically produced data is emphasised. An
early-warning mechanism that incorporates multimodal data sources to strengthen
anomaly detection systems and improve their accuracy and robustness is designed as part
of the study’s contribution. Using cutting-edge techniques like deep learning models
(e.g., LSTM, CNN, VAE), the study demonstrates how combining various data sources
improves contextual understanding and decreases false positives.

The research also shows how these methodologies can be applied to financial and
industrial control systems, demonstrating how the suggested solution can adapt to
complex and dynamic operational situations. Financial fraud prevention, system stability,
and strategic decision-making are all greatly enhanced by this fusion-based detection
approach, which also provides timely insights. The following structure is used throughout
this article: In Section 2, we take a look at what is known about combining financial data
from several sources to spot questionable activities. The methodology of the suggested
early-warning mechanism is described in Section 3. Section 5 brings the investigation to
a close, while Section 4 summarises the results and discusses their ramifications.

2 Literature review

Several theoretical models provide potential definitions of creative accounting. From an
accounting standpoint, specific research has shed light on this phrase, highlighting how it
represents different approaches to reconciling presentational financial outcomes with the
underlying activities (Sabau, 2021). A defining characteristic of creative accounting is the
wilful deviation from generally accepted accounting principles in order to achieve a result
in reporting. The more you look into it, the more you’ll see that these kinds of things
happen when businesses attempt to alter their accounting methods from the legal
framework to suit their managerial objectives better. Some have proposed a two-tiered
understanding, with the first tier addressing efforts to regulate emerging economic
phenomena that are not yet accounted for by established accounting rules (Durana, 2022).
Generally speaking, this word is defined at the second level as actions that cause financial
statement falsification. Innovative Financial Accounting: Its Origins and Applications
offers a scholarly perspective. From this point of view, creative accounting is all about
getting financial data from its raw, recorded form and making it fit the owners’ intended
picture. Manipulating legally allowed rules or, in some cases, ignoring specific
restrictions, can accomplish this (Urdaneta-Camacho and Guevara-Pérez, 2022).

While innovative bookkeeping practices may help companies manipulate their
financial outcomes, this does not necessarily result in monetary benefits, according to
another critical assessment that has been added to the discussion. However, such tactics
could have a detrimental effect on the company’s performance and sustainability in the
long run (Blazek and Duricova, 2025). There is a wide range of reasons for creative
accounting. Previous studies have shown that financial professionals have systematic
behavioural patterns, which supports a shared explanation. These patterns include income
smoothing and meeting defined performance targets, in addition to more traditional
motivations like tax minimisation and manipulating investor impressions.
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2.1 Related work

The stability and dependability of contemporary distributed systems depend on log-based
anomaly detection. The principal source of operational intelligence in production
environments is system logs (Guo, 2021). This is because microservice designs in these
settings can involve hundreds of interconnected components. I can’t stress enough how
important they are: To start, logs show how the system is behaving in real time, which
helps find problems before they affect the quality of service. Secondly, they are crucial
for comprehending and avoiding the propagation of faults because they record the
intricate interactions among dispersed components. Thirdly, logs are essential for system
maintenance and root cause investigation in large-scale deployments since they are the
sole complete source of diagnostic information (He, 2021). Using effective log-based
anomaly detection, recent industrial studies found that system downtime can be reduced
by up to 70% and MTTR by 45%. In cloud computing environments, it is crucial to avoid
system failures and maintain service level agreements (SLAs). This is because a single
failure could impact several services.

2.2 Standard approaches of identifying abnormalities

Many production settings rely on traditional methods of log-based anomaly detection as
their basis for system reliability engineering. Preventing system breakdowns and
preserving operational stability have been achieved through the use of these strategies
(Xie, 2020). In systems that are vital to the nation’s infrastructure, where the ability to
spot abnormalities in real time is essential for avoiding catastrophic failures, their
significance becomes even more apparent. For instance, by identifying early warning
signals in component interactions, classical log analysis methods have effectively
avoided system-wide disruptions in large-scale cloud systems. Research conducted by
prominent cloud providers indicates that, when executed correctly, proactive anomaly
detection using log analysis can avert as many as 85% of possible system failures.
Statistical, rule-based, and machine learning techniques are the main categories into
which these more conventional approaches fall. In order to spot outliers, rule-based
methods specify patterns or thresholds. Although simple, these solutions necessitate a
great deal of expertise in the relevant topic and regular manual upkeep (Liu, 2024).

2.3 Traditional methods for anomaly detection

This section will go over the four primary categories of conventional anomaly detection
techniques. Methods based on density estimation. One well-known method for detecting
outliers is the local outlier factor (LOF) methodology. To deal with complex,
multi-dimensional data, the clustering with outlier factor (COF) approach uses the
connection principle. The DAGMM algorithm integrates neural networks with a
Gaussian mixture model (GMM) to identify anomalies (Xu and Wu, 2021).

Approaches centred on reconstruction. These techniques compare the original data
with the rebuilt data in order to identify outliers, after training a model with normal data.
Present a hybrid model that combines LSTM and VAE to extract and rebuild features
from raw temporal data. Although they utilised a GRU to extract latent features rather
than a VAE model, our process was identical to theirs (Wu and Xu, 2021). Anomaly
detection is handled by TimesNet using standard algorithms in computer vision, and
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time-series data is translated from one dimension to two dimensions using a quick
Fourier transformation. In addition to traditional methods, generative adversarial
networks (GANs) have found usage in fraud detection.

2.4  Multimodal methods for anomaly detection

Recently, multimodal learning (MML) has emerged as a significant field of study due to
the advancements in cross-domain data fusion (Zhou and Ma, 2022). Its goal is to
strengthen and enhance machine learning and Al systems’ capabilities across a range of
tasks by making use of complementary information across diverse modalities. Feature
vectors from several modalities are typically combined during training by traditional deep
learning methods. Each modality is normally processed independently. The feature-level
fusion approach disregards the interdependence and complementary nature of modalities
due to its oversimplification. One well- known multimodal method for detecting
anomalies in industrial settings makes use of 3D point clouds and RGB images (Qu and
Liu, 2024). Introduced a novel hybrid fusion approach for multimodal anomaly detection;
this scheme fuses RGB features with point cloud features simultaneously, utilising a
contrast loss-based unsupervised feature fusion module. When it comes to RGB and
visible-light multimodal industrial anomaly detection, given the challenges of
representing and dissecting the essential parts unique to each modality while also taking
into consideration features that can be shared across modes, a multimodal picture fusion
approach was proposed. Developed a multimodal multi-label recognition transformer by
integrating a convolutional neural network (CNN) with a transformer; this model can
identify numerous things in a single image at the same time.

3 Proposed methodology

We have included a flowchart in this paragraph to help clarify the suggested process.
Begin by preparing the data. Then, use a Siamese neural network (SNN) to extract
features. Next, classify the data using several models. Finally, evaluate the findings.
Figure 1 is a flow diagram that shows the whole procedure.

Figure 1 An illustration of the process that is suggested for detecting anomalies (see online
version for colours)

Start: Input data ——>» Data Preprocessing —— Anomaly financial
transaction

CNN for Extracting l
Performance / Spatial Features
Evaluation Optimized
Proposed Hybrid

- Precision, Recall, \ LSTM for Temporal Model Desi
gn

F1-Score, G- Pattern Learning
Mean, Balanced
peciracy Fully Connected
l Output Layer

End
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3.1 Data preprocessing

Preprocessing is essential for successful modelling due to the high class imbalance and
anonymised data:

e Normalisation: preprocessing is essential for successful modelling due to the
high-class imbalance and anonymised data:
X-X, min
X/ =2 " Amin (1)
X, max ~ X, min
Reshaping: For CNN compatibility, the data was transformed into 2D arrays. Every
instance followed a 6 x 5 matrix structure.

e Class imbalance handling: synthetic minority over-sampling technique (SMOTE)
(Chou, 2025) used in conjunction with undersampling allows a more equitable
training set to be generated to tackle the significant class disparity.

e Train-test split: to ensure stratified sampling to maintain the class ratio, the data was
split 80/20 between the training and test sets.

yi(wxi +b)21-¢,& 20, 2)

3.2 Anomaly financial transaction

Financial transactions across time can be effectively modelled using transaction
networks, which are typically depicted as weighted directed temporal networks. In this
type of network, a path is an ordered set of n separate edges that connects two nodes i and
j across a time interval T. Graphically, this kind of network might look like GT = (V,
LT).

Pl = {(i, vi),e(vi, ), e(vz, Vi, oo, e(Vaor ))}

with v, € V and e(vy, i1 ) € Ly forallxe {1,---,n—1}

3)

Next, we find the path’s weight, £’; by

> " (e(vvia) )

1

To represent the weight of each edge along the path Py, it has W(P;) = {w(e(v, »)), ...,
w(e(v,_1, v»))}. Every element i and every element j in graph G can be found in the set

Path,-(j”) (Gr) if there is a pathway in G of length n. In actual situations, agents often

employ intermediaries while transferring funds in order to evade detection of fraudulent
activities. At the outset, you may not know how many intermediary groups there are or
how long each path is from x to y. Each transaction generates a path of length #+1 in an
n-intermediary transaction network. With a starting node x and a distance #, in order to
establish the transaction flow, the weird flows pipeline verifies the maximum allowable
transmission from node x to other nodes within that distance. The collection of all
potential pathways that connect x and y up to a limit of n paths is defined as Flow"(x, y)
according to equation (3).
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Flow(x, y)={R, ..., P}, with P € Paths}'; (Gr ) 4

By minimising the weight of the links that link nodes x and y, the transaction network of
node x specifies the maximum amount that node y may transmit to node x via
intermediaries. For x-to-y transaction flows with multiple sets of intermediaries, the
weight is the total of all the minimal weights. We state the maximum length » for the
flow weight from x to y as:

W (Flow"(x, y)) = Zi=lz,epa£}1(%,)(z,-)(G")(Zi ), with Z; € Paths™ (G, ) (6)
Figure 2 shows a network that processes transactions. Beyond the edge weight ex, y,
more factors must be considered in order to examine the hypothetical amount of money
that is transferred from x to y. Consideration of intermediate nodes like 4, k, and z is
critical. The minimal minimum for each route is displayed in Table 1. The sum of all the
minimal weights for all the pathways is this flow weight of 1,850 from x to y.

Figure 2 Transaction flow network showing intermediary nodes (h, k, z) between source node x
and destination node y with weighted path values (see online version for colours)

200

200 o 500

@ intermediary

Possible attempts to hide a more strongly weighted direct edge could be the #, &, and z
paths that connect x and y. The user has Table 1. A two-column table is depicted in the
image. ‘P’ and’min(W(P_i))’ are the labels of the first and second columns, respectively.
The table’s rows detail several groupings of edges along with the lowest weights assigned
to them.

Here is the content of the table:

e the smallest weight that may be applied to the set of edges {e(x, ), e(h, k), e(k, y)} is
100

e all edges in the set {e(x, k), e(k, y)} can be given a weight of zero
e aweight of 500 is the minimum for the set of edges {e(x, z), e(z, y)}
e anedge set {e(x, y)} can have a minimum weight of 250.

All pathways from x to y with a maximum distance of 3 are listed in Table 1, along with
their associated minimum weights. Keep in mind that a network’s temporal aggregation
during the interval T is just a rough estimate. Each edge along a valid route must satisfy
the requirement. Every transaction is associated with a timestamp ¢, hence, tei < fei + 1.
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Table 1 Minimum weights of different paths between nodes in the network
P; Min (w(Py)
{e(x, h), e (h, k), e (k, y)} 100
{e(x, k), e (k, )} 150
le(x, 2), e (z, )} 200
{e(x, y)} 250

3.3 Optimised proposed hybrid model design

In contrast to earlier hybrid architectures, our model employs a parallel approach to
merge spatial and temporal data using an MLP. For underrepresented groups, this layout
makes it easier to detect and prevent fraud. To identify fraudulent charges on credit cards,
it is necessary to build a hybrid optimised CLST model that incorporates SMOTE. By
combining three distinct deep learning architectures, the model makes fraud detection
more accurate. The use of a CNN analysis to extract geographical data is necessary for
identifying trends in transaction patterns. The purpose of this approach is to find patterns
in the data over time by analysing the interdependencies in sequences of monetary
transactions using long short-term memory (LSTM). Minimal processing occurs at the
MLP classification layer, which improves prediction accuracy by integrating spatial and
sequential data. The model is able to handle class imbalance and get better performance
results through the integration of SMOTE with hyperparameter change. CNN for Spatial
Feature Extraction: CNNs are built using three main layers: convolutional, pooling, and
fully connected.

These layers automatically adapt to new environments by means of backpropagation,
allowing the network to learn spatial hierarchies (Mazumder et al., 2025). Neural
networks, coupled with weights and biases that can be learned, make up the structure.
Inside the structure, you’ll find layers that are designed for CNNs and fully connected
layers. Convolutional layers of a CNN take in data and use it to extract spatial features.
Equation (2) describes the structure of a convolution process as follows:

S+ = f@)gt-r)d. ™)

For 2D input data (such as pictures or transaction details), the convolution procedure can
be stated discretely as follows:

(I, )=, > (i=m, j=n) K(m,n) @®)

Where the structure of the input feature map is represented as follows:

The output feature map index is denoted by (7), while the kernel or filter is denoted by
K. Forecasting time series with learned stochastic random forests (LSTMs): the efficacy
of LSTM models has been demonstrated in several time series prediction applications,
such as CCF detection. A wide variety of gates is at your disposal including input, output,
and forget gates, among many others. Locating and taking into consideration temporal
dependencies in sequential data are the primary goal of long short-term memory RNNs.
A summary of the LSTM cell’s equations is as follows:
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fi=o(ws.[ht, x]+by) 9)
i =0 (w.[hor, x ]+ b;) (10)
C, = tanh (W, [y, x| +b.) (11)
C = f.Ca +i -G (12)
0 = (Wo.[ucrs ]+ 0, ) Iy (13)
=0, -tanh C, (14)

where time is represented by xb. At time b — 1, the concealed state is represented by ¢ ib.
The condition of the cell at time 7 is represented by qb. The sigmoid activation function is
represented by o, and weights and biases are denoted by W and b, respectively. We
integrated sequential and spatial data into a single layer to enhance data management.
The MLP’s dense layers are fed the combined results of the CNN and LSTM into a
feature vector, which is used for the final prediction. As a result, the model can more
accurately detect correlations that contribute to anti-fraud efforts. The output layer with
full connection: the component of the dense layer responsible for output is responsible for
classifying transactions as either legitimate or fraudulent. It uses many fully connected
layers to handle the combined CNN and LSTM output. Network computing is done by
the hidden layers, with prediction made by the input and output layers. It is possible to
execute the following calculation for every neuron in a dense layer:

yz(z;w,-x,+b) (15)

where input feature xi and weights wi are represented by the bias term is denoted by
examples of activation functions are ReLU and sigmoid. In order to do binary
classification, the last output layer makes use of a sigmoid activation function, which is
supplied by:

$=c(W h+b) (16)

where the projected probability of the positive class is represented by l;, and 4 is the
output from the preceding hidden layer. In order to get the most out of each part, the best
CLST architecture takes advantage of its unique capabilities. CNN layers successfully
capture critical inter-feature interactions by extracting spatial characteristics and local
patterns from transaction vectors. By modelling sequential dependencies across
transactions, the LSTM layers are able to detect the temporal patterns of behaviour
typically associated with fraudulent operations. Lastly, robust decision-making and
high-level feature integration are made possible by a dense layer for categorisation that
consists of numerous fully connected layers. Last but not least, this research employs a
thick layer to convert the learnt feature representations into reliable fraud predictions. In
Figure 3, we can see the CLST architecture that has been optimised.
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Figure 3 Optimised CLST layer architecture (see online version for colours)
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4 Results and discussion

4.1 Various models’ comparative performance
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The results of several models’ combined performance are shown in Table 2. Regularly,
our proposed feature extraction methods outperform state-of-the-art algorithms on
measures such as Balanced Accuracy, G-Means, and F1-scores. These methods include
SNN + RF and SNN + SVM. A higher false positive rate is a result of traditional
anomaly detection algorithms’ poor Precision and Specificity, despite their high Recall.
This is in contrast to more modern methods like IF and OCSVM. While OCSVM and IF
do a good job of catching abnormalities, our results show that their tradeoff in accuracy
makes them impractical for uses where false alarms are expensive.

Table 2 Benchmarking model performance on five datasets
- Balanced o
Model Precision Recall Fl-score G-mean Specificity
accuracy
IF 0.088 0.417 0.136 0.469 0.666 0.916
(0.125) (0.480) (0.191) (0.412) (0.209) (0.092)
OCSVM 0.063 0.841 0.111 0.646 0.674 0.508
(0.069) (0.248) (0.116) (0.109) (0.123) (0.010)
RF 0.745 0.666 0.703 0.727 0.833 1.000
(0.430) (0.397) (0.412) (0.414) (0.198) (0.000)
SVM 0.861 0.636 0.705 0.768 0.818 0.999
(0.173) (0.349) (0.340) (0.239) (0.174) (0.001)
SMOTE + RF 0.736 0.719 0.727 0.757 0.859 0.999
(0.425) (0.413) (0.419) (0.426) (0.207) (0.001)
SMOTE + SVM 0.727 0.771 0.583 0.819 0.880 0.989

(0.389)

(0.404)  (0.445)

(0.333)

(0.199) (0.017)
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Table 2 Benchmarking model performance on five datasets (continued)
.. Balanced s
Model Precision Recall Fl-score G-mean Specificity
accuracy
SNN 0.868 0.660 0.677 0.755 0.829 0.999
(0.229) 0.417) (0.398) (0.332) (0.208) (0.001)
SNN + RF 0.937 0.741 0.765 0.821 0.870 0.999
(0.087) (0.372) (0.338) (0.287) (0.186) (0.001)
SNN + SVM 0.791 0.839 0.787 0.902 0.918 0.997

(0212) (0275  (0231)  (0.174)  (0.137) (0.001)

We further explored the model’s performance ranking and its statistical significance by
employing Scott-Knott clustering analysis, utilising F1-score, G-mean, and balanced
accuracy as the key metrics. As illustrated in Figure 4, the F1-score rankings demonstrate
considerable variability. Traditional anomaly detection algorithms, SMOTE-based
methods, and SNN-based models all rank well in this category (Vilella et al., 2025).
G-Mean and Balanced Accuracy did not show any statistically significant differences
amongst the models, suggesting that the models’ overall ranking is consistent across
these metrics, regardless of whether the algorithms in question have different capabilities.

Figure 4 Scott-Knott clustering outcomes for five datasets, evaluated with F1-score, balanced
accuracy, and g-mean (see online version for colours)
Model Perfermance Cluster by Analysis
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4.2 Use case: as the conflict in Ukraine escalates, funds are moving between
major European nations.

The WeirdFlows tool was used in this example to investigate a financial crime. The
example shows how WeirdFlows can help find complex patterns that could hide financial
fraud using networks with different kinds of node aggregation. Following these
procedures will ensure that your data is protected to the extent that the law and the AFC
Digital Hub consortium have mandated. For example, after researchers receive their
anonymised BIC codes, the amounts are adjusted to the highest value in the time series.
To further ensure the data’s security, the data provider has requested that all nation names
be anonymised as C1, and C2. In this use case, we take a macro view of the financial
flows between two major European nations, examining the time from the start of the
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conflict in C3 and the EU’s economic sanctions. Figure 2 shows the weekly totals
transferred directly from C2 BICs to C1 BICs. At the point where the grey dashed line
appears in C3, the battle has begun. The economic fines did not affect the number of
transactions from C2 to C1 because the pattern remained constant. To find the maximum
data transfer rate from C2 to C1 BICs via a single intermediate, one can look at Figure 5,
which illustrates the time series of w(Flow3(C2, C1)).

Peaks rather than patterns can be seen in both datasets, particularly before the war’s
commencement. An AFC analyst can look into the Flow3(C2, C1) intermediaries to find
out more about the problem. The maximum length of the 86 pathways connecting C2 and
C1 is 3. You can see which intermediaries’ real value has increased the most compared to
the predicted moving average after February 24 in Table 3. Among all the transactions
that pass through C13, one jumps out with a 66% increase: country C13. Based on the
methods outlined in [reference], the BIC identified as BIC03C2, associated with 4, was
detected through the application of the anomaly identification pipeline on financial
graphs. Take advantage of this foreign data. [f AFCDigital Hub requests it, the data used
to support the study’s conclusions can be obtained from the ISP. Attention: Data
availability limits are in effect. A non-disclosure agreement will be requested of
researchers who wish to access the data for academic reasons.

Figure 5 Direct transfers between C2 and C1 BICs (see online version for colours)
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Note: On 24 February 2022, the conflict in Ukraine began, as seen by the vertical grey
dotted line.

It was accurately determined that country C2 was engaged in malevolent activities. After
the war in Ukraine begins, the transaction flow becomes heavier, reaching a high in May
and June (Figure 6). You can see this pattern when you use it as a starting point for
WeirdFlows and examine all transactions passing via country C13 that include BIC03C2
and country Cl1.
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Figure 6 Time series showing fluctuating amounts with smoothed 80-day and exponentially
weighted moving averages revealing underlying trends amid high volatility (see online
version for colours)
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Figure 6 show the relevance of the revenue stream Flow3(C2, C1), where C2 and C1 are
two nodes in a network, and C1 is the first node in the network. Table 3 Intermediaries in
Flow3 (C2, C1) showing the highest percentage growth between the actual value and the
expected value, as calculated by the moving average. Figure 7 shows the flow of
transactions from C2 to C1 via C4, whereas Figure 8 shows the same flow via C5.

Table 3 Country-wise difference values
Country Difference
Cc4 0.427
Co6 0.436
Cs 0.493
Cc7 0.535
C8 0.539
C9 0.549
C10 0.604
Cl1 0.636
C12 0.662
C13 0.665

Figures 7 and 8 display the flow weights calculated for aggregated networks every week
on the left side. The right side illustrates the individual edges of the flow.
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Figure 7 Funds being transferred from C2 to C1 through C4 (see online version for colours)
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Figure 8 Funds being transferred from C2 to C1 through C5 (see online version for colours)
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Figure 9 Improved model efficiency through hyperparameter optimisation (see online version
for colours)
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They are shown in Figures 4 and 5, respectively, as C2—C4 and C4-C1, and C5-C1 and
C2-C1. The w(Flow3(C2, C1)) weight begins to exhibit speedy development in May
2022. This growth can be better understood by dissecting the specific edges that
WeirdFlows uncovered. By the way, it is well-documented that very similar patterns of
intermediaries have been employed to avoid international sanctions5. Important
performance indicators were compared before and after hyperparameter adjustment in the
bar chart. Improved recall, precision, and F1-score — measures for identifying fraud —
were particularly brought about by the modified model (orange bars), as shown in
Figure 9.

Figure 10 displays the ROC-AUC curve and explains its importance. One way to
visualise the tradeoff between TPR and FPR is using the ROC curve (Jabeen, 2025). The
model’s performance is outstanding if the AUC is close to 1.0.

Figure 10 ROC-AUC curve for the CLST model evaluation (see online version for colours)
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5 Conclusions

This work shows that in complicated real-time contexts, anomaly transaction detection
and early-warning skills can be significantly improved by combining multisource
financial data with advanced deep learning architectures. Optimal CLST offers better
Recall, precision, and F1-scores than traditional and unimodal approaches by integrating
spatial-temporal feature extraction through CNN, LSTM, and MLP layers and resolving
data imbalance using SMOTE. This methodology may detect concealed transaction
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patterns and intermediate networks that might indicate fraudulent or sanction-evasion
activities; the use case on cross-border financial flows during geopolitical events shows
this in action. Strong, scalable, and context-aware anomaly detection are features offered
by the framework, which the results demonstrate may be used to control systems in the
financial and industrial sectors. In high-risk financial ecosystems, this strategy improves
accuracy in fraud prevention, operational resilience, compliance, and strategic decision-
making.
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