‘/@‘}NDERSCIENCE PUBLISHERS

Linking academia, business and industry through research

—— i 1

Information and
Communication

Technology

International Journal of Information and Communication
Technology

ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

A fine-tuned YOLOv11l-based insulator icing detection algorithm
for intelligent inspections of power systems

Hai Huang, Xun Zhang, Dianli Chen, Yong Du, Shenli Wang, Xiaohua Liu, Quan Fang,
Yuhang Xia

DOI: 10.1504/1JICT.2025.10075001

Article History:

Received: 18 January 2025
Last revised: 19 March 2025
Accepted: 19 March 2025
Published online: 05 January 2026

Copyright © 2025 Inderscience Enterprises Ltd.


https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10075001
http://www.tcpdf.org

Int. J. Information and Communication Technology, Vol. 26, No. 48, 2025 1

A fine-tuned YOLOv11l-based insulator icing detection
algorithm for intelligent inspections of power
systems

Hai Huang, Xun Zhang, Dianli Chen,
Yong Du, Shenli Wang, Xiaohua Liu and
Quan Fang

State Grid Hubei Extra High V oltage Company,
Wuhan, 430050, China

and

Hubei Super-Energic Electric Power Co., Ltd.,
Wuhan, 430050, China

Email: 2922254268@qg.com

Email: 448544771@qg.com

Email: 2822254268@qg.com

Email: 2077678160@qg.com

Email: 2124695301@qg.com

Email: 995885579@qqg.com

Email: 3925897955@qg.com

Yuhang Xia*

Hubei Key Lab of Micro-Nanoelectronic Materials and Devices,
Faculty of Microelectronics,

Hubei University,

Wuhan, 430062,

Shanghai, 200240, China

Email: hubxiay @stu.hubu.edu.cn

*Corresponding author

Abstract: Ice accumulation on insulators can lead to €electrica breakdown,
equipment damage, and line outages, making timely and accurate detection
essential for maintaining the safe and stable operation of power systems. This
paper proposes an ice accretion detection method for insulators based on You
Only Look Once version 11 (YOLOv11), integrating image processing and
deep learning techniques to achieve automated detection. A self-built dataset
was used to fine-tune YOLOv1l, enhancing the model’s accuracy and
robustness in complex environments. Compared to its predecessors, YOLOv11
features an improved backbone network for more efficient feature extraction,
advanced attention mechanisms for enhanced focus on critical regions, and an
anchor-free detection head that reduces computational complexity while
maintaining high precision. Multi-scale feature fusion ensures the accurate
detection of ice accretion of various sizes, while dynamic label assignment
optimises alignment between predictions and ground truth. Experimental
results demonstrate that the fine-tuned YOLOv11-based algorithm achieves
high mean average precision (mAP) and F1-scores on the test set, indicating
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robust detection performance. The proposed method not only enhances
detection efficiency but also reduces labour costs, making it well-suited for
large-scale power line monitoring.

Keywords: ice accumulation; insulator icing detection; YOLOv11; ice
accretion detection.
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1 Introduction

In electrical power systems, insulators serve as a crucial component of transmission lines,
fulfilling dual roles of mechanical connection and €electrical insulation. The primary
function of insulators is to ensure electrical isolation of power lines, preventing current
leakage through line supports or other ground facilities. However, due to their constant
exposure to outdoor environments, insulators are subjected to the erosion of natural
conditions such as frost, rain, snow, and sand, especially in cold regions where ice
accretion is particularly severe. Ma et al. (2021) found that during the cold season, the
accumulation of snow and frost not only increases the weight and mechanical load on the
insulators but also triggers the degradation of their electrical performance, significantly
reducing their electrical insulation strength, thereby increasing the risk of power system
failures.

| ce accretion poses a severe threat to power systems. Firstly, snow and ice adhering to
the surface of insulators can alter their surface morphology and electrical properties,
leading to electrical breakdown and equipment damage. Secondly, ice accumulation may
cause insulators to fracture or detach, resulting in line outages. Additionally, Wang et al.
(2023b) proposed that the weight of accumulated ice can also lead to line breaks or tower
inclination issues. Therefore, timely and effective detection of ice accretion on insulators
is crucial for the safe and stable operation of power systems.

Traditional methods for detecting ice accretion on insulators primarily rely on manual
inspections and ground checks. Han et a. (2019) proposed while these methods can
identify issues to some extent, they are inefficient, costly, and not well-suited for
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large-scale line inspections. With the rapid advancement of drone technology and
computer vision, automated detection technologies based on image processing have
become a focus of research. By deploying high-definition cameras on drones or other
elevated platforms to capture extensive high-quality images, and employing image
processing and machine learning algorithms to automatically detect ice accretion on
insulators, the efficiency and accuracy of inspections can be significantly enhanced.

Among the many object detection algorithms, you only look once (Y OLO) stands out
as an efficient and fast real-time object detection algorithm. It has been widely applied to
various computer vision tasks because of its ability to simultaneously perform object
classification and localisation. YOLO transforms the object detection problem into a
regression problem, significantly improving the speed and accuracy of object detection.
According to Bharati and Pramanik (2020), YOLO achieves a speed performance of
approximately 21 to 155 fps, making it one of the fastest object detection agorithms
available. Zhang et al. (2024) believes that although Y OLO has performed quite well on
some standard datasets, it till faces numerous challenges in practical applications,
especiadly for specific tasks such as ice accretion detection on insulators. These
challenges include the varying manifestations of ice under different weather conditions
and the unevenness of ice accretion levels.

In comparison to other object detection algorithms, faster R-CNN has also been
widely used in the field of object detection. Li (2021) analysed the performance of faster
R-CNN models based on different pre-training models and conducted a comprehensive
evauation of the performance of faster R-CNN. The experimenta results showed the
accuracy and detection speed of R-CNN, fast R-CNN, and faster R-CNN based on three
different datasets. Faster R-CNN significantly improves the overall performance by
adding a region proposal network (RPN), especialy in terms of detection speed.
However, the application of different pre-training models will result in a great difference
in the performance of faster R-CNN. This analysis provides a benchmark for evaluating
the performance of object detection algorithms, including YOLO, in various applications.

Furthermore, Girshick (2015) introduced fast R-CNN, which builds on the original
R-CNN by introducing a more efficient training and detection process. Fast R-CNN uses
a single-stage training process that jointly optimises classification and bounding box
regression, significantly reducing the computational cost and improving detection
accuracy. Thiswork laid the foundation for subsequent advancements in object detection,
including Faster R-CNN and YOLO.

Therefore, this paper aims to explore the feasibility and methods of ice accretion
detection on insulators based on the YOLOv11l algorithm. Specifically, we use a
self-built dataset to fine-tune YOLOv11 to enhance the model’s accuracy and robustness
in complex environments. By training YOLOv1l specificaly, it hopes to achieve
efficient and accurate ice detection, providing effective technical support for the
operation and maintenance of power systems. Compared to traditional detection methods,
automated detection based on YOLOv11 can not only significantly improve detection
efficiency but also reduce labour costs to some extent, and better cope with the
monitoring tasks of large-scale lines.

The contributions of this study are mainly reflected in the following aspects:

1 A method for ice accretion detection on insulators based on the Y OLOv11 algorithm
is proposed, combining image processing and deep learning technologiesto achieve
automation in ice detection.
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2 A sdf-built dataset is used to fine-tune Y OLOv11, overcoming detection difficulties
in complex environments such as low temperatures, snow, and ice.

3 The effectiveness and robustness of this method are verified through experiments,
achieving good detection resullts.

Through the research presented in this paper, we aim to provide an efficient, accurate,
and scalable ice accretion detection solution for the intelligent operation and maintenance
of power systems, thereby promoting the development of power equipment inspection
technology.

2 Related work

In the field of insulator ice accretion detection, as the demand for power equipment
inspection continues to grow, the associated detection methods are constantly evolving
and improving. Liu et al. (2020b) proposed early research methods primarily relied on
manual patrols and traditional image processing techniques, which suffered from low
efficiency and poor accuracy, and have gradually been replaced by newer technologies.
Here are some typical research advancements;

2.1 Iceaccretion detection based on image processing

In the early stages, ice accretion detection on insulators mainly depended on image
processing techniques. By acquiring static images or video frames and combining basic
image processing algorithms, researchers were able to perform simple target recognition
and analysis. Pernebayeva et al. (2019) proposed a method based on image smoothing
and threshold transformation involving filtering the image to remove noise and then
extracting the outline of the insulator Hao et al. (2022) proposed threshold transformation
distinguished between ice and snow areas and non-ice areas by setting a pixel vaue
threshold, thereby identifying the iced insulators. Irene et a. (2009) and Solangi (2018)
believe these methods were simple and computationally light, but their recognition
effects were easily affected in complex environments, especially when it was difficult to
provide accurate results in low-contrast or high-noise backgrounds.

2.2 Traditional feature extraction methods

With the development of computer vision technology, researchers began to introduce
more complex feature extraction methods. For example, Mikolajczyk and Schmid (2005)
proposed a feature extraction technique based on the GLOH descriptor, which can
effectively capture edge and texture information in images for target recognition and
classification. These methods extracted local features of insulators from images and then
used machine learning algorithms for classification to determine whether there was ice
accretion (Liu et a., 2020a). Additionally, the GVF snake model was proposed as an
image segmentation method based on active contour models. This method accurately
fitted the contours of insulators to further analyse whether they were iced. The GVF
snake method could effectively detect irregular insulator contours in images, especialy
suitable for images with complex shapes or unclear edges (Zhang, 2022). Despite
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performing well in experimental settings, these methods still face significant challenges
in complex outdoor environments, particularly under strong lighting, fog, or snowy
weather, especially when dealing with background interference in images (Nusantika
et a., 2024).

2.3 Detection methods based on 3D reconstruction

In recent years, with the continuous advancement of computer vision and stereo vision
technology, researchers have begun to explore ice accretion detection methods for
insulators based on 3D reconstruction. By employing binocular vision or multi-view
imaging techniques, it is possible to reconstruct a 3D point cloud model of the insulator.
Based on these 3D data, researchers can more accurately calculate the thickness of theice
accretion and thereby assess the impact of the ice on the insulator (Liu et al., 2023). For
example, Wang et a. (2023a) used binocular vision technology to match two images of
the same target object taken from different angles, reconstruct a three-dimensiona point
cloud model, and extract surface morphology information of the insulator from it. These
methods have a significant advantage in terms of accuracy, especialy when calculating
the thickness of ice accretion, providing more precise results than 2D image processing
(Guo and Hu, 2017). However, 3D reconstruction methods have high requirements for
image acquisition, typically requiring multi-perspective shooting data, and also have
stringent demands on image quaity and camera cdibration (Marek et a., 2021).
Moreover, these methods have high computational complexity and poor real-time
performance, which limits their application in large-scale, high-frequency inspection
tasks (Gongalves et a., 2022).

2.4 Deep learning methods

In recent years, the rapid development of deep learning technology has provided new
solutions for insulator ice accretion detection. Deep learning, especialy the application of
convolutional neural networks (CNNs) and object detection algorithms, has become the
mainstream method in the field of image recognition. The YOLO series of algorithms, as
an efficient object detection method, has achieved excellent results in various object
detection tasks due to its fast detection speed and high accuracy. In the detection of ice
accretion on insulators, the YOLO model can simultaneously perform target detection
and classification in a single forward propagation process, thus achieving rapid
localisation and identification of iced insulators (Qiu et al., 2022). Researchers have
fine-tuned the YOLO model on self-built datasets, significantly enhancing the detection
accuracy in complex environments. For example, Chen (2024) applied YOLOv11 to
target detection in high-resolution images, and further improved the recognition effect
under different meteorological conditions through data enhancement, transfer learning
and other means.

Compared to traditional image processing and 3D reconstruction methods, deep
learning-based object detection methods show strong robustness and flexibility in
complex environments. Particularly, the YOLO algorithm can provide rapid responses
when processing real-time images, meeting the needs of large-scale inspections (Liu
et a., 2023). Additionally, the YOLO model can be combined with automated equipment
such as drones to achieve automated inspections over a wide area, reducing labour costs
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and improving the safety and efficiency of power system operations (Nguyen et al.,
2018).

3 Method

In this study, we propose an ice detection method for insulators based on the YOLOv11
model. YOLO is an efficient object detection algorithm that can simultaneously complete
object classification and localisation tasks through a single forward pass. To enable
YOLOvV11 to accurately detect whether insulators are iced, we used our own collected
dataset of insulator images and fine-tuned the YOLOv11 model. This method, through
refined training, enables the YOLOv11l model to accurately identify and locate iced
insulators under adverse weather conditions.

YOLO is a CNN-based, end-to-end object detection algorithm. The YOLO model
revolutionised object detection algorithms by introducing a unified neural network
architecture that can simultaneously handle bounding box regression and object
classification tasks. This integrated approach marks a significant departure from
traditional two-stage detection methods, as the YOLO model offers end-to-end training
capabilities through afully differentiable design.

The main feature of YOLOv11 is transforming the object detection task into a
regression problem, directly predicting bounding boxes and class probabilities from the
input image. Its model structure mainly includes the backbone, neck, and head. The
backbone acts as a feature extractor, using CNNs to convert raw image data into
multi-scale feature maps. Secondly, the neck serves as an intermediate processing stage,
primarily used for aggregating and enhancing feature representations across different
scales. The Head acts as the prediction structure, generating the final output based on the
refined feature maps.

In YOLOv1l1, the model requires input images to have a fixed size, typicaly
640 x 640 pixels. If the provided image does not conform to this size standard, the
system will automatically resize the image to the required dimensions, ensuring
consistency in al inputs. The model’s output is a tensor with dimensions (S S B x (5
+ C)), where S x Srefers to the number of grids into which the model divides the input
image. The entire image is split into S x S grid cells, with each cell responsible for
predicting objects within its coverage area.

B represents the number of bounding boxes predicted by each grid cell. To improve
detection accuracy, YOLO alows each cell to predict multiple bounding boxes (B of
them), to better accommodate objects of different shapes and sizes that may appear
within that cell.

The number 5 refers to the five parameters associated with each bounding box: four
parameters define the position and size of the bounding box (the coordinates of the centre
point X, y, as well as the width w and height h, al of which use relative coordinates with
respect to the grid cell), and the fifth parameter is the confidence score, which reflects the
system’s belief in the presence of an object within the bounding box and is measured by
the intersection over union (loU) between the bounding box and the actual object.

For each bounding box, the model outputs the following information: four positional
parameters — X, y, w, h, which correspond to the relative coordinates of the centre point of
the bounding box and the relative width and height of the bounding box. The confidence
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score represents the estimated probability that the bounding box contains an object,
calculated based on the 1oU between the bounding box and the true label.

Additionally, C denotes the number of classes, meaning that each bounding box also
includes a vector of length C representing the probability distribution across various
classes, thereby determining the most likely object class within the bounding box. In your
description, you specifically mentioned the prediction of insulators, which implies that
the model has been trained to recogni se these specific objects.

Additionally, C represents the number of classes, meaning that each bounding box
aso includes a vector of length C that represents the probability distribution across
various classes, thereby determining the most likely object class within the bounding box.
In your description, you specifically mentioned the prediction of insulators, which
implies that the model has been trained to recognise this particular type of object.

Confidence = P(Object) = loU (0]

C represents the number of classes, with each bounding box predicting a class probability
distribution, i.e., the probability that the bounding box belongs to each class.

YOLOv11 processes input images through a grid-based approach, where each grid
cell isresponsible for predicting objects that fall within its region. Each grid cell predicts
multiple bounding boxes and predicts the loU for each bounding box with the ground
truth object, as well as the class confidence.

The YOLO series has seen multiple iterations such as Y OLOv5, YOLOv8, and so on.
YOLOvV11 is the latest iteration in the YOLO series, building upon the foundation of
YOLOVL1. It represents a significant leap in real-time object detection technology. This
new version introduces substantial enhancements in both architecture and training
methods, pushing the boundaries of accuracy, speed, and efficiency.

Figurel YOLOv11 detection framework (see online version for colours)
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3.1 Moded initialisation
3.1.1 Backbone

The backbone is a crucial component of the YOLO architecture, responsible for
extracting features from input images at multiple scales. This network primarily involves
stacking convolutional layers and specialised blocks to extract image features from the
given images.

The YOLOv1l model used in this study maintains a structure similar to its
predecessors in the Backbone section, mainly utilising initial convolutional layers to
downsample the image. These layers form the foundation of the feature extraction
process, gradually reducing spatial dimensions while increasing the number of channels.
A notable improvement in YOLOv11 is the introduction of the C3k2 block, which
replaces the C2f block used in previous versions. The C3k2 block is a more
computationally efficient implementation of the cross-stage partial (CSP) bottleneck. It
employs two smaller convolutions instead of a large convolutional kernel. The ‘k2' in
C3k2 indicates the smaller kernel size, which helps to speed up processing while
maintaining performance.

The YOLOv11l model we used inherits the spatial pyramid pooling — fast (SPPF)
block from previous versions and introduces a cross-stage partial with spatial attention
(C2PSA) module based on it. The C2PSA module, as a key innovation, significantly
enhances the model’s ability to focus on important areas in the feature map. By
integrating a spatia attention mechanism, the C2PSA module allows YOLOv11 to more
accurately focus on key areas in the image, thereby improving detection efficiency and
accuracy. Additionally, this module ensures that the model can focus on specific regions
of interest by performing spatial pooling operations on features, thus optimising the
detection of objects of different scales and positions.

3.1.2 Lossfunction

The loss function is primarily defined and calculated within the backbone, and its main
purpose in the main network is to guide the learning process of the model. It measures the
difference between the model’s predicted values and the actua labels, and adjusts the
model parameters to minimise this difference through backpropagation agorithms. The
YOLO loss function consists of three parts: localisation loss (bounding box loss),
confidence loss, and classification |oss.

Localisation loss typically uses mean squared error (MSE) to calculate the difference
between the predicted bounding boxes and the true bounding boxes. For each bounding
box, itsloss can be represented as:

B . . —\2 ~\2
Lioc = D 19 [(x—m)2+(m—yi)2+(@—ﬁ) +(ﬁ—ﬁ)] @
i=0
In the context, X, Vi, wi, hi represent the centre coordinates and the width and height of the
predicted bounding box, respectively. %, ¥, @i, h are the corresponding parameters of

the true bounding box. 1™ is the indicator function, which signifies whether there is a
detection target within that grid cell.
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The confidence loss calculates the difference between the predicted box’s confidence
and the true target’ s confidence, typically using M SE:

B ~
Lot =Y 19 (G G )° 3
i=0

where G is the confidence of the predicted box, representing the probability that the box
contains an object, and C; isthe confidence of the true box.

The classification loss calculates the difference between the predicted class and the
true class, often using cross-entropy loss:

C
Las = _z Pc IOg( f)c) (4)

C=0

where p. isthe probability of the true class (in this study, it refers to the probability of
whether the insulator isiced), and . isthe predicted class probability.
Thefinal total lossis the weighted sum of the three losses:

Liotal = AocLioc + Acont Leont + Aaslais (5)

where L is the localisation loss, which calculates the difference between the predicted
box’ s coordinates and size and the true box’ s coordinates and size.

3.1.3 Neck

The neck layer in object detection modelsiis situated between the backbone and the Head,
serving to enhance, fuse, and optimise features from different levels (scales). This layer
enables the model to capture target information of varying sizes and complexities. By
employing architectures like feature pyramid networks (FPN) and path aggregation
network (PANet), the neck layer increases the model’'s flexibility and accuracy,
particularly in complex environments, and significantly improves the detection capability
for smaller objects.

In the detection task for insulators, the size variation of insulators in images due to
distance can be substantial, making it challenging for a single-scale feature map to handle
such data. To address this issue, multi-scale feature fusion techniques are introduced in
the neck part of the model, primarily by fusing feature maps from different levels
(depths), alowing the network to maintain good perceptual abilities across different
scales.

YOLOvV11 replaced the original C2f block in the neck section with the C3k2 block.
The C3k2 block is designed to enhance speed and efficiency, thereby improving the
overall performance of the feature aggregation process. After upsampling and
concatenation, YOLOv11's neck section utilises this improved block to further increase
speed and performance. YOLOv11 also strengthened the spatial attention mechanism,
particularly through the C2PSA module. This attention mechanism enables the model to
focus on key areas of the image, potentially improving detection accuracy, especially
when dealing with small objects or partially occluded objects.
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3.1.4 Head

The head component is the final part of the network, responsible for generating the final
output results from the features extracted and fused through the backbone and neck. The
primary function of the head is to predict objects, i.e., to output the class, bounding box
position, and confidence for each candidate region (or grid cell).

The head predicts the class for each bounding box. For multiple bounding boxes per
grid cell, YOLO predicts the probability of each bounding box belonging to different
classes, meaning the head outputs a probability distribution of whether it is an insulator.
Subsequently, this component also performs positional regression for each predicted
bounding box, outputting the relative position coordinates and predicting the confidence
for each box. Confidence indicates the likelihood that the system believes the predicted
box contains an object, and it is aso related to the 1oU between the predicted box and the
true box.

3.2 Weight initialisation

Initialising weights is an important step before training a neural network. Good
initialisation can accelerate training and improve model performance. YOLO can use two
methods for weight initialisation:

1 Loading pre-trained weights: If using a pre-trained model, you can directly load the
pre-trained weights, skipping the training from scratch.

2 Random weight initialisation: If training the model from scratch, Y OLO will
initialise each layer of the network through random initialisation.

This article adopts the method of loading a pre-trained model, where yolov1llm.pt isafile
that contains both the network structure and the trained weights. After loading, al the
model’s weights are initialised to the pre-trained state. This model has been trained on
large-scale datasets such as COCO and ImageNet. Using a pre-trained model can
significantly speed up the training process and provide better initial performance.

3.3 Input process

To enhance the model’s generalisation and accuracy, we performed standardisation on
the images before processing them, ensuring that the input image size is unified to
640 x 640, and normalising the pixel values to scale the pixel values to the [0, 1] range.
In addition to standardisation, we also carried out data augmentation, including random
cropping, rotation, translation, scaling, and colour jittering operations. This helps to
increase the diversity of the data and improve the model’s robustness to different
environments.

3.4 Optimiser

Optimisers are one of the core components used to train neural networks. They are
responsible for adjusting the network weights through gradient descent algorithms to
minimise the loss function. An optimiser typically consists of the following parts: the
chosen optimisation agorithm (such as Adam, SGD, etc.), hyperparameter settings like
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learning rate and momentum, and how to update the network weights. During
fine-tuning, the following training strategies were used:

Optimiser: the Adam optimiser was adopted, which can adaptively adjust the learning
rate based on the historical gradients of each parameter, thereby effectively accelerating
training. Adam has good convergence speed and stability. The Adam optimiser adjusts
the learning rate for parameter updates by caculating the first moment (mean) and
second moment (variance) of the gradients. The parameter update formulais as follows:

P L 6)
Vi t+€

where « is the learning rate (commonly set to 0.001), ¢ is a small constant to prevent
division by zero errors, and m: and v are the first and second moments of the gradients,
respectively.

Figure2 Dataset (label 1: insulator without ice; label 0: insulator with ice) (see online version
for colours)

After fine-tuning, relevant hyperparameters for model training such as learning rate,
batch size, and epochs were set. After training, the model was tested on the test set to
evaluate its precision, recall, F1-score, and other metrics across different categories, to
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verify its effectiveness in practical applications. The evaluation results indicate that the
fine-tuned Y OLO model performs excellently in detecting iced insulators, achieving high
accuracy in object detection under various environmental conditions.

4 Result

4.1 Dataset

There collected a dataset of insulator images captured under various environmental
conditions, such as clear skies, rain and snow, and low temperatures. The dataset includes
images of multiple categories, including insulators without ice and insulators with
varying degrees of ice coverage. Each image in the dataset is annotated with the location
of the insulator (through bounding boxes) and labels indicating the presence of ice.

Figure3 Dataset (information of labelled samples) (see online version for colours)

Ins_1
Ins_w

00 02 04 06 08 10 00 02 04 06 08 10
X width
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For each image, the Labellmg tool had been applied to annotate the insulators, defining
two category labels: no ice and ice. Each object is annotated as a rectangular bounding
box, and each bounding box is associated with a category label. The annotated data
includes the image path, coordinates (Xmin, Ymin, Xmax, Ymax) fOr each object, and the
category of that object. We divided the organised dataset into two parts. a training set
(accounting for 80% of the total data) and a validation set (accounting for 20% of the
total data).

4.2 Tran

The total number of training epochs is set to 100. The training set consists of 2,493
images, while the validation set contains 634 images. Each batch contains 36 images, and
the program updates the weights using the average gradient of 36 samples each time. The
choice of 36 as the batch size is to balance training speed and memory usage. A smaller
batch size makes training more stable but less computationally efficient; a larger batch
Size aidsin faster training but requires more GPU memory.

Each batch consists of 36 images, and the model performs forward and backward
propagation on each batch, then updates the network parameters. During training, the
network iterates over this data multiple times until the training is completed or stopped
early.

To prevent the model from overfitting during training, we employed an early stopping
strategy. Early stopping is a method that decides whether to stop training based on the
performance changes on the validation set. We set the patience to 100, which means that
if there is no significant improvement in the performance metrics on the validation set for
100 consecutive batches, the training will be stopped early.

Monitoring a key performance metric on the validation set (such as loss or accuracy)
requires setting an early stopping strategy. If there is no significant improvement in
performance within a specified ‘ patience period’, it indicates that the model has stabilised
and may not be able to improve further, and the risk of overfitting begins to increase.
Therefore, stopping the training prevents the program from overfitting and saves
computational resources.

4.3 Training results

Having completed 889 batches of training, we have acquired the optimal weight
parameters, which are the result of fine-tuning on this particular training dataset. These
optimal weights effectively capture the characteristics and patterns present in the training
data, thus improving the model’s reliability for object detection tasks. The training
process included numerous iterative optimisations, refining the model through
backpropagation and minimising the loss function, ultimately enabling the model to
precisely recognise both the positions and categories of targets within images.

From Figure 4, it can be observed that the mAP50(B) and mAP50-95(B) metrics
consistently increase as the number of iterations grows, indicating a continuous
improvement in the model’ s detection capability. mAP50(B) represents the mean average
precision (MAP) at an loU threshold of 0.5. This metric exhibits a rapid increase during
training and eventually approaches 1.0, suggesting that the model achieves high detection
accuracy under arelatively lenient 1oU criterion. In contrast, mAP50-95(B) is computed
as the mAP across multiple 1oU thresholds ranging from 0.5 to 0.95. While its overal
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trend closely follows that of mAP50(B), the final value is dightly lower, reflecting a
decline in detection accuracy under stricter loU conditions. This trend aligns with
common patterns observed in object detection training, demonstrating that the model
maintains robust performance across various loU thresholds. Furthermore, as training
progresses, the model’ s performance gradually converges, indicating an improvement in
its generalisation capability.

Figure4 Training results (see online version for colours)

time train/box_loss train/cls_loss train/dfl_loss metrics/precision(B)
L za
0 500 o] 500 0 500 0 500 0 500
0 500 "] 500 0 500 0 500 0 500

Figure5 Confusion matrix normalised (see online version for colours)
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Going forward, these optimal weight parameters can be loaded into a standard Y OLOv11
model, leveraging these parameters to conduct inference on new datasets. This means that
even when using different datasets or scenarios, as long as these optimal weights are

loaded, the YOLOv11 model should still deliver detection results comparable to those
achieved during our training process.

4.3.1 Confusion matrix

A confusion matrix is a tool for assessing the performance of a classification model. It
provides a more detailed evaluation of model performance than a single accuracy score
by summarising the relationships between the model’ s predicted outcomes and the actual
labels. Each row of the confusion matrix corresponds to the established categories (in this
case, whether the insulators are icy), and each column corresponds to the predicted
categories. The confusion matrix allows us to closely examine the model’s classification
performance, including both correct predictions and instances of misclassification.

Based on the results from the confusion matrix, the accuracy of predicting whether
insulators are iced or not iced both exceed 97%. Although the model exhibits a certain
level of misclassification when distinguishing the background, it generally demonstrates
high accuracy in predicting the icing condition of insulators. For the next steps in
optimising the model, consideration can be given to reducing the misidentification rate of
the background to enhance its recognition capability in real-world scenarios.

Figure6 F1-confidence curve (see online version for colours)
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4.3.2 Fl-scorecurve

The F1 curve evaluates a model’s classification performance by assessing changes in
precision and recall. The F1-score is the harmonic mean of precision and recall, designed
to provide a balanced measure of a model’ s performance on these two indicators. The F1
curve shows the change trends of the Fl1-score at different thresholds, highlighting the
model’s capabilities. In particular, when handling classification issues and encountering
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class imbalance, the F1 curve provides a more accurate assessment method than relying
solely on accuracy.

The x-axis (confidence) indicates the confidence threshold of the classification
model, which is the degree of certainty the model has in its predictions. The threshold
spans from O to 1, showcasing the model’s performance at varying levels of confidence.
The y-axis (F1) represents the F1-score, a metric that integrates precision and recall to
evaluate the performance of a classification model. A higher F1-score signifies superior
bal ance between precision and recall.

From the graph, it can be observed that the overall curve remains stable within the
confidence range of approximately 0.1 to 0.8, with an F1-score close to 0.98, indicating
that the model achieves high overall predictive performance across al categories. When
the confidence exceeds 0.8, the F1-score starts to drop rapidly, possibly due to some

correct predictions being missed at higher confidence levels. The highest F1-score is
0.98, corresponding to a confidence of 0.566.

4.3.3 Recall-confidence curve

Horizontal axis (confidence): Represents the confidence threshold of the model’s

predictions, ranging from 0 to 1. The higher the confidence, the more certain the
model is about the correctness of its predictions.

Vertical axis (recall): Representsrecall, which is the proportion of correctly

identified targets out of all actual targets. Higher recall indicates a lower missed
detection rate by the model.

Figure 7 Recall-confidence curve (see online version for colours)

The curve shows that the recall performance of the model for the Ins w_ice and
Ins_wo_ice categories is very close, indicating that the model has a balanced detection
capability for these two categories, without significant bias. At low confidence levels
(close to 0), the recall is close to 1.0, suggesting that the model can almost completely
detect the targets under a low threshold, but this may introduce more false positives
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(affecting precision). At high confidence levels (close to 1.0), the recall drops rapidly,
indicating that the model’ s predictions become more cautious, and some targets fail to be
detected (missed detections).

4.3.4 Predict result

From the prediction result diagram figures, it can be observed that the model is capable of
effectively detecting the majority of iced insulators across various scenarios,
demonstrating its ability in identifying iced insulators. However, there are till cases of
undetected iced insulators or misclassifications. These false detections and omissions
indicate that the model requires further improvement in handling details and boundary
conditions. Nevertheless, the overall detection performance of the model suggests it has
the potential for practical application.

Figure8 Predict result (samples) (see online version for colours)

To further enhance the mode’s accuracy and reliability, various strategies can be
employed to optimise its performance. For instance, supplementing the dataset with more
diverse samples can improve the model’s generalisation ability, especially for cases
involving weak coverage, partia occlusion, and complex backgrounds. Additionaly,
targeted adjustments to the model’s parameters, such as optimising hyperparameter
settings, improving the loss function, and enhancing data pre-processing techniques, can
all contribute to achieving higher detection accuracy across different scenarios. With
continuous optimisation and refinement, the model is expected to meet the standards
required for practical applications.
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Figure9 Predict result (in actual substation scenarios) (see online version for colours)

5 Conclusions

This paper proposes an insulator icing detection method based on the YOLO deep
learning algorithm, aiming to quickly and accurately identify whether insulators on
transmission lines are iced. Insulator icing is one of the primary factors leading to
transmission line failures. Traditional detection methods often suffer from low efficiency,
high costs, and significant manual intervention. By introducing object detection
technology, the proposed method effectively addresses these challenges.

In terms of method design, this study selects the YOL O series model as the detection
framework and enhances the model’s ability to recognise iced and ice-free insulators
through data augmentation and feature optimisation. The model training process involves
the use of a large-scale annotated dataset and employs optimisation strategies combining
cross-entropy loss and 10U loss to balance detection precision and recall. Regarding the
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model structure, improvements were made to the neck and head components of YOLO,
introducing the C2PSA module to enhance spatial attention. This enables the model to
focus more on critical features in the iced aress, thereby improving detection
performance for small objects and in complex backgrounds.

Experimental results demonstrate that the proposed method achieves high levels of
mMAP and F1-score on the test set, indicating robust detection performance. Notably, the
detection precision for the ‘iced insulator’ category outperforms that of the ‘ice-free
insulator’ category.

In summary, this research indicates that the Y OLOv11-based insulator icing detection
method is efficient and reliable, providing technical support for intelligent inspectionsin
power systems. Future work will focus on enhancing the model’s ability to detect iced
insulators, further optimising its rea-time performance and robustness to meet the
demands of more complex application scenarios.
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