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Abstract: Temperature compensation is crucial for improving sensor accuracy 
and stability in high-precision measurement. Although radial basis function 
(RBF) neural networks perform well in nonlinear modelling, they face slow 
convergence, long training time, and limited accuracy. To address these issues, 
this paper proposes an improved RBF algorithm (QOLS-RBF) by combining 
quantum controlled-NOT (C-NOT) gates with orthogonal least squares (OLS) 
theory. The method quantises input data and applies quantum superposition, 
entanglement, and interference to enhance feature extraction and centre 
aggregation. It further integrates OLS screening with the maximum error 
compression ratio, using C-NOT gate evolution to reduce hidden layer nodes 
and accelerate convergence. Experiments with 85 training and 170 testing 
sensor datasets show that QOLS-RBF outperforms RBF, OLS-RBF, K-means 
RBF, and FCM-RBF in convergence speed, training time, error accuracy, and 
network compactness. This approach enables efficient temperature 
compensation and offers a promising tool for modelling complex nonlinear 
systems. 
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1 Introduction 

Artificial neural networks solve nonlinear problems in complex systems by simulating 
their operational processes. Due to its excellent nonlinear generalisation (Bock et al., 
1992), self-organisation, and self-learning abilities (Pramanik et al., 2006), artificial 
neural networks have gradually been widely applied in new fields of engineering, such as 
signal processing and pattern recognition, where they have strong predictive capabilities 
(Li et al., 2013). 

However, most of the current popular feedforward multi-layer networks are based on 
backpropagation and have many drawbacks, such as the BP algorithm, which is prone to 
getting stuck in local optima and has slow convergence speed. Although some algorithms 
can effectively avoid local optima, they generally require a large amount of computation, 
which causes a lot of inconvenience in practical applications (Zhang et al., 2007). 

The theory of radial basis function (RBF) networks provides a novel and effective 
means for learning multi-layer feedforward networks (Wang et al., 2022). It can not only 
avoid the tedious calculations in backpropagation networks and improve learning speed, 
but also overcome the local minima problem of gradient descent. It has wide applications 
in speech recognition (Yang and Chen, 2010), data classification (Ye et al., 2019), 
function approximation (Liang et al., 2006), time series prediction (Cao and Tay et al., 
2003), graphics processing (Zhai et al., 2022), adaptive channel equalisation (Patra et al., 
2008) and other fields. 

 



   

 

   

   
 

   

   

 

   

   82 W. Peng et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Its main function is to use RBFs as the ‘basis’ of the hidden unit to form the space of 
the hidden layer (Zar et al., 2023). The hidden layer changes the input vector into a low 
dimensional pattern, and the input data is transformed into a high-dimensional space, 
making it linearly separable in high-dimensional space instead of being linearly 
inseparable in low dimensional space. It applies the principle of deep data mining (Song 
et al., 2020) to identify the fundamental differences in the data. This is a local 
approximation network that requires only a small number of weights and thresholds to be 
adjusted for each training sample. It has the characteristics of fast learning speed, good 
convergence, and strong real-time performance. 

The basic RBF algorithm includes four algorithms: random selection of fixed centres, 
self-organising selection of centres, supervised selection of centres, and orthogonal least 
squares (OLS) method (Huang et al., 2024). However, due to the limitations of its own 
data structure and fixed centre values (Wan et al., 2015), traditional RBF algorithms are 
already at a slower convergence speed. Therefore, in order to develop a more efficient 
RBF neural network algorithm (Park and Sandberg, 1991), many experts have proposed 
some improved algorithms, which are classified as follows: 

1 K-means selects the centre point: The K-means clustering method (Shen et al., 2011) 
is a typical objective function clustering method, which takes a certain distance 
function between data points as the objective function. The distance between data 
points and prototypes is used as the optimisation objective function, and the 
adjustment rules for iterative operation are obtained by finding the extremum of the 
function. Mainly using Euclidean distance as a similarity measure, find the optimal 
classification corresponding to a certain initial cluster centre vector, so as to 
minimise the evaluation index. The clustering points generated by the K-means 
clustering algorithm as the centre points of the RBF can effectively reduce the 
number of nodes and better achieve improved network structure (Whitehead and 
Choate, 2002). 

2 FCM selects the centre point: The FCM algorithm is a partition-based clustering 
algorithm (Halim et al., 2016), which aims to maximise the similarity between 
objects classified into the same cluster and minimise the similarity between different 
clusters. The fuzzy C-means algorithm is an improvement of the ordinary C-means 
algorithm, which is rigid for data partitioning, while FCM is a flexible fuzzy 
partitioning (Geng et al., 2016). The clustering points generated by applying fuzzy 
clustering algorithm as the centre points of RBFs, similar to K-means method, can 
improve the convergence speed of the network. 

3 OLSs method: It is achieved by minimising the sum of squared errors to find the 
optimal function match for the data, which can easily obtain unknown data and 
minimise the sum of squared errors between these obtained data and actual data. 
Applying the OLSs method to select the centre of the RBF as the training mode, one 
sample is selected at a time, and the orthogonal matrix is used to select each 
component to find the regression operator with the highest error compression ratio. 
Based on this, the centre point is continuously searched downwards to ultimately 
find a suitable network structure. 

Through the above analysis, we can find that RBF optimisation can be approached from 
two perspectives. On the one hand, K-means or FCM algorithms can be used to cluster 
and optimise existing data points, ultimately obtaining the desired hidden layer 
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benchmark points. On the other hand, the OLS algorithm continuously filters principles 
to find the most suitable benchmark point. But in fact, neither of these two types of ideas 
has found the fundamental characteristics of data from the perspective of the most 
fundamental data structure, and the search speed can be further improved. 

The quantum gate in quantum communication theory is a theory that applies quantum 
theory to deeply explore the internal relationships of data. The most commonly used 
controlled NOT gate (C-NOT) can vertically increase the dimensionality of the RBF, 
further improving the search speed of the algorithm (Wu and Byrd, 2009; Harsij and 
Mirza, 1995; Kak, 1995; Purushothaman and Karayiannis, 1997; Li and Zhao, 2018). 

2 RBF neural network 

RBF neural network is a network with a simple structure, fast convergence speed, and the 
ability to approximate any nonlinear function. In 1988, Broomhead and Lowe introduced 
RBFs into neural networks based on the principle that biological neurons have local 
correspondences. They were proven to have consistent approximation performance for 
nonlinear networks and have gradually been widely applied in different industries and 
fields. 

The RBF is denoted as Φ(x, y) = φ(||x – y||), where ||x|| refers to the Euclidean norm. 
Treating the problem of neural networks as a regularisation problem, the solution can be 
given by the following equation: 

( )
1

( ) ,
N

i i
i

F x w G x x
=

=  (1) 

Among them G is the green function, which wi is the weight. Similar to BP neural 
networks, regularised RBFs also have a three-layer structure. The first m layer consists of 
input nodes, with the number of input nodes equal to the x dimension of the input vector. 
The second layer belongs to the hidden layer, consisting of nodes directly connected to 
the input nodes. Each hidden node corresponds to one training data point, so its number is 
the same as the number of training data points i. The output Xi = [xi1, xi2, …, xim] of the 
hidden node is φ(||X – Xi||), is the basis function, and is the centre of the basis function. 
The output layer consists of several linear units, each connected to all hidden nodes, and 
its final output is the linear weighted sum of each hidden layer node. The algorithm 
structure is shown in Figure 1. 

Let the actual output be Yk = [yk1, yk2, …, ykj, ykJ], is the J number of output units, and 
represents the k output generated by the th input vector. So outputting the training 
samples Xk, the j result obtained by the network’s first output neuron is 

( )
1

,, , 1, 2,
N

kj ij k i
i

y w X X j J
=

= = φ  (2) 

If the basis function is a Gaussian function, then the ( , ) ( , )G=k i k iX X X Xφ  

2
1( ) exp

2
G

σ
 = − = − − 
 

k i k iX X X X  basic algorithm principle of RBF is as follows: 
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1 As long as there are enough hidden layer nodes, it can approximate any multivariate 
continuous function with arbitrary accuracy. 

2 Given a nonlinear function at a given location, a set of coefficients can always be 
selected to make the approximation of the network optimal. 

The algorithm flow is shown in Figure 2. 

1 Initialisation: Determine the weight coefficients. 

2 Select a set of inputs, the centre point of the most hidden layer, and calculate the 
radial basis. 

3 According to the weight corresponding to each output. 

4 If the final error is smaller than the target error, end the process; otherwise, continue 
with the above steps until the error requirements are met. 

5 Select another set of data according to certain criteria and repeat the process in the 
second step. 

Figure 1 RBF algorithm structure diagram 
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From this, it can be seen that the network structure in the RBF algorithm is simple and 
highly efficient, and the principle of adding the most important new centre point directly 
affects the convergence speed of the RBF network structure. However, it did not 
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introduce the search for patterns from the fundamental perspective of data, which can be 
deeply explored. 

Figure 2 RBF algorithm flowchart 

 

3 QOLS theory 

3.1 Quantum controlled NOT gate 

In quantum mechanics, when the state of a microscopic particle at a certain moment is 
known, the state of the particle at subsequent moments is determined by the Schrödinger 
equation, that is: 

2( , ) ( , )
2

i ψ t V ψ t
t m

∂  = − ∇ + ∂  
r r  (3) 

Among them, ψ is the wave function, m is the particle mass, V is the potential energy of 
the particle in the force field, 2∇   is the Planck constant, is the Laplace operator, which 

is defined as 
2 2 2

2
2 2 2

.
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

 

In classical computing, binary numbers of 0 and 1 are used to represent information, 
commonly referred to as bits, which can only be in two states: ‘0’ or ‘1’. However |1, in 
quantum computing based on the Schrödinger equation, the |  state of a quantum bit can 
be linearly combined through the superposition of |1 two fundamental states (Dirac 
notation), which are commonly referred to as superposition states 

0 1φ = +α β  (4) 
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2 2 1+ =α β  (5) 

Formulas (2) and (3) both satisfy the argument of the wave function in the Schrödinger 
equation, which is a complex number known as the probability amplitude of the quantum 
state and can be expressed as [α β]T. Formula (2) states that a quantum state |φ will |α|2 
collapse with a certain probability due to measurement |0, or |β|2 collapse with a certain 
probability |1 to |φ represent |1 any state that satisfies: 

In quantum computing, the logic transformation function is achieved by performing 
some unitary transformations on the state of quantum bits, and the logic transformation is 
realised within a certain time interval. The quantum device that performs unitary 
transformations is called a quantum gate. Due to quantum phenomena such as 
superposition, entanglement, and interference, quantisation of data allows it to exhibit 
these characteristics in new dimensions. The most commonly used quantum gate is the 
controlled NOT gate, also known as the C-NOT gate 

1 0 0 0 00 00
0 1 0 0 01 01

:
0 0 0 1 10 11
0 0 1 0 11 10

CNOT

→ 
  → =
  →
 

→ 

 (6) 

If the control qubit of the CNOT gate is set to 0, the target qubit will remain unchanged. 
If the control qubit is set to 1, the target qubit will flip. 

0, 0 0, 0 0 0, 0 , 0, 1 0, 1 0 0, 1
1, 0 1, 0 1 1, 1 , 1, 1 1, 1 1 1, 0

→ ⊕ = → ⊕ =

→ ⊕ = → ⊕ =
 (7) 

The formal expression ⊕ of the equation is |a, b → |a, b ⊕ a, where is modulo-2 
addition. The circuit of CNOT gate in quantum computing and quantum information is 
shown in Figure 3. 

Figure 3 Quantum controlled non gate (CNOT) circuit diagram 

a a

b b a  

The generalised controlled NOT gate can be derived from three general types of 
controlled NOT gates: 

2

0 1 0 0 00 01
1 0 0 0 01 00

:
0 0 1 0 10 10
0 0 0 1 11 11

CNOT

→ 
  → =
  →
 

→ 

 (8) 
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3

1 0 0 0 00 00
0 0 0 1 01 11

:
0 0 1 0 10 10
0 1 0 0 11 01

CNOT

→ 
  → =
  →
 

→ 

 (9) 

4

0 0 1 0 00 10
0 1 0 0 01 01

:
1 0 0 0 10 00
0 0 0 1 11 11

CNOT

→ 
  → =
  →
 

→ 

 (10) 

These four types of generalised controlled NOT gates can achieve quantum data 
superposition, entanglement, and interference, and are widely and ingeniously applied in 
the field of data processing. According to research, for each different data type, 
generalised controlled NOT gates exhibit different improvement abilities, but overall they 
can discover the core internal rules of the data from another perspective. 

3.2 OLSs method 

The OLSs algorithm is derived from linear regression models and is used to design RBF 
neural networks. It has the advantages of low computational complexity, easy 
implementation, and the ability to determine the number of hidden nodes while learning 
weights. Let the training samples of the RBF neural network be {xi, yi}, (i = 1, 2, …, n), 
where n is the number of training samples and xi is the input vector of the network. 
Therefore, the output of the network is: 

1

( )
m

i j j i
j

y p i w e
=

= +  (11) 

In the formula m, represents the number of hidden layer neurons, which can be referred to 
as the number of neural networks in RBF neural networks; wj. It is a model parameter, 
which is the connection weight between the output layer and the hidden layer; et. It is a 
residual; 

[ ]1 2, , , T
ny y y y=   (12) 

[ ]1 2, , , T
mw w w=w   (13) 

[ ], , , T= 1 2 mP p p p  (14) 

[ ]1 2, , , T
me e e=e   (15) 

P for the regression matrix; w is a weight vector; e is the residual vector; y to expect the 
output response vector. 

The basic idea of this algorithm is to use orthogonalisation method to anaise the 
contribution of each selected vector to reducing residuals, eliminate the vectors with 
small contributions, and leave the vectors with large contributions as the network centre. 
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The task of the OLS algorithm is to learn and select appropriate regression operator 
vectors pj and their number of centres m, as well as determine the output weights wj. 

Perform p orthogonal triangulation on the regression matrix: 

=P UA  (16) 

A one of them is an m × m upper triangular matrix with diagonal elements of 1; it HU is a 
hjj n × m matrix whose columns are uj orthogonal, that is UTU = H, a diagonal matrix 
with diagonal elements. Namely: 

T
jj j jh u u=  (17) 

From the above, it can be concluded that: 

y UAw e Ug= + =  (18) 

g Aw=  (19) 

The OLSs solution is: 
T

j
T

j j

u y
g

u u
=  (20) 

The above orthogonalisation is achieved using the traditional Gram Schimit 
orthogonalisation method. This algorithm uses orthogonal decomposition and least 
squares method to define the uj contribution of orthogonal vectors to reducing output 
errors: 

2
(1 )

T
j j j

j T

g u u
ε j m

y y
= ≤ ≤  (21) 

So as to effectively find a suitable subset of regression operators pj and determine the 

centre and connection weights of RBF neurons through it. At that 
1

1
m

j
j

ε ρ
=

− =  time, the 

iteration ended ρ. To establish the allowable error threshold, this involves obtaining m an 
orthogonal matrix consisting of orthogonal vectors U and their corresponding triangular 
matrices A, and then calculating the weights w. Due to the strong correlation introduced 
by quantum feature expansion, the orthogonalisation capability of OLS makes it suitable 
for selecting representative basis functions and avoiding redundancy. 

4 QOLS-RBF algorithm 

The innovation of this article lies in the combination of quantum controlled-NOT 
(CNOT) gate theory and the OLSs method, establishing a new and efficient centre 
selection principle. In the proposed framework, all input data are first quantised and 
expanded from one-dimensional to four-dimensional representations through CNOT gate 
transformations, generating quantum-derived features with enhanced separability and 
internal correlations. Before the OLS selection process begins, these  
quantum-transformed data points serve directly as the initial candidate centres for the 
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RBF network. Unlike conventional clustering methods such as k-means, which rely on 
iterative partitioning and are sensitive to initialisation, the quantum pre-processing step 
provides a structured and well-distributed set of centres derived from the inherent 
entanglement and superposition properties of the data. This not only eliminates the need 
for an additional clustering procedure but also offers a more robust and globally informed 
initialisation for the network. The width of the RBF functions is then adaptively 
determined based on the pairwise distances among these candidate centres, ensuring 
sufficient coverage of the input space and stable convergence in subsequent learning. 

OLS is deliberately chosen as the learning mechanism because its orthogonalisation 
and greedy selection process aligns well with the structure of quantum-entangled 
features. Specifically, OLS effectively filters redundant or weakly informative quantum 
basis functions and selects the subset that contributes most to error reduction, enabling 
compact network structures. With these quantum-enhanced data as candidate centres, 
radial bases are generated and then screened by OLS based on the maximum error 
compression ratio. This synergy between quantum feature expansion and OLS-driven 
selection leads to faster convergence, higher accuracy, and more representative hidden 
layer centres. 

The innovation of this method includes the following three points: 

1 Cleverly using complex quantum gates to achieve quantum transformations, 
stacking, entanglement, and interference between quantum data, generating new 
data. 

2 Using the new data generated by quantum changes as the benchmark centre is 
equivalent to a quantum evolution of data and networks, which can distinguish from 
higher dimensions and achieve higher order development space. 

3 We have successfully implemented the OLSs method to improve the maximum 
compression ratio that already has high-speed convergence, which is different from 
the traditional method of using existing data points as a benchmark and accelerates 
the calculation process of RBFs. 

The OLSs method using quantum theory not only has the acceleration effect of quantum 
operations, but also has the super acceleration ability of OLSs screening for maximum 
compression ratio, which enables the entire RBF algorithm to undergo a new evolution in 
both structure and effect, reducing the time to converge to the target error and becoming a 
new high-speed and effective neural network algorithm. 

By combining the above two algorithms, that is, organically combining the four 
controlled NOT gates with the OLS algorithm, it was found that the third type of 
generalised controlled NOT gate (CNOT3) performs the best in the process of combining 
the OLS algorithm. It is a combination of a standard controlled NOT gate and four 
Hadamard gates, as shown in Figure 4. 

In the OLS algorithm, a set of quantum data with the highest error contribution is 
continuously stacked and used as the centre value, and continuously added upwards to 
find the minimum number of centre points at the fastest speed, in order to achieve  
high-speed and effective convergence. Importantly, because OLS is a deterministic 
greedy algorithm that monotonically reduces the residual error at each iteration, the 
convergence of the classical weight layer is theoretically guaranteed in the least-squares 
sense. The quantum pre-processing step introduced in this work does not alter this 
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convergence property; instead, it accelerates the convergence process by improving 
feature separability and allowing OLS to identify the most informative centres more 
efficiently. 

Figure 4 Generalised controlled non gate decomposition circuit diagram 

H H

HH

 

The algorithm steps are as follows: 

1 Normalise and initialise data and programs. 

2 Quantise all data, upgrade one-dimensional data to four qubit data, and perform 
CNOT gate transformation to achieve quantum data superposition, entanglement, 
and interference, completing the conversion of quantum gates. 

3 Perform RBF calculations on all quantised input data for the hidden layer reference 
points of all CNOT gate transformations, in order to obtain the radial basis centre 
with the greatest impact from the perspective of quantum data. 

4 Identify the column with the highest error compression ratio in the quantum data, 
that is, locate the centre point that has the greatest impact on the overall data 
representation. Extract this centre as the quantum radial basis centre point. 

5 Use the selected quantum data point as the first hidden layer centre and perform RBF 
calculations to obtain the corresponding network parameters. 

6 Compute the error of the neural network and check whether it satisfies the predefined 
convergence criteria. If the condition is met, terminate the algorithm; otherwise, 
proceed to the next iteration. 

7 Update the maximum error compression ratio matrix. The column corresponding to 
the selected centre is orthogonalised using the Gram-Schmidt procedure, resulting in 
a well-conditioned upper triangular structure. This enables a stable and efficient 
back-substitution process to compute the linear output weights, avoiding the need for 
explicit matrix inversion or pseudo-inversion. 

8 Return to steps 4–7, iteratively increasing the number of hidden layer centres until 
the network error meets the required threshold. 

The algorithm flow is shown in Figure 5. 

5 Experimental analysis 

The QOLS-RBF algorithm is applied for temperature compensation of pressure 
transmitters, and the selected data are shown in Table 1. 
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• Experimental data source: Different differential pressure values were recorded at five 
temperature ranges of –20℃, 0℃, 20℃, 50℃, and 70℃. From –40 pa to 40 pa, with 
a gradient of 5 pa, temperature AD, pressure AD, and pressure values were recorded 
at 17 points. A total of 85 data points were used as training data, as shown in  
Table 1. 

Figure 5 QOLS algorithm flowchart 

 

Table 1 Sensor temperature calibration points (modelling data points) 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

–40 46,115 225,226 20 45,268 634,383 –5 43,255 471,221 
–35 46,115 259,015 25 45,268 668,039 0 43,255 502,188 
–30 46,115 292,957 30 45,268 701,674 5 43,255 533,214 
–25 46,115 327,038 35 45,268 735,281 10 43,255 564,373 
–20 46,115 361,254 40 45,268 768,840 15 43,255 595,555 
–15 46,115 395,595 –40 44,445 245,293 20 43,255 626,757 
–10 46,115 430,030 –35 44,445 276,787 25 43,255 657,996 
–5 46,115 464,563 –30 44,445 308,434 30 43,255 689,248 
0 46,115 499,184 –25 44,445 340,227 35 43,255 720,489 
5 46,115 533,847 –20 44,445 372,163 40 43,255 751,701 
10 46,115 568,612 –15 44,445 404,232 –40 42,449 265,502 
15 46,115 603,391 –10 44,445 436,398 –35 42,449 294,694 
20 46,115 638,169 –5 44,445 468,680 –30 42,449 324,036 
25 46,115 672,962 0 44,445 501,053 –25 42,449 353,526 
30 46,115 707,737 5 44,445 533,475 –20 42,449 383,158 
35 46,115 742,473 10 44,445 566,019 –15 42,449 412,937 
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Table 1 Sensor temperature calibration points (modelling data points) (continued) 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

40 46,115 777,148 15 44,445 598,591 –10 42,449 442,817 
–40 45,268 235,926 20 44,445 631,170 –5 42,449 472,818 
–35 45,268 268,467 25 44,445 663,787 0 42,449 502,916 
–30 45,268 301,166 30 44,445 696,402 5 42,449 533,077 
–25 45,268 334,016 35 44,445 728,999 10 42,449 563,370 
–20 45,268 367,004 40 44,445 761,560 15 42,449 593,697 
–15 45,268 400,131 –40 43,255 257,738 20 42,449 624,052 
–10 45,268 433,352 –35 43,255 287,807 25 42,449 654,454 
–5 45,268 466,694 –30 43,255 318,035 30 42,449 684,868 
0 45,268 500,112 –25 43,255 348,415 35 42,449 715,282 
5 45,268 533,579 –20 43,255 378,937 40 42,449 745,668 
10 45,268 567,163 –15 43,255 409,595    
15 45,268 600,769 –10 43,255 440,352    

Figure 6 Pressure output characteristics at different temperatures (see online version for colours) 

 

According to the analysis of Figures 6 and 7, the temperature changes of the pressure 
transmitter will have a direct impact on its pressure output characteristics, resulting in 
deviations in the obtained measurement results. At five temperatures of –20℃, 0℃, 
20℃, 50℃, and 70℃, there are significant differences: 

• –20℃: The sensitivity of the pressure transmitter is significantly reduced, which is 
affected by the cold environment, resulting in a lower output pressure value. The 
maximum relative error is 8.181%, which is due to factors such as material shrinkage 
and increased lubricant viscosity, resulting in a significant decrease in the dynamic 
response speed of the pressure transmitter. 

• 0℃: At temperatures close to freezing, the performance of the pressure transmitter is 
relatively stable. Due to the still low temperature, the sensitivity and dynamic 



   

 

   

   
 

   

   

 

   

    A radial basis function neural network algorithm 93    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

response speed of the transmitter may still be affected to some extent. The maximum 
observed relative error is 3.962%, indicating a shift in performance compared to the 
performance at –20℃. 

• 20℃: At room temperature, the performance of the pressure transmitter reaches its 
optimal state. At this temperature, the sensitivity and dynamic response speed of the 
pressure transmitter perform well, and the output pressure value is relatively 
accurate. Therefore, the pressure AD at 20℃ is used as the standard value. 

• 50℃: As the temperature increases, the pressure transmitter has experienced thermal 
drift, resulting in a higher output pressure value. In addition, high temperature 
environments may affect the performance of internal components of pressure 
transmitters, thereby reducing measurement accuracy. The maximum relative error 
value is 5.074%, and the drift is not small. 

• 70℃: At this higher temperature, the thermal drift phenomenon of the pressure 
transmitter may be more severe, further affecting the accuracy of the output pressure 
value. The maximum relative error value reached 8.239%, which is quite high. The 
dynamic response speed of the pressure transmitter is severely affected by factors 
such as material thermal expansion and reduced lubricant viscosity. 

Figure 7 Relative error of 40 kPa pressure transmitter output (see online version for colours) 

 

In summary, the maximum relative error occurs at 70℃. Continuing with Figure 3, it is 
found that as the differential pressure value increases, the relative error value also 
increases. The fluctuation range of –40 kPa is larger than that of 40 kPa, indicating that 
the negative control ability of the pressure transmitter is not as strong as the positive 
ability, highlighting the necessity of temperature compensation. 

Using data from an additional channel, combined with Figure 8, the convergence 
speed of various RBF neural network compensation models in pursuing optimal 
adaptability is revealed, comprehensively demonstrating the dynamic characteristics of 
various search algorithms. This helps to understand the performance of various RBF 
neural network algorithms in solving temperature compensation problems in pressure 
transmitters. By carefully observing Figures 3–5 and anaising its results, the following 
conclusions can be drawn from multiple aspects. 
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Figure 8 Changes in fitness of various algorithms, (a) algorithms for fitness changes of 1–5 
nodes (b) algorithms for fitness changes of 6–10 nodes (c) change in fitness of 10–20 
nodes using six algorithms (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

After searching for the centre point for five times, all six types of RBF neural networks 
entered the 4% fitness range, fully demonstrating the fast convergence characteristics of 
RBF neural networks. However, it is evident that QOLS-RBF and K-means RBF 
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converge faster. However, during the second search for the centre point, RBF quickly 
converged from 26.47% to 1.18%, further demonstrating the suitability of RBF neural 
networks for temperature compensation experiments in this stage, with QOLS-RBF 
having a convergence speed second only to RBF. Further analysis revealed that during 
the sixth iteration of searching for the centre point, QOLS-RBF had a faster convergence 
speed than RBF and remained ahead thereafter, while other models had their own 
strengths. 

Due to the quantum genetic transformation of the data in the early stage, QGA’s data 
volume increased, and its convergence speed could not be compared with QOLS-RBF 
and RBF before the first nine searches for the centre point. However, during the 10th 
search for the centre point, QGA was at the same level as QOLS-RBF, FCM-RBF, and 
K-means RBF, and was faster than MQ-RBF, FCM-RBF, and K-means RBF. From the 
performance of QOLS and QGA, quantum acceleration is effective in temperature 
compensation of RBF neural networks. 

When entering the 0.1% range, QOLS-RBF shows a clear convergence advantage, 
while RBF begins to fluctuate, indicating that RBF is developing in the opposite direction 
of decreasing fitness. Other FCM-RBF, MQ-RBF, and QGA-RBF are relatively stable, 
with only MQ-RBF showing small fluctuations when searching for the centre point after 
21 iterations, while others tend to stabilise. 

As a clustering optimised RBF neural network, FCM-RBF has stronger convergence 
ability than K-means RBF. K-means RBF needs to wait until the 29th search for the 
centre point, while FCM-RBF needs to search for the centre point 21 times to meet the 
requirements. 

From Figures 3–5, it can be seen that in terms of structure, QOLS-RBF is due to other 
RBF algorithms, and can achieve the target value after 18 iterations. However,  
QGA-RBF, MQ-RBF, FCM-RBF, K-means RBF, and RBF are the 21st, 23rd, 30th, 31st, 
and 70th iterations, respectively. This indicates that the wave motion of RBF is too 
strong. In the case of complex data structures for temperature compensation, the structure 
of RBF cannot be optimised. QOLS adopts the basic knowledge of quantum computing 
to optimise the RBF neural network structure, which also provides a new optimisation 
idea for relevant researchers. Through comparative analysis of fitness, it can be seen that 
QOLS-RBF has superiority over other channel data, with high algorithm accuracy, 
simplified algorithm structure, and fast convergence speed. 

The evaluation criterion for the algorithm compensation used in this article is absolute 
relative error: 

D D
rr

FS

P Pe
P

′ − =  
 

 (22) 

Among them, err represents absolute relative error, iP′  represents the compensated 
pressure value, P represents the actual pressure value, PFS represents the measurement 
range of the pressure transmitter, and the err smaller it is, the higher the compensation 
accuracy. This project will use six pre trained RBF, K-means RBF, FCM-RBF,  
MQ-RBF, QGA-RBF, and QOLS-RBF models err (max) to test the compensation effect 
on the test data z of Tables 3–9. The algorithm stop requirement is to err < 0.0001 stop, 
and the number of nodes, testing time, error err value, mean difference value, and err 
(mean) maximum error value will be observed for analysis. At the same time, trend 
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analysis will be conducted by combining the time x axis, node number y axis, and  
three-dimensional response surface graph. 

The test data is continuously filled with different pressure values during the heating 
process from –20℃ to 50℃, and the corresponding temperature AD and pressure AD are 
recorded as the test data. The specific data is shown in Table 2. 
Table 2 Sensor temperature test point data 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

–40 44,363 246,247 –10 43,249 440,480 20 44,725 632,338 
–35 44,367 277,604 –5 43,242 471,354 25 44,712 665,200 
–30 44,372 309,122 0 43,237 502,298 30 44,698 698,028 
–25 44,376 340,797 5 43,233 533,292 35 44,688 730,805 
–20 44,380 372,626 10 43,228 564,401 40 44,674 763,525 
–15 44,384 404,593 15 43,215 595,519 –40 44,381 246,283 
–10 44,388 436,668 20 43,209 626,644 –35 44,397 277,540 
–5 44,393 468,858 25 43,204 657,808 –30 44,418 308,964 
0 44,398 501,160 30 43,199 688,966 –25 44,434 340,579 
5 44,400 533,520 35 43,195 720,105 –20 44,454 372,386 
10 44,404 566,013 40 43,189 751,212 –15 44,471 404,362 
15 44,408 598,541 –40 42,931 261,177 –10 44,491 436,370 
20 44,412 631,085 –35 42,921 290,949 –5 44,506 468,747 
25 44,414 663,668 –30 42,916 320,829 0 44,526 501,146 
30 44,417 696,255 –25 42,907 350,854 5 44,546 533,648 
35 44,419 728,824 –20 42,902 381,000 10 44,557 566,320 
40 44,421 761,364 –15 42,895 411,269 15 44,573 599,041 
–40 44,204 248,034 –10 42,888 441,626 20 44,592 631,834 
–35 44,192 279,323 –5 42,883 472,091 25 44,608 664,676 
–30 44,186 310,705 0 42,876 502,630 30 44,623 697,544 
–25 44,179 342,229 5 42,867 533,220 35 44,647 730,505 
–20 44,173 373,869 10 42,860 563,920 40 44,665 763,434 
–15 44,169 405,618 15 42,853 594,635 –40 43,515 255,479 
–10 44,163 437,459 20 42,848 625,369 –35 43,466 286,241 
–5 44,158 469,403 25 42,841 656,129 –30 43,447 316,802 
0 44,149 501,426 30 42,837 686,892 –25 43,439 347,432 
5 44,143 533,482 35 42,830 717,638 –20 43,428 378,203 
10 44,136 565,641 40 42,825 748,351 –15 43,421 409,066 
15 44,131 597,813 –40 45,860 228,779 –10 43,415 440,009 
20 44,125 629,987 –35 45,848 262,314 –5 43,411 471,044 
25 44,118 662,169 –30 45,835 295,965 0 43,403 502,177 
30 44,111 694,350 –25 45,827 329,708 5 43,398 533,356 
35 44,101 726,474 –20 45,810 363,585 10 43,393 564,654 
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Table 2 Sensor temperature test point data (continued) 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

Pressure 
(pa) 

Temperature 
AD 

Pressure 
AD 

40 44,096 758,565 –15 45,793 397,554 15 43,389 595,971 
–40 43,589 254,523 –10 45,779 431,552 20 43,385 627,293 
–35 43,603 284,866 –5 45,768 465,629 25 43,379 658,641 
–30 43,612 315,422 0 45,744 499,762 30 43,376 689,994 
–25 43,618 346,161 5 45,723 533,857 35 43,371 721,335 
–20 43,625 377,050 10 45,708 568,007 40 43,368 752,642 
–15 43,635 408,081 15 45,693 602,135 –40 43,340 256,971 
–10 43,644 439,242 20 45,678 636,222 –35 43,340 287,126 
–5 43,650 470,542 25 45,657 670,259 –30 43,341 317,445 
0 43,656 501,949 30 45,641 704,258 –25 43,342 347,911 
5 43,661 533,425 35 45,626 738,204 –20 43,343 378,517 
10 43,667 565,032 40 45,610 772,020 –15 43,344 409,263 
15 43,675 596,699 –40 44,918 240,304 –10 43,346 440,106 
20 43,682 628,383 –35 44,902 272,580 –5 43,348 471,065 
25 43,691 660,133 –30 44,875 305,026 0 43,349 502,129 
30 43,701 691,923 –25 44,859 337,473 5 43,349 533,253 
35 43,708 723,692 –20 44,843 370,001 10 43,348 564,511 
40 43,716 755,467 –15 44,824 402,631 15 43,349 595,795 
–40 43,308 257,391 –10 44,813 435,309 20 43,349 627,099 
–35 43,294 287,639 –5 44,798 468,045 25 43,350 658,434 
–30 43,284 317,967 0 44,783 500,857 30 43,350 689,786 
–25 43,270 348,379 5 44,769 533,673 35 43,350 721,134 
–20 43,260 379,051 10 44,749 566,584 40 43,350 752,465 
–15 43,254 409,711 15 44,735 599,473    

Table 3 Comparison results of five RBF algorithms 

Algorithm Nodes Calculation 
time (ms) 

Network 
error 

Mean test 
error 

Maximum 
testing error 

RBF 52 3,646 8.4 × 10–5 1.119 × 10–2 1.275 × 10–1 
K means-RBF 31 3,635 6.6 × 10–5 2.56 × 10–4 1.023 × 10–3 
FCM-RBF 28 3,625 8.3 × 10–5 4.131 × 10–3 1.875 × 10–2 
MQ-RBF 21 3,814 7.7 × 10–5 5.189 × 10–3 3.514 × 10–2 
QGA-RBF 22 9,760 9.8 × 10–5 5.096 × 10–3 3.003 × 10–2 
QOLS-RBF 17 1,880 8.2 × 10–5 1.24 × 10–4 5.60 × 10–4 

Through algorithm experiments using RBF, OLS-RBF, K-means RBF, FCM-RBF, and 
OLS-RBF, as well as comparing QOLS-RBF algorithm with these four algorithms, 85 
data points were modelled and 170 dynamic data points were selected for testing. 
Through experiments, the number of nodes, network errors, testing errors, and 
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computation time of these five algorithms were observed for analysis. The results are in 
Table 3. 

Based on the analysis of the experimental results above, the following conclusions 
can be drawn: 

1 K-means RBF, FCM-RBF, MQ-RBF, QGA-RBF, and QOLS-RBF all have fewer 
nodes than RBF. Among them, QOLS-RBF has the most significant effect, reducing 
the number of nodes from 52 to 17. Similarly, QGA-RBF, after quantum 
optimisation, can also reduce the number of nodes to 22, proving that quantum 
optimisation theory can streamline the structure of RBF neural networks. 

2 From the perspective of computation time, most RBF neural algorithms are within 
four seconds, except for QGA-RBF which has a computation time significantly 
exceeding the common range. The reason is that QGA increases the amount of data 
and expands the search range through genetic algorithm crossover, mutation, and 
mutation, resulting in a large amount of data computation work and consuming a lot 
of computation time, leading to a computation time of 9,760 milliseconds, which is 
not on the same order of magnitude as other RBF algorithms. 

3 In the temperature compensation process of pressure transmitters, RBF, FCM-RBF, 
MQ-RBF, and QGA-RBF cannot control the mean err max error to be on the order of 
10–4, while K means RBF is feasible. However, through analysis, it was found that 
the maximum relative error still cannot reach the order of 10–4. Overall, the err max 
sums of QOLS-RBF with significant compensation effects are 1.24 × 10–4 and  
5.60 × 10–4, respectively. On the one hand, this proves the stable performance of 
QOLS-RBF in temperature compensation, and on the other hand, it can also be 
concluded that QOLS-RBF has higher convergence accuracy, stronger optimisation 
ability, and can improve accuracy. 

4 Under the same requirement of a relative error of 0.01%, it can be seen from the 
table that the final QOLS-RBF is err only 8.2 × 10–5, ranking third among the six 
types of RBF neural networks. However, it only requires 17 nodes for network 
establishment. Compared with RBF, K means RBF, FCM-RBF, MQ-RBF, and 
QGA-RBF, it saves 1,766 ms, 1,755 ms, 1,745 ms, 1,934 ms, and 7,880 ms 
respectively, with significant improvement, shortening 48.44%, 48.28%, 48.13%, 
50.71%, and 80.73% of the time, and the effect is significant. From the perspective 
of simplifying the structure, QOLS-RBF synchronously reduced the structure by 
67.31%, 45.16%, 39.28%, 19.04%, and 22.72%, which further proves the role of 
QOLS-RBF in simplifying the structure and accelerating the temperature 
compensation of pressure transmitters. 

Figure 9 shows the response surface analysis after low pass FFT transformation. Through 
the study of the temperature compensation model of the RBF neural network, on the one 
hand, the application of RBF neural network in temperature compensation is explored, 
and on the other hand, the performance improvement of quantum least squares method in 
RBF neural network is also explored. According to Table 3 and Figures 9(a)–9(d), the 
RBF model is relatively stable, with RBF, K means RBF, FCM-RBF, and QOLS-RBF 
being able to control error fluctuations within 10% in the ranges of 51%, 75%, 68%, and 
80%, respectively. However, the highest peaks of RBF, K means RBF, and FCM-RBF 
are 31.2%, 25.6%, and 28.5%, respectively, while the highest value of QOLS-RBF is 
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controlled at 11%. According to the characteristics of RBF type algorithms, the number 
of nodes will continue to accumulate. K-means RBF and QOLS-RBF do not need to 
worry about the occurrence of the maximum error value, while RBF and FCM-RBF must 
be aware that even if the network has been determined, the maximum error value will still 
occur when time is not enough. 

Figure 9 Shows the three-dimensional response surface plots of six RBF compensation models, 
(a) RBF compensation effect diagram (b) K-means RBF compensation effect diagram 
(c) FCM-RBF compensation effect diagram (d) MQ-RBF compensation effect diagram 
(e) QGA-RBF compensation effect diagram (f) QOLS-RBF compensation effect 
diagram (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

 
(e)     (f) 

Compared to the other four models, the error fluctuations of MQ-RBF and QGA-RBF are 
not of the same order of magnitude, at 150% and 423%, respectively. This indicates that 
the MQ-RBF model is unstable, and the quantum binding degree of QGA-RBF cannot 
effectively reduce the structure, but instead increases the load on the algorithm model, 
resulting in longer time. Similarly, MQ-RBF and QGA-RBF can also encounter RBF and 
FCM-RBF problems, and sufficient training time is necessary. 
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Overall, QOLS-RBF has reduced the structure by 67.31%, 45.16%, 39.28%, 19.04%, 
and 22.72% compared to RBF, K-means RBF, FCM-RBF, MQ-RBF, and QGA-RBF in 
terms of simplification and convergence speed. It has also saved 48.44%, 48.28%, 
48.13%, 50.71%, and 80.73% in terms of time. It can be seen that quantum optimisation 
theory has a significant simplification and acceleration effect in temperature 
compensation of RBF neural networks. 

From this, it can be seen that the QOLS-RBF algorithm proposed in this article has 
significant advantages compared to other similar RBF algorithms. With the same 85 
training data and 170 test data, using the same basis function, the best network error can 
be obtained in a shorter computation time with fewer centre points. The mean and 
maximum values of the test error reach 1.24 × 10–4 and 5.60 × 10–4, respectively, to meet 
the requirements of sensor temperature compensation and significantly reduce 
computation time while improving algorithm accuracy. 

6 Conclusions 

QOLS-RBF is a novel neural network algorithm that combines quantum gate theory. This 
algorithm combines the comprehensive acceleration effects of quantum gates and OLS 
algorithms, and has significant improvements compared to existing algorithms such as 
RBF, OLS-RBF, K-means RBF, and FCM-RBF. Although it does not require as much 
computation time as the RBF algorithm, it reduces the number of hidden layer centre 
points and computation time while ensuring higher accuracy. Through temperature 
compensation data for sensors, modelling with 85 data points and testing with 170 data 
points, it was found that QOLS-RBF has significant advantages in network error, mean 
test error, and maximum test error. Therefore, it proves the superiority of the innovative 
RBF algorithm. 
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