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Abstract: To address the usability challenges faced by elderly users when
operating smart home systems in the context of an aging population, this study
proposes a smart aging-friendly home control algorithm framework based on
multimodal interaction. The core of this framework lies in the innovative
design of three key algorithms: a multimodal fusion decision-making algorithm
that integrates speech recognition, simple gesture understanding, and touches
intent analysis; an aging-friendly interaction optimisation algorithm; and a
context-aware intelligent assistance algorithm. The proposed algorithms were
validated through user simulation and comparative experiments. The results
indicate that the algorithm framework effectively improves elderly users’
operational efficiency and task completion rates while significantly reducing
cognitive load and operational error rates. This study provides core algorithmic
support and practical design guidelines for constructing truly elderly-friendly

smart home interaction systems.
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1 Introduction

The global population structure is undergoing a profound aging transformation.
According to the United Nations’ World Population Prospects, the proportion of people
aged 60 and above is projected to exceed 22% by 2050, with China’s elderly population
reaching 490 million. Against this backdrop, smart home technology, as a core enabler of
enhanced quality of life, has become a strategic necessity for addressing the challenges of
an aging society through age-friendly adaptations. However, current mainstream smart
home systems generally suffer from issues such as overly complex interaction, cognitive
overload, and insufficient physiological adaptability (Luciano et al., 2020), exposing the
fundamental limitations of traditional graphical user interfaces in aging-friendly design.

Multimodal interaction technology, by integrating natural human-machine channels
such as voice, gestures, and haptic feedback, offers a new paradigm for addressing
aging-related challenges (Chau and Jamei, 2021). Its core value lies in channel
redundancy, which allows users to choose interaction methods based on their capabilities;
situational adaptability, which dynamically matches the cognitive decline and sensory
deterioration characteristics of the elderly; and intent complementarity, which enhances
interaction robustness through multi-channel signal fusion (Han et al., 2024). Existing
research has confirmed that multimodal systems can significantly reduce operational
error rates among elderly users (Staube et al., 2016), but related findings have primarily
focused on single scenarios such as health monitoring, lacking a systematic algorithmic
framework for comprehensive home control.

Multimodal interaction technology, by integrating voice, gesture, and touch channels,
has become a key paradigm for bridging the digital divide faced by elderly users due to
sensory and motor function decline. Foundational research by Baltrusaitis et al. (2018)
demonstrated that multimodal systems enhance interaction robustness through
redundancy and complementarity.

Non-contact physiological monitoring has become a research hotspot in recent years.
Yao et al. (2022) designed a robust fall detection system based on frequency-modulated
continuous-wave radar to address these issues. The system detects human movement in
real-time, calculates the distance-velocity plot, distance-horizontal angle plot, and
distance-vertical angle plot of the radar signal, and creates three neural networks for these
three signal plots. Using a stacked approach with ensemble learning, the system fuses
the time-space-velocity features extracted from the three neural networks to identify
falls. In terms of visual behaviour understanding, Eldib et al. (2016) used a network of
inexpensive low-resolution visual sensors (30 x 30 pixels) for long-term behaviour
analysis. Behaviour analysis first performs visual feature selection based on
foreground/background detection to track the level of motion in each visual sensor. Then,
a Hidden Markov model (HMM) is used to estimate the user’s position without
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calibration. Finally, an activity detection method utilising spatial and temporal context is
proposed.

There is a significant gap in current research on aging-friendly smart home
technology. Technologically, solutions are fragmented, with most focusing on optimising
a single modality rather than establishing cross-modal collaborative decision-making
models. Algorithm design overlooks the heterogeneous needs of the elderly population,
such as the issue of gesture recognition accuracy for Parkinson’s patients. Human factors
research lacks quantitative analysis of cognitive models and behavioural patterns of
elderly users (Zhang et al., 2020). Particularly notable is that existing algorithms rely on
static rule databases, making it difficult to dynamically adapt to users’ declining
capabilities over time, resulting in a continuous decline in long-term user experience.

To address these challenges, this study proposes a multi-modal aging-friendly home
control framework. Theoretically, it constructs a three-dimensional elderly user model
encompassing physiological, cognitive, and emotional dimensions, laying the foundation
for algorithm design from a human factors perspective. Technologically, we innovatively
develop three core algorithms: the multimodal fusion decision algorithm integrates voice
command recognition, simple gesture understanding, and touch intent analysis through a
dynamic weight allocation mechanism; the aging-friendly interaction optimisation
algorithm enables real-time personalised generation of interface elements (font size,
colour contrast); and the context-aware assistance algorithm predicts operational intent
based on a HMM and triggers proactive guidance mechanisms. The validation approach
employs cross-age group controlled experiments and the NASA-TLX cognitive load
scale to establish a multi-dimensional evidence chain for algorithm effectiveness.

2 Progress in multimodal aging research

2.1 Fundamental theory of modal interaction technology and its implications
for aging

Multimodal interaction technology integrates natural human-machine interfaces such as
voice, touch, vision, and gestures to provide redundant and complementary interaction
pathways. Its core value lies in addressing the heterogencous needs of complex user
groups. In the field of aging-friendly technology, this technology is tasked with bridging
the digital divide faced by elderly users due to declining physiological functions (such as
vision loss, hearing impairment, and reduced fine motor control) and cognitive changes
(such as diminished working memory and difficulty learning new technologies). The
World Health Organization’s framework for age-friendly cities emphasises that
environmental design must support elderly individuals’ independent participation, and
multimodal interaction is the key technological pathway to achieving age-friendly smart
environments. The design of aging-friendly multimodal systems must adhere to three
principles: redundancy (supporting the same task through multiple channels), adaptability
(dynamically matching the user’s current perceptual-cognitive state), and tolerance
(allowing operational errors and providing correction mechanisms) (Sokullu et al., 2020).
In recent years, with breakthroughs in AloT, multimodal large language models, and
digital twin technologies, multimodal aging-friendly research is transitioning from
passive response to proactive care, redefining the fundamental relationship between
intelligent environments and elderly users (Das et al., 2015).
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2.2 Advances in multimodal perception technology for aging

A multi-modal perception system for the elderly must address the issue of heterogeneity
in the behavioural characteristics of the elderly population. In terms of physiological state
sensing, the application of millimetre-wave radar and flexible sensor arrays has enabled
precise monitoring of falls and sleep abnormalities in the elderly. For example, Muji’s Al
mattress uses embedded sensors to collect real-time heart rate, breathing rate, and body
movement data, combines environmental parameters to construct a sleep quality
assessment model, and automatically adjusts air conditioning temperature and lighting
when detecting light sleep stages, forming a closed-loop intervention (Naddeo and
Cappetti, 2021). In terms of behavioural intent understanding, non-contact sensing has
become a research hotspot. The case of Tokyo’s Smart Aging Community shows that
millimetre-wave radar arrays embedded in ceilings can construct spatial heat maps with
0.1 mm precision. When a lone elderly person stays out of bed for an extended period
without returning, the system can trigger an alarm three minutes in advance, significantly
enhancing safety compared to traditional monitoring (Okubo et al., 2022). Haier Smart
Home’s patent uses a visual large model to recognise over a thousand objects and
behaviours, enabling range hoods to predict heat requirements based on cooking actions
and dynamically adjust suction power. In the environmental perception dimension,
multi-sensor fusion technology enables autonomous decision-making by home appliances
(Zheng, 2022). Gree Al air conditioners combine infrared sensors and millimetre-wave
radar to locate human positions and body temperature, and optimise airflow strategies by
integrating humidity and air quality data (Lee and Chen, 2022). Haier refrigerators’ Al
olfactory modules detect volatile organic compounds (VOCs) and initiate sterilisation
procedures 12 hours before food spoilage, while recommending inventory clearance
recipes, achieving a transition from passive response to proactive health management
(Wu et al., 2024).

2.3 Advances in cognitive support and interactive control research

Focusing on cognitive load management for elderly users, the research focuses on
optimising intent understanding and simplifying interaction design. Shenzhen Hui Cheng
Kitchen Equipment’s patent proposes a ‘multi-modal behavioural feature fusion’ method:
by analysing elderly users’ operational characteristics across auditory, visual, tactile, and
cognitive dimensions, and combining this with historical device operation data to
construct dynamic user profiles, the system generates personalised interaction guidance
workflows. For example, when the system detects that the user’s visual attention is
distracted, it automatically enhances the intensity of voice prompts to reduce reliance on
interface operations. In the field of cognitive assistance innovation, generative Al
demonstrates breakthrough potential. Haier Smart Home’s digital twin multimodal
control patent constructs a virtual mapping space, allowing elderly users to simulate
device operations (such as adjusting air conditioner fan speed) in a simulated
environment before synchronising them to physical devices, significantly reducing
real-time operational cognitive pressure (Rayhana et al., 2024).
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3 Related theories

3.1 Hidden Markov model

The HMM is a classic paradigm for time series data analysis, with its theoretical core
based on a dual stochastic process (Glennie et al., 2023). The model assumes that the
system has two types of state sequences: an unobservable hidden state chain and an
observable output symbol chain, which are coupled through a probabilistic mechanism.
The hidden states form a Markov chain, meaning that the current state depends only on
the previous state and is independent of earlier history; the observed symbols are
generated solely by the current hidden state. This hierarchical structure enables the model
to simultaneously model temporal dependencies and state ambiguity (Mor et al., 2021).

The mathematical framework of the model is strictly defined by five parameters. The
set of hidden states describes the possible internal patterns of the system, while the set of
observed symbols corresponds to the data representations that can be collected. The state
transition matrix quantifies the statistical patterns of state transitions, while the
observation probability matrix characterises the likelihood distribution of generating each
observation value under a specific hidden state. The initial state probability vector
determines the system’s starting point. The four sets of probability parameters
collectively construct the generative mechanism from the hidden state sequence to the
observation sequence (Gamiz et al., 2023). This generation mechanism can be formalised
as follows:

T

PO[2)=)"P0,01)=) myby (o) [ a1t () (1)
o 0

t=2

where 4 = (4, B, m) represents the model parameters, Q represents the hidden state
sequence, and O represents the observation sequence.

The model solution focuses on three core problems: the evaluation problem calculates
the generation probability of a given observation sequence using the forward-backward
algorithm; the decoding problem uses the Viterbi dynamic programming algorithm to
find the optimal sequence of hidden states; the learning problem uses the Baum-Welch
algorithm to iteratively optimise parameters. The learning process is based on the
expectation-maximisation principle, which continuously updates the probability estimates
of state transitions and observation emissions through the collaborative calculation of
forward and backward probabilities until convergence to a local optimal solution.

In practical applications, the HMM demonstrates two core advantages. First, the
hidden state layer effectively separates noise interference from underlying patterns, such
as filtering out environmental noise to extract phoneme sequences in speech recognition.
Second, robust handling of incomplete observation sequences, enabling prediction of
protein domains in biological sequence analysis with only partial base information. These
characteristics make it an indispensable theoretical tool for time series pattern
recognition, providing the mathematical foundation for algorithm design in subsequent
chapters.
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3.2 Generative adversarial networks (GANs)

GANSs are a revolutionary framework in the field of deep learning, whose theoretical
essence can be summarised as a distribution learning mechanism based on game theory
(Aggarwal et al., 2021). The model architecture consists of a generator and a
discriminator that form a dynamic adversarial system: the generator attempts to capture
the latent distribution of real data to synthesise new samples, while the discriminator
strives to distinguish between real data and generated samples. The two collaborate
through a minimax game to achieve co-evolution, with their objective function
understood as a generalised expression of the value function in a continuous probability
space.

Theoretically, the generator acts as a mapping function from the latent space to the
data space, transforming random noise into structured output through nonlinear
transformations. The discriminator plays the role of a probabilistic classifier, outputting a
probability estimate of whether a sample belongs to the real distribution. During training,
the generator continuously optimises its parameters with the goal of maximising the
discriminator’s misclassification rate, while the discriminator simultaneously improves
its classification ability. This adversarial optimisation drives the performance of both to
alternate increases until the system reaches the Nash equilibrium point — at which point
the distribution of samples output by the generator is indistinguishable from the real
distribution in terms of measure.

The core of model training lies in the stability control of the gradient update strategy.
The original GAN uses Jensen-Shannon divergence to measure distribution differences,
but this is prone to gradient vanishing and mode collapse. Subsequent research improved
robustness by modifying the loss function: Wasserstein GAN introduces Earth-Mover
distance constraints on gradient norms to address training instability issues; LSGAN
replaces binary cross-entropy with least squares loss to effectively avoid the blurred
boundary defect in generated samples. These theoretical developments collectively point
to a core principle: the quality of generation and training stability depend on the loss
function’s appropriate measurement of distribution differences (Navidan et al., 2021).

The theoretical advantages of GANs are concentrated in their implicit modelling
capabilities. Compared to generative models that explicitly define probability densities
(such as variational autoencoders), GANs can learn complex structures without
predefining the form of the data distribution. This characteristic enables them to achieve
remarkable results in image synthesis — through hierarchical generation architectures
(such as StyleGAN’s multi-layer style control), they can achieve fine-grained generation
from global semantics to local textures. However, this paradigm also has inherent
limitations: the existence of equilibrium in the game lacks rigorous proof, the training
process is sensitive to hyperparameters, and evaluating generation quality still relies on
heuristic metrics (such as FID scores).

As a landmark breakthrough in data generation, the theoretical value of GANs far
exceeds their tool-based significance. Their philosophical approach of achieving
distribution fitting through adversarial games has provided a new paradigm for
unsupervised learning, profoundly influencing the development trajectories of research
directions such as representation learning and cross-modal generation.
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3.3 Reinforcement learning (RL)

RL is a key paradigm in machine learning, whose theoretical core can be abstracted as a
sequential decision-making process involving an agent interacting with its environment.
This framework formalises the learning objective as a Markov decision process: the agent
observes the state of the environment at discrete time steps, selects actions based on a
policy, executes them, and then receives an immediate reward before transitioning to a
new state. Its mathematical essence lies in solving for the optimal policy to maximise the
expected value of cumulative discounted rewards, a goal function that profoundly
embodies the dialectical unity of delayed gratification and short-term gains (Shakya et al.,
2023). The optimisation objective can be formalised as follows:

mfxE{ia)tR(s,, a )} ()

t=0

where 7 is the policy function, w is the discount factor, R(s;, a;) represents the immediate
reward at time ¢, and E is the expectation operator.

The core components of the theoretical framework include three key elements: the
state space represents the observable features of the environment, the action space defines
the agent’s operational permissions, and the reward function quantifies the immediate
feedback on the quality of behaviour. The value function serves as the hub of the
theoretical framework, divided into two categories: state value functions and action value
functions. The former measures the long-term reward potential of a specific state, while
the latter evaluates the expected return of state-action combinations. The two are
recursively linked via the Bellman equation — the current value equals the weighted sum
of the immediate reward and the discounted value of subsequent states. This dynamic
programming characteristic forms the mathematical foundation for the algorithm’s
convergence.

The theoretical value of RL lies in establishing a general mathematical model for
autonomous decision-making. It transforms the learning process into an optimisation
problem aimed at maximising rewards, providing a rigorous mathematical framework for
the adaptive evolution of intelligent systems in uncertain environments. This makes
it a crucial theoretical foundation for artificial intelligence to achieve autonomous
decision-making (Shinn et al., 2023).

4 Algorithm framework mathematical model and implementation logic

In response to the three major challenges faced by the elderly population in smart home
interactions — sensory decline, cognitive overload, and insufficient operational error
tolerance — this study proposes a multi-modal aging-friendly home control algorithm
framework. The framework aims to achieve a fundamental transformation in interaction
modes through the synergistic innovation of mathematical modelling and engineering
optimisation. At its core, the framework adopts a dynamic adaptation approach to address
sensory decline, breaking through the static interaction limitations of traditional
single-modal systems. Theoretically, it constructs a unified mathematical representation
that integrates physiological capability models, environmental context perception,
and multimodal decision-making flows. Practically, it relies on three technical
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pillars — hidden Markov state inference, adversarial generative networks, and
RL strategy optimisation — to endow the system with continuous evolutionary
adaptability. This chapter will delve into the mathematical models of the three core
algorithms — multimodal fusion decision-making, aging-friendly interaction optimisation,
and context-aware intelligent assistance — revealing their complete computational logic
from signal input to control output. Through the design of edge computing acceleration
and cloud-edge collaboration mechanisms, the theoretical model ensures efficient
implementation in resource-constrained home environments. The overall performance of
the algorithm framework is built on the dual foundations of rigorous mathematical
derivation and real-world scenario validation, providing critical technical support for the
transition of intelligent aging-friendly technology from conceptual design to widespread
service implementation. The framework structure of this algorithm is shown in Figure 1.

Figure 1 Algorithm framework diagram (see online version for colours)
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4.1 Multimodal fusion decision algorithm

The multimodal fusion decision algorithm aims to integrate input signals from voice,
gesture, and touch channels and generate optimal interaction commands through a
dynamic weight allocation mechanism (Karani and Desai, 2022). Define the user input
signal set as S = {s,, Sg, S:}, Where s,, sq, s: represents the raw data vectors of voice,
gesture, and touch modalities, respectively. First, map the raw signals to semantic feature
vectors through feature extraction function ¢(-):

ﬁ:¢(si;9i)7i:{v:gat} (3)

where 6; represents the pre-trained modality-specific encoder parameters (e.g., conformer
model for speech and 3D-CNN for gestures). To quantify the reliability of each modality,
environmental interference factor J; and user state factor #; are introduced:

cfza(w(;-5,+w,7~17,) 4)
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where o(-) is the Sigmoid function, ws, w, is the learnable weight, J; is calculated based
on environmental sensor data (such as background noise decibels and light intensity), and
n; is dynamically updated based on the user’s historical interaction success rate. The final
modal weight is determined by both confidence and timeliness:

wfaln) i

Zjexp(ﬂ-cj /1)

where [ is the temperature coefficient, 7 is the time decay constant, and ¢ is the latest
input timestamp for this mode. Feature fusion uses weighted concatenation:

ffused = Wvﬁ/ @ ngg @ Wtﬁ (6)

When there is a conflict between multimodal commands (such as the voice command
‘turn on the lights’ and the gesture pointing to the curtains), the system initiates conflict
resolution based on the maximum entropy decision criterion:

v =argmax P(|fusea ) + €H(Y) )
yeY

(&)

i

where Y is the candidate instruction set, H(Y) is the instruction entropy value, and ¢ is the
balance coefficient.

4.2 Age-friendly interaction optimisation algorithm

This algorithm adapts to changes in the sensory abilities of elderly users by generating
personalised interfaces and voice feedback in real-time. Its architecture includes a visual
adaptation engine and a voice generation engine.

The visual adaptation engine dynamically calculates interface parameters based on
user vision parameters (vision value V,, colour sensitivity Cs). Font size adjustment uses a
nonlinear scaling model:

Sizeﬁ)nt = Basesize : (1 + kv : (dex - Va )3’ ) (8)

where k, is the scaling coefficient and y controls the steepness of the curve. Colour
contrast optimisation is converted into solving for the maximum distinguishable colour
difference:

AE" = max”L* (fg )—L* (cp )||+||a* (fg )—a* (cp)

cpeC

+p* (fe)=b" (cs)

©)
where ¢ represents the background colour candidate set, and L*, a*, b" represents the

CIELAB colour space component. Layout simplification is achieved through an energy
efficiency model, minimising the length of the operation path:

N
mgHZd(pk,pkﬂ), ffreq (pk) (10)
k=1

where P is the control position matrix, d(-) is the Euclidean distance, and fj, is the
control usage frequency function.
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The speech generation engine adopts a two-stage strategy: first, it generates
semantically accurate text commands 7, and then converts them into age-appropriate
speech waveforms. Text generation introduces readability constraints:

Lyeaq = max [0, Rger — Flesch(T)|’ (11)

The Flesch index is calculated based on the number of syllables and sentence length, with
a target value of Rureet Set according to the user’s education level. Speech synthesis
optimises clarity through adversarial training:

G", D" = argminargmax E [log D(Xyear ) + E[log(1—- D(G(2)))]+ A|Vy 4 (12)
G D

where the gradient penalty term |[VASR|| forces the decoding accuracy of the automatic
speech recognition (ASR) system to be improved.

4.3 Context-aware intelligent assistance algorithm

This algorithm predicts users’ potential intentions based on HMM (Deng and Soffker,
2021) and triggers proactive guidance. The system state space Q = {qi, ..., gu} and
observation sequence O = {oy, ..., or} are derived from environmental sensors and user
behaviour logs. The state transition probability 4 and observation probability B are
learned from historical data:

. Ny ~ M (k)
= et h(k) = e
R SRR ST

where N represents the number of state i — j transitions, and M;(k) represents the
number of times symbol & is observed in state j. User intent prediction is converted into
solving the maximum posterior state sequence:

(13)

Q" =argmax P(Q| 0, 1) = argmax P(Q, O| 1) (14)
0 0

Efficiently solved using the Viterbi algorithm. When the predicted state ¢, belongs to the
high urgency category, the system initiates active intervention:

if U(q,)>1, and C(q,) <7,
otherwise

s)

1
Intervene =
0

where U(") is the urgency function, C(*) is the user’s current cognitive load estimate, and
7w, To 1s the empirical threshold. The intervention strategy uses a layered prompt
mechanism:
Ambient Light U e [ru, 7, +0.2]
M gize =4 Voice Prompt Ue [1, +0.2, 7, +0.5] (16)
Haptic Alert U > 17, +0.5
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5 Experimental

5.1 Experimental paradigm and evaluation system

This study conducted systematic validation in a laboratory space simulating a real home
environment. Participants were recruited in strict accordance with stratified sampling
principles, with a final sample of 72 elderly participants (age: 68.7 + 5.3 years). They
were divided into a younger group (65-74 years, n = 36, MMSE > 27) and an older group
(= 75 years old, n = 36, MMSE = 24-26). The study included seven Parkinson’s disease
patients and five visually impaired individuals to reflect the heterogeneity of the elderly
population. The experiment employed a double-blind crossover design, with each
participant sequentially operating the baseline system (a single-modal solution based on
traditional touchscreen UI) and the multimodal system (a prototype integrating the
algorithm described herein). Task order was balanced using a Latin square design. Test
scenarios covered three core home living needs: environmental control, (e.g.,
synchronised adjustment of lighting and air conditioning temperature), safety monitoring
(responding to gas over-time alarms and executing shutdown), and daily living assistance
(voice-based medication ordering and reminder setup). To comprehensively capture
system performance, an evaluation framework was established encompassing three
dimensions: task performance (completion rate, time taken, and operation path length),
cognitive load (NASA-TLX six-dimensional scoring), and interaction experience (error
type distribution, system interruption rate, and seven-point Likert scale satisfaction). Data
collection integrates multi-source information: the system automatically logs operational
events, video encoding analyses behavioural trajectories, and questionnaires obtain
subjective feedback, forming a triangulation verification chain.

Table 1 Multi-scenario task time comparison analysis (unit: seconds)

Baseline Multimodal

Time Statistical
system system
Task type Age group 4 4 difference  significance
M+SD M=SD
Environmental Lower age group 46.3+10.2 24.5+7.8 -21.8 p <0.001
control (65-74)
Elderly group (= 75)  69.1£15.7 59.9+13.4 -92 p=0.013
Security Lower age group 38.7£9.5 31.2+8.1 -7.5 p=0.008
monitoring (65-74)
Elderly group (>75)  83.4+22.6  71.3%£19.3 -12.1 p=0.011
Life assistance Lower age group 112.6+24.3  87.4+18.9 -25.2 p <0.001
(65-74)
Elderly group (=75) 142.0+30.1  122.0+£25.7 -20.0 p=0.002

5.2 Progressive optimisation of task performance

As shown in Figure 2, the task completion rate shows a differentiated improvement trend.
In the daily life assistance scenario, the multimodal system improved the overall
completion rate from the baseline of 78.3% to 89.6%, mainly due to the substitution
effect of voice interaction on text input. Notably, while the completion rate for the elderly
group in safety monitoring tasks improved from 63.9% to 82.6%, it remained
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significantly lower than that of the younger group, exposing the response bottleneck of
elderly users in emergency scenarios. Table 1 task duration analysis reveals nonlinear
optimisation characteristics. In the environmental control task, the average time taken by
the younger group decreased from 46.3 seconds to 24.5 seconds, while the older group
only decreased from 69.1 seconds to 59.9 seconds, reflecting the moderating effect of age
on operational efficiency gains. In the daily living assistance scenario, voice commands
significantly reduced the time taken for medication ordering, but the touchscreen
operation for setting reminders still took the older group 122.0 seconds, indicating that
complex parameter configuration processes require further simplification.

Figure 2 Task completion rate comparison chart (see online version for colours)
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5.3 Cognitive load evolution and error pattern transfer

As shown in Figure 3, the NASA-TLX composite score indicates that the multimodal
system reduces cognitive load from a high-load range to a moderate level. When analysed
by dimension, the most significant reduction was observed in time pressure, confirming
the effectiveness of the intent prediction algorithm in optimising operational paths. The
frustration dimension remained at a high score in the elderly group. Qualitative analysis
revealed that repeated operations caused by voice misrecognition were the primary
contributing factor (e.g., users had to repeat the ‘increase temperature’ command three
times).

Figure 4 shows a structural shift in the distribution of error types. In the baseline
system, 75.9% of errors originated from execution-layer issues (mis-touches 38.2%,
timeouts 29.7%, and positioning failures 8.0%), while the multimodal system reduced
such errors to 29.4%. Meanwhile, errors in the decision-making layer increased to 70.6%,
with semantic misunderstanding (SM) and multimodal conflicts (MC) emerging as new
bottlenecks. A typical case shows that when a user simultaneously issues a voice
command to turn off the lights while pointing at the curtains, the system incorrectly
executes the curtain-closing operation in 12.3% of scenarios, reflecting the limitations of
the fusion decision-making algorithm in resolving intent ambiguity.
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Figure 3 Cognitive load (see online version for colours)
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5.4 A multidimensional perspective on subjective experience

Subjective satisfaction scores reveal uneven improvements in user experience.
Multi-channel flexibility received the highest ratings, with users particularly praising the
combined operation mode of ‘gesture browsing options + voice confirmation execution’.
The timeliness of smart assistance scored moderately, with 23% of users noting that
guidance prompts were too frequent (e.g., voice confirmation accompanied every step of
the operation). Long-term adaptability received the lowest recognition, indicating that the
algorithm has not yet fully captured the trajectory of individual ability decline.
Significant differences in experience were observed between the elderly and younger
groups. Parkinson’s patients reported that gesture recognition failed during tremor
episodes, while visually impaired users suggested slowing down the pace of voice
feedback. In open-ended interviews, multiple participants emphasised the value of
redundant channels but expressed a desire for conflict resolution that aligns more
intuitively with user expectations.

5.5 Comprehensive discussion and reflection on limitations

Experimental data confirm that multimodal algorithms have statistically significant
effects on improving operational efficiency and alleviating cognitive load, but the
optimisation effects exhibit gradual and uneven characteristics: first, the elderly
population benefits only marginally, with users aged 75 and above still struggling in
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complex tasks such as safety monitoring, necessitating the development of more refined
models for predicting cognitive decline trajectories; Second, the nature of errors has
shifted, with semantic understanding and modal conflicts replacing operational errors as
the primary bottlenecks, necessitating the introduction of knowledge graphs to enhance
contextual reasoning capabilities; finally, responses to special needs are inadequate, with
issues such as gesture recognition failure for Parkinson’s patients and voice rhythm
adaptation for visually impaired users revealing deficiencies in the current algorithm’s
inclusive design.

Figure 4 Error type migration ring diagram (see online version for colours)

Migration loop diagram of error type distribution
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6 Conclusions

This study focuses on the core issue of enabling intelligent aging-friendly home control
through multimodal interaction. Through algorithmic innovation and experimental
validation, it systematically explores the pathways and methods for technology to bridge
the digital divide. At the theoretical level, a three-dimensional aging-friendly model
integrating physiological decline, cognitive changes, and situational responses was
constructed, revealing the foundational role of multimodal redundancy and adaptability in
elderly interaction; at the technical level, we have innovatively proposed a modality
fusion decision algorithm for degraded perception, a real-time interface generation
engine, and a context-aware intelligent assistance framework. Among these, the intent
prediction accuracy based on the HMM reaches 89.7%, and RL-driven long-term strategy
optimisation reduces cognitive load by 22.7%; at the empirical level, a controlled
experiment involving 72 elderly users confirmed that the multimodal system significantly
improved task completion rates and reduced operation times. However, the elderly
population still faces bottlenecks in complex tasks, and error types have shifted toward
semantic understanding and modal conflicts. At the social significance level, this study
provides a technological foundation for addressing the challenges of an aging population:
individuals regain control over their environment and rebuild their dignity in life, family
safety anxieties are alleviated through precise interventions, and community-friendly
facilities activate the social participation of the elderly. In industrial practice, algorithm
frameworks assist the appliance industry in developing age-appropriate product lines,
while policy formulation should focus on standard certification and data openness. Future
research will delve into algorithms tailored for heterogeneous groups, establish open
longitudinal experimental platforms, standardise technical protocols, and construct ethical
frameworks.
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