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Abstract: Artificial intelligence (AI) and internet of things (IoT) convergence 
brings immense opportunity to convert the laboratory environment into 
intelligent, adaptive systems. This study proposes an integrated AI-IoT 
framework for smart laboratory engineering construction and engineering 
management team optimisation, which overcomes the current shortcomings in  
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resource efficiency, task scheduling, and environmental control to some extent. 
In this system, real-time IoT sensor networks monitor ecological and 
operational conditions; meanwhile, LSTM models are applied for predictive 
environmental control, genetic algorithms for dynamic task scheduling, and 
SVM classifiers for human activity recognition. The framework was deployed 
in a research laboratory for six months, and the system achieved substantial 
improvements: energy consumption was reduced by 28.48%, equipment 
downtime by 54.37%, and task overlap and average task duration were 
significantly minimised. Additionally, predictive maintenance accuracy reached 
approximately 93.2%, eliminating passive interventions and improving 
equipment availability. Since intelligent task allocation incorporates fault 
tolerance considerations, workload imbalance in task execution is alleviated, 
and staff satisfaction is enhanced. Our results demonstrate that a collaborative 
AI-IoT approach can effectively improve infrastructure efficiency and worker 
productivity. In this context, the proposed framework provides a scalable, 
sustainable, and context-aware solution for next-generation laboratory 
environments in academic and industrial domains. 

Keywords: artificial intelligence; AI; internet of things; IoT; smart  
laboratory; engineering management; predictive maintenance; task scheduling; 
environmental monitoring. 
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1 Introduction 

The present-day needs of modern laboratories have driven the requirement for intelligent, 
adaptive systems to manage physical infrastructure and human resources (Tariq et al., 
2024). In traditional laboratories, manual scheduling, rule-based environmental control, 
and reactive flow control maintenance procedures cannot support the precision, 
efficiency, and scale necessary in academia, clinical, and industrial research 
environments (da Silva, 2022). Therefore, Artificial Intelligence (AI) and internet of 
things (IoT) integration have evolved as promising paradigms to empower smart 
laboratories that are far more than just automated, intelligent, predictive, and  
self-optimising. 

1.1 Background and motivation 

Scientific advancement is central to what laboratories do, but most continue to function 
within systems of disjointed monitoring of the environment, maintenance of equipment, 
and coordination of teams (Shinn, 1982). However, while IoT technologies have enabled 
the acquisition of real-time data from sensors embedded in laboratory equipment and 
infrastructure, their operation is typically decoupled from the operation of other  
decision-making systems (Coito et al., 2021, Louis and Dunston, 2018, Tien, 2017). On 
the other hand, in the fields of intelligent manufacturing, healthcare, and logistics, AI has 
succeeded in predictive analytics and optimisation. These technologies fused to create the 
concept of cyber-physical systems (Zong and Guan, 2024, Lazaroiu et al., 2022, 
Andronie et al., 2021) – where there is a fusion between the technology and the controls 
for intelligent energy use, task, allocation, etc., with real-time data influencing this 
control. 

For example, provide long short-term memory (LSTM) network-based AI models to 
forecast environmental conditions (Sekertekin et al., 2021) and genetic algorithms (GAs) 
based optimisation algorithms that can allocate human resources to perform their tasks 
based on urgency and availability of personnel (Apornak et al., 2021). In addition, SVM 
classifiers can achieve lab staff behaviour and presence-aware human activity pattern 
identification, thus enabling systems to adapt to them (Russell, 2008). Together, these 
capabilities enable workflow automation, improve productivity, or reduce operational 
overhead. 

1.2 Problem statement 

Yet technological progress has not translated into most laboratory environments, which 
still operate with compartmentalised subsystems that are not interoperable with each 
other. Fixed schedule, threshold-based responses are common to environmental 
management tools, though they are not predictive. The maintenance protocols are usually 
reactive, so unplanned equipment failures and costly downtime will result. It is done 
manually or through static scheduling platforms that do not consider real-time occupancy, 
task complexity, or individual workload. As a result, decisions get fragmented, which 
results in inefficiencies in operational performance, quality of research outputs, and staff 
satisfaction. 

Most of the existing smart lab solutions are limited to one specific aspect, either 
environmental monitoring, automation of experiments, or a digital data management 
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component. Still, none of them are integrated into an intelligent frame. Labs have limited 
optimal performance and scalability due to lacking a unified environmental control 
system, predictive analytics, human activity recognition, and team management. 

1.3 Research objectives 

Under this, the primary goal of this research is to design, develop, and evaluate an 
integrated AI-IoT system that supports smart laboratory construction and management 
team optimisation. The objectives are as follows: 

• Building a modular, layered architecture based on IoT sensing and AI analytics for 
seamless, real-time decision-making. 

• The proposed implementation of predictive environmental control using LSTM 
models saves energy and maintains optimal working conditions. 

• To employ evolutionary algorithms such as GAs tailored for laboratory operations to 
schedule tasks and distribute workload optimally. 

• SVM classifiers based on real-time sensor data are developed to detect and classify 
human activity states (that ultimately would enable adaptive task reassignment). 

• Addressing the problem of enabling predictive maintenance of laboratory equipment 
by combining time-series analytics and anomaly detection techniques and improving 
device availability while reducing unplanned downtime. 

1.4 Contributions of the study 

This paper offers a comprehensive AI IoT combined framework that combines physical 
infrastructure management and intelligent human resource optimisation to advance smart 
laboratory systems. The key contributions include: 

• A system architecture with three layers (perception layer, network layer, and 
application layer) of IoTs, the network layer of MQTT and RESTful APIs, and the 
application layer of AI models for interoperability and scalability. 

• An LSTM-based predictive environmental control deployment and evaluation that 
leads to significant energy reduction and reduced system downtime. 

• Development of a genetic algorithm-based task optimisation engine used for 
dynamically assigning tasks by considering team workload and role compatibility to 
improve efficiency and satisfaction. 

• The integration of real-time human activity recognition using SVM classifiers 
trained in presence and motion data to allow behaviour-aware systems. 

• An equipment failure predictive maintenance module that uses an LSTM and SVM 
model combination to indicate early signs of equipment failure to improve 
operational continuity and safety. 

These contributions provide a unified system that corrects the flaws of current laboratory 
automation tools and provides a fully incorporated, smart, and scaleable answer for lab 
the executive’s administration. 
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1.5 Structure of the paper 

The remainder of the paper is organised as follows. Section 2 provides a complete 
literature review of existing research on AI and IoT applications in laboratories, 
highlighting the state of the art and pinpointing gaps in the current literature. System 
architecture, model selection, and data acquisition strategies are presented in Section 3 
for the research methodology. Section 4 reports experimental results from the system’s 
deployment in a real laboratory environment and analyses them. In Section 5, the 
implications, benefits, and limitations of the proposed system are discussed. At the end of 
Section 6, future directions for extending and improving the framework are outlined. 
Section 7 concludes the paper with a summary of findings and contributions. 

2 Literature review 

AI Integration into the IoT has revolutionised several domains like smart manufacturing, 
healthcare, building automation (Chander et al., 2022), etc. However, this is an emerging 
field in which the application of smart laboratories in the construction management and 
operational management of smart laboratories has not been explored (Rane, 2023;  
Rane et al., 2023, Ding, 2022), with few consolidated frameworks available to support 
this. This literature review includes previous work on this research’s four crucial core 
methodological components: environmental monitoring and predictive controls, AI-based 
task scheduling, human activity recognition, and predictive maintenance. In this section, 
we describe existing approaches and identify basic primitives and essential research gaps 
that help inform the design of the proposed system. 

2.1 IoT-based environmental monitoring and predictive control 

With the continuous growth of smart infrastructure, IoT sensor networks have become 
the standard way of environmental monitoring. In a founding study, (Pandey et al., 2024, 
Kumar et al., 2024, Yadav et al., 2024) deployed an IoT-enabled architecture to monitor 
environmental conditions in smart healthcare systems. They accomplished scalable 
sensor communication and real-time data acquisition using lightweight protocols like 
MQTT (Atmoko et al., 2017). However, they were constrained by preset logic control 
thresholds that are not responsive to dynamic environmental changes. 

To overcome this, recent research on AI-supported forecasting methods has been 
conducted. Zhuang et al. (2023), Liu et al. (2022), Li and Tong (2021) predict the 
temperature and humidity using the LSTM models in smart buildings, which perform 
better in control accuracy than rule-based systems. Their work showed that time series 
models could predict changes in environmental conditions and enable proactive 
adjustments. While effective, it was not meant to be used in a laboratory environment 
where environmental regulation needs to be more exacting and interacts with special 
instrumentation used by the research. Based on these, the proposed study combines  
real-time IoT sensor data with LSTM-based predictive control tuned explicitly for 
laboratory environments to provide a more context-aware and energy-efficient solution. 
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2.2 AI-driven task scheduling and resource allocation 

Operations research and our AI efforts have surveyed task scheduling and workforce 
optimisation. GAs have been commonly applied since they can handle complex,  
multi-objective scheduling problems (Cochran et al., 2003). In healthcare, (Koruca et al., 
2023) introduced a GA-based staff scheduling system to find nurse shifts while balancing 
the workload and continuity of service. Their approach highlighted the strengths of such 
an approach in dynamic, resource-constrained environments. 

Zhang et al. (2022a, 2022b, 2023) employed reinforcement learning to solve a job 
assignment problem on industrial production lines to improve throughput and task 
distribution. However, such models often take a long time to learn (Samsonov et al., 
2022). They are susceptible to variability in the environment, which makes them less 
suitable for small and quickly evolving environments in a laboratory. 

However, our approach optimises the task allocation among laboratory staff using 
GAs considering the real-time contextual data, including presence, role suitability, and 
equipment availability. In contrast to prior work, which provides separate scheduling and 
physical control capabilities, our system integrates the two domains using a holistic 
operational management approach. 

2.3 Human activity recognition via sensor fusion and machine learning 

Pervasive computing and smart workspace design have constantly sought understanding 
human activity in shared spaces. The work by Liu et al. (2019), Wan et al. (2020),  
Qi et al. (2024) shows the development of a real-time human activity recognition 
framework from data obtained using PIR sensors, bluetooth low energy (BLE) beacons, 
and accelerometers. The classifying states (‘active,’ ‘idle,’ or ‘absent’) informed HVAC 
and lighting control systems via their support vector machine (SVM) classifier, which 
attained high accuracy (Sivanathan, 2020). 

Although successful, this approach was only practised in adaptative terms relative to 
environmental factors, lacking successful influence regarding workforce optimisation 
statements in a decision-making framework paradigm. Additionally, activity recognition 
was a standalone function and did not have to be tied very tightly to task management or 
equipment utilisation tracking. 

In the present study, SVM-based activity recognition is incorporated into a larger 
decision-making support system. The activity classification is crucial for environmental 
automation but also supplies data to the task scheduler as it can dynamically reassign 
tasks and rebalance workload based on time engagement data. This unified model 
presents a new feedback loop between human behaviour, the planning of a task, and 
physical infrastructure control. 

2.4 Predictive maintenance using AI in IoT-enabled systems 

In industrial IoT systems, industrial IoT (IIoT), equipment downtime results in expensive 
operational losses, and therefore, there has been much research on predictive 
maintenance. Based on this, Wahid et al. (2022), Stephan et al. (2024) presented a hybrid 
AI framework formed by LSTM and SVM for the failure predictor in CNC machines. 
With over 90% accuracy, their model forecasted breakdown events using time series 
sensor data to eliminate maintenance costs and improve uptime. 
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While such techniques are mature in industrial contexts, such use is less structured, 
and the equipment is more diverse in the laboratory. Hence, managing samples and 
manipulating equipment over the network frequently is challenging. Namuduri et al. 
(2020), Pech et al. (2021), Gawde et al. (2024), conducted predictive maintenance work 
in a smart cheusing vibration and thermal sensors mistry lab using vibrati. Nevertheless, 
implementing these methods did not integrate with other lab management functions like 
scheduling and regulation of environmental parameters. 

Thus, it advances predictive maintenance in laboratories by integrating failure 
prediction with task scheduling and environmental control. For example, when a potential 
equipment anomaly is detected, the system can automatically reschedule tasks or redirect 
workflows to continue as usual, translating into predictive analytics to actionable 
intelligence. 

2.5 Integrated AI-IoT frameworks in smart laboratory environments 

Although individual experiments have been using AI and IoT in the laboratory, integrated 
systems are still the exception. In the work of Xiao (2024), Hao et al. (2015), Wang et al. 
(2023), they have made an IoT–cloud platform for smart chemistry labs focusing on 
automated reaction monitoring and safety alerts. In addition, their system did not have 
AI-driven decision-making and did not consider human resources and task scheduling. 

In another study, Wang et al. (2023), Bellaj et al. (2024), Chagnon-Lessard et al. 
(2021) designed a smart campus lab that included sources of environmental sensors and 
cloud dashboards with rudimentary automation or optimisation capabilities. More than 
anything, it was a monitoring tool, not a self-adaptive environment. 

This work tackles these limitations by presenting a fully integrated approach that 
combines IoT sensing, AI analytics, and optimisation algorithms into one platform. Our 
system is unlike any that have previously handled those aspects of environment, 
equipment, or personnel individually, as it optimises all three simultaneously, achieving 
maximum efficiency, adaptability, and user satisfaction in a laboratory setting. 

3 Research methodology 

In developing an intelligent and scalable smart laboratory framework, this integration is 
necessary between sensing technologies, AI algorithms, and optimisation strategies. In 
this section, we provide a methodology for designing and developing a layered system 
architecture that enables pairing IoT sensing with AI for dynamic control and 
optimisation of the laboratory environment and the management team. Based on the 
demand of tasks, the framework includes multiple subsystems that work synergistically to 
realise environmental monitoring, prediction of maintenance needs, intelligent scheduling 
of staff tasks, and response to time human activity. 

3.1 System architecture and design overview 

The architecture is proposed to be featured by a three-layer structure: the perception 
layer, network layer, and application layer. Passive infrared (PIR) motion sensors, RFID 
tags, BLE beacons, and other IoT sensors gather environmental parameters (temperature, 
humidity, CO₂ levels), usage data of equipment, and human presence information in the 
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perception layer. These data streams are collected frequently to monitor laboratory 
conditions and activity states continuously. 

The MQTT protocol ensures low latency sensor communication and RESTful APIs 
are integrated with cloud databases and external systems via the MQTT protocol using 
the network layer. Local data processing is done by edge computing units (e.g., 
Raspberry Pi) to reduce communication overhead and perform some preliminary 
preprocessing, such as data filtering, normalisation, and feature extraction. 

The AI models that perform inference, control, and optimisation are in the application 
layer. LSTM models for environmental forecasting, GAs for dynamic task scheduling, 
and SVMs for activity recognition are some of these models. These models result in a 
running set of results fed into a central control engine that implements automated 
decisions, such as adjusting environmental controls, reallocating staff tasks, or sending 
maintenance alerts. 

Figure 1 A multi-layered intelligent lab framework integrating IoT, AI models, task optimisation, 
and predictive maintenance systems (see online version for colours) 

 

3.2 Predictive environmental control using LSTM networks 

Laboratory control of the environment is important to experiment reliability and 
personnel safety. We use long short term memory (LSTM) neural networks to train 
historical sensor data and proactively forecast future environmental conditions. LSTM 
networks are well suited for multivariate time series forecasts because they can preserve 
long-term dependencies and address the gradient vanishing problem in standard RNNs. 

The vector of environmental input features at time t is represented by the vector, 
xt∈Rn, at this time, including temperature, humidity, and CO₂ concentration. Below are 
the recurrence relations used by LSTM to compute internal states. 

( )1t f t f t ff σ W x U h b−= + +  (1) 
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( )1t i t i t ii σ W x U h b−= + +  (2) 

( )1tanht c t c t cc W x U h b−= + + ( (3) 

1t t t t tc f c i c−= +    (4) 

( )1t o t o t oo σ W x U h b−= + +  (5) 

( )tanht t th o c=   (6) 

where σ denotes the sigmoid activation function,   denotes element-wise multiplication, 
and W*, U*, b*, are learned parameters. The predicted values 1ˆty + , are used to 
preemptively adjust HVAC and ventilation systems, reducing response delay and energy 
waste. 

3.3 Task scheduling optimisation via genetic algorithms 

To use human resources efficiently, dynamic task assignments in a real laboratory must 
consider real-time availability, skill level, equipment access, and workload balance. The 
constrained combinatorial optimisation problem describing task assignment problem is 
formulated as follows: maximise task throughput and minimise conflict. 

Let T = {t1, t2, …, tn}, be the set of tasks, and E = {e1, e2, …, em} be the set of 
employees. A chromosome x_ix encodes a possible task assignment. The fitness function 
F(xi), evaluates the quality of the assignment using: 

( ) ( ) ( )
( )

i i i

i

F x TaskCompletionRate x WorkloadBalance x

γ ConflictPenalty x

= ⋅ + ⋅

− ⋅

α β
 (7) 

where: 

• TaskCompletionRate is the fraction of tasks completed in the allotted time range. 

• WorkloadBalance measures the standard deviation of the task loads over staff. 

• ResourceClashes is the number of resource clashes or overlapping assignments. 

• α, β, γ∈R+, are tunable weights. 

The genetic algorithm starts by initialising the population and fitness evaluation, then the 
selection using tournament selection, crossover (single point), and mutation (bit flip). 
Fitness improvement is achieved when fitness improvement plateaus or a maximum 
generation count arrives. 

3.4 Human activity detection using support vector machines 

We use real-time staff activity to schedule the problem by having a SVM classifier 
trained on sensor-based features. Using motion, beacon proximity, and dwell time data, 
the classifier looks for states like ‘idle’, ‘active’, ‘collaborating’, and ‘absent.’ Let z = [z1, 
z2, …, zk]∈Rk, be the input feature vector for a time interval, and y∈{–1, +1}, be the 
binary activity class. The decision function is given by: 
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( )( )1
( ) ,

N
i i ii

f z sign y K z z b
=

= + α  (8) 

It is also the case for RBF (using K(zi, z) as the kernel function) as well, where αi, are 
Lagrange multipliers, and b is the bias. It defines task readiness or reassignment and 
assesses the need for ventilation by zone. 

3.5 Predictive maintenance and anomaly detection 

It may disrupt a workflow and compromise an experiment’s integrity. An LSTM-SVM 
hybrid model is applied to detect failures proactively. On the one hand, LSTM networks 
are trained to model expected sensor behaviour over time; on the other hand, expected 
pattern deviations are classified using SVM using the predicted severity. 

Given that we want to process a time series st∈Rd, of vibration, temperature, or power 
usage on a device, the LSTM generates predictions of st+1. Learned thresholds are 
evaluated on a residual error, ˆ 1 1,t t

tr s s+ += −  and residuals are submitted to an SVM 
classifier, classifying the faults as binary or multi-class. 

Integrating these two approaches in a hybrid way improves the precision of anomaly 
detection. Still, it brings interpretable instructions and allows automated alert generation 
and maintenance scheduling with the central AI engine. 

3.6 Data acquisition, pre-processing, and implementation 

It was deployed in a university laboratory with 40 IoT sensors, such as DHT22 
(temperature/humidity), MQ135 (air quality), PIR motion sensors, BLE beacons, and 
RFID/readers. Six months’ worth of data was collected at 1-minute intervals. 
Anonymised and encoded staff interaction data from the role, task history, and activity 
logs (logs of activities) were used to train the model. For time series, missing data are 
imputed by linear interpolation; mode imputation is used for categorical fields. Min-max 
scaling was used for all numeric features. 

( )
( ) ( )

x min xx
max x min x

−′ =
−

 (9) 

Finally, each of the implementations was implemented using AI models in Python with 
TensorFlow (LSTM), Scikit-learn (SVM), and PyGAD (genetic algorithm). It ingested 
Node-RED’d MQTT-based sensor data into a PostgreSQL database – the application 
engine-controlled relay modules to relay control signals (for example, for HVAC). 

4 Results and analysis 

This section describes the results of deploying and evaluating the proposed AI-IoT 
framework in a real laboratory environment for six months. They focus on three primary 
dimensions:  

1 environmental monitoring and predictive control 

2 team management optimisation 
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3 predictive maintenance and anomaly detection. 

The efficiency and practicality of the integrated system are quantified with graphical and 
statistical tables that support the proposed metrics. 

4.1 Environmental monitoring and control performance 

Using real-time IoT sensor data and the combination of LSTM-based predictive models, 
the system could pre-emptively anticipate environmental changes and regulate HVAC 
operations accordingly. Temperature, humidity, and CO2 data were continuously 
monitored over six months, and any ecological data combined with LSTM predictions 
were adopted. 

Figure 2 shows a predicted versus actual temperature sample at the 48 hours. The 
predictive accuracy was high as tested by the LSTM model with an average root mean 
square error (RMSE) of 0.47°C. The system achieved this precision, enabling it to adjust 
heating and cooling systems before energy spikes and maintain thermal stability. 

Figure 2 LSTM predicted vs. actual temperature values over 48 hours (see online version  
for colours) 

 

Table 1 summarises system integration’s quantitative performance improvements (before 
the first and after the second). Energy consumption after deployment was down 28.48%, 
with decreased equipment downtime by 54.37% and improved CO₂ levels by 27.77%, 
improving energy efficiency and indoor air quality. 
Table 1 Environmental metrics pre- and post-AI-IoT integration 

Metric Before integration After integration Improvement (%) 
Energy consumption (kWh/mo) 1,245 890 28.48 
CO₂ levels (ppm) 900 650 27.77 
Downtime (hrs/month) 10.3 4.7 54.37 
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The results confirm the effectiveness of the predictive control mechanism in reducing 
energy costs while keeping laboratory-sensitive experiments within critical ranges of 
environmental conditions. 

4.2 Task scheduling and workforce optimisation 

The Genetic Algorithm-based task scheduler evaluated task throughput, conflict 
reduction, and staff satisfaction. In the case when task allocation was previously done 
manually on fixed schedules, the system was implemented prior. After integration,  
real-time task reassignment and load balancing were possible based on current 
occupancy, engagement levels, and task urgency. 

The reduction of task overlap before and after optimisation is illustrated in Figure 3. 
Such overlapping tasks that used to result in delay and resource contention were reduced 
by 41.81% to maintain workflow continuity. 

Figure 3 Task overlaps before vs. after genetic algorithm optimisation (see online version  
for colours) 

 

Metrics showing further improvements in task efficiency are presented in Table 2, and 
task average completion time dropped by 14% from 47.0 to 32.4 mins, while post-task 
survey scores for team satisfaction also improved dramatically from 3.6 to 4.5 on a  
5-point Likert scale. 

The finding that people working effectively together in teams can perform work they 
would otherwise find overly complex and tedious underscores the value of using AI for 
task planning, especially when working in high variability teams regarding the 
availability of people and equipment. 
Table 2 Workforce optimisation and task performance results 

Metric Before optimisation After optimisation Improvement (%) 
Average task duration (minutes) 47.0 32.4 31.06 
Task overlap rate (%) 23.2 13.5 41.81 
Staff satisfaction score (1–5) 3.6 4.5 +25.00 
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4.3 Real-time activity detection and response 

Overall, four activity states (active, idle, collaborative, and absent) of the human activity 
recognition SVM classifier reached 91.4% accuracy. Fused motion and proximity sensor 
data were used to train the activity classifier to infer the behavioural state with a precision 
of up to 10 seconds. 

The confusion matrix of the same trained SVM classifier has been presented in  
Figure 4. The model best played the active and idle classes, with a bit below the 
‘collaborative’ class, which suffered from overlaps with active states due to proximity 
similarities. 

Figure 4 Confusion matrix for human activity state classification (see online version for colours) 

 

The task scheduler’s responsiveness improvement was partly due to the activity 
recognition module. Reallocating tasks in real-time was possible according to user 
engagement, which brought team productivity to a very high level and allowed no idle 
time. 

4.4 Predictive maintenance and anomaly detection 

A hybrid LSTM-SVM model was used to implement the predictive maintenance 
functionality. An SVM was used to analyse deviations of the sensor patterns generated by 
the LSTM component from equipment telemetry (e.g., temperature, vibration, power 
usage) and expected sensor patterns for fault classification. Figure 5 is the receiver 
operating characteristic (ROC) anomaly curve. The model performed excellent 
classification with an area under the curve (AUC) score of 0.946. 

Using the model to predict when physical failure will occur, 93.2% of faults were 
correctly identified, thus allowing for timely interventions. It kept the false positive rate 
lower than 5%, so there are as few unnecessary service alerts as possible. It enabled a 
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36% improvement in the availability of the equipment, thereby reducing the number of 
experimental interruptions. 

Figure 5 ROC curve for equipment anomaly detection (see online version for colours) 

 

4.5 System-wide performance summary 

Key performance indicators were normalised on a 0–1 scale and summarised in Table 3 
to give a single view of the system’s impact. The values show that all major function 
components, such as environmental monitoring, task scheduling, predictive analytics and 
user interaction gained substantial benefits from integration of the AI-IoT. 
Table 3 Normalised system-wide performance indicators 

System component Pre-integration score Post-integration score 
Environmental efficiency 0.51 0.78 
Task scheduling optimisation 0.56 0.84 
Activity recognition accuracy 0.63 0.91 
Predictive maintenance precision 0.61 0.93 
Equipment availability 0.64 0.87 
Team satisfaction 0.72 0.90 

Feasibility and efficacy of a unified AI-IoT architecture for smart laboratory operations 
have been strongly validated by cumulative results. The claim is supported by 
improvements on both machine level (including code and runtime efficiency, accuracy 
and reliability) and human centric (as defined, e.g., by scientific productivity, 
sustainability, and operational resilience) metrics. 
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5 Discussion 

An investigation of the results obtained during deployment of the AI-IoT based smart 
laboratory framework shows that there is compelling evidence of the effectiveness of the 
introduced smart laboratory framework, in terms of promoting efficiency in operation, 
management of resources, controlling environmental conditions among other things. The 
outcomes of this section are presented with a critical analysis, explored in the context of 
the broader implications for the laboratory management, and limitations expressed with 
regards to technical and organisational for implementation. The focus in the discussion is 
on how combination of AI and IoT technologies facilitates laboratories’ transition from 
reactive human led to self-contained intelligent ecosystems. 

5.1 Interpretation of environmental control outcomes 

Table 1 and Figure 2 show that LSTM based predictive environmental control system 
provided significant reduction in energy consumption and better accuracy in climate 
regulation as the comparison with baseline shows. In addition to technical feasibility, 
progress made on reducing energy usage and improving CO₂ air quality levels by a total 
of 28.48% and 27.77%, respectively shows that it is viable to move towards sustainable 
laboratory operations. These results support the hypothesis that real-time predictive AI 
models can control HVAC and ventilation systems efficiently, as long as environmental 
precision is necessary to maintain experiment stability. 

Additionally, the low RMSE (0.47°C) between predicted and observed temperature 
data implies that the model is suitable for labs with expensive sensitive equipment and 
procedures that are extremely constrained by environmental restrictions. Whereas 
threshold based rule systems require abrupt adjustments, the advantages to forecasting 
change enabled by the LSTM model enable avoidance of abrupt adjustments and 
minimises wear on HVAC infrastructure which contributes to longer lifespan of 
equipment and lower costs. 

5.2 Task optimisation and workforce efficiency 

GAs were applied to produce a significant improvement in laboratory workflow by task 
scheduling. The decreases of 31.06% in task completion time and 41.81% in task 
overlaps are presented in Table 2 and Figure 3. These results indicate that evolutionary 
optimisation methods are extremely efficient in multi constraint environments such as 
laboratories, namely, that tasks have differing durations, complexity, and resource 
dependencies. 

As important as that is, the biggest reward of all, if we may call it such, was surely 
the increase in staff satisfaction scores, from 3.6 to 4.5 – no, the system did not simply 
automate processes, it actually improved the human experience of work in the lab. 
Workload balancing and conflict minimisation were intelligent and relieved stress more, 
made tasks clearer, and reduced scheduling errors. Responsive adaptation to staff 
availability and engagement levels further enhanced responsiveness by means of the 
activity recognition system coupled tightly with the task scheduler. 

Validation of the system’s human-centred design philosophy is provided by these 
results. The proposed framework differs from the traditional lab management systems 
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that tend to treat staff as fixed resources, instead it actively models and adapts human 
behaviours to maintain a harmonious and efficient work environment. 

5.3 Predictive maintenance and risk reduction 

The most impactful outcome of this study is of showing that the hybrid LSTM-SVM 
predictive maintenance system is effective. The model achieved 93.2% accuracy and a 
false positive rate denoting less than 5% with the ability to identify potential equipment 
failures before they actually happened, giving maintenance teams a chance to be 
proactive in preventative measures. As seen in Figure 5 and stated in Section 4.4, we 
confirm the great capacity of the system to distinguish between normal and faulty 
operational conditions (a high AUC score of 0.946). 

The increase in the equipment availability by 36% back up the value of the predictive 
maintenance for the reduction of the downtime and the improvement of the experiment 
continuity. And in laboratory settings where precision timing and uninterrupted 
equipment usage can be deemed vital, it can directly increase research quality and 
reliability. In addition, predictive maintenance alerts are integrated into the task 
scheduling system to allow data disruptions to be managed dynamically, rather than 
triggering manual rescheduling, therefore avoiding operational integrity. 

5.4 System integration and scalability potential 

The unified performance of the system is presented in Table 3, and associated analyses, 
which provide a compelling basis for its performance. Individually, the subsystems’ 
environmental control, task optimisation, recognition, and predictive maintenance 
improvements were measurable, however, it is their integration into a single platform that 
defines the system’s innovation. 

The scalability of architecture is achieved due to its modular design for laboratories 
of differences sizes and types. The system supports the centralised decision making 
through user defined rules with a distributed implementation by using standard 
communication protocols (MQTT, REST API) and edge computing nodes. Figure 6 (not 
shown here and here conceived on paper) shows how several laboratories can be 
connected through cloud services to form the smart lab working system at the enterprise 
level. It opens up opportunities for collaborative research, cross laboratory resource 
optimisation and institution wide energy and workflow management strategies. 

Moreover, the system’s flexibility, which is demonstrated by its ability to learn from 
user behaviour, usage patterns of equipment, and environmental changes, is positioned as 
a foundational paradigm for next generation laboratories that need flexibility, precision, 
and resiliency. 

5.5 Technical and organisational limitations 

Several limitations of implementation were also observed while the results proved to be 
promising. The deployment took great initial calibration and model training. Technical 
expertise and time was necessary to perform sensor calibration, normalisation of data, 
and user profiling which could be a barrier for adoption by institutions that are smaller or 
resource constrained. 
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Second, while anonymous, the use of true-time occupancy and actions tracking was 
evidently a trouble start to staff on privacy. Although users were communicated with 
transparently and sequentially opt in, there were still users who did not feel comfortable 
with continuous monitoring. To improve user trust they will have to revamp the data 
governance frames and enable more customisation of privacy settings in future versions 
of this system. 

Third, the system works well only if the quality and consistency of sensor data are 
high. Introducing gaps into data streams from time to time with signal loss, interference 
and sometimes due to device malfunction caused them to need imputation or have 
temporary performance loss in AI models. Even with the component of edge computing, 
these issues were at least mitigated; however, future designs ought to account for sensor 
redundancy or self healing network protocols for uninterrupted operation. 

Further validation is needed to see how these models will transfer to different 
laboratory domains like clinical diagnostics, chemical analysis as well as bioinformatics 
labs, which have varying workflows and environmental needs. 

6 Future work 

Future research and system improvement avenues for advancing the development of 
intelligent laboratory ecosystems are identified on the basis of the promising results of 
this study. The edge AI capability is one of the most immediate direction and its 
integration will be done to allow real-time and low latency decision making at the device 
level. The system could reduce its use of cloud processing and continue to operate offline 
or in bandwidth constrained environments by deploying lightweight inference models 
directly onto microcontrollers or edge computing devices. A promising extension of this 
idea is to apply federated learning to train AI models in separate laboratories and across 
sites while not passing on raw data to preserve user privacy and to maintain institutional 
data governance standards. Besides that, the implementation of blockchain technology 
might introduce new features regarding data integrity and traceability especially if there 
are audits logs for experiment logs, equipment usage or task history. Under consideration 
as well are ways of improving user interaction and monitoring with augmented reality 
(AR) and digital twin models. Such technologies would provide laboratory managers and 
technicians a view to the operational state, alerts and task schedules in immersive 
environments, increasing situational awareness and remoteness. Finally, to enable 
broader adoption across scientific disciplines in the lab, the system could be extended 
with domain adaptive AI templates that will automatically adapt to different lab 
workflow, equipment types and staffing model, allowing for rapid deployment with 
minimal configuration. 

7 Conclusions 

Through a comprehensive framework based on AI-IoT, it covered both physical 
infrastructure control and human resource optimisation in smart laboratories construction 
and intelligent management. The proposed system using real-time IoT sensor network 
and applied advanced AI models such as LSTM networks for predictive environmental 
control, GAs for dynamic task scheduling, and SVMs for real-time human activity 
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recognition showed the improvements of laboratory efficiency, sustainability, and 
operational resilience. Results from a six month deployment were marked in reducing 
energy consumption, equipment downtime, task overlap, increasing task completion rate, 
predictive maintenance accuracy, and staff satisfaction. This research contrasted existing 
solutions which excel in addressing isolated subsystems with a unified, scalable 
architecture that could make real-time decision and cross functional automation. This also 
positions the system well for deployment in a breadth of laboratory settings including 
academic and clinical research as well as industrial R&D, and generally the findings 
validate the transformative potential of integrating AI and IoT in laboratory environments 
and provide a strong basis for the development of next generation smart labs that are 
autonomous, data driven and human aware. 
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