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Abstract: Temperature compensation is crucial for improving sensor accuracy
and stability in high-precision measurement. Although radial basis function
(RBF) neura networks perform well in nonlinear modelling, they face slow
convergence, long training time, and limited accuracy. To address these issues,
this paper proposes an improved RBF agorithm (QOLS-RBF) by combining
quantum controlled-NOT (C-NOT) gates with orthogonal least squares (OLS)
theory. The method quantises input data and applies quantum superposition,
entanglement, and interference to enhance feature extraction and centre
aggregation. It further integrates OLS screening with the maximum error
compression ratio, using C-NOT gate evolution to reduce hidden layer nodes
and accelerate convergence. Experiments with 85 training and 170 testing
sensor datasets show that QOLS-RBF outperforms RBF, OLS-RBF, K-means
RBF, and FCM-RBF in convergence speed, training time, error accuracy, and
network compactness. This approach enables efficient temperature
compensation and offers a promising tool for modelling complex nonlinear
systems.
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1 Introduction

Artificia neural networks solve nonlinear problems in complex systems by simulating
their operational processes. Due to its excellent nonlinear generalisation (Bock et al.,
1992), self-organisation, and self-learning abilities (Pramanik et al., 2006), artificial
neural networks have gradually been widely applied in new fields of engineering, such as
signal processing and pattern recognition, where they have strong predictive capabilities
(Li etal., 2013).

However, most of the current popular feedforward multi-layer networks are based on
backpropagation and have many drawbacks, such as the BP algorithm, which is prone to
getting stuck in local optima and has slow convergence speed. Although some algorithms
can effectively avoid local optima, they generally require alarge amount of computation,
which causes alot of inconvenience in practical applications (Zhang et a., 2007).

The theory of radial basis function (RBF) networks provides a novel and effective
means for learning multi-layer feedforward networks (Wang et a., 2022). It can not only
avoid the tedious calculations in backpropagation networks and improve learning speed,
but also overcome the local minima problem of gradient descent. It has wide applications
in speech recognition (Yang and Chen, 2010), data classification (Ye et al., 2019),
function approximation (Liang et al., 2006), time series prediction (Cao and Tay et al.,
2003), graphics processing (Zhai et a., 2022), adaptive channel equalisation (Patra et a.,
2008) and other fields.
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Its main function is to use RBFs as the ‘basis’ of the hidden unit to form the space of
the hidden layer (Zar et a., 2023). The hidden layer changes the input vector into a low
dimensional pattern, and the input data is transformed into a high-dimensional space,
making it linearly separable in high-dimensional space instead of being linearly
inseparable in low dimensional space. It applies the principle of deep data mining (Song
et a., 2020) to identify the fundamental differences in the data. This is a local
approximation network that requires only a small number of weights and thresholds to be
adjusted for each training sample. It has the characteristics of fast learning speed, good
convergence, and strong real -time performance.

The basic RBF algorithm includes four algorithms: random selection of fixed centres,
self-organising selection of centres, supervised selection of centres, and orthogonal least
squares (OLS) method (Huang et al., 2024). However, due to the limitations of its own
data structure and fixed centre values (Wan et a., 2015), traditional RBF algorithms are
aready at a dower convergence speed. Therefore, in order to develop a more efficient
RBF neural network algorithm (Park and Sandberg, 1991), many experts have proposed
some improved algorithms, which are classified as follows:

1 K-means selects the centre point: The K-means clustering method (Shen et al., 2011)
isatypical objective function clustering method, which takes a certain distance
function between data points as the objective function. The distance between data
points and prototypes is used as the optimisation objective function, and the
adjustment rules for iterative operation are obtained by finding the extremum of the
function. Mainly using Euclidean distance as a similarity measure, find the optimal
classification corresponding to acertain initial cluster centre vector, so asto
minimise the evaluation index. The clustering points generated by the K-means
clustering algorithm as the centre points of the RBF can effectively reduce the
number of nodes and better achieve improved network structure (Whitehead and
Choate, 2002).

2 FCM sdlectsthe centre point: The FCM algorithm is a partition-based clustering
algorithm (Halim et a., 2016), which aims to maximise the similarity between
objects classified into the same cluster and minimise the similarity between different
clusters. The fuzzy C-means algorithm is an improvement of the ordinary C-means
algorithm, which isrigid for data partitioning, while FCM is aflexible fuzzy
partitioning (Geng et al., 2016). The clustering points generated by applying fuzzy
clustering algorithm as the centre points of RBFs, similar to K-means method, can
improve the convergence speed of the network.

3 OLSsmethod: It isachieved by minimising the sum of squared errorsto find the
optimal function match for the data, which can easily obtain unknown data and
minimise the sum of squared errors between these obtained data and actual data.
Applying the OL Ss method to select the centre of the RBF as the training mode, one
sample is selected at atime, and the orthogonal matrix is used to select each
component to find the regression operator with the highest error compression ratio.
Based on this, the centre point is continuously searched downwards to ultimately
find a suitable network structure.

Through the above analysis, we can find that RBF optimisation can be approached from
two perspectives. On the one hand, K-means or FCM algorithms can be used to cluster
and optimise existing data points, ultimately obtaining the desired hidden layer
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benchmark points. On the other hand, the OLS algorithm continuously filters principles
to find the most suitable benchmark point. But in fact, neither of these two types of ideas
has found the fundamental characteristics of data from the perspective of the most
fundamental data structure, and the search speed can be further improved.

The quantum gate in quantum communication theory is a theory that applies quantum
theory to deeply explore the interna relationships of data. The most commonly used
controlled NOT gate (C-NOT) can vertically increase the dimensionality of the RBF,
further improving the search speed of the algorithm (Wu and Byrd, 2009; Harsij and
Mirza, 1995; Kak, 1995; Purushothaman and Karayiannis, 1997; Li and Zhao, 2018).

2 RBF neural network

RBF neural network is a network with a simple structure, fast convergence speed, and the
ability to approximate any nonlinear function. In 1988, Broomhead and Lowe introduced
RBFs into neural networks based on the principle that biological neurons have local
correspondences. They were proven to have consistent approximation performance for
nonlinear networks and have gradually been widely applied in different industries and
fields.

The RBF is denoted as ©(x, y) = #(|[x — V||), where |[X|| refers to the Euclidean norm.
Treating the problem of neural networks as a regularisation problem, the solution can be
given by the following equation:

F(x)=ZV\/.G(x,>q) (1)

i=1

Among them G is the green function, which w; is the weight. Similar to BP neural
networks, regularised RBFs aso have a three-layer structure. The first m layer consists of
input nodes, with the number of input nodes equal to the x dimension of the input vector.
The second layer belongs to the hidden layer, consisting of nodes directly connected to
the input nodes. Each hidden node corresponds to one training data point, so its number is
the same as the number of training data points i. The output X = [Xi1, X2, ..., Xim] Of the
hidden node is ¢(||[X — Xi]l), is the basis function, and is the centre of the basis function.
The output layer consists of several linear units, each connected to all hidden nodes, and
its final output is the linear weighted sum of each hidden layer node. The agorithm
structure is shown in Figure 1.

Let the actual output be Yk = [Via, Vi, ---, Yk, Yk, iS the J number of output units, and
represents the k output generated by the th input vector. So outputting the training
samples Xk, the j result obtained by the network’ sfirst output neuroniis

N
ykj ZZV\I,j¢(Xk,Xi),j=1,2,...,J (2)
i=1

If the basis function is a Gaussian function, then the ¢(Xy, X;)=G(Xy, X;)

=G(|Xk - Xi|) = exp(—z—lzllxk - X ||j basic algorithm principle of RBF is as follows:
(o}
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Aslong as there are enough hidden layer nodes, it can approximate any multivariate
continuous function with arbitrary accuracy.

Given anonlinear function at a given location, a set of coefficients can always be
selected to make the approximation of the network optimal.

The agorithm flow is shown in Figure 2.

1
2

Initialisation: Determine the weight coefficients.

Select aset of inputs, the centre point of the most hidden layer, and calculate the
radial basis.

According to the weight corresponding to each output.

If thefinal error is smaller than the target error, end the process; otherwise, continue
with the above steps until the error requirements are met.

Select another set of data according to certain criteria and repeat the processin the
second step.

Figurel RBF algorithm structure diagram

From this, it can be seen that the network structure in the RBF agorithm is simple and
highly efficient, and the principle of adding the most important new centre point directly
affects the convergence speed of the RBF network structure. However, it did not
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introduce the search for patterns from the fundamental perspective of data, which can be
deeply explored.

Figure2 RBF agorithm flowchart

3 QOLStheory

3.1 Quantum controlled NOT gate

In quantum mechanics, when the state of a microscopic particle at a certain moment is
known, the state of the particle at subsequent moments is determined by the Schrédinger
equation, that is:

ih%ﬂr,th(—%vz +ij//(r,t) 3

Among them, v is the wave function, mis the particle mass, V is the potentia energy of
the particle in the force field, V27 isthe Planck constant, is the Laplace operator, which
2 2 2
is defined as V? :a—+a—+a—.
ox2  ody? 0z%

In classical computing, binary numbers of 0 and 1 are used to represent information,
commonly referred to as bits, which can only be in two states: ‘0" or ‘1'. However |1), in
guantum computing based on the Schrédinger equation, the | ) state of a quantum bit can
be linearly combined through the superposition of |1) two fundamental states (Dirac
notation), which are commonly referred to as superposition states

lp) = |0)+ BID) 4
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lod” +| A" =1 ®)

Formulas (2) and (3) both satisfy the argument of the wave function in the Schrodinger
equation, which is a complex number known as the probability amplitude of the quantum
state and can be expressed as [« A]T. Formula (2) states that a quantum state |p) will |of?
collapse with a certain probability due to measurement [0), or |4? collapse with a certain
probability |1) to |p) represent |1) any state that satisfies:

In gquantum computing, the logic transformation function is achieved by performing
some unitary transformations on the state of quantum bits, and the logic transformation is
realised within a certain time interval. The quantum device that performs unitary
transformations is caled a quantum gate. Due to quantum phenomena such as
superposition, entanglement, and interference, quantisation of data allows it to exhibit
these characteristics in new dimensions. The most commonly used quantum gate is the
controlled NOT gate, also known asthe C-NOT gate

1 0 0 O] |00)—]|00)
0100
CNOT = 100 /0w (6)
0 0 1| |10) — 1D
0 01 0| |11)—]10

If the control qubit of the CNOT gate is set to 0, the target qubit will remain unchanged.

If the control qubit is set to 1, the target qubit will flip.
|0,0) —]0,0©0)=|0,0),]0,1) —»|0,1®0) =0, 1) @
[10) 1002 =|1.1),[1 1)~ [1.101) =[1,0)

The formal expression @ of the equation is |Ja, b) — |a, b ® a), where is modulo-2
addition. The circuit of CNOT gate in quantum computing and quantum information is
shown in Figure 3.

Figure3 Quantum controlled non gate (CNOT) circuit diagram
) )

b) D bpa)

The generalised controlled NOT gate can be derived from three genera types of
controlled NOT gates:

0 1 0 0] ]|o0)—|o01
1000
CNOT, = .|0%) —00) )
0 0 1 0|10)—]10
0 00 1| 110—1D
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|00) — |00)
[0 — 1)
"10) - ]10)
110 — 0D

|00) —[10)
.[01) —»|01)
'110) — |00)
111 — [12)

These four types of generdised controlled NOT gates can achieve quantum data
superposition, entanglement, and interference, and are widely and ingeniously applied in
the field of data processing. According to research, for each different data type,
generalised controlled NOT gates exhibit different improvement abilities, but overall they
can discover the core internal rules of the data from another perspective.

CNOT; = 9

O O O Bk
= O O O
o »r O O
|O o OI

CNOT, = (10)

o+~ O

o O O
O O O k-
= o o o

0

3.2 OLSs method

The OL Ss agorithm is derived from linear regression models and is used to design RBF
neural networks. It has the advantages of low computational complexity, easy
implementation, and the ability to determine the number of hidden nodes while learning
weights. Let the training samples of the RBF neura network be {x, yi}, (i =1, 2, ..., n),
where n is the number of training samples and x; is the input vector of the network.
Therefore, the output of the network is:

yi = piw +& (1)

j=1

In the formula m, represents the number of hidden layer neurons, which can be referred to
as the number of neural networks in RBF neural networks; w;. It is a model parameter,
which is the connection weight between the output layer and the hidden layer; a. Itisa
residual;

y=[¥1, V2r-er Yol (12)
W=[W, Wa, ..., W] (13)
P=[p1, P2, .-, P (14
e=[a,&,....en] (15)

P for the regression matrix; w is a weight vector; e is the residua vector; y to expect the
output response vector.

The basic idea of this agorithm is to use orthogonalisation method to anaise the
contribution of each selected vector to reducing residuals, eliminate the vectors with
small contributions, and leave the vectors with large contributions as the network centre.
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The task of the OLS algorithm is to learn and select appropriate regression operator
vectors p; and their number of centres m, aswell as determine the output weights w;.
Perform p orthogonal triangulation on the regression matrix:

P=UA (16)
A one of them isan m x mupper triangular matrix with diagonal elementsof 1; it HU isa

hj n x m matrix whose columns are u; orthogonal, that is UTU = H, a diagonal matrix
with diagonal elements. Namely:

hij =u;"u; (17)
From the above, it can be concluded that:

y=UAw+e=Ug (18)

g=Aw (19

The OLSs solution is:

.
Ty
uj" u;

(20)

The above orthogonalisation is achieved using the traditiona Gram Schimit
orthogonalisation method. This agorithm uses orthogonal decomposition and least
squares method to define the u; contribution of orthogonal vectors to reducing output
errors.

21,. T
_9i7y;
- T

¢ U< j<m) 1)
y'y

So as to effectively find a suitable subset of regression operators p; and determine the

m
centre and connection weights of RBF neurons through it. At that 1—25 j =p time, the
j=1
iteration ended p. To establish the allowable error threshold, this involves obtaining m an
orthogonal matrix consisting of orthogonal vectors U and their corresponding triangular
matrices A, and then calculating the weights w. Due to the strong correlation introduced
by quantum feature expansion, the orthogonalisation capability of OLS makes it suitable
for selecting representative basis functions and avoiding redundancy.

4 QOLS-RBF algorithm

The innovation of this article lies in the combination of quantum controlled-NOT
(CNQOT) gate theory and the OLSs method, establishing a new and efficient centre
selection principle. In the proposed framework, all input data are first quantised and
expanded from one-dimensional to four-dimensional representations through CNOT gate
transformations, generating quantum-derived features with enhanced separability and
internal  correlations. Before the OLS selection process begins, these
guantum-transformed data points serve directly as the initial candidate centres for the
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RBF network. Unlike conventional clustering methods such as k-means, which rely on
iterative partitioning and are sensitive to initialisation, the quantum pre-processing step
provides a structured and well-distributed set of centres derived from the inherent
entanglement and superposition properties of the data. This not only eliminates the need
for an additiona clustering procedure but also offers amore robust and globally informed
initialisation for the network. The width of the RBF functions is then adaptively
determined based on the pairwise distances among these candidate centres, ensuring
sufficient coverage of the input space and stable convergence in subsequent learning.

OLS is deliberately chosen as the learning mechanism because its orthogonalisation
and greedy selection process digns well with the structure of quantum-entangled
features. Specifically, OLS effectively filters redundant or weakly informative quantum
basis functions and selects the subset that contributes most to error reduction, enabling
compact network structures. With these quantum-enhanced data as candidate centres,
radial bases are generated and then screened by OLS based on the maximum error
compression ratio. This synergy between gquantum feature expansion and OLS-driven
selection leads to faster convergence, higher accuracy, and more representative hidden
layer centres.

The innovation of this method includes the following three points:

1 Cleverly using complex quantum gates to achieve quantum transformations,
stacking, entanglement, and interference between quantum data, generating new
data.

2 Using the new data generated by quantum changes as the benchmark centreis
equivalent to a quantum evolution of data and networks, which can distinguish from
higher dimensions and achieve higher order development space.

3 We have successfully implemented the OL Ss method to improve the maximum
compression ratio that already has high-speed convergence, which is different from
the traditional method of using existing data points as a benchmark and accelerates
the calculation process of RBFs.

The OL Ss method using quantum theory not only has the acceleration effect of quantum
operations, but also has the super acceleration ability of OLSs screening for maximum
compression ratio, which enables the entire RBF algorithm to undergo a new evolution in
both structure and effect, reducing the time to converge to the target error and becoming a
new high-speed and effective neural network algorithm.

By combining the above two algorithms, that is, organically combining the four
controlled NOT gates with the OLS algorithm, it was found that the third type of
generalised controlled NOT gate (CNOT3) performs the best in the process of combining
the OLS algorithm. It is a combination of a standard controlled NOT gate and four
Hadamard gates, as shown in Figure 4.

In the OLS algorithm, a set of quantum data with the highest error contribution is
continuoudly stacked and used as the centre value, and continuously added upwards to
find the minimum number of centre points at the fastest speed, in order to achieve
high-speed and effective convergence. Importantly, because OLS is a deterministic
greedy agorithm that monotonically reduces the residua error at each iteration, the
convergence of the classical weight layer is theoretically guaranteed in the least-squares
sense. The quantum pre-processing step introduced in this work does not alter this
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convergence property; instead, it accelerates the convergence process by improving
feature separability and allowing OLS to identify the most informative centres more
efficiently.

Figure4 Generalised controlled non gate decomposition circuit diagram

& a8

The agorithm steps are as follows:
1 Normalise and initialise data and programs.

2 Quantiseal data, upgrade one-dimensional datato four qubit data, and perform
CNOT gate transformation to achieve quantum data superposition, entanglement,
and interference, completing the conversion of quantum gates.

3 Perform RBF calculations on al quantised input data for the hidden layer reference
points of all CNOT gate transformations, in order to obtain the radial basis centre
with the greatest impact from the perspective of quantum data.

4 |dentify the column with the highest error compression ratio in the quantum data,
that is, locate the centre point that has the greatest impact on the overal data
representation. Extract this centre as the quantum radial basis centre point.

5 Usethe selected quantum data point as the first hidden layer centre and perform RBF
calculations to obtain the corresponding network parameters.

6 Computethe error of the neural network and check whether it satisfies the predefined
convergence criteria. If the condition is met, terminate the algorithm; otherwise,
proceed to the next iteration.

7  Update the maximum error compression ratio matrix. The column corresponding to
the selected centre is orthogonalised using the Gram-Schmidt procedure, resulting in
awell-conditioned upper triangular structure. This enables a stable and efficient
back-substitution process to compute the linear output weights, avoiding the need for
explicit matrix inversion or pseudo-inversion.

8 Return to steps 47, iteratively increasing the number of hidden layer centres until
the network error meets the required threshold.

The agorithm flow is shown in Figure 5.

5 Experimental analysis

The QOLS-RBF agorithm is applied for temperature compensation of pressure
transmitters, and the selected data are shown in Table 1.
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e Experimental data source: Different differentia pressure values were recorded at five
temperature ranges of —20°C, 0°C, 20°C, 50°C, and 70°C. From —40 pato 40 pa, with
agradient of 5 pa, temperature AD, pressure AD, and pressure values were recorded

at 17 points. A total of 85 data points were used as training data, as shown in

Table 1.

Figure5 QOLS agorithm flowchart

E——

Tablel

Sensor temperature calibration points (modelling data points)

—

Pressure Temperature Pressure Pressure Temperature Pressure Pressure Temperature Pressure

(pa) AD AD (pa) AD AD (pa) AD AD

—40 46,115 225226 20 45268 634,383 5 43,255 471,221
-35 46,115 259,015 25 45268 668,039 0 43255 502,188
-30 46,115 292,957 30 45268 701,674 5 43255 533,214
25 46,115 327,038 35 45268 735281 10 43255 564,373
—20 46,115 361,254 40 45268 768,840 15 43255 595,555
-15 46,115 395595 40 44,445 245293 20 43255 626,757
-10 46,115 430,030 -35 44,445 276,787 25 43255 657,996
-5 46,115 464,563 —30 44,445 308434 30 43255 689,248
0 46,115 499,184 25 44,445 340,227 35 43255 720,489
5 46,115 533,847 20 44,445 372,163 40 43,255 751,701
10 46,115 568,612 15 44,445 404,232 40 42,449 265,502
15 46,115 603,391 -10 44,445 436,398 -35 42,449 294,694
20 46,115 638169 -5 44,445 468,680 -30 42,449 324,036
25 46,115 672,962 0 44,445 501,063 -25 42,449 353,526
30 46,115 707,737 5 44,445 533475 -20 42,449 383,158
35 46,115 742,473 10 44445 566,019 -15 42,449 412,937
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Tablel Sensor temperature calibration points (modelling data points) (continued)

Pressure Temperature Pressure Pressure Temperature Pressure Pressure Temperature Pressure

(pa) AD AD (pa) AD AD (pa) AD AD
40 46,115 777,148 15 44445 598591 -10 42,449 442817
—40 45,268 235,926 20 4445 631,170 5 42,449 472,818
-35 45268 268,467 25 44,445 663,787 0 42,449 502,916
-30 45,268 301,166 30 44,445 696,402 5 42,449 533,077
-25 45268 334,016 35 44,445 728999 10 42,449 563,370
-20 45268 367,004 40 44,445 761,560 15 42,449 593,697
=15 45,268 400,131 40 43,255 257,738 20 42,449 624,052
-10 45268 433,352 35 43255 287,807 25 42,449 654,454
-5 45268 466,694 30 43255 318,035 30 42,449 684,868
45268 500,112 -25 43,255 348,415 35 42,449 715,282
5 45268 533579 20 43255 378937 40 42,449 745,668
10 45268 567,163 15 43,255 409,595
15 45268 600,769 -10 43,255 440,352

Figure 6 Pressure output characteristics at different temperatures (see online version for colours)

oI \Kpaj

According to the analysis of Figures 6 and 7, the temperature changes of the pressure
transmitter will have a direct impact on its pressure output characteristics, resulting in
deviations in the obtained measurement results. At five temperatures of —20°C, 0°C,
20°C, 50°C, and 70°C, there are significant differences:

e —20°C: The sensitivity of the pressure transmitter is significantly reduced, which is
affected by the cold environment, resulting in alower output pressure value. The
maximum relative error is 8.181%, which is due to factors such as material shrinkage
and increased lubricant viscosity, resulting in asignificant decrease in the dynamic
response speed of the pressure transmitter.

e 0°C: At temperatures close to freezing, the performance of the pressure transmitter is
relatively stable. Due to the still low temperature, the sensitivity and dynamic
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response speed of the transmitter may still be affected to some extent. The maximum
observed relative error is 3.962%, indicating a shift in performance compared to the
performance at —20°C.

e 20°C: At room temperature, the performance of the pressure transmitter reaches its
optimal state. At this temperature, the sensitivity and dynamic response speed of the
pressure transmitter perform well, and the output pressure value isrelatively
accurate. Therefore, the pressure AD at 20°C is used as the standard value.

e 50°C: Asthetemperature increases, the pressure transmitter has experienced thermal
drift, resulting in a higher output pressure value. In addition, high temperature
environments may affect the performance of internal components of pressure
transmitters, thereby reducing measurement accuracy. The maximum relative error
valueis5.074%, and the drift is not small.

e 70°C: At this higher temperature, the thermal drift phenomenon of the pressure
transmitter may be more severe, further affecting the accuracy of the output pressure
value. The maximum relative error value reached 8.239%, which is quite high. The
dynamic response speed of the pressure transmitter is severely affected by factors
such as material thermal expansion and reduced |ubricant viscosity.

Figure7 Relative error of 40 kPa pressure transmitter output (see online version for colours)

In summary, the maximum relative error occurs at 70°C. Continuing with Figure 3, it is
found that as the differential pressure value increases, the relative error value also
increases. The fluctuation range of —40 kPa is larger than that of 40 kPa, indicating that
the negative control ability of the pressure transmitter is not as strong as the positive
ability, highlighting the necessity of temperature compensation.

Using data from an additional channel, combined with Figure 8, the convergence
speed of various RBF neural network compensation models in pursuing optimal
adaptability is revealed, comprehensively demonstrating the dynamic characteristics of
various search algorithms. This helps to understand the performance of various RBF
neural network algorithms in solving temperature compensation problems in pressure
transmitters. By carefully observing Figures 3-5 and anaising its results, the following
conclusions can be drawn from multiple aspects.
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Figure8 Changesin fitness of various algorithms, (a) algorithms for fitness changes of 1-5
nodes (b) algorithms for fitness changes of 6-10 nodes (c) change in fitness of 10-20

nodes using six algorithms (see online version for colours)

T T T T T T ]
- oor

=304 |

@

(b)

(©

After searching for the centre point for five times, all six types of RBF neura networks
entered the 4% fitness range, fully demonstrating the fast convergence characteristics of
RBF neural networks. However, it is evident that QOLS-RBF and K-means RBF
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converge faster. However, during the second search for the centre point, RBF quickly
converged from 26.47% to 1.18%, further demonstrating the suitability of RBF neural
networks for temperature compensation experiments in this stage, with QOLS-RBF
having a convergence speed second only to RBF. Further analysis revealed that during
the sixth iteration of searching for the centre point, QOLS-RBF had a faster convergence
speed than RBF and remained ahead thereafter, while other models had their own
strengths.

Due to the quantum genetic transformation of the data in the early stage, QGA’s data
volume increased, and its convergence speed could not be compared with QOLS-RBF
and RBF before the first nine searches for the centre point. However, during the 10th
search for the centre point, QGA was at the same level as QOLS-RBF, FCM-RBF, and
K-means RBF, and was faster than MQ-RBF, FCM-RBF, and K-means RBF. From the
performance of QOLS and QGA, quantum acceleration is effective in temperature
compensation of RBF neural networks.

When entering the 0.1% range, QOLS-RBF shows a clear convergence advantage,
while RBF begins to fluctuate, indicating that RBF is developing in the opposite direction
of decreasing fitness. Other FCM-RBF, MQ-RBF, and QGA-RBF are relatively stable,
with only MQ-RBF showing small fluctuations when searching for the centre point after
21 iterations, while others tend to stabilise.

As a clustering optimised RBF neura network, FCM-RBF has stronger convergence
ability than K-means RBF. K-means RBF needs to wait until the 29th search for the
centre point, while FCM-RBF needs to search for the centre point 21 times to meet the
requirements.

From Figures 3-5, it can be seen that in terms of structure, QOLS-RBF is due to other
RBF agorithms, and can achieve the target value after 18 iterations. However,
QGA-RBF, MQ-RBF, FCM-RBF, K-means RBF, and RBF are the 21<t, 23rd, 30th, 31st,
and 70th iterations, respectively. This indicates that the wave motion of RBF is too
strong. In the case of complex data structures for temperature compensation, the structure
of RBF cannot be optimised. QOL S adopts the basic knowledge of quantum computing
to optimise the RBF neural network structure, which aso provides a new optimisation
idea for relevant researchers. Through comparative analysis of fitness, it can be seen that
QOLS-RBF has superiority over other channel data, with high agorithm accuracy,
simplified algorithm structure, and fast convergence speed.

The evaluation criterion for the algorithm compensation used in this article is absolute
relative error:

R R
P = 22
w5 @

Among them, e, represents absolute relative error, R represents the compensated

pressure value, P represents the actual pressure value, PFS represents the measurement
range of the pressure transmitter, and the e, smaller it is, the higher the compensation
accuracy. This project will use six pre trained RBF, K-means RBF, FCM-RBF,
MQ-RBF, QGA-RBF, and QOLS-RBF models & (max) to test the compensation effect
on the test data z of Tables 3-9. The algorithm stop requirement is to e < 0.0001 stop,
and the number of nodes, testing time, error e, vaue, mean difference value, and e
(mean) maximum error value will be observed for analysis. At the same time, trend
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analysis will be conducted by combining the time x axis, node number y axis, and
three-dimensional response surface graph.

The test data is continuously filled with different pressure values during the heating
process from —20°C to 50°C, and the corresponding temperature AD and pressure AD are
recorded as the test data. The specific datais shown in Table 2.

Table2 Sensor temperature test point data

Pressure Temperature Pressure Pressure Temperature Pressure Pressure Temperature Pressure

(pa) AD AD (pa) AD AD (pa) AD AD
-0 44,363 246,247 -10 43249 440,480 20 44,725 632,338
-35 44,367 277604 -5 43242 471,354 25 44,712 665,200
-30 44,372 309,122 0 43237 502,298 30 44,698 698,028
25 44,376 340,797 5 43233 533292 35 44,688 730,805
—20 44,380 372,626 10 43228 564,401 40 44,674 763,525
-15 44,384 404593 15 43215 595519 40 44,381 246,283
-10 44,388 436,668 20 43209 626,644 -35 44,397 277,540
-5 44,393 468,858 25 43204 657,808 30 44,418 308,964
44,398 501,160 30 43199 688,966 —25 44,434 340,579
5 44,400 533520 35 43,195 720,105 -20 44,454 372,386
10 44,404 566,013 40 43189 751,212 15 44471 404,362
15 44,408 598541 40 42931 261,177 -10 44,491 436,370
20 44412 631,085 35 42921 290,949 5 44506 468,747
25 44414 663,668 —30 42916 320,829 0 44526 501,146
30 44,417 696,255 25 42,907 350,854 5 44546 533,648
35 44,419 728824 20 42,902 381,000 10 44,557 566,320
40 4421 761,364 15 42,895 411,269 15 44573 599,041
—40 44,204 248,034 -10 42,888 441,626 20 44592 631,834
=35 44192 279,323 5 42,883 472,091 25 44,608 664,676
-30 44,186 310,705 0 42,876 502,630 30 44,623 697,544
25 44,179 342,229 5 42,867 533220 35 44,647 730,505
-20 44173 373,869 10 42,860 563,920 40 44,665 763,434
-15 44,169 405,618 15 42,853 594,635 40 43515 255,479
-10 44,163 437459 20 42,848 625369 35 43,466 286,241
-5 44,158 469,403 25 42,841 656,129 -30 43,447 316,802
0 44,149 501,426 30 42,837 686,892 -25 43,439 347,432
5 44,143 533482 35 42,830 717,638 20 43,428 378,203
10 44,136 565,641 40 42,825 748,351 -15 43,421 409,066
15 44131 597,813 40 45860 228,779 -10 43,415 440,009
20 44,125 629,987 35 45848 262,314 -5 43411 471,044
25 44118 662,169 —30 45835 295,965 0 43,403 502,177
30 44,111 694,350 25 45,827 329,708 5 43,398 533,356

35 44,101 726,474 20 45810 363585 10 43,393 564,654
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Table2 Sensor temperature test point data (continued)

97

Pressure Temperature Pressure Pressure Temperature Pressure Pressure Temperature Pressure

(pa) AD AD (pa) AD AD (pa) AD AD
40 44,096 758565 -15 45793 397554 15 43,389 595,971
-40 43589 254523 -10 45779 431552 20 43,385 627,293
-35 43603 284,866 -5 45,768 465629 25 43,379 658,641
-30 43,612 315,422 0 45744 499,762 30 43,376 689,994
-25 43,618 346,161 5 45,723 533857 35 43371 721,335
-20 43625 377,050 10 45,708 568,007 40 43,368 752,642
-15 43,635 408,081 15 45,693 602,135 40 43,340 256,971
-10 43,644 439,242 20 45,678 636,222 -35 43,340 287,126
-5 43650 470542 25 45657 670,259 -30 43341 317,445
0 43,656 501,949 30 45641 704,258 25 43,342 347,911
5 43661 533425 35 45,626 738,204 20 43,343 378,517
10 43,667 565,032 40 45610 772,020 -15 43,344 409,263
15 43675 596,699 —40 44918 240,304 -10 43,346 440,106
20 43,682 628,383 -35 44902 272580 -5 43,348 471,065
25 43691 660,133 —30 44,875 305,026 0 43,349 502,129
30 43,701 691,923 -25 44,859 337,473 5 43,349 533,253
35 43,708 723,692 20 44843 370,001 10 43,348 564,511
40 43,716 755467 15 44,824 402,631 15 43,349 595,795
40 43308 257,391 -10 44,813 435309 20 43,349 627,099
-35 43294 287639 -5 44,798 468,045 25 43,350 658,434
-30 43284 317,967 0 44,783 500,857 30 43,350 689,786
-25 43270 348,379 5 44,769 533673 35 43350 721,134
-20 43260 379,051 10 44,749 566,584 40 43,350 752,465
-15 43254 409,711 15 44,735 599,473
Table3 Comparison results of five RBF agorithms

gt s Cpalan Nk Vet Moo
RBF 52 3,646 8.4 x 10° 1.119%x 102 1.275x 1071
K means-RBF 31 3,635 6.6 x 10> 256x10%4  1.023x 103
FCM-RBF 28 3,625 83x10° 4131 x10°% 1.875x 102
MQ-RBF 21 3,814 7.7 % 10° 5.189x 102 3514 x 102
QGA-RBF 22 9,760 9.8x 10 5.096 x 10°  3.003 x 102
QOLS-RBF 17 1,880 82x10° 124 x 104 5.60 x 10~

Through algorithm experiments using RBF, OLS-RBF, K-means RBF, FCM-RBF, and
OLS-RBF, as well as comparing QOLS-RBF algorithm with these four algorithms, 85
data points were modelled and 170 dynamic data points were selected for testing.
Through experiments, the number of nodes, network errors, testing errors, and
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computation time of these five algorithms were observed for analysis. The results are in
Table 3.

Based on the analysis of the experimental results above, the following conclusions
can be drawn:

1 K-means RBF, FCM-RBF, MQ-RBF, QGA-RBF, and QOLS-RBF al have fewer
nodes than RBF. Among them, QOL S-RBF has the most significant effect, reducing
the number of nodes from 52 to 17. Similarly, QGA-RBF, after quantum
optimisation, can aso reduce the number of nodes to 22, proving that quantum
optimisation theory can streamline the structure of RBF neural networks.

2 From the perspective of computation time, most RBF neural algorithms are within
four seconds, except for QGA-RBF which has a computation time significantly
exceeding the common range. The reason isthat QGA increases the amount of data
and expands the search range through genetic algorithm crossover, mutation, and
mutation, resulting in alarge amount of data computation work and consuming alot
of computation time, leading to a computation time of 9,760 milliseconds, which is
not on the same order of magnitude as other RBF a gorithms.

3 Inthetemperature compensation process of pressure transmitters, RBF, FCM-RBF,
MQ-RBF, and QGA-RBF cannot control the mean e, max error to be on the order of
104, while K means RBF is feasible. However, through analysis, it was found that
the maximum relative error still cannot reach the order of 10, Overall, the &, max
sums of QOL S-RBF with significant compensation effects are 1.24 x 10~ and
5.60 x 104, respectively. On the one hand, this proves the stable performance of
QOL S-RBF in temperature compensation, and on the other hand, it can also be
concluded that QOL S-RBF has higher convergence accuracy, stronger optimisation
ability, and can improve accuracy.

4 Under the same requirement of arelative error of 0.01%, it can be seen from the
table that the final QOLS-RBF is &, only 8.2 x 10-5, ranking third among the six
types of RBF neural networks. However, it only requires 17 nodes for network
establishment. Compared with RBF, K means RBF, FCM-RBF, MQ-RBF, and
QGA-RBF, it saves 1,766 ms, 1,755 ms, 1,745 ms, 1,934 ms, and 7,880 ms
respectively, with significant improvement, shortening 48.44%, 48.28%, 48.13%,
50.71%, and 80.73% of the time, and the effect is significant. From the perspective
of simplifying the structure, QOL S-RBF synchronously reduced the structure by
67.31%, 45.16%, 39.28%, 19.04%, and 22.72%, which further proves the role of
QOLS-RBF in simplifying the structure and accelerating the temperature
compensation of pressure transmitters.

Figure 9 shows the response surface analysis after low pass FFT transformation. Through
the study of the temperature compensation model of the RBF neural network, on the one
hand, the application of RBF neural network in temperature compensation is explored,
and on the other hand, the performance improvement of quantum least squares method in
RBF neura network is also explored. According to Table 3 and Figures 9(a)—-9(d), the
RBF model is relatively stable, with RBF, K means RBF, FCM-RBF, and QOLS-RBF
being able to control error fluctuations within 10% in the ranges of 51%, 75%, 68%, and
80%, respectively. However, the highest peaks of RBF, K means RBF, and FCM-RBF
are 31.2%, 25.6%, and 28.5%, respectively, while the highest value of QOLS-RBF is
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controlled at 11%. According to the characteristics of RBF type agorithms, the number
of nodes will continue to accumulate. K-means RBF and QOLS-RBF do not need to
worry about the occurrence of the maximum error value, while RBF and FCM-RBF must
be aware that even if the network has been determined, the maximum error value will still
occur when time is not enough.

Figure9 Shows the three-dimensional response surface plots of six RBF compensation models,
(a) RBF compensation effect diagram (b) K-means RBF compensation effect diagram
(c) FCM-RBF compensation effect diagram (d) MQ-RBF compensation effect diagram
(e) QGA-RBF compensation effect diagram (f) QOL S-RBF compensation effect
diagram (see online version for colours)

@ (b)

(c) (d)

() ()

Compared to the other four models, the error fluctuations of MQ-RBF and QGA-RBF are
not of the same order of magnitude, at 150% and 423%, respectively. This indicates that
the MQ-RBF model is unstable, and the quantum binding degree of QGA-RBF cannot
effectively reduce the structure, but instead increases the load on the algorithm model,
resulting in longer time. Similarly, MQ-RBF and QGA-RBF can aso encounter RBF and
FCM-RBF problems, and sufficient training time is necessary.
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Overdl, QOLS-RBF has reduced the structure by 67.31%, 45.16%, 39.28%, 19.04%,
and 22.72% compared to RBF, K-means RBF, FCM-RBF, MQ-RBF, and QGA-RBF in
terms of simplification and convergence speed. It has aso saved 48.44%, 48.28%,
48.13%, 50.71%, and 80.73% in terms of time. It can be seen that quantum optimisation
theory has a significant simplification and acceleration effect in temperature
compensation of RBF neural networks.

From this, it can be seen that the QOLS-RBF agorithm proposed in this article has
significant advantages compared to other similar RBF algorithms. With the same 85
training data and 170 test data, using the same basis function, the best network error can
be obtained in a shorter computation time with fewer centre points. The mean and
maximum values of the test error reach 1.24 x 10~ and 5.60 x 10, respectively, to meet
the requirements of sensor temperature compensation and significantly reduce
computation time while improving agorithm accuracy.

6 Conclusions

QOLS-RBF isanovel neural network algorithm that combines quantum gate theory. This
algorithm combines the comprehensive acceleration effects of quantum gates and OLS
algorithms, and has significant improvements compared to existing algorithms such as
RBF, OLS-RBF, K-means RBF, and FCM-RBF. Although it does not require as much
computation time as the RBF algorithm, it reduces the number of hidden layer centre
points and computation time while ensuring higher accuracy. Through temperature
compensation data for sensors, modelling with 85 data points and testing with 170 data
points, it was found that QOLS-RBF has significant advantages in network error, mean
test error, and maximum test error. Therefore, it proves the superiority of the innovative
RBF agorithm.
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