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Abstract: To address the usability challenges faced by elderly users when 
operating smart home systems in the context of an aging population, this study 
proposes a smart aging-friendly home control algorithm framework based on 
multimodal interaction. The core of this framework lies in the innovative 
design of three key algorithms: a multimodal fusion decision-making algorithm 
that integrates speech recognition, simple gesture understanding, and touches 
intent analysis; an aging-friendly interaction optimisation algorithm; and a 
context-aware intelligent assistance algorithm. The proposed algorithms were 
validated through user simulation and comparative experiments. The results 
indicate that the algorithm framework effectively improves elderly users’ 
operational efficiency and task completion rates while significantly reducing 
cognitive load and operational error rates. This study provides core algorithmic 
support and practical design guidelines for constructing truly elderly-friendly 
smart home interaction systems. 
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1 Introduction 

The global population structure is undergoing a profound aging transformation. 
According to the United Nations’ World Population Prospects, the proportion of people 
aged 60 and above is projected to exceed 22% by 2050, with China’s elderly population 
reaching 490 million. Against this backdrop, smart home technology, as a core enabler of 
enhanced quality of life, has become a strategic necessity for addressing the challenges of 
an aging society through age-friendly adaptations. However, current mainstream smart 
home systems generally suffer from issues such as overly complex interaction, cognitive 
overload, and insufficient physiological adaptability (Luciano et al., 2020), exposing the 
fundamental limitations of traditional graphical user interfaces in aging-friendly design. 

Multimodal interaction technology, by integrating natural human-machine channels 
such as voice, gestures, and haptic feedback, offers a new paradigm for addressing  
aging-related challenges (Chau and Jamei, 2021). Its core value lies in channel 
redundancy, which allows users to choose interaction methods based on their capabilities; 
situational adaptability, which dynamically matches the cognitive decline and sensory 
deterioration characteristics of the elderly; and intent complementarity, which enhances 
interaction robustness through multi-channel signal fusion (Han et al., 2024). Existing 
research has confirmed that multimodal systems can significantly reduce operational 
error rates among elderly users (Štaube et al., 2016), but related findings have primarily 
focused on single scenarios such as health monitoring, lacking a systematic algorithmic 
framework for comprehensive home control. 

Multimodal interaction technology, by integrating voice, gesture, and touch channels, 
has become a key paradigm for bridging the digital divide faced by elderly users due to 
sensory and motor function decline. Foundational research by Baltrušaitis et al. (2018) 
demonstrated that multimodal systems enhance interaction robustness through 
redundancy and complementarity. 

Non-contact physiological monitoring has become a research hotspot in recent years. 
Yao et al. (2022) designed a robust fall detection system based on frequency-modulated 
continuous-wave radar to address these issues. The system detects human movement in 
real-time, calculates the distance-velocity plot, distance-horizontal angle plot, and 
distance-vertical angle plot of the radar signal, and creates three neural networks for these 
three signal plots. Using a stacked approach with ensemble learning, the system fuses  
the time-space-velocity features extracted from the three neural networks to identify  
falls. In terms of visual behaviour understanding, Eldib et al. (2016) used a network of 
inexpensive low-resolution visual sensors (30 × 30 pixels) for long-term behaviour 
analysis. Behaviour analysis first performs visual feature selection based on 
foreground/background detection to track the level of motion in each visual sensor. Then, 
a Hidden Markov model (HMM) is used to estimate the user’s position without 
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calibration. Finally, an activity detection method utilising spatial and temporal context is 
proposed. 

There is a significant gap in current research on aging-friendly smart home 
technology. Technologically, solutions are fragmented, with most focusing on optimising 
a single modality rather than establishing cross-modal collaborative decision-making 
models. Algorithm design overlooks the heterogeneous needs of the elderly population, 
such as the issue of gesture recognition accuracy for Parkinson’s patients. Human factors 
research lacks quantitative analysis of cognitive models and behavioural patterns of 
elderly users (Zhang et al., 2020). Particularly notable is that existing algorithms rely on 
static rule databases, making it difficult to dynamically adapt to users’ declining 
capabilities over time, resulting in a continuous decline in long-term user experience. 

To address these challenges, this study proposes a multi-modal aging-friendly home 
control framework. Theoretically, it constructs a three-dimensional elderly user model 
encompassing physiological, cognitive, and emotional dimensions, laying the foundation 
for algorithm design from a human factors perspective. Technologically, we innovatively 
develop three core algorithms: the multimodal fusion decision algorithm integrates voice 
command recognition, simple gesture understanding, and touch intent analysis through a 
dynamic weight allocation mechanism; the aging-friendly interaction optimisation 
algorithm enables real-time personalised generation of interface elements (font size, 
colour contrast); and the context-aware assistance algorithm predicts operational intent 
based on a HMM and triggers proactive guidance mechanisms. The validation approach 
employs cross-age group controlled experiments and the NASA-TLX cognitive load 
scale to establish a multi-dimensional evidence chain for algorithm effectiveness. 

2 Progress in multimodal aging research 

2.1 Fundamental theory of modal interaction technology and its implications 
for aging 

Multimodal interaction technology integrates natural human-machine interfaces such as 
voice, touch, vision, and gestures to provide redundant and complementary interaction 
pathways. Its core value lies in addressing the heterogeneous needs of complex user 
groups. In the field of aging-friendly technology, this technology is tasked with bridging 
the digital divide faced by elderly users due to declining physiological functions (such as 
vision loss, hearing impairment, and reduced fine motor control) and cognitive changes 
(such as diminished working memory and difficulty learning new technologies). The 
World Health Organization’s framework for age-friendly cities emphasises that 
environmental design must support elderly individuals’ independent participation, and 
multimodal interaction is the key technological pathway to achieving age-friendly smart 
environments. The design of aging-friendly multimodal systems must adhere to three 
principles: redundancy (supporting the same task through multiple channels), adaptability 
(dynamically matching the user’s current perceptual-cognitive state), and tolerance 
(allowing operational errors and providing correction mechanisms) (Sokullu et al., 2020). 
In recent years, with breakthroughs in AIoT, multimodal large language models, and 
digital twin technologies, multimodal aging-friendly research is transitioning from 
passive response to proactive care, redefining the fundamental relationship between 
intelligent environments and elderly users (Das et al., 2015). 
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2.2 Advances in multimodal perception technology for aging 

A multi-modal perception system for the elderly must address the issue of heterogeneity 
in the behavioural characteristics of the elderly population. In terms of physiological state 
sensing, the application of millimetre-wave radar and flexible sensor arrays has enabled 
precise monitoring of falls and sleep abnormalities in the elderly. For example, Muji’s AI 
mattress uses embedded sensors to collect real-time heart rate, breathing rate, and body 
movement data, combines environmental parameters to construct a sleep quality 
assessment model, and automatically adjusts air conditioning temperature and lighting 
when detecting light sleep stages, forming a closed-loop intervention (Naddeo and 
Cappetti, 2021). In terms of behavioural intent understanding, non-contact sensing has 
become a research hotspot. The case of Tokyo’s Smart Aging Community shows that 
millimetre-wave radar arrays embedded in ceilings can construct spatial heat maps with 
0.1 mm precision. When a lone elderly person stays out of bed for an extended period 
without returning, the system can trigger an alarm three minutes in advance, significantly 
enhancing safety compared to traditional monitoring (Okubo et al., 2022). Haier Smart 
Home’s patent uses a visual large model to recognise over a thousand objects and 
behaviours, enabling range hoods to predict heat requirements based on cooking actions 
and dynamically adjust suction power. In the environmental perception dimension,  
multi-sensor fusion technology enables autonomous decision-making by home appliances 
(Zheng, 2022). Gree AI air conditioners combine infrared sensors and millimetre-wave 
radar to locate human positions and body temperature, and optimise airflow strategies by 
integrating humidity and air quality data (Lee and Chen, 2022). Haier refrigerators’ AI 
olfactory modules detect volatile organic compounds (VOCs) and initiate sterilisation 
procedures 12 hours before food spoilage, while recommending inventory clearance 
recipes, achieving a transition from passive response to proactive health management 
(Wu et al., 2024). 

2.3 Advances in cognitive support and interactive control research 

Focusing on cognitive load management for elderly users, the research focuses on 
optimising intent understanding and simplifying interaction design. Shenzhen Hui Cheng 
Kitchen Equipment’s patent proposes a ‘multi-modal behavioural feature fusion’ method: 
by analysing elderly users’ operational characteristics across auditory, visual, tactile, and 
cognitive dimensions, and combining this with historical device operation data to 
construct dynamic user profiles, the system generates personalised interaction guidance 
workflows. For example, when the system detects that the user’s visual attention is 
distracted, it automatically enhances the intensity of voice prompts to reduce reliance on 
interface operations. In the field of cognitive assistance innovation, generative AI 
demonstrates breakthrough potential. Haier Smart Home’s digital twin multimodal 
control patent constructs a virtual mapping space, allowing elderly users to simulate 
device operations (such as adjusting air conditioner fan speed) in a simulated 
environment before synchronising them to physical devices, significantly reducing  
real-time operational cognitive pressure (Rayhana et al., 2024). 
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3 Related theories 

3.1 Hidden Markov model 

The HMM is a classic paradigm for time series data analysis, with its theoretical core 
based on a dual stochastic process (Glennie et al., 2023). The model assumes that the 
system has two types of state sequences: an unobservable hidden state chain and an 
observable output symbol chain, which are coupled through a probabilistic mechanism. 
The hidden states form a Markov chain, meaning that the current state depends only on 
the previous state and is independent of earlier history; the observed symbols are 
generated solely by the current hidden state. This hierarchical structure enables the model 
to simultaneously model temporal dependencies and state ambiguity (Mor et al., 2021). 

The mathematical framework of the model is strictly defined by five parameters. The 
set of hidden states describes the possible internal patterns of the system, while the set of 
observed symbols corresponds to the data representations that can be collected. The state 
transition matrix quantifies the statistical patterns of state transitions, while the 
observation probability matrix characterises the likelihood distribution of generating each 
observation value under a specific hidden state. The initial state probability vector 
determines the system’s starting point. The four sets of probability parameters 
collectively construct the generative mechanism from the hidden state sequence to the 
observation sequence (Gámiz et al., 2023). This generation mechanism can be formalised 
as follows: 

( ) ( )1 1 11
2

( | ) ( , | ) t t t

T

q q q q q t
Q Q t

P O λ P O Q λ π b o a b o−

=

= =  ∏  (1) 

where λ = (A, B, π) represents the model parameters, Q represents the hidden state 
sequence, and O represents the observation sequence. 

The model solution focuses on three core problems: the evaluation problem calculates 
the generation probability of a given observation sequence using the forward-backward 
algorithm; the decoding problem uses the Viterbi dynamic programming algorithm to 
find the optimal sequence of hidden states; the learning problem uses the Baum-Welch 
algorithm to iteratively optimise parameters. The learning process is based on the 
expectation-maximisation principle, which continuously updates the probability estimates 
of state transitions and observation emissions through the collaborative calculation of 
forward and backward probabilities until convergence to a local optimal solution. 

In practical applications, the HMM demonstrates two core advantages. First, the 
hidden state layer effectively separates noise interference from underlying patterns, such 
as filtering out environmental noise to extract phoneme sequences in speech recognition. 
Second, robust handling of incomplete observation sequences, enabling prediction of 
protein domains in biological sequence analysis with only partial base information. These 
characteristics make it an indispensable theoretical tool for time series pattern 
recognition, providing the mathematical foundation for algorithm design in subsequent 
chapters. 
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3.2 Generative adversarial networks (GANs) 

GANs are a revolutionary framework in the field of deep learning, whose theoretical 
essence can be summarised as a distribution learning mechanism based on game theory 
(Aggarwal et al., 2021). The model architecture consists of a generator and a 
discriminator that form a dynamic adversarial system: the generator attempts to capture 
the latent distribution of real data to synthesise new samples, while the discriminator 
strives to distinguish between real data and generated samples. The two collaborate 
through a minimax game to achieve co-evolution, with their objective function 
understood as a generalised expression of the value function in a continuous probability 
space. 

Theoretically, the generator acts as a mapping function from the latent space to the 
data space, transforming random noise into structured output through nonlinear 
transformations. The discriminator plays the role of a probabilistic classifier, outputting a 
probability estimate of whether a sample belongs to the real distribution. During training, 
the generator continuously optimises its parameters with the goal of maximising the 
discriminator’s misclassification rate, while the discriminator simultaneously improves 
its classification ability. This adversarial optimisation drives the performance of both to 
alternate increases until the system reaches the Nash equilibrium point – at which point 
the distribution of samples output by the generator is indistinguishable from the real 
distribution in terms of measure. 

The core of model training lies in the stability control of the gradient update strategy. 
The original GAN uses Jensen-Shannon divergence to measure distribution differences, 
but this is prone to gradient vanishing and mode collapse. Subsequent research improved 
robustness by modifying the loss function: Wasserstein GAN introduces Earth-Mover 
distance constraints on gradient norms to address training instability issues; LSGAN 
replaces binary cross-entropy with least squares loss to effectively avoid the blurred 
boundary defect in generated samples. These theoretical developments collectively point 
to a core principle: the quality of generation and training stability depend on the loss 
function’s appropriate measurement of distribution differences (Navidan et al., 2021). 

The theoretical advantages of GANs are concentrated in their implicit modelling 
capabilities. Compared to generative models that explicitly define probability densities 
(such as variational autoencoders), GANs can learn complex structures without 
predefining the form of the data distribution. This characteristic enables them to achieve 
remarkable results in image synthesis – through hierarchical generation architectures 
(such as StyleGAN’s multi-layer style control), they can achieve fine-grained generation 
from global semantics to local textures. However, this paradigm also has inherent 
limitations: the existence of equilibrium in the game lacks rigorous proof, the training 
process is sensitive to hyperparameters, and evaluating generation quality still relies on 
heuristic metrics (such as FID scores). 

As a landmark breakthrough in data generation, the theoretical value of GANs far 
exceeds their tool-based significance. Their philosophical approach of achieving 
distribution fitting through adversarial games has provided a new paradigm for 
unsupervised learning, profoundly influencing the development trajectories of research 
directions such as representation learning and cross-modal generation. 



   

 

   

   
 

   

   

 

   

    Empowering elderly-centric smart home control via multimodal interaction 29    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.3 Reinforcement learning (RL) 

RL is a key paradigm in machine learning, whose theoretical core can be abstracted as a 
sequential decision-making process involving an agent interacting with its environment. 
This framework formalises the learning objective as a Markov decision process: the agent 
observes the state of the environment at discrete time steps, selects actions based on a 
policy, executes them, and then receives an immediate reward before transitioning to a 
new state. Its mathematical essence lies in solving for the optimal policy to maximise the 
expected value of cumulative discounted rewards, a goal function that profoundly 
embodies the dialectical unity of delayed gratification and short-term gains (Shakya et al., 
2023). The optimisation objective can be formalised as follows: 

( )
0

max ,t
t t

π
t

E ω R s a
∞

=

 
 
  
  (2) 

where π is the policy function, ω is the discount factor, R(st, at) represents the immediate 
reward at time t, and E is the expectation operator. 

The core components of the theoretical framework include three key elements: the 
state space represents the observable features of the environment, the action space defines 
the agent’s operational permissions, and the reward function quantifies the immediate 
feedback on the quality of behaviour. The value function serves as the hub of the 
theoretical framework, divided into two categories: state value functions and action value 
functions. The former measures the long-term reward potential of a specific state, while 
the latter evaluates the expected return of state-action combinations. The two are 
recursively linked via the Bellman equation – the current value equals the weighted sum 
of the immediate reward and the discounted value of subsequent states. This dynamic 
programming characteristic forms the mathematical foundation for the algorithm’s 
convergence. 

The theoretical value of RL lies in establishing a general mathematical model for 
autonomous decision-making. It transforms the learning process into an optimisation 
problem aimed at maximising rewards, providing a rigorous mathematical framework for 
the adaptive evolution of intelligent systems in uncertain environments. This makes  
it a crucial theoretical foundation for artificial intelligence to achieve autonomous  
decision-making (Shinn et al., 2023). 

4 Algorithm framework mathematical model and implementation logic 

In response to the three major challenges faced by the elderly population in smart home 
interactions – sensory decline, cognitive overload, and insufficient operational error 
tolerance – this study proposes a multi-modal aging-friendly home control algorithm 
framework. The framework aims to achieve a fundamental transformation in interaction 
modes through the synergistic innovation of mathematical modelling and engineering 
optimisation. At its core, the framework adopts a dynamic adaptation approach to address 
sensory decline, breaking through the static interaction limitations of traditional  
single-modal systems. Theoretically, it constructs a unified mathematical representation 
that integrates physiological capability models, environmental context perception,  
and multimodal decision-making flows. Practically, it relies on three technical  
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pillars – hidden Markov state inference, adversarial generative networks, and  
RL strategy optimisation – to endow the system with continuous evolutionary 
adaptability. This chapter will delve into the mathematical models of the three core  
algorithms – multimodal fusion decision-making, aging-friendly interaction optimisation, 
and context-aware intelligent assistance – revealing their complete computational logic 
from signal input to control output. Through the design of edge computing acceleration 
and cloud-edge collaboration mechanisms, the theoretical model ensures efficient 
implementation in resource-constrained home environments. The overall performance of 
the algorithm framework is built on the dual foundations of rigorous mathematical 
derivation and real-world scenario validation, providing critical technical support for the 
transition of intelligent aging-friendly technology from conceptual design to widespread 
service implementation. The framework structure of this algorithm is shown in Figure 1. 

Figure 1 Algorithm framework diagram (see online version for colours) 
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4.1 Multimodal fusion decision algorithm 

The multimodal fusion decision algorithm aims to integrate input signals from voice, 
gesture, and touch channels and generate optimal interaction commands through a 
dynamic weight allocation mechanism (Karani and Desai, 2022). Define the user input 
signal set as S = {sv, sg, st}, where sv, sg, st represents the raw data vectors of voice, 
gesture, and touch modalities, respectively. First, map the raw signals to semantic feature 
vectors through feature extraction function φ(∙): 

( ); , { , , }i i if s θ i v g t= =φ  (3) 

where θi represents the pre-trained modality-specific encoder parameters (e.g., conformer 
model for speech and 3D-CNN for gestures). To quantify the reliability of each modality, 
environmental interference factor δi and user state factor ηi are introduced: 

( )+i δ i η ic σ w δ w η= ⋅ ⋅  (4) 
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where σ(∙) is the Sigmoid function, wδ, wη is the learnable weight, δi is calculated based 
on environmental sensor data (such as background noise decibels and light intensity), and 
ηi is dynamically updated based on the user’s historical interaction success rate. The final 
modal weight is determined by both confidence and timeliness: 

( )
( )

( )exp /
exp /

ii λ t t
i

jj

c τ
w e

c τ
− −⋅

= ⋅
⋅

β
β

 (5) 

where β is the temperature coefficient, τ is the time decay constant, and ti is the latest 
input timestamp for this mode. Feature fusion uses weighted concatenation: 

fused v v g g t tf w f w f w f= ⊕ ⊕  (6) 

When there is a conflict between multimodal commands (such as the voice command 
‘turn on the lights’ and the gesture pointing to the curtains), the system initiates conflict 
resolution based on the maximum entropy decision criterion: 

( )* arg max + ( )fused
y Y

y P y f H Y
∈

= α  (7) 

where Y is the candidate instruction set, H(Y) is the instruction entropy value, and α is the 
balance coefficient. 

4.2 Age-friendly interaction optimisation algorithm 

This algorithm adapts to changes in the sensory abilities of elderly users by generating 
personalised interfaces and voice feedback in real-time. Its architecture includes a visual 
adaptation engine and a voice generation engine. 

The visual adaptation engine dynamically calculates interface parameters based on 
user vision parameters (vision value Va, colour sensitivity Cs). Font size adjustment uses a 
nonlinear scaling model: 

( )( )max1+ γ
font size v aSize Base k V V= ⋅ ⋅ −  (8) 

where kv is the scaling coefficient and γ controls the steepness of the curve. Colour 
contrast optimisation is converted into solving for the maximum distinguishable colour 
difference: 

( ) ( ) ( ) ( ) ( ) ( )* * * * * * *Δ max +
b

g b g b g b
c C

E L f L c a f a c b f b c
∈

= − − + −  (9) 

where c represents the background colour candidate set, and L*, a*, b* represents the 
CIELAB colour space component. Layout simplification is achieved through an energy 
efficiency model, minimising the length of the operation path: 

( ) ( )+1
1

min , ,
N

k k freq k
P

k

d p p f p
=
  (10) 

where P is the control position matrix, d(∙) is the Euclidean distance, and ffreq is the 
control usage frequency function. 
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The speech generation engine adopts a two-stage strategy: first, it generates 
semantically accurate text commands T, and then converts them into age-appropriate 
speech waveforms. Text generation introduces readability constraints: 

[ ]2
targetmax 0, ( )readL R Flesch T= −  (11) 

The Flesch index is calculated based on the number of syllables and sentence length, with 
a target value of Rtarget set according to the user’s education level. Speech synthesis 
optimises clarity through adversarial training: 

( ) [ ]* *, arg min arg max log + log(1 ( ( ))) +real θ
G D

G D E D x E D G z λ A= − ∇  (12) 

where the gradient penalty term ||∇ASR|| forces the decoding accuracy of the automatic 
speech recognition (ASR) system to be improved. 

4.3 Context-aware intelligent assistance algorithm 

This algorithm predicts users’ potential intentions based on HMM (Deng and Söffker, 
2021) and triggers proactive guidance. The system state space Q = {q1, …, qM} and 
observation sequence O = {o1, …, oT} are derived from environmental sensors and user 
behaviour logs. The state transition probability A and observation probability B are 
learned from historical data: 

( )ˆˆ , ( )
( )

ij j
ij j

ik jk l

N M k
a b k

N M l
= =
 

 (13) 

where Nij represents the number of state i → j transitions, and Mj(k) represents the 
number of times symbol k is observed in state j. User intent prediction is converted into 
solving the maximum posterior state sequence: 

* arg max ( | , ) arg max ( , | )
Q Q

Q P Q O λ P Q O λ= =  (14) 

Efficiently solved using the Viterbi algorithm. When the predicted state qt belongs to the 
high urgency category, the system initiates active intervention: 

( ) ( )1  U q C q
0

t u t cif τ and τ
Intervene

otherwise
 > <

= 


 (15) 

where U(∙) is the urgency function, C(∙) is the user’s current cognitive load estimate, and 
τu, τc is the empirical threshold. The intervention strategy uses a layered prompt 
mechanism: 

[ ]
[ ]

U , + 0.2
U + 0.2, + 0.5

 U + 0.5

u u

guide u u

u

Ambient Light τ τ
M Voice Prompt τ τ

Haptic Alert τ

 ∈
= ∈
 >

 (16) 
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5 Experimental 

5.1 Experimental paradigm and evaluation system 

This study conducted systematic validation in a laboratory space simulating a real home 
environment. Participants were recruited in strict accordance with stratified sampling 
principles, with a final sample of 72 elderly participants (age: 68.7 ± 5.3 years). They 
were divided into a younger group (65–74 years, n = 36, MMSE ≥ 27) and an older group 
(≥ 75 years old, n = 36, MMSE = 24–26). The study included seven Parkinson’s disease 
patients and five visually impaired individuals to reflect the heterogeneity of the elderly 
population. The experiment employed a double-blind crossover design, with each 
participant sequentially operating the baseline system (a single-modal solution based on 
traditional touchscreen UI) and the multimodal system (a prototype integrating the 
algorithm described herein). Task order was balanced using a Latin square design. Test 
scenarios covered three core home living needs: environmental control, (e.g., 
synchronised adjustment of lighting and air conditioning temperature), safety monitoring 
(responding to gas over-time alarms and executing shutdown), and daily living assistance 
(voice-based medication ordering and reminder setup). To comprehensively capture 
system performance, an evaluation framework was established encompassing three 
dimensions: task performance (completion rate, time taken, and operation path length), 
cognitive load (NASA-TLX six-dimensional scoring), and interaction experience (error 
type distribution, system interruption rate, and seven-point Likert scale satisfaction). Data 
collection integrates multi-source information: the system automatically logs operational 
events, video encoding analyses behavioural trajectories, and questionnaires obtain 
subjective feedback, forming a triangulation verification chain. 
Table 1 Multi-scenario task time comparison analysis (unit: seconds) 

Task type Age group 
Baseline 
system 

Multimodal 
system Time 

difference 
Statistical 

significance 
M±SD M±SD 

Environmental 
control 

Lower age group 
(65–74) 

46.3±10.2 24.5±7.8 –21.8 p < 0.001 

Elderly group (≥ 75) 69.1±15.7 59.9±13.4 –9.2 p = 0.013 
Security 
monitoring 

Lower age group 
(65–74) 

38.7±9.5 31.2±8.1 –7.5 p = 0.008 

Elderly group (≥ 75) 83.4±22.6 71.3±19.3 –12.1 p = 0.011 
Life assistance Lower age group 

(65–74) 
112.6±24.3 87.4±18.9 –25.2 p < 0.001 

Elderly group (≥ 75) 142.0±30.1 122.0±25.7 –20.0 p = 0.002 

5.2 Progressive optimisation of task performance 

As shown in Figure 2, the task completion rate shows a differentiated improvement trend. 
In the daily life assistance scenario, the multimodal system improved the overall 
completion rate from the baseline of 78.3% to 89.6%, mainly due to the substitution 
effect of voice interaction on text input. Notably, while the completion rate for the elderly 
group in safety monitoring tasks improved from 63.9% to 82.6%, it remained 
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significantly lower than that of the younger group, exposing the response bottleneck of 
elderly users in emergency scenarios. Table 1 task duration analysis reveals nonlinear 
optimisation characteristics. In the environmental control task, the average time taken by 
the younger group decreased from 46.3 seconds to 24.5 seconds, while the older group 
only decreased from 69.1 seconds to 59.9 seconds, reflecting the moderating effect of age 
on operational efficiency gains. In the daily living assistance scenario, voice commands 
significantly reduced the time taken for medication ordering, but the touchscreen 
operation for setting reminders still took the older group 122.0 seconds, indicating that 
complex parameter configuration processes require further simplification. 

Figure 2 Task completion rate comparison chart (see online version for colours) 

 

5.3 Cognitive load evolution and error pattern transfer 

As shown in Figure 3, the NASA-TLX composite score indicates that the multimodal 
system reduces cognitive load from a high-load range to a moderate level. When analysed 
by dimension, the most significant reduction was observed in time pressure, confirming 
the effectiveness of the intent prediction algorithm in optimising operational paths. The 
frustration dimension remained at a high score in the elderly group. Qualitative analysis 
revealed that repeated operations caused by voice misrecognition were the primary 
contributing factor (e.g., users had to repeat the ‘increase temperature’ command three 
times). 

Figure 4 shows a structural shift in the distribution of error types. In the baseline 
system, 75.9% of errors originated from execution-layer issues (mis-touches 38.2%, 
timeouts 29.7%, and positioning failures 8.0%), while the multimodal system reduced 
such errors to 29.4%. Meanwhile, errors in the decision-making layer increased to 70.6%, 
with semantic misunderstanding (SM) and multimodal conflicts (MC) emerging as new 
bottlenecks. A typical case shows that when a user simultaneously issues a voice 
command to turn off the lights while pointing at the curtains, the system incorrectly 
executes the curtain-closing operation in 12.3% of scenarios, reflecting the limitations of 
the fusion decision-making algorithm in resolving intent ambiguity. 
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Figure 3 Cognitive load (see online version for colours) 

 

5.4 A multidimensional perspective on subjective experience 

Subjective satisfaction scores reveal uneven improvements in user experience.  
Multi-channel flexibility received the highest ratings, with users particularly praising the 
combined operation mode of ‘gesture browsing options + voice confirmation execution’. 
The timeliness of smart assistance scored moderately, with 23% of users noting that 
guidance prompts were too frequent (e.g., voice confirmation accompanied every step of 
the operation). Long-term adaptability received the lowest recognition, indicating that the 
algorithm has not yet fully captured the trajectory of individual ability decline. 
Significant differences in experience were observed between the elderly and younger 
groups. Parkinson’s patients reported that gesture recognition failed during tremor 
episodes, while visually impaired users suggested slowing down the pace of voice 
feedback. In open-ended interviews, multiple participants emphasised the value of 
redundant channels but expressed a desire for conflict resolution that aligns more 
intuitively with user expectations. 

5.5 Comprehensive discussion and reflection on limitations 

Experimental data confirm that multimodal algorithms have statistically significant 
effects on improving operational efficiency and alleviating cognitive load, but the 
optimisation effects exhibit gradual and uneven characteristics: first, the elderly 
population benefits only marginally, with users aged 75 and above still struggling in 
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complex tasks such as safety monitoring, necessitating the development of more refined 
models for predicting cognitive decline trajectories; Second, the nature of errors has 
shifted, with semantic understanding and modal conflicts replacing operational errors as 
the primary bottlenecks, necessitating the introduction of knowledge graphs to enhance 
contextual reasoning capabilities; finally, responses to special needs are inadequate, with 
issues such as gesture recognition failure for Parkinson’s patients and voice rhythm 
adaptation for visually impaired users revealing deficiencies in the current algorithm’s 
inclusive design. 

Figure 4 Error type migration ring diagram (see online version for colours) 
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6 Conclusions 

This study focuses on the core issue of enabling intelligent aging-friendly home control 
through multimodal interaction. Through algorithmic innovation and experimental 
validation, it systematically explores the pathways and methods for technology to bridge 
the digital divide. At the theoretical level, a three-dimensional aging-friendly model 
integrating physiological decline, cognitive changes, and situational responses was 
constructed, revealing the foundational role of multimodal redundancy and adaptability in 
elderly interaction; at the technical level, we have innovatively proposed a modality 
fusion decision algorithm for degraded perception, a real-time interface generation 
engine, and a context-aware intelligent assistance framework. Among these, the intent 
prediction accuracy based on the HMM reaches 89.7%, and RL-driven long-term strategy 
optimisation reduces cognitive load by 22.7%; at the empirical level, a controlled 
experiment involving 72 elderly users confirmed that the multimodal system significantly 
improved task completion rates and reduced operation times. However, the elderly 
population still faces bottlenecks in complex tasks, and error types have shifted toward 
semantic understanding and modal conflicts. At the social significance level, this study 
provides a technological foundation for addressing the challenges of an aging population: 
individuals regain control over their environment and rebuild their dignity in life, family 
safety anxieties are alleviated through precise interventions, and community-friendly 
facilities activate the social participation of the elderly. In industrial practice, algorithm 
frameworks assist the appliance industry in developing age-appropriate product lines, 
while policy formulation should focus on standard certification and data openness. Future 
research will delve into algorithms tailored for heterogeneous groups, establish open 
longitudinal experimental platforms, standardise technical protocols, and construct ethical 
frameworks. 
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