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Abstract: Ice accumulation on insulators can lead to electrical breakdown, 
equipment damage, and line outages, making timely and accurate detection 
essential for maintaining the safe and stable operation of power systems. This 
paper proposes an ice accretion detection method for insulators based on You 
Only Look Once version 11 (YOLOv11), integrating image processing and 
deep learning techniques to achieve automated detection. A self-built dataset 
was used to fine-tune YOLOv11, enhancing the model’s accuracy and 
robustness in complex environments. Compared to its predecessors, YOLOv11 
features an improved backbone network for more efficient feature extraction, 
advanced attention mechanisms for enhanced focus on critical regions, and an 
anchor-free detection head that reduces computational complexity while 
maintaining high precision. Multi-scale feature fusion ensures the accurate 
detection of ice accretion of various sizes, while dynamic label assignment 
optimises alignment between predictions and ground truth. Experimental 
results demonstrate that the fine-tuned YOLOv11-based algorithm achieves 
high mean average precision (mAP) and F1-scores on the test set, indicating  
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robust detection performance. The proposed method not only enhances 
detection efficiency but also reduces labour costs, making it well-suited for 
large-scale power line monitoring. 

Keywords: ice accumulation; insulator icing detection; YOLOv11; ice 
accretion detection. 
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1 Introduction 

In electrical power systems, insulators serve as a crucial component of transmission lines, 
fulfilling dual roles of mechanical connection and electrical insulation. The primary 
function of insulators is to ensure electrical isolation of power lines, preventing current 
leakage through line supports or other ground facilities. However, due to their constant 
exposure to outdoor environments, insulators are subjected to the erosion of natural 
conditions such as frost, rain, snow, and sand, especially in cold regions where ice 
accretion is particularly severe. Ma et al. (2021) found that during the cold season, the 
accumulation of snow and frost not only increases the weight and mechanical load on the 
insulators but also triggers the degradation of their electrical performance, significantly 
reducing their electrical insulation strength, thereby increasing the risk of power system 
failures. 

Ice accretion poses a severe threat to power systems. Firstly, snow and ice adhering to 
the surface of insulators can alter their surface morphology and electrical properties, 
leading to electrical breakdown and equipment damage. Secondly, ice accumulation may 
cause insulators to fracture or detach, resulting in line outages. Additionally, Wang et al. 
(2023b) proposed that the weight of accumulated ice can also lead to line breaks or tower 
inclination issues. Therefore, timely and effective detection of ice accretion on insulators 
is crucial for the safe and stable operation of power systems. 

Traditional methods for detecting ice accretion on insulators primarily rely on manual 
inspections and ground checks. Han et al. (2019) proposed while these methods can 
identify issues to some extent, they are inefficient, costly, and not well-suited for  
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large-scale line inspections. With the rapid advancement of drone technology and 
computer vision, automated detection technologies based on image processing have 
become a focus of research. By deploying high-definition cameras on drones or other 
elevated platforms to capture extensive high-quality images, and employing image 
processing and machine learning algorithms to automatically detect ice accretion on 
insulators, the efficiency and accuracy of inspections can be significantly enhanced. 

Among the many object detection algorithms, you only look once (YOLO) stands out 
as an efficient and fast real-time object detection algorithm. It has been widely applied to 
various computer vision tasks because of its ability to simultaneously perform object 
classification and localisation. YOLO transforms the object detection problem into a 
regression problem, significantly improving the speed and accuracy of object detection. 
According to Bharati and Pramanik (2020), YOLO achieves a speed performance of 
approximately 21 to 155 fps, making it one of the fastest object detection algorithms 
available. Zhang et al. (2024) believes that although YOLO has performed quite well on 
some standard datasets, it still faces numerous challenges in practical applications, 
especially for specific tasks such as ice accretion detection on insulators. These 
challenges include the varying manifestations of ice under different weather conditions 
and the unevenness of ice accretion levels. 

In comparison to other object detection algorithms, faster R-CNN has also been 
widely used in the field of object detection. Li (2021) analysed the performance of faster 
R-CNN models based on different pre-training models and conducted a comprehensive 
evaluation of the performance of faster R-CNN. The experimental results showed the 
accuracy and detection speed of R-CNN, fast R-CNN, and faster R-CNN based on three 
different datasets. Faster R-CNN significantly improves the overall performance by 
adding a region proposal network (RPN), especially in terms of detection speed. 
However, the application of different pre-training models will result in a great difference 
in the performance of faster R-CNN. This analysis provides a benchmark for evaluating 
the performance of object detection algorithms, including YOLO, in various applications. 

Furthermore, Girshick (2015) introduced fast R-CNN, which builds on the original  
R-CNN by introducing a more efficient training and detection process. Fast R-CNN uses 
a single-stage training process that jointly optimises classification and bounding box 
regression, significantly reducing the computational cost and improving detection 
accuracy. This work laid the foundation for subsequent advancements in object detection, 
including Faster R-CNN and YOLO. 

Therefore, this paper aims to explore the feasibility and methods of ice accretion 
detection on insulators based on the YOLOv11 algorithm. Specifically, we use a  
self-built dataset to fine-tune YOLOv11 to enhance the model’s accuracy and robustness 
in complex environments. By training YOLOv11 specifically, it hopes to achieve 
efficient and accurate ice detection, providing effective technical support for the 
operation and maintenance of power systems. Compared to traditional detection methods, 
automated detection based on YOLOv11 can not only significantly improve detection 
efficiency but also reduce labour costs to some extent, and better cope with the 
monitoring tasks of large-scale lines. 

The contributions of this study are mainly reflected in the following aspects: 

1 A method for ice accretion detection on insulators based on the YOLOv11 algorithm 
is proposed, combining image processing and deep learning technologies to achieve 
automation in ice detection. 
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2 A self-built dataset is used to fine-tune YOLOv11, overcoming detection difficulties 
in complex environments such as low temperatures, snow, and ice. 

3 The effectiveness and robustness of this method are verified through experiments, 
achieving good detection results. 

Through the research presented in this paper, we aim to provide an efficient, accurate, 
and scalable ice accretion detection solution for the intelligent operation and maintenance 
of power systems, thereby promoting the development of power equipment inspection 
technology. 

2 Related work 

In the field of insulator ice accretion detection, as the demand for power equipment 
inspection continues to grow, the associated detection methods are constantly evolving 
and improving. Liu et al. (2020b) proposed early research methods primarily relied on 
manual patrols and traditional image processing techniques, which suffered from low 
efficiency and poor accuracy, and have gradually been replaced by newer technologies. 
Here are some typical research advancements: 

2.1 Ice accretion detection based on image processing 

In the early stages, ice accretion detection on insulators mainly depended on image 
processing techniques. By acquiring static images or video frames and combining basic 
image processing algorithms, researchers were able to perform simple target recognition 
and analysis. Pernebayeva et al. (2019) proposed a method based on image smoothing 
and threshold transformation involving filtering the image to remove noise and then 
extracting the outline of the insulator Hao et al. (2022) proposed threshold transformation 
distinguished between ice and snow areas and non-ice areas by setting a pixel value 
threshold, thereby identifying the iced insulators. Irene et al. (2009) and Solangi (2018) 
believe these methods were simple and computationally light, but their recognition 
effects were easily affected in complex environments, especially when it was difficult to 
provide accurate results in low-contrast or high-noise backgrounds. 

2.2 Traditional feature extraction methods 

With the development of computer vision technology, researchers began to introduce 
more complex feature extraction methods. For example, Mikolajczyk and Schmid (2005) 
proposed a feature extraction technique based on the GLOH descriptor, which can 
effectively capture edge and texture information in images for target recognition and 
classification. These methods extracted local features of insulators from images and then 
used machine learning algorithms for classification to determine whether there was ice 
accretion (Liu et al., 2020a). Additionally, the GVF snake model was proposed as an 
image segmentation method based on active contour models. This method accurately 
fitted the contours of insulators to further analyse whether they were iced. The GVF 
snake method could effectively detect irregular insulator contours in images, especially 
suitable for images with complex shapes or unclear edges (Zhang, 2022). Despite 
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performing well in experimental settings, these methods still face significant challenges 
in complex outdoor environments, particularly under strong lighting, fog, or snowy 
weather, especially when dealing with background interference in images (Nusantika  
et al., 2024). 

2.3 Detection methods based on 3D reconstruction 

In recent years, with the continuous advancement of computer vision and stereo vision 
technology, researchers have begun to explore ice accretion detection methods for 
insulators based on 3D reconstruction. By employing binocular vision or multi-view 
imaging techniques, it is possible to reconstruct a 3D point cloud model of the insulator. 
Based on these 3D data, researchers can more accurately calculate the thickness of the ice 
accretion and thereby assess the impact of the ice on the insulator (Liu et al., 2023). For 
example, Wang et al. (2023a) used binocular vision technology to match two images of 
the same target object taken from different angles, reconstruct a three-dimensional point 
cloud model, and extract surface morphology information of the insulator from it. These 
methods have a significant advantage in terms of accuracy, especially when calculating 
the thickness of ice accretion, providing more precise results than 2D image processing 
(Guo and Hu, 2017). However, 3D reconstruction methods have high requirements for 
image acquisition, typically requiring multi-perspective shooting data, and also have 
stringent demands on image quality and camera calibration (Marek et al., 2021). 
Moreover, these methods have high computational complexity and poor real-time 
performance, which limits their application in large-scale, high-frequency inspection 
tasks (Gonçalves et al., 2022). 

2.4 Deep learning methods 

In recent years, the rapid development of deep learning technology has provided new 
solutions for insulator ice accretion detection. Deep learning, especially the application of 
convolutional neural networks (CNNs) and object detection algorithms, has become the 
mainstream method in the field of image recognition. The YOLO series of algorithms, as 
an efficient object detection method, has achieved excellent results in various object 
detection tasks due to its fast detection speed and high accuracy. In the detection of ice 
accretion on insulators, the YOLO model can simultaneously perform target detection 
and classification in a single forward propagation process, thus achieving rapid 
localisation and identification of iced insulators (Qiu et al., 2022). Researchers have  
fine-tuned the YOLO model on self-built datasets, significantly enhancing the detection 
accuracy in complex environments. For example, Chen (2024) applied YOLOv11 to 
target detection in high-resolution images, and further improved the recognition effect 
under different meteorological conditions through data enhancement, transfer learning 
and other means. 

Compared to traditional image processing and 3D reconstruction methods, deep 
learning-based object detection methods show strong robustness and flexibility in 
complex environments. Particularly, the YOLO algorithm can provide rapid responses 
when processing real-time images, meeting the needs of large-scale inspections (Liu  
et al., 2023). Additionally, the YOLO model can be combined with automated equipment 
such as drones to achieve automated inspections over a wide area, reducing labour costs 
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and improving the safety and efficiency of power system operations (Nguyen et al., 
2018). 

3 Method 

In this study, we propose an ice detection method for insulators based on the YOLOv11 
model. YOLO is an efficient object detection algorithm that can simultaneously complete 
object classification and localisation tasks through a single forward pass. To enable 
YOLOv11 to accurately detect whether insulators are iced, we used our own collected 
dataset of insulator images and fine-tuned the YOLOv11 model. This method, through 
refined training, enables the YOLOv11 model to accurately identify and locate iced 
insulators under adverse weather conditions. 

YOLO is a CNN-based, end-to-end object detection algorithm. The YOLO model 
revolutionised object detection algorithms by introducing a unified neural network 
architecture that can simultaneously handle bounding box regression and object 
classification tasks. This integrated approach marks a significant departure from 
traditional two-stage detection methods, as the YOLO model offers end-to-end training 
capabilities through a fully differentiable design. 

The main feature of YOLOv11 is transforming the object detection task into a 
regression problem, directly predicting bounding boxes and class probabilities from the 
input image. Its model structure mainly includes the backbone, neck, and head. The 
backbone acts as a feature extractor, using CNNs to convert raw image data into  
multi-scale feature maps. Secondly, the neck serves as an intermediate processing stage, 
primarily used for aggregating and enhancing feature representations across different 
scales. The Head acts as the prediction structure, generating the final output based on the 
refined feature maps. 

In YOLOv11, the model requires input images to have a fixed size, typically  
640 × 640 pixels. If the provided image does not conform to this size standard, the 
system will automatically resize the image to the required dimensions, ensuring 
consistency in all inputs. The model’s output is a tensor with dimensions (S, S, B × (5  
+ C)), where S × S refers to the number of grids into which the model divides the input 
image. The entire image is split into S × S grid cells, with each cell responsible for 
predicting objects within its coverage area. 

B represents the number of bounding boxes predicted by each grid cell. To improve 
detection accuracy, YOLO allows each cell to predict multiple bounding boxes (B of 
them), to better accommodate objects of different shapes and sizes that may appear 
within that cell. 

The number 5 refers to the five parameters associated with each bounding box: four 
parameters define the position and size of the bounding box (the coordinates of the centre 
point x, y, as well as the width w and height h, all of which use relative coordinates with 
respect to the grid cell), and the fifth parameter is the confidence score, which reflects the 
system’s belief in the presence of an object within the bounding box and is measured by 
the intersection over union (IoU) between the bounding box and the actual object. 

For each bounding box, the model outputs the following information: four positional 
parameters – x, y, w, h, which correspond to the relative coordinates of the centre point of 
the bounding box and the relative width and height of the bounding box. The confidence 
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score represents the estimated probability that the bounding box contains an object, 
calculated based on the IoU between the bounding box and the true label. 

Additionally, C denotes the number of classes, meaning that each bounding box also 
includes a vector of length C representing the probability distribution across various 
classes, thereby determining the most likely object class within the bounding box. In your 
description, you specifically mentioned the prediction of insulators, which implies that 
the model has been trained to recognise these specific objects. 

Additionally, C represents the number of classes, meaning that each bounding box 
also includes a vector of length C that represents the probability distribution across 
various classes, thereby determining the most likely object class within the bounding box. 
In your description, you specifically mentioned the prediction of insulators, which 
implies that the model has been trained to recognise this particular type of object. 

( )Confidence P Object IoU= ∗  (1) 

C represents the number of classes, with each bounding box predicting a class probability 
distribution, i.e., the probability that the bounding box belongs to each class. 

YOLOv11 processes input images through a grid-based approach, where each grid 
cell is responsible for predicting objects that fall within its region. Each grid cell predicts 
multiple bounding boxes and predicts the IoU for each bounding box with the ground 
truth object, as well as the class confidence. 

The YOLO series has seen multiple iterations such as YOLOv5, YOLOv8, and so on. 
YOLOv11 is the latest iteration in the YOLO series, building upon the foundation of 
YOLOv1. It represents a significant leap in real-time object detection technology. This 
new version introduces substantial enhancements in both architecture and training 
methods, pushing the boundaries of accuracy, speed, and efficiency. 

Figure 1 YOLOv11 detection framework (see online version for colours) 
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3.1 Model initialisation 

3.1.1 Backbone 
The backbone is a crucial component of the YOLO architecture, responsible for 
extracting features from input images at multiple scales. This network primarily involves 
stacking convolutional layers and specialised blocks to extract image features from the 
given images. 

The YOLOv11 model used in this study maintains a structure similar to its 
predecessors in the Backbone section, mainly utilising initial convolutional layers to 
downsample the image. These layers form the foundation of the feature extraction 
process, gradually reducing spatial dimensions while increasing the number of channels. 
A notable improvement in YOLOv11 is the introduction of the C3k2 block, which 
replaces the C2f block used in previous versions. The C3k2 block is a more 
computationally efficient implementation of the cross-stage partial (CSP) bottleneck. It 
employs two smaller convolutions instead of a large convolutional kernel. The ‘k2’ in 
C3k2 indicates the smaller kernel size, which helps to speed up processing while 
maintaining performance. 

The YOLOv11 model we used inherits the spatial pyramid pooling – fast (SPPF) 
block from previous versions and introduces a cross-stage partial with spatial attention 
(C2PSA) module based on it. The C2PSA module, as a key innovation, significantly 
enhances the model’s ability to focus on important areas in the feature map. By 
integrating a spatial attention mechanism, the C2PSA module allows YOLOv11 to more 
accurately focus on key areas in the image, thereby improving detection efficiency and 
accuracy. Additionally, this module ensures that the model can focus on specific regions 
of interest by performing spatial pooling operations on features, thus optimising the 
detection of objects of different scales and positions. 

3.1.2 Loss function 
The loss function is primarily defined and calculated within the backbone, and its main 
purpose in the main network is to guide the learning process of the model. It measures the 
difference between the model’s predicted values and the actual labels, and adjusts the 
model parameters to minimise this difference through backpropagation algorithms. The 
YOLO loss function consists of three parts: localisation loss (bounding box loss), 
confidence loss, and classification loss. 

Localisation loss typically uses mean squared error (MSE) to calculate the difference 
between the predicted bounding boxes and the true bounding boxes. For each bounding 
box, its loss can be represented as: 

( ) ( ) ( ) ( )222 2

0

ˆˆ ˆ ˆ1
B

obj
loc i i i i i i i ii

i

L x x y y ω ω h h
=

 
= − + − + − + −    (2) 

In the context, xi, yi, ωi, hi represent the centre coordinates and the width and height of the 
predicted bounding box, respectively. ˆˆ ˆ ˆ, , ,i i i ix y ω h  are the corresponding parameters of 

the true bounding box. 1obj
i  is the indicator function, which signifies whether there is a 

detection target within that grid cell. 
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The confidence loss calculates the difference between the predicted box’s confidence 
and the true target’s confidence, typically using MSE: 

( )2

0

ˆ1
B

obj
conf i ii

i

L C C
=

= −  (3) 

where Ci is the confidence of the predicted box, representing the probability that the box 
contains an object, and ˆiC  is the confidence of the true box. 

The classification loss calculates the difference between the predicted class and the 
true class, often using cross-entropy loss: 

( )
0

ˆlog
C

cls c c
C

L p p
=

= −  (4) 

where ˆcp  is the probability of the true class (in this study, it refers to the probability of 
whether the insulator is iced), and ˆcp  is the predicted class probability. 

The final total loss is the weighted sum of the three losses: 

total loc loc conf conf cls clsL λ L λ L λ L= + +  (5) 

where Ltotal is the localisation loss, which calculates the difference between the predicted 
box’s coordinates and size and the true box’s coordinates and size. 

3.1.3 Neck 
The neck layer in object detection models is situated between the backbone and the Head, 
serving to enhance, fuse, and optimise features from different levels (scales). This layer 
enables the model to capture target information of varying sizes and complexities. By 
employing architectures like feature pyramid networks (FPN) and path aggregation 
network (PANet), the neck layer increases the model’s flexibility and accuracy, 
particularly in complex environments, and significantly improves the detection capability 
for smaller objects. 

In the detection task for insulators, the size variation of insulators in images due to 
distance can be substantial, making it challenging for a single-scale feature map to handle 
such data. To address this issue, multi-scale feature fusion techniques are introduced in 
the neck part of the model, primarily by fusing feature maps from different levels 
(depths), allowing the network to maintain good perceptual abilities across different 
scales. 

YOLOv11 replaced the original C2f block in the neck section with the C3k2 block. 
The C3k2 block is designed to enhance speed and efficiency, thereby improving the 
overall performance of the feature aggregation process. After upsampling and 
concatenation, YOLOv11’s neck section utilises this improved block to further increase 
speed and performance. YOLOv11 also strengthened the spatial attention mechanism, 
particularly through the C2PSA module. This attention mechanism enables the model to 
focus on key areas of the image, potentially improving detection accuracy, especially 
when dealing with small objects or partially occluded objects. 
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3.1.4 Head 
The head component is the final part of the network, responsible for generating the final 
output results from the features extracted and fused through the backbone and neck. The 
primary function of the head is to predict objects, i.e., to output the class, bounding box 
position, and confidence for each candidate region (or grid cell). 

The head predicts the class for each bounding box. For multiple bounding boxes per 
grid cell, YOLO predicts the probability of each bounding box belonging to different 
classes, meaning the head outputs a probability distribution of whether it is an insulator. 
Subsequently, this component also performs positional regression for each predicted 
bounding box, outputting the relative position coordinates and predicting the confidence 
for each box. Confidence indicates the likelihood that the system believes the predicted 
box contains an object, and it is also related to the IoU between the predicted box and the 
true box. 

3.2 Weight initialisation 

Initialising weights is an important step before training a neural network. Good 
initialisation can accelerate training and improve model performance. YOLO can use two 
methods for weight initialisation: 

1 Loading pre-trained weights: If using a pre-trained model, you can directly load the 
pre-trained weights, skipping the training from scratch. 

2 Random weight initialisation: If training the model from scratch, YOLO will 
initialise each layer of the network through random initialisation. 

This article adopts the method of loading a pre-trained model, where yolov11m.pt is a file 
that contains both the network structure and the trained weights. After loading, all the 
model’s weights are initialised to the pre-trained state. This model has been trained on 
large-scale datasets such as COCO and ImageNet. Using a pre-trained model can 
significantly speed up the training process and provide better initial performance. 

3.3 Input process 

To enhance the model’s generalisation and accuracy, we performed standardisation on 
the images before processing them, ensuring that the input image size is unified to  
640 × 640, and normalising the pixel values to scale the pixel values to the [0, 1] range. 
In addition to standardisation, we also carried out data augmentation, including random 
cropping, rotation, translation, scaling, and colour jittering operations. This helps to 
increase the diversity of the data and improve the model’s robustness to different 
environments. 

3.4 Optimiser 

Optimisers are one of the core components used to train neural networks. They are 
responsible for adjusting the network weights through gradient descent algorithms to 
minimise the loss function. An optimiser typically consists of the following parts: the 
chosen optimisation algorithm (such as Adam, SGD, etc.), hyperparameter settings like 
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learning rate and momentum, and how to update the network weights. During  
fine-tuning, the following training strategies were used: 

Optimiser: the Adam optimiser was adopted, which can adaptively adjust the learning 
rate based on the historical gradients of each parameter, thereby effectively accelerating 
training. Adam has good convergence speed and stability. The Adam optimiser adjusts 
the learning rate for parameter updates by calculating the first moment (mean) and 
second moment (variance) of the gradients. The parameter update formula is as follows: 

1
t

t t
t

mθ θ η
v

+ = − ⋅
+ ∈

 (6) 

where α is the learning rate (commonly set to 0.001), ϵ is a small constant to prevent 
division by zero errors, and mt and vt are the first and second moments of the gradients, 
respectively. 

Figure 2 Dataset (label 1: insulator without ice; label 0: insulator with ice) (see online version  
for colours) 

 

After fine-tuning, relevant hyperparameters for model training such as learning rate, 
batch size, and epochs were set. After training, the model was tested on the test set to 
evaluate its precision, recall, F1-score, and other metrics across different categories, to 
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verify its effectiveness in practical applications. The evaluation results indicate that the 
fine-tuned YOLO model performs excellently in detecting iced insulators, achieving high 
accuracy in object detection under various environmental conditions. 

4 Result 

4.1 Dataset 

There collected a dataset of insulator images captured under various environmental 
conditions, such as clear skies, rain and snow, and low temperatures. The dataset includes 
images of multiple categories, including insulators without ice and insulators with 
varying degrees of ice coverage. Each image in the dataset is annotated with the location 
of the insulator (through bounding boxes) and labels indicating the presence of ice. 

Figure 3 Dataset (information of labelled samples) (see online version for colours) 
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For each image, the LabelImg tool had been applied to annotate the insulators, defining 
two category labels: no ice and ice. Each object is annotated as a rectangular bounding 
box, and each bounding box is associated with a category label. The annotated data 
includes the image path, coordinates (xmin, ymin, xmax, ymax) for each object, and the 
category of that object. We divided the organised dataset into two parts: a training set 
(accounting for 80% of the total data) and a validation set (accounting for 20% of the 
total data). 

4.2 Train 

The total number of training epochs is set to 100. The training set consists of 2,493 
images, while the validation set contains 634 images. Each batch contains 36 images, and 
the program updates the weights using the average gradient of 36 samples each time. The 
choice of 36 as the batch size is to balance training speed and memory usage. A smaller 
batch size makes training more stable but less computationally efficient; a larger batch 
size aids in faster training but requires more GPU memory. 

Each batch consists of 36 images, and the model performs forward and backward 
propagation on each batch, then updates the network parameters. During training, the 
network iterates over this data multiple times until the training is completed or stopped 
early. 

To prevent the model from overfitting during training, we employed an early stopping 
strategy. Early stopping is a method that decides whether to stop training based on the 
performance changes on the validation set. We set the patience to 100, which means that 
if there is no significant improvement in the performance metrics on the validation set for 
100 consecutive batches, the training will be stopped early. 

Monitoring a key performance metric on the validation set (such as loss or accuracy) 
requires setting an early stopping strategy. If there is no significant improvement in 
performance within a specified ‘patience period’, it indicates that the model has stabilised 
and may not be able to improve further, and the risk of overfitting begins to increase. 
Therefore, stopping the training prevents the program from overfitting and saves 
computational resources. 

4.3 Training results 

Having completed 889 batches of training, we have acquired the optimal weight 
parameters, which are the result of fine-tuning on this particular training dataset. These 
optimal weights effectively capture the characteristics and patterns present in the training 
data, thus improving the model’s reliability for object detection tasks. The training 
process included numerous iterative optimisations, refining the model through 
backpropagation and minimising the loss function, ultimately enabling the model to 
precisely recognise both the positions and categories of targets within images. 

From Figure 4, it can be observed that the mAP50(B) and mAP50-95(B) metrics 
consistently increase as the number of iterations grows, indicating a continuous 
improvement in the model’s detection capability. mAP50(B) represents the mean average 
precision (mAP) at an IoU threshold of 0.5. This metric exhibits a rapid increase during 
training and eventually approaches 1.0, suggesting that the model achieves high detection 
accuracy under a relatively lenient IoU criterion. In contrast, mAP50-95(B) is computed 
as the mAP across multiple IoU thresholds ranging from 0.5 to 0.95. While its overall 
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trend closely follows that of mAP50(B), the final value is slightly lower, reflecting a 
decline in detection accuracy under stricter IoU conditions. This trend aligns with 
common patterns observed in object detection training, demonstrating that the model 
maintains robust performance across various IoU thresholds. Furthermore, as training 
progresses, the model’s performance gradually converges, indicating an improvement in 
its generalisation capability. 

Figure 4 Training results (see online version for colours) 

 

Figure 5 Confusion matrix normalised (see online version for colours) 
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Going forward, these optimal weight parameters can be loaded into a standard YOLOv11 
model, leveraging these parameters to conduct inference on new datasets. This means that 
even when using different datasets or scenarios, as long as these optimal weights are 
loaded, the YOLOv11 model should still deliver detection results comparable to those 
achieved during our training process. 

4.3.1 Confusion matrix 
A confusion matrix is a tool for assessing the performance of a classification model. It 
provides a more detailed evaluation of model performance than a single accuracy score 
by summarising the relationships between the model’s predicted outcomes and the actual 
labels. Each row of the confusion matrix corresponds to the established categories (in this 
case, whether the insulators are icy), and each column corresponds to the predicted 
categories. The confusion matrix allows us to closely examine the model’s classification 
performance, including both correct predictions and instances of misclassification. 

Based on the results from the confusion matrix, the accuracy of predicting whether 
insulators are iced or not iced both exceed 97%. Although the model exhibits a certain 
level of misclassification when distinguishing the background, it generally demonstrates 
high accuracy in predicting the icing condition of insulators. For the next steps in 
optimising the model, consideration can be given to reducing the misidentification rate of 
the background to enhance its recognition capability in real-world scenarios. 

Figure 6 F1-confidence curve (see online version for colours) 

 

4.3.2 F1-score curve 
The F1 curve evaluates a model’s classification performance by assessing changes in 
precision and recall. The F1-score is the harmonic mean of precision and recall, designed 
to provide a balanced measure of a model’s performance on these two indicators. The F1 
curve shows the change trends of the F1-score at different thresholds, highlighting the 
model’s capabilities. In particular, when handling classification issues and encountering 
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class imbalance, the F1 curve provides a more accurate assessment method than relying 
solely on accuracy. 

The x-axis (confidence) indicates the confidence threshold of the classification 
model, which is the degree of certainty the model has in its predictions. The threshold 
spans from 0 to 1, showcasing the model’s performance at varying levels of confidence. 
The y-axis (F1) represents the F1-score, a metric that integrates precision and recall to 
evaluate the performance of a classification model. A higher F1-score signifies superior 
balance between precision and recall. 

From the graph, it can be observed that the overall curve remains stable within the 
confidence range of approximately 0.1 to 0.8, with an F1-score close to 0.98, indicating 
that the model achieves high overall predictive performance across all categories. When 
the confidence exceeds 0.8, the F1-score starts to drop rapidly, possibly due to some 
correct predictions being missed at higher confidence levels. The highest F1-score is 
0.98, corresponding to a confidence of 0.566. 

4.3.3 Recall-confidence curve 

• Horizontal axis (confidence): Represents the confidence threshold of the model’s 
predictions, ranging from 0 to 1. The higher the confidence, the more certain the 
model is about the correctness of its predictions. 

• Vertical axis (recall): Represents recall, which is the proportion of correctly 
identified targets out of all actual targets. Higher recall indicates a lower missed 
detection rate by the model. 

Figure 7 Recall-confidence curve (see online version for colours) 

 

The curve shows that the recall performance of the model for the Ins_w_ice and 
Ins_wo_ice categories is very close, indicating that the model has a balanced detection 
capability for these two categories, without significant bias. At low confidence levels 
(close to 0), the recall is close to 1.0, suggesting that the model can almost completely 
detect the targets under a low threshold, but this may introduce more false positives 



   

 

   

   
 

   

   

 

   

   18 H. Huang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

(affecting precision). At high confidence levels (close to 1.0), the recall drops rapidly, 
indicating that the model’s predictions become more cautious, and some targets fail to be 
detected (missed detections). 

4.3.4 Predict result 
From the prediction result diagram figures, it can be observed that the model is capable of 
effectively detecting the majority of iced insulators across various scenarios, 
demonstrating its ability in identifying iced insulators. However, there are still cases of 
undetected iced insulators or misclassifications. These false detections and omissions 
indicate that the model requires further improvement in handling details and boundary 
conditions. Nevertheless, the overall detection performance of the model suggests it has 
the potential for practical application. 

Figure 8 Predict result (samples) (see online version for colours) 

 

To further enhance the model’s accuracy and reliability, various strategies can be 
employed to optimise its performance. For instance, supplementing the dataset with more 
diverse samples can improve the model’s generalisation ability, especially for cases 
involving weak coverage, partial occlusion, and complex backgrounds. Additionally, 
targeted adjustments to the model’s parameters, such as optimising hyperparameter 
settings, improving the loss function, and enhancing data pre-processing techniques, can 
all contribute to achieving higher detection accuracy across different scenarios. With 
continuous optimisation and refinement, the model is expected to meet the standards 
required for practical applications. 
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Figure 9 Predict result (in actual substation scenarios) (see online version for colours) 

  

  

5 Conclusions 

This paper proposes an insulator icing detection method based on the YOLO deep 
learning algorithm, aiming to quickly and accurately identify whether insulators on 
transmission lines are iced. Insulator icing is one of the primary factors leading to 
transmission line failures. Traditional detection methods often suffer from low efficiency, 
high costs, and significant manual intervention. By introducing object detection 
technology, the proposed method effectively addresses these challenges. 

In terms of method design, this study selects the YOLO series model as the detection 
framework and enhances the model’s ability to recognise iced and ice-free insulators 
through data augmentation and feature optimisation. The model training process involves 
the use of a large-scale annotated dataset and employs optimisation strategies combining 
cross-entropy loss and IoU loss to balance detection precision and recall. Regarding the 
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model structure, improvements were made to the neck and head components of YOLO, 
introducing the C2PSA module to enhance spatial attention. This enables the model to 
focus more on critical features in the iced areas, thereby improving detection 
performance for small objects and in complex backgrounds. 

Experimental results demonstrate that the proposed method achieves high levels of 
mAP and F1-score on the test set, indicating robust detection performance. Notably, the 
detection precision for the ‘iced insulator’ category outperforms that of the ‘ice-free 
insulator’ category. 

In summary, this research indicates that the YOLOv11-based insulator icing detection 
method is efficient and reliable, providing technical support for intelligent inspections in 
power systems. Future work will focus on enhancing the model’s ability to detect iced 
insulators, further optimising its real-time performance and robustness to meet the 
demands of more complex application scenarios. 
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