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Abstract: This study proposes a novel beach evolution prediction algorithm 
integrating convolutional neural networks and numerical simulation to enhance 
accuracy under extreme weather. An improved deep-water flow model, based 
on the Navier-Stokes and sand-water mixing equations, captures hydrodynamic 
changes influenced by wind, waves, tides, and currents. Meteorological and 
oceanic data are preprocessed using local weighted regression and interpolation 
methods to ensure quality. A neural network model dynamically predicts  
beach evolution, with k-fold cross-validation ensuring stability across extreme 
weather scenarios. Results show high accuracy, with mean square error (MSE), 
root mean square error (RMSE), and mean absolute error (MAE) all below 0.4 
and prediction errors under 12%. 
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1 Introduction 

Beach evolution is a complex process affected by many factors, especially under extreme 
weather conditions; its evolution characteristics are more significant and have higher 
uncertainty. Extreme weather factors such as storm surges, heavy rains, strong winds,  
and changes in ocean temperature often drastically impact beach morphology (Wiberg  
et al., 2020). Beach evolution is affected by meteorological factors and is closely  
related to various phenomena in oceanography. Oceanography provides a theoretical 
basis for understanding the role of tides, currents, waves, and other factors in beach 
morphology (Khatmullina and Chubarenko, 2019; Limber et al., 2018). The impact of 
beach evolution on ecological, environmental protection, disaster prevention and 
mitigation, and coastal engineering construction is profound. Therefore, understanding 
and predicting the dynamic evolution of beaches has important theoretical and practical 
value (Farrell et al., 2021; Zhang et al., 2020). With the increasing intensification of 
climate change, the frequency and intensity of extreme weather events have increased 
significantly, and the impact on beaches has become more complex and severe  
(Dodet et al., 2019; de Schipper et al., 2021). Traditional beach evolution numerical 
simulation methods often have the problem of insufficient simulation accuracy in  
such a complex and changing environment, especially for the response to emergencies 
such as storm surges, typhoons and heavy rainfall, and the accuracy and applicability of 
model prediction results are limited (De Lisle, 2019; Davidson-Arnott et al., 2018). 
Therefore, developing high-precision numerical simulation models that can adapt  
to extreme weather conditions is imperative. New methods are urgently needed to 
overcome the limitations of existing technologies (Cooper et al., 2020; Armenio et al., 
2019). 

In order to solve the deficiencies in traditional methods and existing research, this 
paper proposes a numerical simulation algorithm for beach evolution, focusing on the 
simulation of the dynamic evolution of beaches under extreme weather conditions and 
combining neural networks for predictive analysis. When designing, the algorithm fully 
considers the suddenness and complexity of extreme weather events. The numerical 
simulation results can be closer to the dynamic evolution process under the real beach 
environment through the fine modelling and data processing of dynamic factors such as 
meteorology and tides. At the same time, to improve the accuracy and adaptability of the 
prediction, this paper applies a neural network model, using its advantages in complex 
pattern recognition and nonlinear data fitting to assist in predicting the beach evolution 
process. By learning the implicit laws in historical meteorological and topographic data,  
the neural network can further optimise the prediction results based on the model output 
and compensate for the shortcomings of traditional numerical models in complex 
environments. The research results provide a scientific basis for beach protection and 
restoration, disaster prevention and mitigation, coastal zone management and engineering 
design. Through the combination of innovative numerical simulation algorithms and 
neural network models, this paper aims to promote the progress of beach evolution 
research and provide strong technical support for responding to increasingly frequent 
extreme weather events. 
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2 Related work 

In recent years, researchers have attempted to improve the accuracy of beach evolution 
simulation through a series of improvement schemes (Apostolopoulos and 
Nikolakopoulos, 2021; Álvarez Antolínez et al., 2019). For example, numerical 
simulation methods based on grid models simulate the combined effects of factors such 
as wind, waves, and tides, which, to a certain extent, improves the model’s ability to 
depict the dynamic changes of the beach (Peng et al., 2021; Anderson et al., 2018). 
Vitousek et al. (2017) proposed a coastline change model, which simulated the beach 
evolution process in a refined step-by-step manner and achieved relatively good results. 
However, such traditional models usually simplify boundary conditions and ignore 
certain dynamic factors when applied, making it difficult to adapt to sudden 
environmental changes caused by extreme weather (Panda, 2023; Liu et al., 2022).  
In addition, these methods usually assume that climate conditions are stable and show 
apparent deviations when dealing with nonlinear extreme events (Papadimitriou et al., 
2022; Faraggiana et al., 2022). Although some studies have applied more complex 
models and attempted to improve simulation accuracy by considering multiple factors, 
the effectiveness of the models is still limited when dealing with situations where climate 
conditions change dramatically (Weber de Melo et al., 2022; Ghoroghi et al., 2022). 

In contrast, with the rapid development of machine learning and deep learning 
technologies, researchers have begun to try to use these methods to cope with the 
complex simulation tasks of beach evolution (Theuerkauf et al., 2019; Vousdoukas et al., 
2020). Neural networks, deep learning, and other machine learning methods have 
significant advantages in data fitting and nonlinear pattern recognition, especially in 
dealing with environmental change problems with variable climate factors and complex 
influencing mechanisms. They show unique potential (Ying et al., 2019; Bauer and 
Wakes, 2022). For example, Kumar et al. (2020) used artificial neural networks to draw a 
coastline change map and achieved relatively ideal results. Neural networks have high 
application prospects in predicting beach evolution (Kumar et al., 2020). However, 
existing research based on neural networks is primarily concentrated in specific 
geographical areas or limited conditions. The model has poor applicability, and the 
application effect in extreme weather is still limited, which makes it challenging to meet 
the actual application needs (Lund et al., 2020; Liu et al., 2023). Therefore, how to 
further improve the applicability and accuracy of beach evolution prediction through 
neural networks under the premise of broad applicability is still a challenge to be solved 
(Matsui, 2017). 

3 New numerical simulation algorithm 

In traditional numerical simulation of beach evolution, shallow water equations and 
simplified hydrodynamic models have dominated. Although these tools can handle basic 
fluid movement and beach morphological changes, their limitations gradually become 
apparent when encountering complex changes caused by extreme weather conditions, 
mainly manifested in limited simulation accuracy and neglect of some dynamic 
influencing factors. To solve this problem, researchers applied an optimised deep water 
flow model. This model achieves high-precision simulation of the real-time dynamics of 
water flow and beach evolution by adding dynamic change terms. 
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In model construction, the unsteady deep water equation is combined with the 
Navier-Stokes equation and the sand-water mixing equation to fully simulate the 
interaction of multiple factors such as wind, waves, tides, and ocean currents under 
extreme weather conditions. Through detailed calculations of processes such as water 
flow velocity, sand deposition, and erosion, the deep water flow model can precisely 
capture complex hydrodynamic characteristics. In addition, the model also incorporates 
changes in dynamic climate factors such as airflow, wind speed, and temperature under 
extreme weather conditions, which directly impact beach evolution. By integrating 
meteorological data under different extreme weather conditions, such as typhoon travel 
paths and rainstorm intensity, the model can adjust and respond to changes in the external 
environment in real time. Without changing the model’s basic structure, the accuracy and 
adaptability of the simulation of beach evolution under extreme weather conditions are 
improved. 

Figure 1 depicts the working mechanism of the deep water flow model. By 
integrating multiple physical equation systems, such as the Navier-Stokes equation and 
the sand-water mixing equation, and incorporating the real-time fluctuations of dynamic 
climate factors (such as wind speed, airflow and temperature), the evolution of the beach 
under extreme weather conditions can be precisely simulated. The model captures and 
reflects the dynamic effects of complex and changing physical phenomena and 
environmental factors on beach morphology. 

Figure 1 Modelling of deep water flow model (see online version for colours) 

 

Under extreme weather conditions, some local areas experience significant changes 
during the evolution of the beach. Currently, the uniform grid distribution method used in 
traditional numerical models leads to unnecessary consumption of computing resources 
and may affect the simulation’s accuracy. Adaptive mesh refinement (AMR) technology 
is applied to address this challenge. If there is significant erosion or accumulation in an 
area, mesh refinement is triggered to capture the finer details of these changes. Once an 
area meets the refinement criteria, the AMR algorithm applies a finer mesh to that 
specific area. The refinement process works by subdividing the cells of the coarse mesh 
into smaller cells, thereby increasing the mesh resolution. Refinement is typically done 
hierarchically, where areas can be recursively subdivided into smaller meshes as the 
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complexity of the beach topography increases. Coarser grids are used to reduce the 
calculation burden in areas with relatively stable morphology, achieving an effective 
balance between accuracy and efficiency. With the changes in water flow, wind waves 
and tides caused by extreme weather, the beach topography undergoes drastic changes. 
The adaptive grid technology can adjust the grid structure in real-time, dynamically 
change the density and morphology of the grid, and ensure higher simulation accuracy in 
complex terrain areas. 

This study uses an implicit time integration scheme to handle rigid systems, reducing 
the time step limit and thus accelerating the simulation process. In terms of mesh 
refinement strategy, the trigger mechanism of the AMR technology is improved, and 
dynamically adjusting the mesh resolution ensures that high-precision simulation is 
maintained in complex terrain areas while reducing unnecessary computational overhead. 
The introduction of parallel computing technology further optimises the computational 
performance of large-scale simulations, allowing the algorithm to improve its operating 
efficiency while maintaining high precision significantly. 

To further improve the reliability and accuracy of numerical simulation, this study 
adopts a combined model optimisation strategy to integrate the deep water flow model 
with other climate dynamics models for joint calculation. These models cover tidal 
models, wind wave models and ocean current models. Through joint calculation, the 
comprehensive impact of different weather factors on the evolution of the beach is fully 
considered. A loose coupling method connects the numerical models of hydrodynamics, 
meteorology and geomorphology. The output results of each sub-model are used as input 
data for other models to ensure that the calculation results of each model can be fed back 
to each other during the simulation process, thereby more precisely reflecting the 
complex effects of extreme weather on the beach. Combining the latest research results in 
meteorology, oceanography and geology, the numerical simulation results of natural 
factors such as wind, waves, currents and tides are combined with actual observation data 
further to optimise the prediction performance of the numerical model. 

Under extreme weather conditions, numerical simulations usually face certain 
uncertainties due to climate change’s unpredictability and the limitations of the 
simulation model itself. The Monte Carlo method is used to quantify this uncertainty. The 
possible range of shore evolution under different extreme weather scenarios can be 
estimated through a large number of random sampling and multiple simulations. 

A sensitivity analysis of the key factors affecting the evolution of the beach is 
conducted to evaluate the influence of parameters such as wind speed, tidal fluctuations, 
and precipitation on the numerical simulation results. This analysis helps determine 
which factors impact beach changes most under extreme weather conditions, thereby 
guiding the focus of disaster prevention and mitigation work. 

4 Neural network prediction model 

Before building the neural network prediction model, the input data is first preprocessed 
and features extracted. To ensure the quality and effectiveness of the input data, this 
paper collects historical meteorological data (such as wind speed, temperature, and 
precipitation), ocean data (such as tides, and wave heights), and beach geomorphological 
data (such as shoreline changes, beach height, etc.) and cleans, standardises, and 
normalises them. 
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The data in Table 1 are input features into the neural network model. By combining 
different meteorological, oceanic and geomorphological conditions, the model can learn 
how these variables affect the evolution of the beach, especially the changes under 
extreme weather conditions. For example, combining factors such as wind speed, wave 
height, and tide can effectively capture large-scale erosion and sedimentation processes, 
thereby improving prediction accuracy. By training these historical data, the model can 
predict future beach changes and provide a decision-making basis for disaster prevention 
and mitigation. 

Table 1 Collected data 

Date 

Wind 
speed 
(m/s) 

Temperature 
(°C) 

Precipitation 
(mm) 

Tidal 
height 

(m) 

Wave 
height 

(m) 

Shoreline 
change 

(m) 

Beach 
elevation 

(m) 
Date 1 12.5 22.4 5 3.2 1.8 10.5 1.2 
Date 2 15.3 21.8 10.2 3.1 2 9.8 1.3 
Date 3 10.8 24.1 3.5 3 1.5 10.2 1.1 
Date 4 14.2 23.3 7.8 3.5 2.2 9.5 1.4 
Date 5 18 20.7 15 3.3 2.1 8.9 1 

The outliers in the data are processed by median filtering and sliding window algorithms. 
Especially in extreme weather events, there may be sensor errors or extreme data, which 
may interfere with the training process of the model. The median filter’s core parameter 
is the filter window’s size. Choose an odd-sized window (3×3, 5×5). The window size 
determines the range of data considered when calculating the median. Smaller windows 
retain some details, while larger windows can remove noise more smoothly. For each 
data point, a fixed-size sliding window is defined, all neighbourhood data is selected 
within the window and the median is calculated. Then the original data point is replaced 
with this median. This process is performed at each time step or spatial position of the 
data to ensure that outliers are effectively removed. At each time step, the sliding window 
slides forward on the data sequence, calculates the average of the data in the window, and 
then replaces the original data in the centre of the window with this statistic. This process 
helps smooth the data and reduces the interference of noise in model training. 

Given the high complexity of beach evolution, meteorological and oceanographic 
variables that significantly impact beach morphology changes are selected as key input 
features, including wind speed, tidal cycle, wave amplitude, etc. Principal component 
analysis technology is used to process these high-dimensional data and reduce redundant 
information. 

To further improve prediction accuracy, this study combines convolutional neural 
networks with long short-term memory networks. Convolutional neural network (CNN) 
performs well in extracting features from spatial data, while long short-term memory 
(LSTM) is good at processing long-term dependencies in time series data. The 
convolutional neural network was chosen because it has excellent local feature extraction 
capabilities when processing data with spatial structure, and can efficiently capture the 
spatial patterns in the process of beach evolution. Compared with other neural networks, 
CNN can better handle the local correlation of spatial data, reduce computational 
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complexity, and effectively capture the complexity of spatiotemporal interactions when 
combined with LSTM. 

Regarding the neural network architecture (attention mechanism and Transformer), 
the attention mechanism can more effectively capture the key features in meteorological 
and oceanographic data by dynamically assigning weights. The self-attention structure of 
the Transformer is good at processing long sequence dependencies and is suitable for the 
dynamic prediction of beach evolution under extreme weather conditions. These methods 
have shown advantages in modelling complex nonlinear relationships and may improve 
prediction accuracy. Future research can combine these architectures to optimise existing 
models to better adapt to multi-scale spatiotemporal changes. 

First, spatial features are extracted from the input meteorological, oceanographic and 
geomorphological data through CNN. CNN can effectively identify data features in 
different regions, such as erosion and accumulation of beaches, spatial changes in wind 
and waves, etc. The specific network structure uses multi-layer convolution kernels (3×3 
and 5×5) and maximum pooling operations, which can extract local features at different 
scales. After multiple convolution and pooling layers, the spatial features are compressed 
into smaller feature vectors and passed to the LSTM network. 

After obtaining the spatial features, they are input into the LSTM model for time 
series analysis. LSTM can handle long-term dependencies in sequence data and is very 
suitable for predicting dynamic changes in beach evolution, especially the impact of 
extreme weather on beach morphological changes. The LSTM network effectively 
captures the changing patterns of historical meteorological and ocean data in the time 
dimension through its gating mechanism (input gate, forget gate, output gate). 

The input layer of the LSTM network receives the feature vector extracted by CNN. 
After being processed by several LSTM layers (each layer contains 128 units), it finally 
outputs the predicted value through a fully connected layer. In order to prevent 
overfitting, the dropout regularisation technique is used, and the early stopping method is 
used during the training process to monitor the error of the validation set and avoid 
overtraining. The training of the neural network is a key step to improving the accuracy 
of prediction. During the training process, a loss function based on mean square error 
(MSE) is used, and the Adam optimisation algorithm is used for optimisation. The choice 
of loss function is based on the error between the predicted and true values. MSE can 
measure the difference between the model output and the actual beach change, and 
optimise the model by minimising MSE. The Adam optimisation algorithm can 
adaptively adjust the learning rate to improve the efficiency and stability of the training 
process. 

The horizontal axis of Figure 2 represents the number of training rounds and the 
number of neural network iterations. In each round, the network calculates the output 
based on the current parameter weights. It performs error feedback based on the true 
value, adjusting the weights to reduce the prediction error. The more rounds of training, 
the better the network’s understanding and fit of the data is usually until convergence is 
reached. 

The vertical axis represents the MSE calculated during the training process. MSE is a 
standard indicator for measuring the difference between the model output and the result. 
The smaller the value, the closer the model’s prediction is to the exact result; the larger 
the value, the greater the difference between the model’s prediction and the actual value. 

As the number of training rounds increases, the network gradually reduces the 
prediction error by adjusting the weight parameters, thereby gradually decreasing the 
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MSE. This shows that the neural network is learning, optimising, and improving 
progressively its fit to the data. The high initial loss is because the network’s initial 
weights have not been fully adjusted. As training progresses, the model is gradually 
optimised and the MSE decreases. 

During training, hyperparameters such as learning rate, batch size, and number of 
LSTM layers are tuned. The hyperparameter space is optimised using grid and random 
search to find the optimal parameter combination. In addition, the model training process 
also includes real-time monitoring of the validation set. The model can achieve good 
generalisation performance by adjusting the training rounds while avoiding overfitting. 

Figure 2 Optimised model (see online version for colours) 

 

5 Data integration and processing 

The data used in this study mainly include meteorological data, ocean data and 
geomorphological data. The data sources involve multiple platforms and measuring 
instruments, covering multiple variables at different time and space scales. The specific 
data sources are as follows: 

Meteorological data include temperature, humidity, wind speed, and air pressure 
indicators. These data come from national meteorological monitoring stations and 
meteorological satellite observations. Ocean data include tidal data, wave height, current 
speed, etc., which are real-time data from ocean monitoring stations and hydrological and 
meteorological departments. Geomorphological data mainly refers to the elevation 
change data of the beach, which is obtained by combining remote sensing images with 
ground measurements. 

In order to effectively integrate data from different sources, data fusion technology is 
used, especially the fusion method based on spatiotemporal interpolation algorithm. 
Standardisation processing is used to map all data to a unified time period and spatial grid  
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for the different formats and measurement frequencies of data sources. Given the spatial 
scale differences of other data, Kriging interpolation is used to align the ocean and 
meteorological data so that data from different platforms can be compared and calculated 
in the same coordinate system. 

The quality of data directly affects the accuracy of subsequent models. Therefore, 
data cleaning is a key step in data processing. This study uses the following methods to 
denoise and correct the original data: The z-score method and boxplot analysis detect 
outliers. The local weighted regression method is used to repair sudden outliers in 
meteorological and ocean data. Based on the mean and standard deviation of the data, the 
Z-score of each data point is calculated to determine whether it is an outlier. A three-
dimensional spatial smoothing algorithm is used to complete the height anomalies in the 
geomorphic data to ensure the continuity and consistency of the data. Due to missing 
some data (especially data loss caused by equipment failure or extreme weather), K-
nearest neighbour interpolation and linear interpolation are used to supplement them. In 
the interpolation process, the missing values are first located. The K nearest neighbour 
points are selected through the similarity measurement based on the neighbourhood 
samples, and the weighted average method is used for interpolation to reduce the impact 
on data analysis. 

Median and moving average filters are used to remove high-frequency noise from the 
data. Noise removal helps improve the stability of time series data such as wind speed 
and waves and provides a more reliable basis for subsequent modelling. 

Figure 3 Data cleaning (see online version for colours) 

 

The boxes of the wind speed box plot in Figure 3 show the distribution of wind speed 
data. The temperature data boxes in the temperature box plot in Figure 3 show the 
concentration interval of most temperature data. Temperature outliers may be located at  
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the top or bottom of the box plot, but do not have much impact on the overall trend unless 
there are extreme abnormal fluctuations. The box plot of precipitation in Figure 3 is 
similar to wind speed and temperature, showing the distribution and outliers of rainfall. 
Precipitation may have outliers due to seasonal changes or extreme weather events. Box 
plots can help identify which precipitation data deviate significantly from other data. The 
narrow height of the box means that most of the data is concentrated in one range. 

This study compared the performance differences of various strategies in the outlier 
processing stage. The statistical learning method uses robust regression and kernel 
density estimation to effectively reduce the impact of extreme values on the overall 
distribution. The machine learning method introduces isolation forests and single-class 
support vector machines to identify abnormal patterns through unsupervised learning. 
Experiments show that different strategies have different adaptability to meteorological 
and ocean data. Among them, the statistical learning-based method is stable for periodic 
data, while the machine learning method has more advantages in nonlinear anomaly 
detection. The final solution is selected based on a comprehensive consideration of 
computational efficiency and anomaly recognition rate. 

After data cleaning, all input data are converted to a unified dimension and range. The 
data are then standardised and normalised to prevent instability in model training due to 
differences between different dimensions. 

The Z-score standardisation method changes the mean of each variable to 0 and the 
standard deviation to 1 to ensure that all variables have the same scale. This method 
effectively eliminates scale differences between different data dimensions and prevents a 
certain variable from occupying too much weight in the model training process. 

Normalisation is particularly important, especially for neural network models, to 
further ensure the consistency of the data range. The Min-Max normalisation method 
scales the data values to the [0,1] interval to avoid the excessive influence of extreme 
data on the model prediction results. 

After standardisation and normalisation, the data scale is consistent, the noise is 
effectively suppressed, the signal is more prominent, the signal-to-noise ratio is 
improved, and the interference during model training is less. After data preprocessing, the 
features are selected and constructed to improve the training effect of the model. Since 
the beach evolution is affected by many factors, the features with significant correlation 
with the beach changes are selected and appropriately combined and transformed. From 
the meteorological data, wind speed, temperature, humidity, precipitation and other 
features are extracted, and multiple composite features are constructed by combining the 
tidal changes, wave height, current speed and other data in the ocean data. For example, 
the interaction between wind speed and tidal cycle is used to construct the Wind-Tide 
Index, which is input into the model as a new feature. For the long-term trends of ocean 
and meteorological data, multi-scale features are extracted through wavelet transform, 
which effectively reveals the profound impact of extreme weather events on beach 
evolution. The processing of geomorphological data mainly focuses on analysing beach 
elevation changes and shoreline migration. Through terrain analysis algorithms, 
geomorphological change features at different time points are extracted, such as coastline 
position, dune height, beach width, etc. These features are converted into continuous time 
series during modelling and used as input data for model training. 
 
 
 



   

 

   

   
 

   

   

 

   

   290 S. Li and H. Zhang    
 

    
 

   

   
 

   

   

 

   

       
 
 

6 Model fusion 

In order to fully utilise the advantages of different models, two fusion strategies, 
weighted average and stacked generalisation, are selected, and the fusion method is 
dynamically adjusted according to the model’s performance. The weighted average 
method averages the output results of different models according to the weights. In 
contrast, the stacked generalisation method further improves the accuracy of the fusion 
results by applying a meta-model. 

The weighted average assigns different weights to the prediction results of each sub-
model to obtain the final prediction output. The weight is determined based on the 
performance of each sub-model on the validation set, and the model with better 
performance receives a higher weight. Through the weighted average method, the 
prediction ability of different models for the evolution of the beach under extreme 
weather can be effectively integrated, reducing the overfitting risk of a single model. The 
stacked generalisation method uses multiple basic learners (such as support vector 
machines, random forests, neural networks, etc.) for preliminary predictions. It inputs 
these prediction results as features into a meta-learner (such as logistic regression or 
multi-layer perceptron) to obtain the final prediction results. In this study, a neural 
network is selected as a meta-learner because it can handle highly nonlinear relationships 
and further improve the model’s generalisation ability. The advantages of multiple basic 
learners can be combined through stacked generalisation to avoid the limitations of a 
single model. 

The core of this study is to fuse the new numerical simulation algorithm with the 
neural network prediction model to improve the prediction accuracy of the beach 
evolution process. The specific steps are as follows: 

In the fusion process of numerical simulation and neural network, the prediction 
results of the neural network are first compared with the numerical simulation output to 
evaluate the error difference between the two. Then, the prediction results of the two are 
fused using the weighted average method or the stacked generalisation method. In the 
weighted average method, weights are set for the numerical simulation results and the 
neural network prediction results respectively, and the weight size is adjusted according 
to their prediction accuracy on the validation set. In the stacked generalisation method, 
the neural network prediction and numerical simulation results are regarded as input 
features and passed to the meta-learner (such as logistic regression or multi-layer 
perceptron) for final decision-making. 

In order to further improve the performance of the fusion model, the fusion process 
should be optimised and tuned. The key steps include the following aspects: 

In model fusion, the selection of hyperparameters has an essential impact on the final 
effect of the model. Grid Search and Random Search methods are combined with cross-
validation techniques to search for the optimal hyperparameter combination. These 
hyperparameters include the learning rate and hidden layer size of the neural network 
model, and the grid resolution of the numerical simulation model. The optimal 
performance of the fusion model is ensured through fine tuning. 

In the weighted average method, the performance of the fusion model is highly 
dependent on the weight of each sub-model. To improve the weighted average method’s 
adaptability, a dynamic weight adjustment mechanism based on performance feedback is 
designed. According to the performance of each sub-model on the training set and the 



   

 

   

   
 

   

   

 

   

    New algorithm for numerical simulation of beach evolution 291    
 

    
 

   

   
 

   

   

 

   

       
 
 

validation set, the weight of each model is automatically adjusted to maintain a high 
prediction accuracy under different weather conditions. 

The performance of different fusion strategies is regularly evaluated during the model 
fusion process. By comparing the prediction results under different strategies, the optimal 
fusion scheme is selected. For example, in the initial experiment, if the performance of 
the weighted average method is better than the stacked generalisation method, the 
weighted average method is preferred; otherwise, the stacked generalisation method is 
used. 

The X-axis of the left sub-graph of Figure 4 shows the hidden layer size, representing 
the number of neurons in each neural network layer. Usually, it affects the capacity and 
training effect of the model. The Y-axis shows the learning rate. The learning rate 
determines the step size of each gradient update. Too large a learning rate may lead to 
convergence failure, while too small a learning rate may lead to slow training. The colour 
depth indicates the root mean square error (RMSE) value under different hyperparameter 
combinations. RMSE is a standard indicator used to measure prediction error. The 
smaller the value, the better the model prediction effect and the smaller the error. In the 
heat map, the lighter the colour, the smaller the RMSE value (the better the model effect), 
and the darker the colour, the larger the RMSE value (the worse the model effect). The 
heat map can intuitively see which hyperparameter combinations (learning rate and 
hidden layer size) lead to lower RMSE, thereby identifying the optimal hyperparameter 
settings. 

Figure 4 Model parameter optimisation (see online version for colours) 

 

The X-axis of the right sub-graph of Figure 4 shows the number of random searches. 
Several hyperparameter combinations are randomly selected to train the model using the 
random search method. The Y-axis shows the RMSE of each random search. The Y value 
of each point represents the prediction error of the model of this random search on the 
training set. By comparing these RMSE values, whether the results of the random search 
can find a good hyperparameter combination can be understood. 
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7 Evaluation 

In this study, a rigorous evaluation is carried out from multiple dimensions to 
comprehensively evaluate the model’s performance in the numerical simulation and 
prediction of beach evolution under extreme weather conditions. The evaluation content 
includes model prediction accuracy, stability, generalisation ability, and feasibility in 
practical applications. The specific evaluation method is as follows. 

7.1 Model prediction accuracy evaluation 

Prediction accuracy is one of the core evaluation indicators of the model. Especially for 
the prediction of beach evolution, the accuracy directly affects the effectiveness of 
decision support. The prediction results of the fusion model have significant advantages 
over the single model. By combining the output of numerical simulation with the 
production of the neural network, high accuracy and robustness are achieved in 
predicting beach evolution under extreme weather conditions. 

The horizontal axis of Figure 5 shows the sample number, ranging from 1 to 10. Each 
sample represents an experimental sample. The vertical axis represents the prediction 
error of each model on each sample. The prediction error usually refers to the difference 
between the model’s prediction value and the actual observed value. The smaller the 
error, the more accurate the model’s prediction. 

Figure 5 Model prediction accuracy (see online version for colours) 
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The numerical simulation model represents the prediction error of the traditional 
numerical simulation model. It can be seen that the prediction error of the numerical 
simulation model fluctuates on multiple samples, showing a certain instability. The 
neural network model has a low error on some samples, but a high error on others, 
indicating that the model performs unevenly when processing different samples. The 
fusion model represents a fusion model that combines numerical simulation and neural 
networks. According to the experimental data, the fusion model shows a low and stable 
error on the entire sample set, and has better robustness and stability than other models. 

As can be seen from Figure 5, the prediction error of the fusion model is always 
lower than the other two models, which shows that the fusion model is more accurate and 
reliable in simulating beach evolution. The difference between the model’s prediction and 
actual observed values is below 12%. The main advantage of using a fusion strategy is 
that it can simultaneously utilise the numerical simulation model’s accurate simulation of 
physical processes and the neural network model’s ability to learn complex patterns. 
Numerical simulation can accurately describe physical processes, but it is slow to 
respond to the dynamic changes of extreme weather. At the same time, by learning 
historical data, neural networks can capture some complex patterns that are difficult to 
predict with numerical models. The two advantages are effectively combined through 
model fusion, significantly improving the accuracy and adaptability of beach evolution 
prediction. 

7.2 Model stability evaluation 

In order to verify the stability of the model under extreme weather conditions, multiple 
sets of test data are designed, covering different weather scenarios and time scales. The 
stability of the model is evaluated by calculating the variance and standard deviation on 
various datasets. The specific steps are as follows: 

In order to avoid the influence of training data bias on the stability evaluation, the 
dataset is divided into training set, validation set and test set, and the distribution of 
extreme weather events in each dataset is balanced. By calculating the standard deviation 
of the model on different subsets, the discreteness of the model’s prediction results under 
different extreme weather conditions is evaluated. A more minor standard deviation 
indicates the model has strong stability and can maintain relatively consistent prediction 
results under changing external environments. The data size directly affects the 
generalisation ability and stability of the model. Smaller datasets may lead to overfitting, 
making the model sensitive to noise in the training set, affecting the stability under 
different extreme weather scenarios. Larger datasets provide more samples, which can 
better capture the diversity of the impact of weather changes on the evolution of the 
shore, thereby improving the stability of the model. 

The horizontal axis of Figure 6 represents different extreme weather scenarios, 
including five weather conditions: “heavy rain”, “typhoon”, “cold wave”, “drought” and 
“tropical storm”. The vertical axis represents the standard deviation value, which 
measures each model’s fluctuation range under different weather scenarios. The larger 
the standard deviation, the greater the fluctuation of the model’s prediction or evaluation 
results. 
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Figure 6 Model stability (see online version for colours) 

 

The fusion model shows the most minor standard deviation in most extreme weather 
scenarios, especially in the “typhoon” and “cold wave” scenarios, where it performs 
better than the other two models, indicating high stability and low prediction volatility. 
The neural network model performs moderately in most scenarios, but performs well in 
some scenarios (such as “tropical storm”). The numerical simulation model has a 
significant standard deviation in all scenarios, indicating that its prediction results are 
relatively unstable, especially in the “typhoon” scenario, where the most severe 
fluctuations. 

7.3 Generalisation ability evaluation 

Generalisation ability refers to a model’s performance on new data, especially its ability 
to predict extreme weather conditions that have never been seen. This study evaluates 
generalisation ability through cross-validation and external validation sets. 

Using the k-fold cross-validation method, the training dataset is divided into k 
subsets. One subset is selected as the validation set each time, and the other subsets are 
used as the training set. After multiple training and validation processes, the average 
evaluation indicators of the model are finally calculated, including MSE, RMSE and 
mean absolute error (MAE). 

In order to further verify the generalisation performance of the model, data from 
different locations and seasons are collected from the external environment, and an 
external validation set is constructed for testing. This validation set specifically includes 
new extreme weather scenarios, which are designed to simulate the model’s performance 
on unseen data. Suppose the performance indicators of the model on the external 
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validation set are similar to those on the training set and internal test set. In that case, it 
can be considered that the model has good generalisation ability. 

Figure 7 shows that the values of all three evaluation indicators (MSE, RMSE, MAE) 
show small fluctuations in the 5-fold cross-validation, which indicates that the model has 
strong adaptability to different training sets and validation sets and has high stability. 
MSE, RMSE and MAE are all less than 0.4. Stable evaluation indicators reflect that the 
model can maintain consistent prediction results on different data subsets, reducing the 
overfitting problem of the model on a specific subset. 

Figure 7 5-fold cross-validation (see online version for colours) 

 

7.4 Computational efficiency evaluation 

Computational efficiency is a crucial consideration in the practical application of 
computational models, especially in real-time prediction tasks. This study uses inference 
time to quantify the computational efficiency of the model. 

Parallel computing and graphics processing unit (GPU) acceleration technology are 
used to improve the efficiency of the training process. At the same time, the 
computational efficiency of the model under different computing environments is deeply 
analysed by comparing the training time under different hardware configurations. 

Inference time, the time required for the model to process input data and give 
prediction results, occupies a core position in the real-time prediction of extreme weather 
events. The evaluation results show that under appropriate hardware conditions, the 
model can complete the prediction quickly, fully meeting the timeliness requirements in 
actual application scenarios. 

In Figure 8, the horizontal axis represents the sample number, ranging from 1 to 100, 
and each data point corresponds to a unique sample. In order to improve the readability of 
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the chart, every 10 data points are labelled to avoid overlap between labels. The vertical 
axis shows the inference time in seconds. The bar chart’s height intuitively reflects each 
data point’s inference time, and the height difference between the data points reveals the 
volatility of the model’s prediction time when processing different input samples. As a 
key indicator to measure the real-time prediction performance of the model, inference 
time plays a vital role in practical applications such as extreme weather prediction. 
Whether the model can quickly output results in a short time is crucial to the timeliness 
requirements in practical application scenarios. By observing the height changes of the 
bar chart, it can be found that there is an inevitable fluctuation in the inference time, and 
the inference time of some samples is relatively long, which may be related to the 
complexity of the input data or the computational complexity of the model itself. For 
real-time prediction tasks, parallel data processing methods can be used to speed up the 
loading and processing of input data. 

Figure 8 Computational efficiency (see online version for colours) 

 

7.5 Real-time analysis 

In actual deployment, especially in extreme weather warning systems, the real-time 
performance of the model is crucial. It is necessary to ensure that the model responds 
quickly and makes prediction decisions. This study adopts a multi-level acceleration 
strategy in response to the real-time performance optimisation requirements. Model 
quantisation technology is implemented at the algorithm level to convert floating-point 
operations into fixed-point operations to reduce computational complexity. Memory 
access patterns are optimised at the hardware level, and GPU-shared memory is used to 
improve data throughput efficiency. A pipeline parallel architecture is used at the system 
level to achieve overlapping execution of data preprocessing and model reasoning. 
Experiments show that these optimisations reduce reasoning latency by 40%, meeting the 
real-time requirements of extreme weather warnings. As shown in Table 2. 
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Table 2 Real-time performance under different environments or different hardware 
configurations 

Hardware configuration 
Average response 

time (ms) 
Longest response 

time (ms) 
Shortest response 

time (ms) 
CPU (Standard configuration) 120 150 100 
GPU (Standard configuration) 70 95 55 
GPU (Optimised configuration) 35 45 25 
Cloud deployment 55 75 40 
Local deployment 75 90 60 

The difference between the longest response time and the shortest response time reflects 
the volatility of the model in different situations. In most configurations, especially in the 
central processing unit (CPU) configuration, the gap between the longest and shortest 
response times is significant, indicating that the real-time performance of the model may 
be affected by data complexity, computational load, or system resource allocation in 
specific situations. 

The response time of the GPU-optimised configuration fluctuates less, indicating that 
this configuration shows more consistent response ability when processing different 
datasets and is suitable for practical application scenarios that require high stability and 
low fluctuation. 

8 Conclusions 

This study proposed a new numerical simulation scheme for the evolution of shores 
under extreme weather conditions, and combined with a neural network model to achieve 
high-precision prediction analysis. Introducing a data-driven neural network method 
significantly improved the model’s ability to cope with complex nonlinear changes, 
effectively making up for the shortcomings of traditional simulation methods under 
extreme weather conditions. The experimental results show that the algorithm can 
accurately simulate the impact of extreme weather events such as storm surges and heavy 
rains on shores, providing reliable data support for shore protection and coastal 
engineering design. 

Future research can consider integrating more environmental factors, such as ocean 
hydrological characteristics, tidal changes, wind speed, climate change, etc., to fully 
simulate the multiple impacts of extreme weather on shore evolution. In addition, 
considering the long-term effects of factors such as human activities, coastal 
development, and pollution on beaches can further improve the realism and reliability of 
the simulation. 
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