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Abstract: Modern education increasingly relies on data-driven decision-
making, requiring causal inference methods to assess teaching strategies 
beyond correlations. Challenges such as time-varying confounders, unobserved 
counterfactuals, temporal dependencies of interventions, and heterogeneous 
responses limit strategy design and evaluation. Existing methods also struggle 
with temporal dynamics and complex causal structures. To address these issues, 
causal temporal contextual reasoning (CTCR) was developed, incorporating a 
dynamic disentanglement mechanism for time-varying confounders, a two-way 
causal representation module, and a counterfactual generation algorithm 
constrained by temporal logic. Experiments on higher education (Dataset-H), 
K12, and MOOCs datasets show CTCR’s effectiveness. On Dataset-H, it 
achieves MSE-T 5.53 × 10–2, PEHE 5.16 × 10–1, and CP@K 0.89, 
outperforming comparative models. Performance volatility across K12 and 
MOOCs is ≤ 29.3%, and CTCR remains robust under 30% data sparsity and  
5 dB noise, demonstrating strong generalisation and reliability. 

Keywords: causal transformer; counterfactual reasoning; instructional strategy; 
CTCR; academic achievement; time-varying confounders. 
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1 Introduction 

In modern education, data – driven decision – making necessitates causal inference that 
transcends mere correlation to precisely evaluate the genuine impact of teaching 
strategies on academic performance (Kitto et al., 2023). Nevertheless, the majority of 
current mainstream methods rely on the statistical associations within observational data,  
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rendering it arduous to disentangle the true causal effects from the interference of 
confounding factors. The reasons are as follows: the coupling effect of time – varying 
confounders, such as the dynamic alteration of students' autonomous learning ability, 
which not only influences the selection of teaching strategies but also correlates with 
academic performance (Marantika, 2021); counterfactual outcomes are unobservable, and 
traditional methods are unable to address the query of ‘how would students' academic 
performance vary if an alternative strategy were employed’ (Keller and Branson, 2024); 
the temporal dependence and heterogeneous responses of educational interventions 
augment the complexity of identification. 

To address these challenges, educational causal research has undergone iterative 
methodological evolution. Early approaches relied on quasi-experimental designs and 
parametric models, such as difference-in-differences (DID) (Tournaki, 2023), 
instrumental variables (IV) (Alauddin et al., 2017), and matching methods (Keele et al., 
2021). While these established the research foundation, they overlooked dynamic 
confounding, feedback loops, and temporal logic constraints of counterfactual paths, 
failing to support the deconstruction of complex instructional strategy effects. 

In recent years, the rapid advancement of artificial intelligence has enabled scholars 
to integrate deep learning with causal inference, offering new approaches for handling 
temporal dependencies and nonlinear relationships. Causal forests can identify 
heterogeneous treatment effects but inadequately capture temporal dependencies (Chen  
et al., 2021). Bayesian neural networks (BNNs) suit small-sample scenarios but face 
computational bottlenecks with high-dimensional data (Park et al., 2021). Additionally, 
transformer-based models like CausalBERT (Li et al., 2021) and G-transformer (Xiong  
et al., 2024) partially mitigate interference from time-varying confounders in causal 
effect estimation. 

Recent progress focuses on dynamic modelling and instrumental variable innovations. 
Causal transformer's segmented attention mechanism decomposes long sequences into 
short segments, reducing computational load while capturing dynamic intervention 
effects. However, its reliance on preset time granularity struggles with non-uniform 
temporal variations (Zhu et al., 2024). MATTE incorporates domain knowledge to 
constrain counterfactual generation, reducing bias from missing data. Yet its dependence 
on expert-defined rules limits cross-domain transferability (Yan et al., 2023). CB-IV (Wu 
et al., 2022) and AutoIV (Yuan et al., 2022) automate instrumental variable selection, 
alleviating selection bias in high-dimensional settings. However, theoretical validation of 
their efficacy remains pending. 

In essence, existing analytical methods encounter difficulties in satisfying the 
profound requirements of educational causal inference, and they face the following 
challenges: time – varying confounders contravene the strong ignorability assumption, 
leading traditional static models to yield biases because of the disregard for the time 
dimension. The long – range dependence and feedback loops of intervention effects 
render the analysis of existing architectures, which assume no feedback, ineffective. The 
temporal logic constraints of counterfactual reasoning are in conflict with the traditional 
consistency assumption, causing the counterfactual paths often generated to run counter 
to teaching logic. Consequently, this study develops CTCR to accomplish a meticulous 
deconstruction of the effects of teaching strategies on academic performance. The main 
contributions are as follows: 
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1 A dynamic confounder disentanglement mechanism using Transformer multi-head 
attention to isolate confounders from direct intervention effects, resolving causal 
confounding induced by overlooked temporal dependencies 

2 A bidirectional causal representation module concurrently modelling feedforward 
impacts and feedback regulation of instructional strategies, overcoming 
unidirectional causal assumptions in static models 

3 A temporally-constrained counterfactual generation algorithm embedding 
educational temporal dependency rules into potential outcome models, ensuring 
counterfactual paths align with educational practice logic. 

Figure 1 The process of counterfactual reasoning (see online version for colours) 

 

2 Theoretical foundations 

2.1 Counterfactual reasoning and causal inference 

Counterfactual reasoning serves as a core methodology within causal inference, with the 
objective of exploring the question: ‘what would the outcome be if the intervention had 
not occurred?’ (Nyhout and Ganea, 2021). In the realm of educational intervention 
evaluation, its significance lies in surmounting the innate limitations of observational 
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data. Specifically, this pertains to the incapacity to directly observe the potential 
outcomes of the same individual under diverse strategies (Sinha and Kapur, 2021). 

More precisely, for a group of students who have undergone a particular teaching 
strategy T, their actual academic performance Y represents the ‘factual’ outcome that is 
observed. Conversely, counterfactual reasoning endeavors to estimate the potential 
academic performance Y* of this group had they received an alternative strategy T' or no 
intervention at all. This ‘contrast difference’ (Y–Y*) constitutes the theoretical foundation 
for assessing the causal effect of the intervention. 

Nonetheless, the time –varying confounders frequently encountered in educational 
scenarios contravene the strong ignorability assumption of traditional causal inference. 
As a result, this leads to substantial biases in counterfactual estimates derived from  
static observations (Hong and Raudenbush, 2008). Figure 1 illustrates the process of 
counterfactual reasoning. 

Figure 2 Causal path (a) direct effect (b) indirect effect (c) historical effect (d) feedback effect 
(see online version for colours) 

 

2.2 Time series effect decomposition 

Figures 2(a)–2(d) illustrate causal pathways at distinct time slices t. The total effect (TE) 
of instructional strategies on academic performance decomposes into four components. 

 
 

• Direct effect (DE): immediate impact of current strategy Xt on contemporaneous 
performance Yt, following path Xt→Yt. 

• Indirect effect (IE): effect of current strategy Xt on subsequent performance Yt + k 
mediated through intermediate variable Mt, via path Xt → Mt → Yt + k. 

• Historical effect (HE): persistent influence of historical strategy sequence Ht on 
current/future performance by shaping current state Kt, through path Ht → Kt → Yt/Yt 
+ k. 
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• Feedback effect (FE): closed-loop path where current outcome Yt inversely affects 
future intervention decisions Xt + 1, denoted Yt → Xt + 1. 

2.3 Temporal counterfactual definition 

Under the dynamic causal graph framework, counterfactual reasoning must strictly 
adhere to temporal logic constraints of interventions (Barbero et al., 2023). We define: 

• Factual outcome: observed academic performance Yh,x when implementing 
instructional strategy Xt = x. 

• Counterfactual outcome: potential performance Yh,x* obtained by replacing current 
intervention with Xt = x* (x* ≠ x), while holding historical sequence Ht = h constant. 

• The conditional treatment effect (CTE) of strategy x relative to x* is then defined as: 

( ) ( )( )fact cf
h hCTE x x h Y x Y x∗ ∗→ = −  (1) 

3 Model design and comparison 

3.1 Model design 

Figure 3 illustrates the architecture of CTCR, designed with the dual objectives of: 
disentangling temporal confounding effects of instructional strategies; generating 
counterfactual paths consistent with educational logic. 

• CTCR comprises two phases: clue extraction and hypothesis verification. 

The clue extraction phase includes a temporal attention network and a spurious 
correlation filtering block. The temporal attention network inputs pre-processed 
longitudinal data – instructional strategies, student behaviours, and control variables, 
segmented weekly into X = x1, x2, …, xT. It employs four independent attention heads 
to capture influences at different temporal scales. 

• Short-term head: uses a 3-week sliding window to focus on immediate effects of 
localised strategies, calculating attention weights between the current week t and the 
preceding two weeks (t–1, t–2). 

( )
, [ 2, ]

short short
i Q j Kshort

ij

QW K W
A Softmax j i i

d

 ⋅ = ∈ − 
 



 (2) 

• Here, Q denotes the query vector, representing features of the current week i. K 
denotes the key vector, representing features of historical week j. ,short

QW  short
KW  are 

learnable parameter matrices projecting input features into query and key spaces. 
d  is a scaling factor controlling the dot product magnitude to prevent gradient 

vanishing. 

• Mid-term head: employs a 6-week sliding window to capture cumulative effects 
during instructional phases, with attention spanning weeks [i−5, j]. 
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Figure 3 CTCR architecture (see online version for colours) 

  

• Long-term head: utilises a 12-week sliding window to analyse global impacts of 
semester-level strategy sequences, extending attention to weeks [i−11, j]. 

• Confounder disentanglement head: separates interference from time-varying 
confounders by maximising mutual information I(Ti; Zi) between interventions and 
latent representations, while minimising I(Zi; Xi) to ensure exclusive encoding of 
confounding factors. 
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• Spurious correlation filtering module adopts a three-tiered structure: dual-channel 
discrimination, hard suppression, and gradient reversal. The dual-channel 
discrimination layer first computes mutual information I(v, T) and correlation 
coefficients ρ(v, Y) in parallel between variables and instructional 
interventions/academic performance. Non-causal associations are identified using 
predetermined thresholds (I(v, T) < 0.1 and ∣ ρ(v, Y)∣ < 0.15). 

• Based on discrimination results, the system executes two-level processing: for 
superficially correlated variables meeting suppression conditions, their attention 
weights are forced to zero in the weight matrix; for control variables, their 
embedding vectors are directed through a gradient reversal layer with negative 
scaling (λ = −0.5) to inversely scale gradients, preventing the model from exploiting 
them for intervention prediction. 

• Hypothesis verification phase contains two branches: factual prediction and 
counterfactual generation. The factual prediction branch processes real instructional 
strategy sequences using a gated recurrent temporal predictor. Its core is a 
bidirectional GRU network: the forward GRU encodes cumulative effects of 
historical interventions and behaviours, while the backward GRU captures teachers' 
feedback adjustments based on periodic grades. The GRU unit updates hidden states 
weekly ht = fGRU(ht–1, xt, Tt), outputting estimated grades for week 1

ˆ .F
tY +  The loss 

function employs temporally-weighted mean squared error (MSE-T): 

( )21
1 11

ˆT T t F
fact t Tt

L a Y Y
− −

+ +=
= ⋅ −   (3) 

• Here, a = 0.9, give higher weight to recent predictions. 

• Counterfactual generation branch constructs virtual intervention paths through a 
strategy replacement engine and adversarial training. First, hard constraints are 
enforced based on the curriculum knowledge graph: if a student has not mastered 
knowledge point A, higher-order strategies dependent on A are prohibited, ensuring 
counterfactual paths adhere to pedagogical progression logic. Subsequently, a 
conditional GAN generates counterfactual outcomes: 

• Generator G: receives real sequences and noise vectors, outputs strategy-replaced 
sequence T and predicted outcome ˆCFY . 

• Discriminator D: constrains the distribution of ˆCFY  to approximate real grade 
distributions via Wasserstein distance. 

The model initially allows only single-week strategy replacement, progressively enabling 
multi-week recombination to achieve dynamic equilibrium, ultimately generating 
globally consistent counterfactual sequences under graph constraints. 

3.2 Comparison of architectural differences 

To determine the originality and differences of the CTCR model, five mainstream 
educational causal models were selected and their architectures were compared. 
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The architectural design of CTCR is centred around ‘the temporal dynamics of 
educational interventions’ and ‘the interpretability of causal effects’, which is essentially 
different from existing models in terms of module functions and interaction logics. The 
framework differences are shown in Table 1. 
Table 1 Comparison of architectural differences among different models 

Model Module 
composition 

Temporal 
processing 

method 

Confounder 
processing 

module 

Counterfactual 
generation 

logic 

Feedback 
mechanism 

(y→x) 
Causal 
Forest 

Decision 
tree + hetero 

nodes 

None 
(temp. 
indep.) 

No module 
(sample match) 

None None 

CFRNet 
(Deng et al., 
2024) 

Uni-GRU + 
CF pred 
branch 

Forward 
recursive 

Static ctrl var. 
embed 

State replace 
(no edu. cons.) 

None 

Causal 
transformer 

Temp slice 
attn + FC 

layer 

Fixed-slice 
dep. 

Static slice 
separation 

Intra-slice 
strat. replace 

None 

Multimodal 
causal 
transformer 
(Zhang  
et al., 2023) 

Multimodal 
embed + 

causal attn 

Multimodal 
parallel 
align 

Feature fusion Modality cons. 
(no edu. rules) 

None 

GPT-4 Edu. 
Spec. 

Transformer 
decoder + 
edu. fine-

tune 

Linguistic 
fluency 

dep. 

No module 
(data distr.) 

Text fluency 
(no prac. 

cons.) 

None 

CTCR Temp attn (4 
heads) +  

bi-GRU + 
knowledge 

graph 

Hier. dyn 
window 

(3/6/12w) 

Dyn confounder 
disentanglement 

Knowledge 
graph + prog. 

gen (teach. 
logic) 

Yes 
(backward 

GRU) 

4 Experiments 

4.1 Data preparation 

To conduct a systematic analysis of the impact of teaching strategies on students' 
behaviours and academic performance, a multi – dimensional indicator system was 
developed grounded in the theories of data mining and causal inference. Key variables 
were categorically classified in a structured manner and operationally defined. Table 2 
defines four teaching – intervention variables by means of multi – hot encoding. Table 3 
presents the time – series data indicators of students' behaviours, encompassing learning 
engagement, assignment patterns, interaction quality, and cognitive – behaviour markers. 
Their measurement methods and educational implications are derived from the generative 
learning – behaviour analysis framework and metacognitive theory (Dai et al., 2025; 
Ozturk, 2017; Dennis and Somerville, 2023). Table 4 shows the set of control variables, 
which includes three types of confounding factors: academic background, learning 
environment, and social influence. The screening principles adhere to the principles of 
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educational causal inference (Valbuena et al., 2021; Forney and Mueller, 2022), and 
optimisation was achieved through statistical tests (VIF < 5) and feature – importance 
assessment (Top 80%). 
Table 2 Instructional intervention variables 

Variable 
code 

Instructional 
strategy Definition Data marker/encoding 

conditions 
T1 Traditional 

face-to-face 
Teacher-led lectures without 
online learning tasks 

Classroom attendance rate > 
90% and no recorded lecture 
access 

T2 Blended 
learning 

Recorded lectures (50%) + 
in-depth classroom 
discussions (50%) 

Recorded video viewing duration 
≥ 30% of total course time and ≥ 
2 discussion records/week 

T3 Project-based 
learning (PBL) 

Cross-week group tasks 
(experimental design, 
research reports, etc.) 

≥ 1 group task submission/stage 
and ≥ 5 collaborative forum 
discussions/week 

T4 Adaptive 
learning 

AI dynamically adjusts 
content difficulty (re-push 
of incorrect problems,  
micro-lectures) 

Click-through rate on 
recommended content > 60% 
and ≥ 3 learning path 
jumps/week 

Table 3 Temporal student behaviour data 

Metric category Specific metric Measurement method 
Learning engagement Video learning 

effectiveness 
Percentage of viewing segments >5 
minutes per session (filtering invalid 
clicks) 

Assignment behaviour Submission behaviour Negative logarithmic transformation of 
submission time relative to deadline 

Interaction quality Forum interaction depth Semantic complexity of questions/answers 
in course forums 

Cognitive markers Error redo interval Time difference (days) between first and 
last submission of wrong answers on same 
knowledge point 

4.2 Data pre-processing and dataset partition 

To validate the generalisation capacity of CTCR, three distinct types of datasets, 
encompassing higher – education institutions, K12 (Martin et al., 2023), and MOOCs 
(Ani and Khor, 2024), were developed. The comparability of cross – scenario indicators 
was guaranteed via ‘variable logic alignment’. Table 6 depicts the basic information of 
these three datasets. Each dataset was divided into training, validation, and test sets using 
time – series data. Specifically, the training set constituted 70% and was composed of 
early complete data. The validation set and the test set each made up 15% and were 
selected from subsequent time – series data. During the partitioning process, the 
proportion of student groups and the distribution of teaching strategies in each subset 
were strictly preserved, with a deviation of less than 5% from the original dataset, and a 
unified pre – processing procedure was implemented. 
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Table 4 Control variable set 

Category Variable name Definition and measurement 
Academic 
background 

Prerequisite course 
GPA 

Weighted average grade of major-related courses 
(correlation coefficient > 0.7) 

Gaokao math Standardised math competency baseline 
(provincial ranking %) 

Learning habits Study session 
regularity 

Shannon entropy of learning behaviour 
occurrence 

Resource retrieval 
depth 

External reference downloads + knowledge 
graph navigation levels 

Error notebook update 
cycle 

Median interval (days) between first/last review 
of errors on same knowledge point 

Social influence Teacher feedback 
timeliness 

Average delay (hours) in assignment grading and 
query resolution 

Peer academic 
network centrality 

Average of in-degree and betweenness centrality 
in forum interaction graphs 

Environment and 
psychology 

Academic self-efficacy Initial psychological assessment score (Pintrich 
scale, α = 0.87) 

Course cognitive load Weekly task complexity (number of tasks × 
difficulty coefficient) 

Digital literacy level Entropy of platfom feature utilisation breadth 

Table 5 Basic information of datasets 

Dataset Sample size Time span 
K12 (dataset-K) 8,000 2021–2023 academic year (16 weeks per 

semester) 
MOOCs (dataset-M) 15,000 2022–2023 (8 weeks per course) 
University dataset (dataset-H) 15,000 2019–2023 (16 weeks per semester) 

• Evaluation metrics: prediction accuracy employed temporally-weighted mean 
squared error (MSE-T) to measure academic trajectory fitting capability, 
supplemented by root mean squared error (RMSE) for prediction bias assessment; 
causal validity utilised policy effect heterogeneity error (PEHE) to test treatment 
effect estimation accuracy; counterfactual plausibility adopted counterfactual 
prediction consistency (CP@K) to verify logical self-consistency. 

4.3 Comparative experiments 

4.3.1 Generalisation ability experiment 
To validate the performance of CTCR in the causal inference of dynamic teaching 
strategies, five kinds of mainstream causal – inference models were employed for 
comparison. The models' performance was quantified using multi – dimensional 
indicators. Table 6 presents the comparison results of each model in Dataset – H. 
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Table 6 Performance comparison of mainstream models 

Model Dataset MSE-T（×10⁻²） PEHE（×10⁻¹） CP@K 

Causal forest Dataset-H 12.31 8.70 0.62 
Dataset-K 15.89 10.23 0.55 
Dataset-M 16.52 10.87 0.51 

CFRNet Dataset-H 10.22 7.58 0.68 
Dataset-K 13.55 9.21 0.62 
Dataset-M 14.11 9.76 0.59 

Causal 
transformer 

Dataset-H 9.11 7.19 0.75 
Dataset-K 11.56 8.52 0.68 
Dataset-M 12.03 8.97 0.65 

Multimodal 
causal 
transformer 

Dataset-H 8.55 6.89 0.78 
Dataset-K 10.26 7.95 0.72 
Dataset-M 10.81 8.32 0.69 

GPT-4 Edu. 
Spec. 

Dataset-H 7.88 6.55 0.82 
Dataset-K 10.55 8.22 0.75 
Dataset-M 11.22 8.87 0.71 

CTCR Dataset-H 5.53 5.16 0.89 
Dataset-K 6.82 6.01 0.83 
Dataset-M 7.15 6.32 0.80 

Upon analysis, for Causal Forest, the MSE – T and PEHE values are relatively high in 
Dataset – H. Moreover, its performance varies substantially in the K12 and MOOCs 
datasets, indicating insufficient generalisation ability. Models based on recurrent 
networks or single – modality transformers (CFRNET, causal transformer) exhibit better 
baseline performance in Dataset – H compared to causal forest. However, their 
performance still fluctuates markedly across different scenarios. Although multi – modal 
causal Transformers and GPT – 4 education specialised show strong fitting capabilities in 
Dataset – H, due to limitations in scenario adaptability, their performance fluctuates most 
significantly, suggesting poor generalisation stability. 

In contrast, CTCR showcases the best performance across all three datasets. In 
Dataset – H, it has the lowest MSE – T and PEHE, along with the highest CP@K. When 
applied across the K12 and MOOCs scenarios, its performance volatility is significantly 
lower than that of other models, fully validating the enhancement of its cross - scenario 
generalisation ability achieved through dynamic confounder disentanglement and 
educational – domain knowledge constraints. 
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Table 7 Comparison of robustness among models under different data sparsity levels  
(Dataset-H) 
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4.3.2  Experiment on robustness to sparse data 
Data sparsity within educational scenarios has the potential to impact model stability. To 
validate the adaptability of each model, a multi – gradient data sparsity experiment was 
designed, leveraging the higher – education dataset, to compare the robustness of each 
model. Table 7 presents the performance of each model under varying levels of data 
sparsity. 

Upon analysis, as data sparsity intensifies, the MSE – T and PEHE indicators of each 
model exhibit an upward tendency, whereas the CP@K demonstrates a downward trend. 
Nevertheless, the extent of performance degradation varies substantially across the 
models. 

The traditional causal forest is highly reliant on data integrity. When data sparsity 
increases from 70% to 10%, the performance degradation rate of MSE – T surges from 
12.5% to 91.6%, and the degradation rates of PEHE and CP@K reach 82.4% and 38.7% 
respectively, signifying insufficient robustness. The causal transformer, by virtue of its 
temporal – modelling ability, fares better with complete data but still undergoes a notable 
decline when the data is sparse. At a 30% sparsity level, the degradation rate of MSE – T 
is 56.2%, and the degradation rates of PEHE and CP@K are 39.8% and 24.0% 
respectively. 

With complete data, CTCR has the lowest MSE – T and PEHE and the highest 
CP@K. At a 70% data – sparsity level, the degradation rate of MSE – T is merely 8.9%, 
significantly lower than that of the comparative models. Even at a 30% sparsity level, the 
degradation magnitudes of its MSE – T, PEHE, and CP@K remain manageable. This is 
because the model effectively alleviates the interference of data sparsity on causal 
inference through dynamic confounder disentanglement and educational – domain 
knowledge constraints. 
Table 8 Comparison of anti – interference performance of different models (Dataset – H) 

Model SNR MSE-T 
(×10⁻²) 

Noise 
sensitivity 

(%) 
PEHE 
(×10⁻¹) 

Noise 
sensitivity 

(%) 
CP@K 

Noise 
sensitivity 

(%) 
Causal 
forest 

None 12.31 - 8.70 - 0.62 - 
20 dB 13.05 6.0 9.03 3.8 0.60 3.2 
10 dB 16.97 37.8 11.56 32.9 0.51 17.7 
5 dB 21.45 74.2 14.98 72.2 0.43 30.6 

Causal 
transformer 

None 9.11 - 7.19 - 0.75 - 
20 dB 9.68 6.3 7.52 4.6 0.73 2.7 
10 dB 13.24 45.3 9.92 38.0 0.61 18.7 
5 dB 18.76 105.9 13.85 92.5 0.50 33.3 

CTCR None 5.53 - 5.16 - 0.89 - 
20 dB 5.82 5.2 5.38 4.3 0.87 2.2 
10 dB 7.62 37.8 6.85 32.7 0.77 13.5 
5 dB 9.98 80.5 8.97 73.8 0.68 23.6 
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4.3.3 Experiment on robustness to data noise 
To validate the anti – interference capabilities of each model, a noise – intervention 
experiment featuring different signal – to – noise ratios (SNR) was devised. This 
experiment aimed to compare the variations in key indicators and noise sensitivity.  
Table 8 presents the anti – interference performance of each model under different noise 
intensities. 

Upon analysis, as the noise intensity rises (SNR decreases), the MSE – T and PEHE 
of all models exhibit an upward tendency, whereas the CP@K shows a downward trend. 
Nevertheless, there are substantial differences in the anti – interference capabilities 
among the models. Under the condition of a low SNR of 5 dB, for causal forest, the MSE 
– T reaches 21.95 × 10⁻², with its noise sensitivity exceeding 74.2%. The noise 
sensitivities of PEHE and CP@K reach 72.2% and 30.6% respectively, indicating a weak 
anti – interference ability. When the SNR is 5dB, for the causal transformer, the MSE – T 
is 18.76 × 10⁻², and its noise sensitivity reaches 105.9%, demonstrating a significant 
performance decay. 

The CTCR model possesses a relatively robust anti – interference ability. In the 
absence of noise, it has the lowest MSE – T and PEHE and the highest CP@K. Under a 
20dB noise level, the noise sensitivity of the MSE – T is merely 5.2%, which is 
significantly lower than that of the comparative models. Even under a strong noise level 
of 5dB, the noise sensitivities of its MSE – T, PEHE, and CP@K still remain at a 
relatively low level. This can be attributed to the noise – suppressing effect of the model's 
dynamic confounder disentanglement and domain – knowledge constraints. 
Table 9 Comparison of key feature importance between LIME and SHAP 

Feature 
name 

SHAP 
mean 

(Global) 

LIME score (n = 500) 
Consistency verification conclusion 

Group A Group B 

Forum 
participation 

0.38 0.42 (+) 0.35 (+) It is the positive Top1 influencing factor 
in both groups, consistent with global 
results 

Interval of 
wrong – 
question 
retry 

0.29 0.27 (–) 0.31 (–) The longer the interval (> 7 days), the 
weaker performance improvement, with 
significant negative impact, consistent 
with global results 

Homework 
submission 
delay 

0.21 0.19 (–) 0.23 (–) Performance drops significantly when 
delayed > 48 hours; the negative effect 
is stronger in Group B, matching group 
characteristics 

Device type 0.12 0.10 (+) 0.11 (+) Positive impact is significant only when 
learning via PC; no obvious effect on 
mobile terminals, supplementing global 
analysis details 

Pre – course 
GPA 

0.08 0.09 (+) 0.07 (+) The better the foundation, the weaker 
the positive regulatory effect; the impact 
is more subtle in Group A, consistent 
with the logic that ‘high – self – 
discipline groups rely on strategies 
rather than foundation’ 
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4.3.4 Interpretability experiment 
Initially, the Transformer was utilised to extract the attention weights of each feature with 
respect to academic performance. Subsequently, SHAP was employed to compute the 
causal contributions of each feature. Following cross – validation, the top 5 key 
influencing factors were identified. Moreover, to validate the reliability of each factor, 
local interpretable model – agnostic explanations (LIME) was adopted as a 
complementary approach [29]. For two types of student groups, namely the high – self – 
discipline group (Group A) and the procrastination – type learning group (Group B), 
linear explanations of the feature impacts were generated for local samples to verify the 
consistency of the results. The outcomes are presented in Table 9. 

Figure 4 Time axis of causal effects (see online version for colours) 

 

Figure 4 depicts the time – axis of causal effects for Group A and Group B under the 
blended teaching strategy. The actual performance curve of Group A exhibits a steadily 
ascending trend, with the half – life of its strategy effect reaching 7.2 weeks, which 
reflects the persistence of the intervention effect. The actual performance curve of Group 
B undergoes a precipitous decline in the fourth teaching week, and its half – life drops 
sharply to 3.1 weeks. The shaded area of the difference between the two curves quantifies 
the differentiation of the teaching strategy's effect. The strategy activation time marked in 
the third week and the effect turning point marked in the fourth week constitute key 
temporal nodes. The turning point of Group B is jointly triggered by the assignment delay 
rate exceeding 40% and the re – doing interval of wrong questions being less than 2 days, 
whereas Group A sustains long – term gains through in – depth forum interactions. This 
visual illustration reveals the core regulatory function of students' behaviour patterns 
regarding the timeliness of teaching strategies, providing a basis for the critical 
conditions for dynamic teaching adjustments. 
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5 Results and discussion 

5.1 Key findings 

5.1.1 Strategy timeliness analysis 
To dissect the efficacy of instructional strategies across different teaching phases, this 
study examines stage-specific effects from knowledge foundation to deep application. 
Quantitative results are presented in Table 7. 
Table 10 Quantitative analysis of instructional strategy stage effects 

Metric 
category Strategy Mean score 

improvement 
Standard 
deviation p-value 

Effect 
size 

(Cohen'
s d) 

Educational 
mechanism 

Knowledge 
foundation 
(Weeks 1–
8) 

T1 1.8 0.7 0.12 0.26 Teacher-led 
unidirectional 
knowledge 
transfer 

T3 3.2 0.9 0.03* 0.48 Classroom 
discussions 
stimulate basic 
concept 
comprehension 

T2 5.7 1.1 <0.01* 0.82 Self-regulated 
learning pace 
matches 
cognitive 
resources 

Deep 
application 
(Weeks 9–
16) 

T1 1.2 0.8 0.21 0.18 Insufficient 
higher-order 
thinking training 

T3 3.5 1 0.02* 0.53 Project practice 
facilitates 
knowledge 
transfer 

T2 2.1 0.9 0.04* 0.32 Lack of 
immediate 
feedback causes 
comprehension 
gaps 

T2+T4 4.9 1.2 <0.01* 0.74 Complementary 
effects of self-
exploration and 
collaborative 
deepening 

Analysis of Table 10 reveals that asynchronous learning (T2) demonstrates significant 
advantages during the knowledge foundation stage, achieving a mean score improvement 
of 5.7 points (p < 0.01), substantially exceeding blended learning (T3) and face-to-face 
(T1) at 3.2 and 1.8 points respectively. This aligns with the cognitive load reduction 
theory in educational psychology: students possess sufficient cognitive resources in early 
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stages, allowing asynchronous learning's self-paced mode to efficiently accumulate 
foundational knowledge. However, during the deep application stage, asynchronous 
learning exhibits diminishing marginal benefits, with improvement dropping to 2.1 
points. This necessitates combining T2 with T4's immediate interactivity through offline 
discussions to enhance knowledge transfer, validating the core hypothesis that 
‘instructional strategies require dynamic adaptation to teaching phases’. 

5.1.2 Group response heterogeneity 
Table 11 presents the strategic response differences across student groups. Upon analysis, 
when different groups adopt the T2 strategy, the enhancement in academic performance 
differs. The average score of rural students rises by 9.2 points, with statistical 
significance p < 0.001; the average score of urban students increases by 6.3 points, with  
p < 0.01. This suggests that recorded lessons are beneficial for improving academic 
performance, and the effect is more pronounced for rural students. The reason lies in the 
fact that rural students have relatively scarce offline resources, and the repeatable 
viewing feature of recorded lessons effectively offsets this shortcoming. In contrast, 
urban students utilise recorded lessons more as a basic supplement to technological tools, 
so the improvement range is relatively limited. 

For students with poor self – control, after adopting the high – frequency recorded – 
lesson strategy, their average score decreases by 3.1 points, with p < 0.05, indicating a 
significant negative effect. The reason is that these students possess weak self – 
management capabilities. When confronted with a substantial amount of learning 
resources, they encounter difficulties in effective time management and self – restraint, 
and thus succumb to procrastination, ultimately resulting in a decline in academic 
performance. 

After highly self - disciplined students adopt the T3 mixed strategy, their average 
score increases by 7.8 points, with p < 0.001, and the effect is remarkable. The reason is 
that highly self – disciplined students can fully exert their subjective initiative in 
autonomous learning and have a strong independent exploration ability. In combination 
with the in – depth discussion sessions in blended teaching, they can deepen their 
understanding and mastery of knowledge. 
Table 11 strategic response differences across student groups 

Group type Strategy type Mean score 
improvement 

Statistical 
significance 

(p-value) 
Key driving factor 

Rural students T2 +9.2 < 0.001 Repeated viewing 
compensates for offline 
resource scarcity 

Urban students T2 +6.3 < 0.01 Foundational support of 
technological tools 

Low self-
discipline 
students 

High-
frequency T2 

–3.1 < 0.05 Procrastination induced 
by lack of supervision 

High self-
regulation 
students 

T3 +7.8 < 0.001 Synergy of self-directed 
learning and deep 
discussions 
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5.2 Pedagogical recommendations 

Based on findings regarding strategy timeliness and group heterogeneity, this study 
proposes stage-dynamic adjustments and group-adaptive strategies, providing actionable 
implementation pathways for educators. 

5.2.1 Stage-dynamic adjustment 
Considering cognitive patterns of knowledge construction – early foundation building 
followed by deepening and consolidation – coupled with strategy efficacy findings 
(asynchronous learning excels early but requires supplementary offline teaching later), 
we recommend dividing semesters into three phases with defined core strategies and 
objectives. Table 12 details phased strategies and goals. 
Table 12 Phased instructional strategies and objectives 

Phase Duration Strategy mix Objective 
Knowledge 
foundation 

Weeks 1–4 T2 (71%) + 
T1(29%) 

Cover foundational knowledge points, 
establish conceptual frameworks 

Deep 
comprehension 

Weeks 5–8 T3 (64%) + PBL 
(36%) 

Facilitate knowledge transfer, cultivate 
higher-order thinking 

Consolidation 
and 
enhancement 

Weeks 9–16 T4 (45%) + T1 
(55%) 

Bridge knowledge gaps, achieve 
layered improvement 

Table 13 Group-adaptive instructional strategies and rationale 

Group Core strategy mix Interventions 
Rural students T2 + online Q&A Technical support: offline download packages, 

variable playback speeds 
Interaction compensation: Weekly online Q&A 
sessions. 

Low self-
discipline 

Usage-restricted 
lectures + progress 
reminders + group 
supervision 

Duration control: weekly viewing ≤ 40% of total 
course time 
Behavioural interventions: daily task lists, point-
based reward systems 

High self-
regulation 

T3 + T4 Strategy ratio: T3 (50%) + T4 (30%) 
Content design: challenging tasks + self-selected 
learning 

5.2.2 Group-adaptive optimisation strategies 
For heterogeneous responses across student groups, differentiated interventions are 
recommended as detailed in Table 13. For rural students, the essence of the strategy lies 
in ‘technology empowerment’ and ‘interaction compensation’. By offering offline 
resources and regular online Q&A sessions, the structural deficiencies in resources and 
interaction can be compensated for. For students with weak self – control, the emphasis 
of the strategy is on ‘external restraint’ and ‘behaviour guidance’. Through mechanisms 
like duration control and task supervision, the procrastination behaviour loop can be 
disrupted. For highly self – disciplined students, a combined strategy of ‘challenge 
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enhancement’ and ‘autonomous motivation’ is implemented. By increasing the 
proportion of blended and adaptive learning, their potential for high - order thinking and 
autonomous learning can be optimised. 

5.3 Risk warnings 

Applications of educational causal inference technology require vigilance against 
technological dependency and ethical misuse risks, both potentially undermining 
pedagogical humanistic dimensions and equity. Integrating educational psychology and 
ethical theory, this study identifies the following primary risks: 

5.3.1 Technological dependency risk 
Over-reliance on technology-optimised instructional strategies may reduce the frequency 
and depth of teacher-student emotional interactions. Educational psychology research 
indicates teacher-student emotional bonds are crucial mediators for sustaining learning 
motivation: when teachers fully delegate strategy adjustments to model 
recommendations, proactive observation of student growth may diminish, allowing 
technical rationality to displace humanistic care in education. Reduced sensitivity to 
personalised needs risks missing critical moments for emotional support, ultimately 
weakening sustained motivation. 
Table 14 Group-adaptive instructional strategies and rationale 

Item Opt. group Ctrl. group Correlation coefficient (r) Significance (p-value) 
A 42.3 58.7 –0.62 < 0.001 
B 3.1 4.2 0.71 < 0.001 

Notes: A represents ‘teacher – student weekly interaction duration (minutes)’; B 
represents ‘student emotional investment score (1–5 points)’. Opt. Group: 13  
tech-optimised classes; Ctrl. Group: 13 traditional classes. 

Table 14 shows the optimisation group had 28.0% less weekly interaction time and 
26.2% lower emotional engagement scores versus the control group. This demonstrates 
technology's ‘substitution effect’ weakens emotional interaction, potentially causing 
learning motivation decline and resilience deterioration. Such risks must be integrated 
into strategy evaluation frameworks. 

To alleviate this risk, an educational causal inference explainability dashboard 
(ECID) tailored for teachers was devised. It achieves ‘traceability of strategy 
recommendations + early warning of interaction gaps’ via visualisation tools. The 
modules and functions are presented in Table 15. 

5.3.2 Ethical boundary risk 
The objective of counterfactual reasoning is to forecast ‘how academic performance 
would change if teaching strategy T were adopted’. Nevertheless, the misuse of this 
technology might transform it into a tool for generating student – ability labels, creating a 
negative cycle of ‘label → expectation → behaviour → result’. Consequently, in light of 
sensitive groups within educational scenarios, a bias detection pipeline (BDP) was 
developed, and its implementation process is presented in Table 16. 
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Table 15 ECID module design 

Module Function Technical 
implementation 

Guarantee 
objective 

Strategy rec. tracing Shows core basis for 
recommended teaching 
strategies (key feature 
contributions, causal 
paths, group 
comparisons) 

SHAP + causal path 
visualisation 

Enable teachers to 
understand causal 
logic, avoid blind 
adoption 

Teacher – student 
interaction monitoring 

Monitors real – time 
teacher – student 
interaction (duration, 
quality labels, 
emotional engagement) 

Real-time data 
stream ，and 
setting a threshold 
of 3σ 

Identify 
interaction gaps, 
trigger timely 
intervention 

Strategy dependence 
eval. 

Evaluates teachers’ 
dependence on 
strategies (Dependence 
= adoptions/total 
adjustments), provides 
graded prompts 

Strategy execution 
log statistics and 
setting hierarchical 
thresholds 

Balance technical 
assistance and 
teacher autonomy, 
avoid over – 
dependence 

Table 16 Proper use vs. ethical risks of counterfactual reasoning 

Stage Core target Key operations Core indicators 

Data pre-
processing 

Sample distr. feature 
bias 

Group stats, resampling Group distr. bias rate 
< 5% 

Model training Group effect 
estimation bias 

Calc group effects, add 
fair loss 

Group effect bias rate 
< 10% 

Post – 
monitoring 

Resource alloc. label 
bias 

Stat resource proportion, 
track label lang 

Resource alloc. bias 
rate < 8%, label – 
biased lang freq = 0 

To safeguard the dominant position of students, a student informed consent framework 
(SICF) based on the ‘principle of minimum necessity’ was designed, implementing a 
hierarchical authorisation and self - management mechanism, as shown in Table 17. 

In essence, the implementation of educational causal - inference models necessitate 
the establishment of a robust dynamic - balance mechanism. Through the provision of 
strategic recommendations, teaching can be rendered more intelligent. Simultaneously, 
the preeminent position of teachers in emotional interaction and personalised guidance 
should be sustained to preserve the humanistic traits of education. This guarantees that 
the application of technology consistently serves the educational ontological value of 
‘student – centredness’ and averts risks such as an imbalance in the distribution of 
educational resources and labeling resulting from the alienation of technology. 
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Table 17 Design of SICF 

Mechanism Authorisation 
level Core content Data usage 

scope 
Acquisition and 

management method 
Three – level 
authorisation 

Basic 
authorisation 
(Mandatory) 

Collect 
anonymised 
learning behaviour 
data 

For overall 
model training, 
not individual 
recommendation 

Sign electronic 
agreements 
uniformly at the 
start of each 
semester 

Intervention 
authorisation 
(Optional) 

Generate 
personalised 
strategy 
recommendations 
based on 
individual data 

Feed 
recommendation 
results back to 
teachers 

Students can enable 
or disable it anytime 
in the personal 
centre 

Feedback 
authorisation 
(Optional) 

View personal 
counterfactual 
reasoning results 
and raise 
objections 

For model 
optimisation and 
strategy 
adjustment 

Released after 
student application 
and teacher review 

Autonomous 
control and 
feedback 

Dynamic 
withdrawal 
mechanism 

Students can 
withdraw any – 
level authorisation 
at any time 

The model 
immediately 
stops using their 
personal data 

Real - time 
operation via the 
campus platform's 
‘privacy settings’ 

Objection 
handling 
mechanism 

Students can raise 
objections to 
recommendations 
or results 

Objections serve 
as feedback data 
for model 
optimisation 

Review results are 
fed back to students 
within one week 

6 Conclusions 

This research centres on the challenging issue of assessing the causal effects of teaching 
strategies. It puts forward the CTCR model and systematically validates its efficacy and 
application value from three aspects: model construction, data design, and experimental 
verification. The main conclusions are as follows: 

1 Model architecture and theoretical innovation: CTCR incorporates a 4 – head 
temporal attention mechanism and a dynamic confounder disentanglement 
mechanism, effectively capturing the temporal non - uniformity of educational 
interventions. It introduces a bidirectional GRU to model the strategy feedback loop, 
transcending the traditional ‘no – feedback assumption’. By integrating 
counterfactual generation constrained by knowledge graphs, the rationality of 
teaching reasoning is enhanced. At the theoretical level, CTCR enables the 
processing of time – varying confounders and the decomposition of causal effects, 
propelling the evolution of educational causal analysis from static correlation to 
dynamic mechanisms. 
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2 Dataset construction and experimental design: a multi – scenario dataset 
encompassing higher education institutions, K12, and MOOCs was developed. A 
hierarchical time – series partitioning approach was employed to stringently control 
data deviation and leakage, providing a reliable foundation for evaluating the model's 
generalisation ability. 

3 Experimental verification and educational discoveries: CTCR exhibits the optimal 
performance in multiple indicators (MSE –T, PEHE, CP@K), demonstrating 
excellent cross – scenario adaptability and noise robustness. Interpretability analysis 
further pinpoints key teaching influencing factors (such as forum participation, 
interval for re – doing wrong questions), uncovering the stage – specific timeliness 
and group heterogeneity of strategies, thus providing a basis for hierarchical teaching 
interventions. 

4 Limitations and future directions: the current model suffers from issues such as high 
computational complexity, limited data modalities, and insufficient cross – 
disciplinary generalisation ability. In the future, efforts will be concentrated on 
lightweight architectures, multi – modal fusion, and cross – scenario transfer. 
Additionally, the ‘teacher – technology’ collaborative mechanism will be fortified to 
promote the trustworthy, efficient, and humanistic integration of causal intelligence 
in education. 
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