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Abstract: Modern education increasingly relies on data-driven decision-
making, requiring causal inference methods to assess teaching strategies
beyond correlations. Challenges such as time-varying confounders, unobserved
counterfactuals, temporal dependencies of interventions, and heterogeneous
responses limit strategy design and evaluation. Existing methods also struggle
with temporal dynamics and complex causal structures. To address these issues,
causal temporal contextual reasoning (CTCR) was developed, incorporating a
dynamic disentanglement mechanism for time-varying confounders, a two-way
causal representation module, and a counterfactual generation algorithm
constrained by temporal logic. Experiments on higher education (Dataset-H),
K12, and MOOCs datasets show CTCR’s effectiveness. On Dataset-H, it
achieves MSE-T 5.53 x 102 PEHE 5.16 x 107!, and CP@K 0.89,
outperforming comparative models. Performance volatility across K12 and
MOOC:s is < 29.3%, and CTCR remains robust under 30% data sparsity and
5 dB noise, demonstrating strong generalisation and reliability.

Keywords: causal transformer; counterfactual reasoning; instructional strategy;
CTCR; academic achievement; time-varying confounders.
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1 Introduction

In modern education, data — driven decision — making necessitates causal inference that
transcends mere correlation to precisely evaluate the genuine impact of teaching
strategies on academic performance (Kitto et al., 2023). Nevertheless, the majority of
current mainstream methods rely on the statistical associations within observational data,

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article
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rendering it arduous to disentangle the true causal effects from the interference of
confounding factors. The reasons are as follows: the coupling effect of time — varying
confounders, such as the dynamic alteration of students' autonomous learning ability,
which not only influences the selection of teaching strategies but also correlates with
academic performance (Marantika, 2021); counterfactual outcomes are unobservable, and
traditional methods are unable to address the query of ‘how would students' academic
performance vary if an alternative strategy were employed’ (Keller and Branson, 2024);
the temporal dependence and heterogencous responses of educational interventions
augment the complexity of identification.

To address these challenges, educational causal research has undergone iterative
methodological evolution. Early approaches relied on quasi-experimental designs and
parametric models, such as difference-in-differences (DID) (Tournaki, 2023),
instrumental variables (IV) (Alauddin et al., 2017), and matching methods (Keele et al.,
2021). While these established the research foundation, they overlooked dynamic
confounding, feedback loops, and temporal logic constraints of counterfactual paths,
failing to support the deconstruction of complex instructional strategy effects.

In recent years, the rapid advancement of artificial intelligence has enabled scholars
to integrate deep learning with causal inference, offering new approaches for handling
temporal dependencies and nonlinear relationships. Causal forests can identify
heterogeneous treatment effects but inadequately capture temporal dependencies (Chen
et al., 2021). Bayesian neural networks (BNNs) suit small-sample scenarios but face
computational bottlenecks with high-dimensional data (Park et al., 2021). Additionally,
transformer-based models like CausalBERT (Li et al., 2021) and G-transformer (Xiong
et al.,, 2024) partially mitigate interference from time-varying confounders in causal
effect estimation.

Recent progress focuses on dynamic modelling and instrumental variable innovations.
Causal transformer's segmented attention mechanism decomposes long sequences into
short segments, reducing computational load while capturing dynamic intervention
effects. However, its reliance on preset time granularity struggles with non-uniform
temporal variations (Zhu et al., 2024). MATTE incorporates domain knowledge to
constrain counterfactual generation, reducing bias from missing data. Yet its dependence
on expert-defined rules limits cross-domain transferability (Yan et al., 2023). CB-IV (Wu
et al., 2022) and AutolV (Yuan et al., 2022) automate instrumental variable selection,
alleviating selection bias in high-dimensional settings. However, theoretical validation of
their efficacy remains pending.

In essence, existing analytical methods encounter difficulties in satisfying the
profound requirements of educational causal inference, and they face the following
challenges: time — varying confounders contravene the strong ignorability assumption,
leading traditional static models to yield biases because of the disregard for the time
dimension. The long — range dependence and feedback loops of intervention effects
render the analysis of existing architectures, which assume no feedback, ineffective. The
temporal logic constraints of counterfactual reasoning are in conflict with the traditional
consistency assumption, causing the counterfactual paths often generated to run counter
to teaching logic. Consequently, this study develops CTCR to accomplish a meticulous
deconstruction of the effects of teaching strategies on academic performance. The main
contributions are as follows:
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1 A dynamic confounder disentanglement mechanism using Transformer multi-head
attention to isolate confounders from direct intervention effects, resolving causal
confounding induced by overlooked temporal dependencies

2 A bidirectional causal representation module concurrently modelling feedforward
impacts and feedback regulation of instructional strategies, overcoming
unidirectional causal assumptions in static models

3 A temporally-constrained counterfactual generation algorithm embedding
educational temporal dependency rules into potential outcome models, ensuring
counterfactual paths align with educational practice logic.

Figure 1 The process of counterfactual reasoning (see online version for colours)
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2 Theoretical foundations

2.1 Counterfactual reasoning and causal inference

Counterfactual reasoning serves as a core methodology within causal inference, with the
objective of exploring the question: ‘what would the outcome be if the intervention had
not occurred?’ (Nyhout and Ganea, 2021). In the realm of educational intervention
evaluation, its significance lies in surmounting the innate limitations of observational
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data. Specifically, this pertains to the incapacity to directly observe the potential
outcomes of the same individual under diverse strategies (Sinha and Kapur, 2021).

More precisely, for a group of students who have undergone a particular teaching
strategy T, their actual academic performance Y represents the ‘factual’ outcome that is
observed. Conversely, counterfactual reasoning endeavors to estimate the potential
academic performance Y* of this group had they received an alternative strategy T' or no
intervention at all. This ‘contrast difference’ (Y-Y") constitutes the theoretical foundation
for assessing the causal effect of the intervention.

Nonetheless, the time —varying confounders frequently encountered in educational
scenarios contravene the strong ignorability assumption of traditional causal inference.
As a result, this leads to substantial biases in counterfactual estimates derived from
static observations (Hong and Raudenbush, 2008). Figure 1 illustrates the process of
counterfactual reasoning.

Figure 2 Causal path (a) direct effect (b) indirect effect (c) historical effect (d) feedback effect
(see online version for colours)
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2.2 Time series effect decomposition

Figures 2(a)-2(d) illustrate causal pathways at distinct time slices ¢. The total effect (TE)
of instructional strategies on academic performance decomposes into four components.

e Direct effect (DE): immediate impact of current strategy X; on contemporaneous
performance Y;, following path X,—Y;.

e Indirect effect (IE): effect of current strategy X; on subsequent performance Y, + &
mediated through intermediate variable M,, via path X; > M, — Y + k.

e  Historical effect (HE): persistent influence of historical strategy sequence H; on
current/future performance by shaping current state K;, through path H, — K, — Y/Y,
+ k.



Causal transformer and counterfactual reasoning 5

Feedback effect (FE): closed-loop path where current outcome Y; inversely affects
future intervention decisions X; + 1, denoted ¥, — X, + 1.

2.3 Temporal counterfactual definition

Under the dynamic causal graph framework, counterfactual reasoning must strictly
adhere to temporal logic constraints of interventions (Barbero et al., 2023). We define:

Factual outcome: observed academic performance ¥, when implementing
instructional strategy X; = x.

Counterfactual outcome: potential performance Y;,," obtained by replacing current
intervention with X, = x* (x" # x), while holding historical sequence H, = & constant.

The conditional treatment effect (CTE) of strategy x relative to x* is then defined as:

CTE(x = x'[n) =¥/ (x)- ¥ (x") (1)

3 Model design and comparison

3.1 Model design

Figure 3 illustrates the architecture of CTCR, designed with the dual objectives of:
disentangling temporal confounding effects of instructional strategies; generating
counterfactual paths consistent with educational logic.

CTCR comprises two phases: clue extraction and hypothesis verification.

The clue extraction phase includes a temporal attention network and a spurious
correlation filtering block. The temporal attention network inputs pre-processed
longitudinal data — instructional strategies, student behaviours, and control variables,
segmented weekly into X = xi, x, ..., x7. It employs four independent attention heads
to capture influences at different temporal scales.

Short-term head: uses a 3-week sliding window to focus on immediate effects of
localised strategies, calculating attention weights between the current week ¢ and the
preceding two weeks (1, t-2).

QiWQxhort . (Kleghort )T

Jd

Here, O denotes the query vector, representing features of the current week i. K

4 = Softmax( j: Jeli=2,1] @

denotes the key vector, representing features of historical week ;. Wéh"”, Wit are
learnable parameter matrices projecting input features into query and key spaces.
Jd isa scaling factor controlling the dot product magnitude to prevent gradient
vanishing.

Mid-term head: employs a 6-week sliding window to capture cumulative effects
during instructional phases, with attention spanning weeks [i—5, f].
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Figure 3 CTCR architecture (see online version for colours)
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e Long-term head: utilises a 12-week sliding window to analyse global impacts of
semester-level strategy sequences, extending attention to weeks [i—11, /].

e  Confounder disentanglement head: separates interference from time-varying
confounders by maximising mutual information /(7;; Z;) between interventions and
latent representations, while minimising /(Z; X;) to ensure exclusive encoding of
confounding factors.
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e Spurious correlation filtering module adopts a three-tiered structure: dual-channel
discrimination, hard suppression, and gradient reversal. The dual-channel
discrimination layer first computes mutual information /(v, T) and correlation
coefficients p(v, Y) in parallel between variables and instructional
interventions/academic performance. Non-causal associations are identified using
predetermined thresholds (Z(v, ) <0.1 and | p(v, V)| <0.15).

e Based on discrimination results, the system executes two-level processing: for
superficially correlated variables meeting suppression conditions, their attention
weights are forced to zero in the weight matrix; for control variables, their
embedding vectors are directed through a gradient reversal layer with negative
scaling (4 = —0.5) to inversely scale gradients, preventing the model from exploiting
them for intervention prediction.

e Hypothesis verification phase contains two branches: factual prediction and
counterfactual generation. The factual prediction branch processes real instructional
strategy sequences using a gated recurrent temporal predictor. Its core is a
bidirectional GRU network: the forward GRU encodes cumulative effects of
historical interventions and behaviours, while the backward GRU captures teachers'
feedback adjustments based on periodic grades. The GRU unit updates hidden states

weekly &, = foru(he1, x1, T1), outputting estimated grades for week ?,fl The loss
function employs temporally-weighted mean squared error (MSE-T):

Lfact = ZT_laTit '(fm —Yry )2 (3)

t=1
e Here, a =0.9, give higher weight to recent predictions.

e Counterfactual generation branch constructs virtual intervention paths through a
strategy replacement engine and adversarial training. First, hard constraints are
enforced based on the curriculum knowledge graph: if a student has not mastered
knowledge point A, higher-order strategies dependent on A are prohibited, ensuring
counterfactual paths adhere to pedagogical progression logic. Subsequently, a
conditional GAN generates counterfactual outcomes:

e  Generator G: receives real sequences and noise vectors, outputs strategy-replaced
sequence T and predicted outcome Yer.

e Discriminator D: constrains the distribution of Y to approximate real grade
distributions via Wasserstein distance.

The model initially allows only single-week strategy replacement, progressively enabling
multi-week recombination to achieve dynamic equilibrium, ultimately generating
globally consistent counterfactual sequences under graph constraints.

3.2 Comparison of architectural differences

To determine the originality and differences of the CTCR model, five mainstream
educational causal models were selected and their architectures were compared.
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The architectural design of CTCR is centred around ‘the temporal dynamics of
educational interventions’ and ‘the interpretability of causal effects’, which is essentially
different from existing models in terms of module functions and interaction logics. The
framework differences are shown in Table 1.

Table 1 Comparison of architectural differences among different models
Temporal Confounder Counterfactual ~ Feedback
Module . . ; .
Model composition  PTOcessing processing generation mechanism
P method module logic (y—x)
Causal Decision None No module None None
Forest tree + hetero (temp. (sample match)
nodes indep.)
CFRNet Uni-GRU + Forward Static ctrl var. State replace None
(Deng et al., CF pred recursive embed (no edu. cons.)
2024) branch
Causal Temp slice Fixed-slice Static slice Intra-slice None
transformer attn + FC dep. separation strat. replace
layer
Multimodal Multimodal ~ Multimodal ~ Feature fusion = Modality cons. None
causal embed + parallel (no edu. rules)
transformer causal attn align
(Zhang
etal., 2023)
GPT-4 Edu.  Transformer  Linguistic No module Text fluency None
Spec. decoder + fluency (data distr.) (no prac.
edu. fine- dep. cons.)
tune
CTCR Temp attn (4 Hier.dyn = Dyn confounder Knowledge Yes
heads) + window disentanglement  graph + prog. (backward
bi-GRU + (3/6/12w) gen (teach. GRU)
knowledge logic)
graph

4 Experiments

4.1 Data preparation

To conduct a systematic analysis of the impact of teaching strategies on students'
behaviours and academic performance, a multi — dimensional indicator system was
developed grounded in the theories of data mining and causal inference. Key variables
were categorically classified in a structured manner and operationally defined. Table 2
defines four teaching — intervention variables by means of multi — hot encoding. Table 3
presents the time — series data indicators of students' behaviours, encompassing learning
engagement, assignment patterns, interaction quality, and cognitive — behaviour markers.
Their measurement methods and educational implications are derived from the generative
learning — behaviour analysis framework and metacognitive theory (Dai et al., 2025;
Ozturk, 2017; Dennis and Somerville, 2023). Table 4 shows the set of control variables,
which includes three types of confounding factors: academic background, learning
environment, and social influence. The screening principles adhere to the principles of
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educational causal inference (Valbuena et al., 2021; Forney and Mueller, 2022), and
optimisation was achieved through statistical tests (VIF < 5) and feature — importance
assessment (Top 80%).

Table 2 Instructional intervention variables
Variable Instructional .. Data marker/encoding
Definition .
code strategy conditions
T1 Traditional Teacher-led lectures without ~ Classroom attendance rate >
face-to-face online learning tasks 90% and no recorded lecture
access
T2 Blended Recorded lectures (50%) + Recorded video viewing duration
learning in-depth classroom >30% of total course time and >
discussions (50%) 2 discussion records/week
T3 Project-based Cross-week group tasks > 1 group task submission/stage
learning (PBL) (experimental design, and > 5 collaborative forum
research reports, etc.) discussions/week
T4 Adaptive Al dynamically adjusts Click-through rate on
learning content difficulty (re-push recommended content > 60%
of incorrect problems, and > 3 learning path
micro-lectures) jumps/week
Table 3 Temporal student behaviour data
Metric category Specific metric Measurement method
Learning engagement  Video learning Percentage of viewing segments >5
effectiveness minutes per session (filtering invalid
clicks)
Assignment behaviour  Submission behaviour Negative logarithmic transformation of
submission time relative to deadline
Interaction quality Forum interaction depth ~ Semantic complexity of questions/answers
in course forums
Cognitive markers Error redo interval Time difference (days) between first and

last submission of wrong answers on same
knowledge point

4.2 Data pre-processing and dataset partition

To validate the generalisation capacity of CTCR, three distinct types of datasets,
encompassing higher — education institutions, K12 (Martin et al., 2023), and MOOCs
(Ani and Khor, 2024), were developed. The comparability of cross — scenario indicators
was guaranteed via ‘variable logic alignment’. Table 6 depicts the basic information of
these three datasets. Each dataset was divided into training, validation, and test sets using
time — series data. Specifically, the training set constituted 70% and was composed of
early complete data. The validation set and the test set each made up 15% and were
selected from subsequent time — series data. During the partitioning process, the
proportion of student groups and the distribution of teaching strategies in each subset
were strictly preserved, with a deviation of less than 5% from the original dataset, and a
unified pre — processing procedure was implemented.
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Table 4 Control variable set

Category Variable name Definition and measurement

Academic Prerequisite course Weighted average grade of major-related courses

background GPA (correlation coefficient > 0.7)
Gaokao math Standardised math competency baseline

(provincial ranking %)

Learning habits Study session Shannon entropy of learning behaviour
regularity occurrence
Resource retrieval External reference downloads + knowledge
depth graph navigation levels
Error notebook update ~ Median interval (days) between first/last review
cycle of errors on same knowledge point

Social influence Teacher feedback Average delay (hours) in assignment grading and
timeliness query resolution
Peer academic Average of in-degree and betweenness centrality
network centrality in forum interaction graphs

Environment and  Academic self-efficacy Initial psychological assessment score (Pintrich
psychology scale, oo = 0.87)

Course cognitive load =~ Weekly task complexity (number of tasks x
difficulty coefficient)

Digital literacy level Entropy of platfom feature utilisation breadth

Table 5 Basic information of datasets
Dataset Sample size Time span
K12 (dataset-K) 8,000 2021-2023 academic year (16 weeks per
semester)
MOOC:s (dataset-M) 15,000 2022-2023 (8 weeks per course)
University dataset (dataset-H) 15,000 2019-2023 (16 weeks per semester)

e  Evaluation metrics: prediction accuracy employed temporally-weighted mean
squared error (MSE-T) to measure academic trajectory fitting capability,
supplemented by root mean squared error (RMSE) for prediction bias assessment;
causal validity utilised policy effect heterogeneity error (PEHE) to test treatment
effect estimation accuracy; counterfactual plausibility adopted counterfactual
prediction consistency (CP@K) to verify logical self-consistency.

4.3 Comparative experiments

4.3.1 Generalisation ability experiment

To validate the performance of CTCR in the causal inference of dynamic teaching
strategies, five kinds of mainstream causal — inference models were employed for
comparison. The models' performance was quantified using multi — dimensional
indicators. Table 6 presents the comparison results of each model in Dataset — H.
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Table 6 Performance comparison of mainstream models
Model Dataset MSE-T (x102)  PEHE (x107) CP@k
Causal forest Dataset-H 12.31 8.70 0.62
Dataset-K 15.89 10.23 0.55
Dataset-M 16.52 10.87 0.51
CFRNet Dataset-H 10.22 7.58 0.68
Dataset-K 13.55 9.21 0.62
Dataset-M 14.11 9.76 0.59
Causal Dataset-H 9.11 7.19 0.75
transformer Dataset-K 11.56 8.52 0.68
Dataset-M 12.03 8.97 0.65
Multimodal Dataset-H 8.55 6.89 0.78
f;llllssaflomer Dataset-K 10.26 7.95 0.72
Dataset-M 10.81 8.32 0.69
GPT-4 Edu. Dataset-H 7.88 6.55 0.82
Spec. Dataset-K 10.55 8.22 0.75
Dataset-M 11.22 8.87 0.71
CTCR Dataset-H 5.53 5.16 0.89
Dataset-K 6.82 6.01 0.83
Dataset-M 7.15 6.32 0.80

Upon analysis, for Causal Forest, the MSE — T and PEHE values are relatively high in
Dataset — H. Moreover, its performance varies substantially in the K12 and MOOCs
datasets, indicating insufficient generalisation ability. Models based on recurrent
networks or single — modality transformers (CFRNET, causal transformer) exhibit better
baseline performance in Dataset — H compared to causal forest. However, their
performance still fluctuates markedly across different scenarios. Although multi — modal
causal Transformers and GPT — 4 education specialised show strong fitting capabilities in
Dataset — H, due to limitations in scenario adaptability, their performance fluctuates most
significantly, suggesting poor generalisation stability.

In contrast, CTCR showcases the best performance across all three datasets. In
Dataset — H, it has the lowest MSE — T and PEHE, along with the highest CP@K. When
applied across the K12 and MOOCs scenarios, its performance volatility is significantly
lower than that of other models, fully validating the enhancement of its cross - scenario
generalisation ability achieved through dynamic confounder disentanglement and
educational — domain knowledge constraints.
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4.3.2 Experiment on robustness to sparse data

Data sparsity within educational scenarios has the potential to impact model stability. To
validate the adaptability of each model, a multi — gradient data sparsity experiment was
designed, leveraging the higher — education dataset, to compare the robustness of each
model. Table 7 presents the performance of each model under varying levels of data
sparsity.

Upon analysis, as data sparsity intensifies, the MSE — T and PEHE indicators of each
model exhibit an upward tendency, whereas the CP@K demonstrates a downward trend.
Nevertheless, the extent of performance degradation varies substantially across the
models.

The traditional causal forest is highly reliant on data integrity. When data sparsity
increases from 70% to 10%, the performance degradation rate of MSE — T surges from
12.5% to 91.6%, and the degradation rates of PEHE and CP@K reach 82.4% and 38.7%
respectively, signifying insufficient robustness. The causal transformer, by virtue of its
temporal — modelling ability, fares better with complete data but still undergoes a notable
decline when the data is sparse. At a 30% sparsity level, the degradation rate of MSE — T
is 56.2%, and the degradation rates of PEHE and CP@K are 39.8% and 24.0%
respectively.

With complete data, CTCR has the lowest MSE — T and PEHE and the highest
CP@K. At a 70% data — sparsity level, the degradation rate of MSE — T is merely 8.9%,
significantly lower than that of the comparative models. Even at a 30% sparsity level, the
degradation magnitudes of its MSE — T, PEHE, and CP@K remain manageable. This is
because the model effectively alleviates the interference of data sparsity on causal
inference through dynamic confounder disentanglement and educational — domain
knowledge constraints.

Table 8 Comparison of anti — interference performance of different models (Dataset — H)
Model SNR ?ﬁfg:g seijzsgfily (I;lfg{}{?) sefz\gcl)';;ily CP@K seijysgfily

(%) (%) (%)

Causal None 12.31 - 8.70 - 0.62 -
forest 20 dB 13.05 6.0 9.03 3.8 0.60 3.2
10 dB 16.97 37.8 11.56 329 0.51 17.7
5dB 21.45 74.2 14.98 72.2 0.43 30.6

Causal None 9.11 - 7.19 - 0.75 -
transformer 5 4 9.68 6.3 7.52 4.6 0.73 2.7
10 dB 13.24 453 9.92 38.0 0.61 18.7
5dB 18.76 105.9 13.85 92.5 0.50 333

CTCR None 5.53 - 5.16 - 0.89 -
20 dB 5.82 52 5.38 43 0.87 22
10 dB 7.62 37.8 6.85 32.7 0.77 13.5

5dB 9.98 80.5 8.97 73.8 0.68 23.6
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4.3.3 Experiment on robustness to data noise

To validate the anti — interference capabilities of each model, a noise — intervention
experiment featuring different signal — to — noise ratios (SNR) was devised. This
experiment aimed to compare the variations in key indicators and noise sensitivity.
Table 8 presents the anti — interference performance of each model under different noise
intensities.

Upon analysis, as the noise intensity rises (SNR decreases), the MSE — T and PEHE
of all models exhibit an upward tendency, whereas the CP@K shows a downward trend.
Nevertheless, there are substantial differences in the anti — interference capabilities
among the models. Under the condition of a low SNR of 5 dB, for causal forest, the MSE
— T reaches 21.95 x 1072, with its noise sensitivity exceeding 74.2%. The noise
sensitivities of PEHE and CP@K reach 72.2% and 30.6% respectively, indicating a weak
anti — interference ability. When the SNR is 5dB, for the causal transformer, the MSE — T
is 18.76 x 1072, and its noise sensitivity reaches 105.9%, demonstrating a significant
performance decay.

The CTCR model possesses a relatively robust anti — interference ability. In the
absence of noise, it has the lowest MSE — T and PEHE and the highest CP@K. Under a
20dB noise level, the noise sensitivity of the MSE — T is merely 5.2%, which is
significantly lower than that of the comparative models. Even under a strong noise level
of 5dB, the noise sensitivities of its MSE — T, PEHE, and CP@K still remain at a
relatively low level. This can be attributed to the noise — suppressing effect of the model's
dynamic confounder disentanglement and domain — knowledge constraints.

Table 9 Comparison of key feature importance between LIME and SHAP

SHAP LIME score (n = 500)

Feature . . . .
mean Consistency verification conclusion

hame (Global) Group A Group B

Forum 0.38 0.42 (+) 0.35(+) Itis the positive Topl influencing factor

participation in both groups, consistent with global
results

Interval of 0.29 0.27 () 0.31 (=)  The longer the interval (> 7 days), the

wrong — weaker performance improvement, with

question significant negative impact, consistent

retry with global results

Homework 0.21 0.19 (-) 0.23 (=)  Performance drops significantly when

submission delayed > 48 hours; the negative effect

delay is stronger in Group B, matching group
characteristics

Device type 0.12 0.10 (+) 0.11 (+)  Positive impact is significant only when
learning via PC; no obvious effect on
mobile terminals, supplementing global
analysis details

Pre — course 0.08 0.09 (+) 0.07 (+)  The better the foundation, the weaker

GPA the positive regulatory effect; the impact

is more subtle in Group A, consistent
with the logic that ‘high — self —
discipline groups rely on strategies
rather than foundation’
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4.3.4 Interpretability experiment

Initially, the Transformer was utilised to extract the attention weights of each feature with
respect to academic performance. Subsequently, SHAP was employed to compute the
causal contributions of each feature. Following cross — validation, the top 5 key
influencing factors were identified. Moreover, to validate the reliability of each factor,
local interpretable model — agnostic explanations (LIME) was adopted as a
complementary approach [29]. For two types of student groups, namely the high — self —
discipline group (Group A) and the procrastination — type learning group (Group B),
linear explanations of the feature impacts were generated for local samples to verify the
consistency of the results. The outcomes are presented in Table 9.

Figure 4 Time axis of causal effects (see online version for colours)
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Figure 4 depicts the time — axis of causal effects for Group A and Group B under the
blended teaching strategy. The actual performance curve of Group A exhibits a steadily
ascending trend, with the half — life of its strategy effect reaching 7.2 weeks, which
reflects the persistence of the intervention effect. The actual performance curve of Group
B undergoes a precipitous decline in the fourth teaching week, and its half — life drops
sharply to 3.1 weeks. The shaded area of the difference between the two curves quantifies
the differentiation of the teaching strategy's effect. The strategy activation time marked in
the third week and the effect turning point marked in the fourth week constitute key
temporal nodes. The turning point of Group B is jointly triggered by the assignment delay
rate exceeding 40% and the re — doing interval of wrong questions being less than 2 days,
whereas Group A sustains long — term gains through in — depth forum interactions. This
visual illustration reveals the core regulatory function of students' behaviour patterns
regarding the timeliness of teaching strategies, providing a basis for the critical
conditions for dynamic teaching adjustments.
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5 Results and discussion

5.1 Key findings

5.1.1 Strategy timeliness analysis

To dissect the efficacy of instructional strategies across different teaching phases, this
study examines stage-specific effects from knowledge foundation to deep application.
Quantitative results are presented in Table 7.

Table 10  Quantitative analysis of instructional strategy stage effects

Effect

Metric Mean score  Standard size Educational
Strategy . L p-value , .
category improvement  deviation (Cohen mechanism
s d)

Knowledge T1 1.8 0.7 0.12 0.26 Teacher-led
foundation unidirectional
(Weeks 1- knowledge

8) transfer

T3 32 0.9 0.03* 0.48 Classroom
discussions
stimulate basic
concept
comprehension

T2 5.7 1.1 <0.01%* 0.82 Self-regulated
learning pace
matches
cognitive
resources

Deep T1 1.2 0.8 0.21 0.18 Insufficient
application higher-order
(Weeks 9— thinking training

16) T3 3.5 0.02% 053  Project practice
facilitates
knowledge
transfer

T2 2.1 0.9 0.04* 0.32 Lack of
immediate
feedback causes
comprehension
gaps

T2+T4 4.9 1.2 <0.01* 0.74 Complementary
effects of self-
exploration and
collaborative
deepening

Ju—

Analysis of Table 10 reveals that asynchronous learning (T2) demonstrates significant
advantages during the knowledge foundation stage, achieving a mean score improvement
of 5.7 points (p < 0.01), substantially exceeding blended learning (T3) and face-to-face
(T1) at 3.2 and 1.8 points respectively. This aligns with the cognitive load reduction
theory in educational psychology: students possess sufficient cognitive resources in early
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stages, allowing asynchronous learning's self-paced mode to efficiently accumulate
foundational knowledge. However, during the deep application stage, asynchronous
learning exhibits diminishing marginal benefits, with improvement dropping to 2.1
points. This necessitates combining T2 with T4's immediate interactivity through offline
discussions to enhance knowledge transfer, validating the core hypothesis that
‘instructional strategies require dynamic adaptation to teaching phases’.

5.1.2 Group response heterogeneity

Table 11 presents the strategic response differences across student groups. Upon analysis,
when different groups adopt the T2 strategy, the enhancement in academic performance
differs. The average score of rural students rises by 9.2 points, with statistical
significance p < 0.001; the average score of urban students increases by 6.3 points, with
p < 0.01. This suggests that recorded lessons are beneficial for improving academic
performance, and the effect is more pronounced for rural students. The reason lies in the
fact that rural students have relatively scarce offline resources, and the repeatable
viewing feature of recorded lessons effectively offsets this shortcoming. In contrast,
urban students utilise recorded lessons more as a basic supplement to technological tools,
so the improvement range is relatively limited.

For students with poor self — control, after adopting the high — frequency recorded —
lesson strategy, their average score decreases by 3.1 points, with p < 0.05, indicating a
significant negative effect. The reason is that these students possess weak self —
management capabilities. When confronted with a substantial amount of learning
resources, they encounter difficulties in effective time management and self — restraint,
and thus succumb to procrastination, ultimately resulting in a decline in academic
performance.

After highly self - disciplined students adopt the T3 mixed strategy, their average
score increases by 7.8 points, with p < 0.001, and the effect is remarkable. The reason is
that highly self — disciplined students can fully exert their subjective initiative in
autonomous learning and have a strong independent exploration ability. In combination
with the in — depth discussion sessions in blended teaching, they can deepen their
understanding and mastery of knowledge.

Table 11  strategic response differences across student groups

Mean score Statistical
Group type Strategy type improvement significance Key driving factor
(p-value)
Rural students T2 +9.2 <0.001 Repeated viewing

compensates for oftline
resource scarcity

Urban students T2 +6.3 <0.01 Foundational support of
technological tools

Low self- High- 3.1 <0.05 Procrastination induced
discipline frequency T2 by lack of supervision
students

High self- T3 +7.8 <0.001 Synergy of self-directed
regulation learning and deep

students discussions
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5.2 Pedagogical recommendations

Based on findings regarding strategy timeliness and group heterogeneity, this study
proposes stage-dynamic adjustments and group-adaptive strategies, providing actionable
implementation pathways for educators.

5.2.1 Stage-dynamic adjustment

Considering cognitive patterns of knowledge construction — early foundation building
followed by deepening and consolidation — coupled with strategy efficacy findings
(asynchronous learning excels early but requires supplementary offline teaching later),
we recommend dividing semesters into three phases with defined core strategies and
objectives. Table 12 details phased strategies and goals.

Table 12 Phased instructional strategies and objectives

Phase Duration Strategy mix Objective

Knowledge Weeks 1-4 T2 (71%) + Cover foundational knowledge points,
foundation T1(29%) establish conceptual frameworks

Deep Weeks 5-8 T3 (64%) + PBL  Facilitate knowledge transfer, cultivate
comprehension (36%) higher-order thinking

Consolidation Weeks 9-16 T4 (45%) + T1 Bridge knowledge gaps, achieve

and (55%) layered improvement

enhancement

Table 13 Group-adaptive instructional strategies and rationale

Group Core strategy mix Interventions

Rural students T2 + online Q&A Technical support: offline download packages,
variable playback speeds

Interaction compensation: Weekly online Q&A

sessions.
Low self- Usage-restricted Duration control: weekly viewing < 40% of total
discipline lectures + progress  course time
remmd.er.s +&roup  Behavioural interventions: daily task lists, point-
supervision based reward systems
High self- T3+ T4 Strategy ratio: T3 (50%) + T4 (30%)

regulation Content design: challenging tasks + self-selected

learning

5.2.2 Group-adaptive optimisation strategies

For heterogenecous responses across student groups, differentiated interventions are
recommended as detailed in Table 13. For rural students, the essence of the strategy lies
in ‘technology empowerment’ and ‘interaction compensation’. By offering offline
resources and regular online Q&A sessions, the structural deficiencies in resources and
interaction can be compensated for. For students with weak self — control, the emphasis
of the strategy is on ‘external restraint’ and ‘behaviour guidance’. Through mechanisms
like duration control and task supervision, the procrastination behaviour loop can be
disrupted. For highly self — disciplined students, a combined strategy of ‘challenge
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enhancement’ and ‘autonomous motivation’ is implemented. By increasing the
proportion of blended and adaptive learning, their potential for high - order thinking and
autonomous learning can be optimised.

5.3 Risk warnings

Applications of educational causal inference technology require vigilance against
technological dependency and ethical misuse risks, both potentially undermining
pedagogical humanistic dimensions and equity. Integrating educational psychology and
ethical theory, this study identifies the following primary risks:

5.3.1 Technological dependency risk

Over-reliance on technology-optimised instructional strategies may reduce the frequency
and depth of teacher-student emotional interactions. Educational psychology research
indicates teacher-student emotional bonds are crucial mediators for sustaining learning
motivation: when teachers fully delegate strategy adjustments to model
recommendations, proactive observation of student growth may diminish, allowing
technical rationality to displace humanistic care in education. Reduced sensitivity to
personalised needs risks missing critical moments for emotional support, ultimately
weakening sustained motivation.

Table 14  Group-adaptive instructional strategies and rationale

Item Opt. group Ctrl. group Correlation coefficient (r) Significance (p-value)
A 423 58.7 —0.62 <0.001
B 3.1 42 0.71 <0.001

Notes: A represents ‘teacher — student weekly interaction duration (minutes)’; B
represents ‘student emotional investment score (1-5 points)’. Opt. Group: 13
tech-optimised classes; Ctrl. Group: 13 traditional classes.

Table 14 shows the optimisation group had 28.0% less weekly interaction time and
26.2% lower emotional engagement scores versus the control group. This demonstrates
technology's ‘substitution effect” weakens emotional interaction, potentially causing
learning motivation decline and resilience deterioration. Such risks must be integrated
into strategy evaluation frameworks.

To alleviate this risk, an educational causal inference explainability dashboard
(ECID) tailored for teachers was devised. It achieves ‘traceability of strategy
recommendations + early warning of interaction gaps’ via visualisation tools. The
modules and functions are presented in Table 15.

5.3.2 Ethical boundary risk

The objective of counterfactual reasoning is to forecast ‘how academic performance
would change if teaching strategy T were adopted’. Nevertheless, the misuse of this
technology might transform it into a tool for generating student — ability labels, creating a
negative cycle of ‘label — expectation — behaviour — result’. Consequently, in light of
sensitive groups within educational scenarios, a bias detection pipeline (BDP) was
developed, and its implementation process is presented in Table 16.
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Table 15  ECID module design
Module Function . Techmcal. Guqrar%tee
implementation objective
Strategy rec. tracing Shows core basis for SHAP + causal path  Enable teachers to
recommended teaching  visualisation understand causal

Teacher — student
interaction monitoring

strategies (key feature
contributions, causal
paths, group
comparisons)

Monitors real — time
teacher — student
interaction (duration,
quality labels,
emotional engagement)

Real-time data

stream , and
setting a threshold
of 30

logic, avoid blind
adoption

Identify
interaction gaps,
trigger timely
intervention

Strategy dependence Evaluates teachers’ Strategy execution Balance technical

eval. dependence on log statistics and assistance and
strategies (Dependence  setting hierarchical ~ teacher autonomy,
= adoptions/total thresholds avoid over —
adjustments), provides dependence
graded prompts

Table 16  Proper use vs. ethical risks of counterfactual reasoning

Stage Core target Key operations Core indicators

Data pre- Sample distr. feature Group stats, resampling Group distr. bias rate

processing bias <5%

Model training Group effect Calc group effects, add Group effect bias rate

estimation bias

Post —
monitoring

Resource alloc. label
bias

fair loss

Stat resource proportion,

track label lang

<10%

Resource alloc. bias
rate < 8%, label —
biased lang freq =0

To safeguard the dominant position of students, a student informed consent framework
(SICF) based on the ‘principle of minimum necessity’ was designed, implementing a
hierarchical authorisation and self - management mechanism, as shown in Table 17.

In essence, the implementation of educational causal - inference models necessitate
the establishment of a robust dynamic - balance mechanism. Through the provision of
strategic recommendations, teaching can be rendered more intelligent. Simultaneously,
the preeminent position of teachers in emotional interaction and personalised guidance
should be sustained to preserve the humanistic traits of education. This guarantees that
the application of technology consistently serves the educational ontological value of
‘student — centredness’ and averts risks such as an imbalance in the distribution of
educational resources and labeling resulting from the alienation of technology.
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Table 17  Design of SICF
Mechanism Authorisation Core content Data usage Acquisition and
level scope management method
Three —level  Basic Collect For overall Sign electronic
authorisation  authorisation  anonymised model training, agreements
(Mandatory)  learning behaviour  not individual uniformly at the
data recommendation  start of each
semester
Intervention Generate Feed Students can enable
authorisation  personalised recommendation  or disable it anytime
(Optional) strategy results back to in the personal
recommendations teachers centre
based on
individual data
Feedback View personal For model Released after
authorisation  counterfactual optimisation and  student application
(Optional) reasoning results strategy and teacher review
and raise adjustment
objections
Autonomous  Dynamic Students can The model Real - time
control and withdrawal withdraw any — immediately operation via the
feedback mechanism level authorisation  stops using their ~ campus platform's
at any time personal data ‘privacy settings’
Objection Students can raise ~ Objections serve  Review results are
handling objections to as feedback data  fed back to students
mechanism recommendations  for model within one week
or results optimisation

6 Conclusions

This research centres on the challenging issue of assessing the causal effects of teaching
strategies. It puts forward the CTCR model and systematically validates its efficacy and
application value from three aspects: model construction, data design, and experimental

verification. The main conclusions are as follows:

1 Model architecture and theoretical innovation: CTCR incorporates a 4 — head
temporal attention mechanism and a dynamic confounder disentanglement
mechanism, effectively capturing the temporal non - uniformity of educational
interventions. It introduces a bidirectional GRU to model the strategy feedback loop,
transcending the traditional ‘no — feedback assumption’. By integrating
counterfactual generation constrained by knowledge graphs, the rationality of
teaching reasoning is enhanced. At the theoretical level, CTCR enables the
processing of time — varying confounders and the decomposition of causal effects,
propelling the evolution of educational causal analysis from static correlation to

dynamic mechanisms.
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2 Dataset construction and experimental design: a multi — scenario dataset
encompassing higher education institutions, K12, and MOOCs was developed. A
hierarchical time — series partitioning approach was employed to stringently control
data deviation and leakage, providing a reliable foundation for evaluating the model's
generalisation ability.

3 Experimental verification and educational discoveries: CTCR exhibits the optimal
performance in multiple indicators (MSE —T, PEHE, CP@XK), demonstrating
excellent cross — scenario adaptability and noise robustness. Interpretability analysis
further pinpoints key teaching influencing factors (such as forum participation,
interval for re — doing wrong questions), uncovering the stage — specific timeliness
and group heterogeneity of strategies, thus providing a basis for hierarchical teaching
interventions.

4  Limitations and future directions: the current model suffers from issues such as high
computational complexity, limited data modalities, and insufficient cross —
disciplinary generalisation ability. In the future, efforts will be concentrated on
lightweight architectures, multi — modal fusion, and cross — scenario transfer.
Additionally, the ‘teacher — technology’ collaborative mechanism will be fortified to
promote the trustworthy, efficient, and humanistic integration of causal intelligence
in education.
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