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Abstract: This research proposes a CLST architecture that integrates multiple 
data sources using Siamese neural networks (SNN) to identify unusual financial 
transactions. By leveraging spatial, temporal, and multimodal feature learning 
alongside class imbalance handling, the model outperforms existing methods in 
recall, F1-score, and precision, enabling a robust early- warning system for 
fraud prevention. Multisource data fusion enhances detection accuracy by 
combining complementary information from diverse financial streams. While 
prior studies have applied rule-based, or machine learning methods to unimodal 
datasets, and recent multimodal approaches show promise, challenges remain 
in complex financial networks. The proposed hybrid method combines CNNs, 
LSTMs, MLPs, and SMOTE to address class imbalance, with SNN-based 
feature extraction improving robustness. Experiments demonstrate maximum 
precision of 0.937 and an F1-score of 0.787, with SNN + RF and SNN + SVM 
outperforming traditional and SMOTE-based models. Statistical analysis 
confirms SNN-based models achieve superior stability and balanced accuracy 
in anomaly detection. 

Keywords: multisource financial data fusion; anomaly transaction detection; 
early-warning mechanism; multimodal learning; fraud detection; credit card 
transactions. 
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1 Introduction 

1.1 Definition of anomaly detection and its importance in real-world 
applications 

Finding data patterns that are really out of the ordinary is known as anomaly detection 
(Herden, 2020). Problems with the system, security breaches, fraudulent transactions, or 
even medical issues can be signalled by these outliers. A prompt and accurate detection 
of anomalies is critical for preserving system integrity, lowering risks, and assuring 
operational efficiency in domains such as transportation, healthcare, cybersecurity, and 
finance. 

1.2 Overview of multimodal data 

Multimodal data is the result of the growing complexity and diversity of data streams 
produced by modern systems (Hanchuk and Semerikov, 2025). Structured logs, pictures 
(like security footage), sounds (like environmental noises or voice commands), data from 
sensors (like Internet of Things readings), and text are all examples of this. Different 
imaging modalities pick up on other parts of the system’s behaviour; when combined, 
their distinct insights help fill in the gaps in our knowledge of typical and atypical 
patterns. 

1.3 Why traditional anomaly detection methods fall short with complex, 
multisource data 

Most anomaly detection methods have been developed for use with homogeneous or 
single-modal data sets (Rella, 2022). The intricate interdependencies, high 
dimensionality, and variability of multimodal datasets are too much for these approaches 
to manage. Reduced detection accuracy and missed anomalies are typical results of their 
inability to capture contextual cues that extend across several senses. 

1.4 Purpose and significance of multimodal anomaly detection 

In order to overcome these shortcomings, multimodal anomaly detection integrates data 
from various sources, enabling more thorough contextual analysis and improved anomaly 
detection accuracy (Chidibere, 2024). Not only does this method make detection more 
accurate, but it also makes it more resilient when dealing with inadequate or noisy data. It 
is feasible to find minor or concealed abnormalities that unimodal techniques would 
overlook by utilising complementary modalities. Data extraction for anomaly detection is 
one application of automated analysis. A pattern might be considered anomalous when it 
arises in a sample that differs from the norm or the most common sample (Mikuni, 2024). 
Inconsistent results, outliers, or anomalies describe these strange patterns. The statistical 
community initially recognised the need for anomaly detection in the early 1800s, and 
since then, numerous methods for its detection have been created. Back then, anomaly 
identification had to be done by hand by experts in each discipline via eye inspection. But 
there were issues with manual detection as well. The drawbacks of manual detection 
include, but are not limited to, the following: uncertainty, long detection times, human 
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mistakes, etc. Anomaly detection solutions that use machine learning techniques have 
recently been developed as a result of those above (Shiva, 2024). 

Recently, anomaly detection has emerged as a significant obstacle for deep learning 
and machine learning. Modern landscapes rely heavily on automated anomaly detection 
systems because human categorisation becomes impractical due to the sheer volume of 
samples. Management, astronomical data, visible light curves, credit card fraud, 
cybersecurity breaches, critical safety system defects, healthcare, insurance, military 
surveillance, and many more applications are among the many that make use of anomaly 
detection (Palakurti, 2024). This essay will take a close look at recent research on 
anomaly detection. Use RNNs to identify outliers in production system time series data. 
With this technology, makers could identify any irregularities that occurred while the 
system was running. Using time-series data, the model was able to detect three common 
types of irregularities in a diesel engine assembly process, which allowed for an 
evaluation of its performance. In order to find outliers in univariate time series, they 
suggested a split framework (Manafi, 2025). In this inquiry, time series forecasting was 
the initial stage. The second stage centred on identifying outliers. To make predictions, 
the study employed CNNs and LSTM networks (long short-term memory with 
bidirectional functionality). After detection, the mean absolute error approach was used 
consistently. 

An RLAD (reinforcement learning from pixels for autonomous driving) hybrid deep 
learning approach was used for anomaly identification. The security of industrial control 
system (ICS) networks has long piqued the curiosity of academics around the globe, and 
anomaly detection systems have recently grown in importance. The accuracy of assessing 
the health state of industrial equipment has been significantly improved in recent years by 
using anomaly detection approaches that rely on multi-physical quantity fusion (Riegler, 
2021). Systematic investigations on communication protocol security and fuzzy testing 
frameworks have illuminated new approaches to evaluating vulnerabilities in ICS 
networks. Traditional anomaly detection approaches using offline processing or static 
analysis are inadequate for meeting the needs of industrial control systems for real-time 
monitoring and rapid response. There are usually extensive temporal relationships in ICS 
network traffic data (Koay, 2023). Anomalies in traffic patterns can be effectively 
detected by leveraging these relationships within time series. The requirement for ICS 
network anomaly detection in real- time, along with these features, has led to the 
emergence of real-time traffic prediction as an exciting area of study. This method offers 
strong support for anomaly identification by enabling continuous monitoring and 
prediction of ICS network traffic patterns. There are a number of obstacles that this line 
of inquiry must overcome, though. Traffic data in ICS networks is heterogeneous, 
nonlinear, and extremely noisy due to the many ways in which industrial control devices 
operate (Lee, 2023). 

Complicating real-time traffic analysis is the fact that data from different devices 
frequently varies significantly in terms of size, frequency, and sampling methodologies. 
Data from industrial control systems (ICS) traffic is also very dynamic, changing as 
production tasks do. Due to these changes, traffic prediction-based anomaly detection 
algorithms are becoming more and more challenging (Xu and Shang, 2025). Finding 
abnormalities and correctly retrieving relevant data in real time across such a diverse and 
ever-changing ICS environment is the main problem. Information about traffic 
prediction-based real-time anomaly detection algorithms is lacking in the context of 
industrial control networks. More so, the existing corpus of research is beset by the 
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following issues. By utilising multisource financial data fusion, this research presents a 
new method for abnormal transaction detection that overcomes the drawbacks of 
conventional single-modality approaches. The significance of identifying irregularities, 
such as fraud or system breakdowns, in real-time financial settings characterised by 
diverse, multi-dimensional, and dynamically produced data is emphasised. An  
early-warning mechanism that incorporates multimodal data sources to strengthen 
anomaly detection systems and improve their accuracy and robustness is designed as part 
of the study’s contribution. Using cutting-edge techniques like deep learning models 
(e.g., LSTM, CNN, VAE), the study demonstrates how combining various data sources 
improves contextual understanding and decreases false positives. 

The research also shows how these methodologies can be applied to financial and 
industrial control systems, demonstrating how the suggested solution can adapt to 
complex and dynamic operational situations. Financial fraud prevention, system stability, 
and strategic decision-making are all greatly enhanced by this fusion-based detection 
approach, which also provides timely insights. The following structure is used throughout 
this article: In Section 2, we take a look at what is known about combining financial data 
from several sources to spot questionable activities. The methodology of the suggested 
early-warning mechanism is described in Section 3. Section 5 brings the investigation to 
a close, while Section 4 summarises the results and discusses their ramifications. 

2 Literature review 

Several theoretical models provide potential definitions of creative accounting. From an 
accounting standpoint, specific research has shed light on this phrase, highlighting how it 
represents different approaches to reconciling presentational financial outcomes with the 
underlying activities (Sabău, 2021). A defining characteristic of creative accounting is the 
wilful deviation from generally accepted accounting principles in order to achieve a result 
in reporting. The more you look into it, the more you’ll see that these kinds of things 
happen when businesses attempt to alter their accounting methods from the legal 
framework to suit their managerial objectives better. Some have proposed a two-tiered 
understanding, with the first tier addressing efforts to regulate emerging economic 
phenomena that are not yet accounted for by established accounting rules (Durana, 2022). 
Generally speaking, this word is defined at the second level as actions that cause financial 
statement falsification. Innovative Financial Accounting: Its Origins and Applications 
offers a scholarly perspective. From this point of view, creative accounting is all about 
getting financial data from its raw, recorded form and making it fit the owners’ intended 
picture. Manipulating legally allowed rules or, in some cases, ignoring specific 
restrictions, can accomplish this (Urdaneta-Camacho and Guevara-Pérez, 2022). 

While innovative bookkeeping practices may help companies manipulate their 
financial outcomes, this does not necessarily result in monetary benefits, according to 
another critical assessment that has been added to the discussion. However, such tactics 
could have a detrimental effect on the company’s performance and sustainability in the 
long run (Blazek and Duricova, 2025). There is a wide range of reasons for creative 
accounting. Previous studies have shown that financial professionals have systematic 
behavioural patterns, which supports a shared explanation. These patterns include income 
smoothing and meeting defined performance targets, in addition to more traditional 
motivations like tax minimisation and manipulating investor impressions. 
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2.1 Related work 

The stability and dependability of contemporary distributed systems depend on log-based 
anomaly detection. The principal source of operational intelligence in production 
environments is system logs (Guo, 2021). This is because microservice designs in these 
settings can involve hundreds of interconnected components. I can’t stress enough how 
important they are: To start, logs show how the system is behaving in real time, which 
helps find problems before they affect the quality of service. Secondly, they are crucial 
for comprehending and avoiding the propagation of faults because they record the 
intricate interactions among dispersed components. Thirdly, logs are essential for system 
maintenance and root cause investigation in large-scale deployments since they are the 
sole complete source of diagnostic information (He, 2021). Using effective log-based 
anomaly detection, recent industrial studies found that system downtime can be reduced 
by up to 70% and MTTR by 45%. In cloud computing environments, it is crucial to avoid 
system failures and maintain service level agreements (SLAs). This is because a single 
failure could impact several services. 

2.2 Standard approaches of identifying abnormalities 

Many production settings rely on traditional methods of log-based anomaly detection as 
their basis for system reliability engineering. Preventing system breakdowns and 
preserving operational stability have been achieved through the use of these strategies 
(Xie, 2020). In systems that are vital to the nation’s infrastructure, where the ability to 
spot abnormalities in real time is essential for avoiding catastrophic failures, their 
significance becomes even more apparent. For instance, by identifying early warning 
signals in component interactions, classical log analysis methods have effectively 
avoided system-wide disruptions in large-scale cloud systems. Research conducted by 
prominent cloud providers indicates that, when executed correctly, proactive anomaly 
detection using log analysis can avert as many as 85% of possible system failures. 
Statistical, rule-based, and machine learning techniques are the main categories into 
which these more conventional approaches fall. In order to spot outliers, rule-based 
methods specify patterns or thresholds. Although simple, these solutions necessitate a 
great deal of expertise in the relevant topic and regular manual upkeep (Liu, 2024). 

2.3 Traditional methods for anomaly detection 

This section will go over the four primary categories of conventional anomaly detection 
techniques. Methods based on density estimation. One well-known method for detecting 
outliers is the local outlier factor (LOF) methodology. To deal with complex,  
multi-dimensional data, the clustering with outlier factor (COF) approach uses the 
connection principle. The DAGMM algorithm integrates neural networks with a 
Gaussian mixture model (GMM) to identify anomalies (Xu and Wu, 2021). 

Approaches centred on reconstruction. These techniques compare the original data 
with the rebuilt data in order to identify outliers, after training a model with normal data. 
Present a hybrid model that combines LSTM and VAE to extract and rebuild features 
from raw temporal data. Although they utilised a GRU to extract latent features rather 
than a VAE model, our process was identical to theirs (Wu and Xu, 2021). Anomaly 
detection is handled by TimesNet using standard algorithms in computer vision, and 
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time-series data is translated from one dimension to two dimensions using a quick 
Fourier transformation. In addition to traditional methods, generative adversarial 
networks (GANs) have found usage in fraud detection. 

2.4 Multimodal methods for anomaly detection 

Recently, multimodal learning (MML) has emerged as a significant field of study due to 
the advancements in cross-domain data fusion (Zhou and Ma, 2022). Its goal is to 
strengthen and enhance machine learning and AI systems’ capabilities across a range of 
tasks by making use of complementary information across diverse modalities. Feature 
vectors from several modalities are typically combined during training by traditional deep 
learning methods. Each modality is normally processed independently. The feature-level 
fusion approach disregards the interdependence and complementary nature of modalities 
due to its oversimplification. One well- known multimodal method for detecting 
anomalies in industrial settings makes use of 3D point clouds and RGB images (Qu and 
Liu, 2024). Introduced a novel hybrid fusion approach for multimodal anomaly detection; 
this scheme fuses RGB features with point cloud features simultaneously, utilising a 
contrast loss-based unsupervised feature fusion module. When it comes to RGB and 
visible-light multimodal industrial anomaly detection, given the challenges of 
representing and dissecting the essential parts unique to each modality while also taking 
into consideration features that can be shared across modes, a multimodal picture fusion 
approach was proposed. Developed a multimodal multi-label recognition transformer by 
integrating a convolutional neural network (CNN) with a transformer; this model can 
identify numerous things in a single image at the same time. 

3 Proposed methodology 

We have included a flowchart in this paragraph to help clarify the suggested process. 
Begin by preparing the data. Then, use a Siamese neural network (SNN) to extract 
features. Next, classify the data using several models. Finally, evaluate the findings. 
Figure 1 is a flow diagram that shows the whole procedure. 

Figure 1 An illustration of the process that is suggested for detecting anomalies (see online 
version for colours) 
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3.1 Data preprocessing 

Preprocessing is essential for successful modelling due to the high class imbalance and 
anonymised data: 

• Normalisation: preprocessing is essential for successful modelling due to the  
high-class imbalance and anonymised data: 

min

max min

X XX
X X

−′ =
−

 (1) 

Reshaping: For CNN compatibility, the data was transformed into 2D arrays. Every 
instance followed a 6  × 5 matrix structure. 

• Class imbalance handling: synthetic minority over-sampling technique (SMOTE) 
(Chou, 2025) used in conjunction with undersampling allows a more equitable 
training set to be generated to tackle the significant class disparity. 

• Train-test split: to ensure stratified sampling to maintain the class ratio, the data was 
split 80/20 between the training and test sets. 

( ). 1 , 0,i i i iy w x b ξ ξ+ ≥ − ≥  (2) 

3.2 Anomaly financial transaction 

Financial transactions across time can be effectively modelled using transaction 
networks, which are typically depicted as weighted directed temporal networks. In this 
type of network, a path is an ordered set of n separate edges that connects two nodes i and 
j across a time interval T. Graphically, this kind of network might look like GT = (V, 
LT). 

( ) ( ) ( )( ){ }
( )

1 2 2 3 1,,

1

, , , , , , ,

          with  and ,  for all {1, , 1}

T
i n ji j

x x x T

P i v e v v e v v e v

v V e v v L x n

−

+

=

∈ ∈ ∈ −




 (3) 

Next, we find the path’s weight, ,
T

i jP  by 

( )( )1
1,

n
i ii

e v v
−

+  (4) 

To represent the weight of each edge along the path Pi, it has W(Pi) = {w(e(v1, v2)), …, 
w(e(vn–1, vn))}. Every element i and every element j in graph G can be found in the set 

( )( )n
TijPath G  if there is a pathway in G of length n. In actual situations, agents often 

employ intermediaries while transferring funds in order to evade detection of fraudulent 
activities. At the outset, you may not know how many intermediary groups there are or 
how long each path is from x to y. Each transaction generates a path of length n+1 in an 
n-intermediary transaction network. With a starting node x and a distance n, in order to 
establish the transaction flow, the weird flows pipeline verifies the maximum allowable 
transmission from node x to other nodes within that distance. The collection of all 
potential pathways that connect x and y up to a limit of n paths is defined as Flown(x, y) 
according to equation (3). 
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{ } ( )1 ,( , ) , ..., , with n
m i Ti jFlow x y P P P Paths G= ∈  (5) 

By minimising the weight of the links that link nodes x and y, the transaction network of 
node x specifies the maximum amount that node y may transmit to node x via 
intermediaries. For x-to-y transaction flows with multiple sets of intermediaries, the 
weight is the total of all the minimal weights. We state the maximum length n for the 
flow weight from x to y as: 

( )
( )( )

( ) ( ) ( )
*

* *
1

( , ) min , with 
i r i

u
r i i xi z paths G Z

W Flow x y G Z Z Paths G
= ∈

= ∈  (6) 

Figure 2 shows a network that processes transactions. Beyond the edge weight ex, y, 
more factors must be considered in order to examine the hypothetical amount of money 
that is transferred from x to y. Consideration of intermediate nodes like h, k, and z is 
critical. The minimal minimum for each route is displayed in Table 1. The sum of all the 
minimal weights for all the pathways is this flow weight of 1,850 from x to y. 

Figure 2 Transaction flow network showing intermediary nodes (h, k, z) between source node x 
and destination node y with weighted path values (see online version for colours) 

 

Possible attempts to hide a more strongly weighted direct edge could be the h, k, and z 
paths that connect x and y. The user has Table 1. A two-column table is depicted in the 
image. ‘P’ and’min(W(P_i))’ are the labels of the first and second columns, respectively. 
The table’s rows detail several groupings of edges along with the lowest weights assigned 
to them. 

Here is the content of the table: 

• the smallest weight that may be applied to the set of edges {e(x, h), e(h, k), e(k, y)} is 
100 

• all edges in the set {e(x, k), e(k, y)} can be given a weight of zero 

• a weight of 500 is the minimum for the set of edges {e(x, z), e(z, y)} 

• an edge set {e(x, y)} can have a minimum weight of 250. 

All pathways from x to y with a maximum distance of 3 are listed in Table 1, along with 
their associated minimum weights. Keep in mind that a network’s temporal aggregation 
during the interval T is just a rough estimate. Each edge along a valid route must satisfy 
the requirement. Every transaction is associated with a timestamp t, hence, tei < tei + 1. 
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Table 1 Minimum weights of different paths between nodes in the network 

Pi Min (w(Pi)) 
{e(x, h), e (h, k), e (k, y)} 100 
{e(x, k), e (k, y)} 150 
{e(x, z), e (z, y)} 200 
{e(x, y)} 250 

3.3 Optimised proposed hybrid model design 

In contrast to earlier hybrid architectures, our model employs a parallel approach to 
merge spatial and temporal data using an MLP. For underrepresented groups, this layout 
makes it easier to detect and prevent fraud. To identify fraudulent charges on credit cards, 
it is necessary to build a hybrid optimised CLST model that incorporates SMOTE. By 
combining three distinct deep learning architectures, the model makes fraud detection 
more accurate. The use of a CNN analysis to extract geographical data is necessary for 
identifying trends in transaction patterns. The purpose of this approach is to find patterns 
in the data over time by analysing the interdependencies in sequences of monetary 
transactions using long short-term memory (LSTM). Minimal processing occurs at the 
MLP classification layer, which improves prediction accuracy by integrating spatial and 
sequential data. The model is able to handle class imbalance and get better performance 
results through the integration of SMOTE with hyperparameter change. CNN for Spatial 
Feature Extraction: CNNs are built using three main layers: convolutional, pooling, and 
fully connected. 

These layers automatically adapt to new environments by means of backpropagation, 
allowing the network to learn spatial hierarchies (Mazumder et al., 2025). Neural 
networks, coupled with weights and biases that can be learned, make up the structure. 
Inside the structure, you’ll find layers that are designed for CNNs and fully connected 
layers. Convolutional layers of a CNN take in data and use it to extract spatial features. 
Equation (2) describes the structure of a convolution process as follows: 

( )( ) ( ) ( ) .f g t f τ g t τ dτ
∞

−∞
∗ = −  (7) 

For 2D input data (such as pictures or transaction details), the convolution procedure can 
be stated discretely as follows: 

( )( , ) ( , ) ( , )
m n

I i j i m j n K m n∗ = − −   (8) 

Where the structure of the input feature map is represented as follows: 
The output feature map index is denoted by (i), while the kernel or filter is denoted by 

K. Forecasting time series with learned stochastic random forests (LSTMs): the efficacy 
of LSTM models has been demonstrated in several time series prediction applications, 
such as CCF detection. A wide variety of gates is at your disposal including input, output, 
and forget gates, among many others. Locating and taking into consideration temporal 
dependencies in sequential data are the primary goal of long short-term memory RNNs. 
A summary of the LSTM cell’s equations is as follows: 
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[ ]( )1. ,t f t t ff σ w h x b−= +  (9) 

[ ]( )1. ,t i t t ii σ w h x b−= +  (10) 

[ ]( )1tanh ,t c t t cC W h x b−= ⋅ +  (11) 

1.t t t t tC f C i C−= + ⋅  (12) 

[ ]( )10 . ,t o t t o tw h x b h−= +  (13) 

tanht to C= ⋅  (14) 

where time is represented by xb. At time b – 1, the concealed state is represented by t ℎb. 
The condition of the cell at time t is represented by qb. The sigmoid activation function is 
represented by σ, and weights and biases are denoted by W and b, respectively. We 
integrated sequential and spatial data into a single layer to enhance data management. 
The MLP’s dense layers are fed the combined results of the CNN and LSTM into a 
feature vector, which is used for the final prediction. As a result, the model can more 
accurately detect correlations that contribute to anti-fraud efforts. The output layer with 
full connection: the component of the dense layer responsible for output is responsible for 
classifying transactions as either legitimate or fraudulent. It uses many fully connected 
layers to handle the combined CNN and LSTM output. Network computing is done by 
the hidden layers, with prediction made by the input and output layers. It is possible to 
execute the following calculation for every neuron in a dense layer: 

( )1

n
i ii

y w x b
=

= +  (15) 

where input feature xi and weights wi are represented by the bias term is denoted by 
examples of activation functions are ReLU and sigmoid. In order to do binary 
classification, the last output layer makes use of a sigmoid activation function, which is 
supplied by: 

ˆ ( )y σ W h b= ⋅ +  (16) 

where the projected probability of the positive class is represented by ˆ,b  and h is the 
output from the preceding hidden layer. In order to get the most out of each part, the best 
CLST architecture takes advantage of its unique capabilities. CNN layers successfully 
capture critical inter-feature interactions by extracting spatial characteristics and local 
patterns from transaction vectors. By modelling sequential dependencies across 
transactions, the LSTM layers are able to detect the temporal patterns of behaviour 
typically associated with fraudulent operations. Lastly, robust decision-making and  
high-level feature integration are made possible by a dense layer for categorisation that 
consists of numerous fully connected layers. Last but not least, this research employs a 
thick layer to convert the learnt feature representations into reliable fraud predictions. In 
Figure 3, we can see the CLST architecture that has been optimised. 
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Figure 3 Optimised CLST layer architecture (see online version for colours) 

 

4 Results and discussion 

4.1 Various models’ comparative performance 

The results of several models’ combined performance are shown in Table 2. Regularly, 
our proposed feature extraction methods outperform state-of-the-art algorithms on 
measures such as Balanced Accuracy, G-Means, and F1-scores. These methods include 
SNN + RF and SNN + SVM. A higher false positive rate is a result of traditional 
anomaly detection algorithms’ poor Precision and Specificity, despite their high Recall. 
This is in contrast to more modern methods like IF and OCSVM. While OCSVM and IF 
do a good job of catching abnormalities, our results show that their tradeoff in accuracy 
makes them impractical for uses where false alarms are expensive. 
Table 2 Benchmarking model performance on five datasets 

Model Precision Recall F1-score G-mean Balanced 
accuracy Specificity 

IF 0.088 
(0.125) 

0.417 
(0.480) 

0.136 
(0.191) 

0.469 
(0.412) 

0.666 
(0.209) 

0.916 
(0.092) 

OCSVM 0.063 
(0.069) 

0.841 
(0.248) 

0.111 
(0.116) 

0.646 
(0.109) 

0.674 
(0.123) 

0.508 
(0.010) 

RF 0.745 
(0.430) 

0.666 
(0.397) 

0.703 
(0.412) 

0.727 
(0.414) 

0.833 
(0.198) 

1.000 
(0.000) 

SVM 0.861 
(0.173) 

0.636 
(0.349) 

0.705 
(0.340) 

0.768 
(0.239) 

0.818 
(0.174) 

0.999 
(0.001) 

SMOTE + RF 0.736 
(0.425) 

0.719 
(0.413) 

0.727 
(0.419) 

0.757 
(0.426) 

0.859 
(0.207) 

0.999 
(0.001) 

SMOTE + SVM 0.727 
(0.389) 

0.771 
(0.404) 

0.583 
(0.445) 

0.819 
(0.333) 

0.880 
(0.199) 

0.989 
(0.017) 
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Table 2 Benchmarking model performance on five datasets (continued) 

Model Precision Recall F1-score G-mean Balanced 
accuracy Specificity 

SNN 0.868 
(0.229) 

0.660 
(0.417) 

0.677 
(0.398) 

0.755 
(0.332) 

0.829 
(0.208) 

0.999 
(0.001) 

SNN + RF 0.937 
(0.087) 

0.741 
(0.372) 

0.765 
(0.338) 

0.821 
(0.287) 

0.870 
(0.186) 

0.999 
(0.001) 

SNN + SVM 0.791 
(0.212) 

0.839 
(0.275) 

0.787 
(0.231) 

0.902 
(0.174) 

0.918 
(0.137) 

0.997 
(0.001) 

We further explored the model’s performance ranking and its statistical significance by 
employing Scott-Knott clustering analysis, utilising F1-score, G-mean, and balanced 
accuracy as the key metrics. As illustrated in Figure 4, the F1-score rankings demonstrate 
considerable variability. Traditional anomaly detection algorithms, SMOTE-based 
methods, and SNN-based models all rank well in this category (Vilella et al., 2025).  
G-Mean and Balanced Accuracy did not show any statistically significant differences 
amongst the models, suggesting that the models’ overall ranking is consistent across 
these metrics, regardless of whether the algorithms in question have different capabilities. 

Figure 4 Scott-Knott clustering outcomes for five datasets, evaluated with F1-score, balanced 
accuracy, and g-mean (see online version for colours) 

 

4.2 Use case: as the conflict in Ukraine escalates, funds are moving between 
major European nations. 

The WeirdFlows tool was used in this example to investigate a financial crime. The 
example shows how WeirdFlows can help find complex patterns that could hide financial 
fraud using networks with different kinds of node aggregation. Following these 
procedures will ensure that your data is protected to the extent that the law and the AFC 
Digital Hub consortium have mandated. For example, after researchers receive their 
anonymised BIC codes, the amounts are adjusted to the highest value in the time series. 
To further ensure the data’s security, the data provider has requested that all nation names 
be anonymised as C1, and C2. In this use case, we take a macro view of the financial 
flows between two major European nations, examining the time from the start of the 
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conflict in C3 and the EU’s economic sanctions. Figure 2 shows the weekly totals 
transferred directly from C2 BICs to C1 BICs. At the point where the grey dashed line 
appears in C3, the battle has begun. The economic fines did not affect the number of 
transactions from C2 to C1 because the pattern remained constant. To find the maximum 
data transfer rate from C2 to C1 BICs via a single intermediate, one can look at Figure 5, 
which illustrates the time series of w(Flow3(C2, C1)). 

Peaks rather than patterns can be seen in both datasets, particularly before the war’s 
commencement. An AFC analyst can look into the Flow3(C2, C1) intermediaries to find 
out more about the problem. The maximum length of the 86 pathways connecting C2 and 
C1 is 3. You can see which intermediaries’ real value has increased the most compared to 
the predicted moving average after February 24 in Table 3. Among all the transactions 
that pass through C13, one jumps out with a 66% increase: country C13. Based on the 
methods outlined in [reference], the BIC identified as BIC03C2, associated with 4, was 
detected through the application of the anomaly identification pipeline on financial 
graphs. Take advantage of this foreign data. If AFCDigital Hub requests it, the data used 
to support the study’s conclusions can be obtained from the ISP. Attention: Data 
availability limits are in effect. A non-disclosure agreement will be requested of 
researchers who wish to access the data for academic reasons. 

Figure 5 Direct transfers between C2 and C1 BICs (see online version for colours) 

 

Note: On 24 February 2022, the conflict in Ukraine began, as seen by the vertical grey 
dotted line. 

It was accurately determined that country C2 was engaged in malevolent activities. After 
the war in Ukraine begins, the transaction flow becomes heavier, reaching a high in May 
and June (Figure 6). You can see this pattern when you use it as a starting point for 
WeirdFlows and examine all transactions passing via country C13 that include BIC03C2 
and country C1. 
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Figure 6 Time series showing fluctuating amounts with smoothed 80-day and exponentially 
weighted moving averages revealing underlying trends amid high volatility (see online 
version for colours) 

 

Figure 6 show the relevance of the revenue stream Flow3(C2, C1), where C2 and C1 are 
two nodes in a network, and C1 is the first node in the network. Table 3 Intermediaries in 
Flow3 (C2, C1) showing the highest percentage growth between the actual value and the 
expected value, as calculated by the moving average. Figure 7 shows the flow of 
transactions from C2 to C1 via C4, whereas Figure 8 shows the same flow via C5. 
Table 3 Country-wise difference values 

Country Difference 
C4 0.427 
C6 0.436 
C5 0.493 
C7 0.535 
C8 0.539 
C9 0.549 
C10 0.604 
C11 0.636 
C12 0.662 
C13 0.665 

Figures 7 and 8 display the flow weights calculated for aggregated networks every week 
on the left side. The right side illustrates the individual edges of the flow. 
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Figure 7 Funds being transferred from C2 to C1 through C4 (see online version for colours) 

 

Figure 8 Funds being transferred from C2 to C1 through C5 (see online version for colours) 

 

Figure 9 Improved model efficiency through hyperparameter optimisation (see online version  
for colours) 
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They are shown in Figures 4 and 5, respectively, as C2–C4 and C4–C1, and C5–C1 and 
C2–C1. The w(Flow3(C2, C1)) weight begins to exhibit speedy development in May 
2022. This growth can be better understood by dissecting the specific edges that 
WeirdFlows uncovered. By the way, it is well-documented that very similar patterns of 
intermediaries have been employed to avoid international sanctions5. Important 
performance indicators were compared before and after hyperparameter adjustment in the 
bar chart. Improved recall, precision, and F1-score – measures for identifying fraud – 
were particularly brought about by the modified model (orange bars), as shown in  
Figure 9. 

Figure 10 displays the ROC-AUC curve and explains its importance. One way to 
visualise the tradeoff between TPR and FPR is using the ROC curve (Jabeen, 2025). The 
model’s performance is outstanding if the AUC is close to 1.0. 

Figure 10 ROC-AUC curve for the CLST model evaluation (see online version for colours) 

 

5 Conclusions 

This work shows that in complicated real-time contexts, anomaly transaction detection 
and early-warning skills can be significantly improved by combining multisource 
financial data with advanced deep learning architectures. Optimal CLST offers better 
Recall, precision, and F1-scores than traditional and unimodal approaches by integrating 
spatial-temporal feature extraction through CNN, LSTM, and MLP layers and resolving 
data imbalance using SMOTE. This methodology may detect concealed transaction 
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patterns and intermediate networks that might indicate fraudulent or sanction-evasion 
activities; the use case on cross-border financial flows during geopolitical events shows 
this in action. Strong, scalable, and context-aware anomaly detection are features offered 
by the framework, which the results demonstrate may be used to control systems in the 
financial and industrial sectors. In high-risk financial ecosystems, this strategy improves 
accuracy in fraud prevention, operational resilience, compliance, and strategic decision-
making. 
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