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Abstract: Due to its high rigidity, manoeuvrability, and strength-to-weight ratio, the 6-DoF
Stewart platform is widely used in flight simulators for replicating pilot motion cues. However,
upset prevention and recovery training (UPRT) involves rapid angular changes that exceed motor
tolerance, and classical washout filter (CWF)-based motion cueing algorithms (MCAs) struggle
to meet high-accuracy and fast-response requirements. This study develops a model predictive
control (MPC)-based MCA to manage nonlinearities and workspace limitations in hexapod
simulators. To address control uncertainties from constraint extraction (COTC), a switchable
MPC (S-MPC) architecture is proposed for adaptive response. Simulations show that within the
operating envelope, MPC-MCA achieves high tracking accuracy, while outside it, the S-MPC
mechanism provides optimal switching control. Under horizontal stall UPRT conditions, the
proposed S-MPC-MCA improves motion tracking performance by 42.34% and 65.30% over
MPC-MCA and CWF-MCA, respectively, based on the average absolute scale (AAS) criterion.

Keywords: model adaptive architecture; motion cueing algorithm; model predictive control;
Stewart motion platform control.
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1 Introduction

A flight simulator is a sophisticated device engineered
to replicate the flight conditions of an aircraft, providing
an authentic emulation of the aircraft’s behaviour and
interaction with its environment. Given its superior
mechanical performance including high stiffness,
exceptional manoeuvrability and a high strength-to-weight
ratio, the six-degree-of-freedom (DoF) Stewart platform has
found widespread application in flight-simulator systems
(see Figure 1).

In the early development of motion cueing algorithms
(MCAs), Schmidt and Conrad (1970) introduced a
framework based on the classical washout filter (CWF)
for Stewart platform-based aircraft motion simulation,
incorporating translational, rotational, and tilt-coordination
channels. Subsequent research applied particle swarm
optimisation (PSO) techniques to enhance the performance
of the CWF-based MCA, thereby achieving more efficient
utilisation of the available workspace (Asadi et al., 2016b).
More recently, adaptive MCA frameworks have been
proposed, in which the parameters of the CWF-based MCA
are continuously tuned to maximise fidelity with respect to
reference motion signals (Parrish et al., 1975).

Furthermore, fuzzy logic control theory has been applied
to the MCA domain to formulate the adaptive MCA
problem, with the human vestibular system incorporated to
better replicate realistic motion perception (Zadeh, 1988;
Hwang et al., 2009; Muyeen and Al-Durra, 2013; Asadi
et al, 2015a, 2019, 2022; Baghaee et al., 2018; Qazani
et al.,, 2020c, 2021c). In parallel, the linear quadratic
regulator (LQR) has emerged as another widely adopted
approach, integrating the human vestibular model into the
optimal MCA formulation to reproduce motion perception
more effectively (Asadi et al., 2016a; Qazani et al., 2020a,
2020d, 2021a; Cleij et al., 2020; Kang et al., 2022),
owing to its capability of systematically weighting control
and performance objectives. Nevertheless, these advantages
remain confined to the parameter space, and the absence of
adaptiveness in systematic parameter values can introduce
substantial errors due to modelling uncertainties.

To further enhance MCA performance in terms of
minimising tracking error, increasing flexibility, and
improving fidelity in the systematic parameter domain,
model predictive control (MPC)-based formulations have
been investigated (Dagdelen et al., 2009; Asadi et al,
2015b, 2023; Khusro et al., 2020; van der Ploeg et al.,
2020; Qazani et al., 2021b). These approaches integrate
human vestibular system dynamics and flight simulation
manoeuvring models into the MCA framework, thereby
establishing optimal control solutions that explicitly account
for both performance objectives and system constraints.
A comparative study on practical platforms confirmed
that MPC-based MCAs deliver significant performance
improvements over conventional CWF-based methods,
particularly under operational constraints (Cleij et al.,
2019). Furthermore, to address leg-length constraints in
Stewart platforms, a linear MPC-MCA with consideration
of terminal conditions (COTC) was proposed to mitigate
physical limitations (Qazani et al., 2020a).

To address the aforementioned challenges, this study
proposes a novel switchable model predictive control
(S-MPC)-based MCA, which demonstrates promising
performance in simulating complex flight scenarios,
as illustrated in Figure 2(b). Within the simulator’s
operational boundaries, the S-MPC-MCA with COTC is
capable of delivering more realistic motion responses
with faster system dynamics. Beyond these boundaries,
the S-MPC-MCA without COTC achieves improved
tracking accuracy by approximating nonlinear dynamics
through linearisation. In addition, an innovative switching
mechanism is introduced to ensure smooth transitions
between modes, thereby enhancing overall system stability.
The performance of the proposed S-MPC framework is
evaluated by examining terminal states (Kwon and Pearson,
1977, 1978), implementing an infinite output prediction
horizon (Kouvaritakis and Cannon, 2016), and optimising
the terminal weighting matrix (TWM) (Kwon et al., 1983;
Kwon and Byun, 1989).
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Figure 1 Stewart flight simulator motion platform (see online version for colours)

The remainder of this paper is organised as follows.
Section 2 presents the modelling of the MPC system,
including the human vestibular motion perception model
and the kinematic model of the aircraft simulator.
The proposed S-MPC-MCA, both with and without
consideration of terminal conditions (COTC), is detailed
in Section 3. Section 4 describes the simulation setup and
discusses the results, highlighting the superiority of the
S-MPC-MCA compared with conventional CWF-MCA and
MPC-MCA approaches. Finally, Section 5 summarises the
main findings and provides concluding remarks.

Figure 2 Longitudinal tracking performance of MPC-MCA and
S-MPC-MCA, (a) MPC-MCA longitudinal
acceleration tracking trajectory (b) S-MPC-MCA
longitudinal acceleration tracking trajectory
(see online version for colours)
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2 Synthetic Stewart flight simulator modelling

This section presents the synthetic modelling of the Stewart
flight simulator platform and its integration with the human
vestibular system.

2.1 Human vestibular system model

The vestibular system is the primary sensory organ
responsible for perceiving inertial cues such as gravity and
motion, and consists of the semicircular canals and the
otolith organs.

The semicircular canals, which act as angular velocity
sensors, are fluid-filled structures aligned approximately
along the three orthogonal axes of the human head. They
are primarily responsible for detecting rotational motion,
thereby enabling the perception of angular velocity. The
transfer function of the linear semicircular canal model is
expressed in equation (1).

w TLTa82
w

~ (Tps+1)(Tas +1)(Tss + 1) M
where w denotes the input angular velocity signal in
the vestibular model, @ represents the perceived angular
velocity, and 7}, and 7T, are the model parameters
associated with the semicircular canals.

The otolith organs are responsible for perceiving
translational motion, and their behaviour can be represented
by the transfer function given in equation (2).

a Tgus+1 K
a Trs+1 Tys+1

2)

where a denotes the input translational acceleration signal
in the vestibular model, a represents the translational
acceleration perceived by the human body, and I',, I'z, and
K are the otolith model parameters.

Given the limited motion workspace of simulator
platforms, sustained acceleration cues are estimated using
the tilt coordination effect, which exploits the lateral and
longitudinal components of gravitational acceleration (Grant
et al., 1984). In this approach, the low-frequency component
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of the acceleration signal is converted into the tilt angle of
the simulator platform, as illustrated in Figure 3.

Figure 3 Schematic diagram illustrating the coordination
transfer between horizontal and vertical tilt in the
3simulator platform

Accordingly, the expression for computing the translational
acceleration in tilt coordination as a function of the tilt
angle is derived as follows:

. [ i i
0y1; = arcsin (“h> A It 3)
) g

where 6y, denotes the tilt coordination angle, ayy is
the translational acceleration component induced by tilt
coordination, and g is the gravitational acceleration.

The corresponding transfer function of tilt coordination
is given by:

Gy g-K[Tys+1)

win  s(@Trs+1)(Tes+1) “)

where wy; denotes the input angular velocity of the
platform tilt applied to the vestibular model, and a,
represents the translational acceleration perceived by the
human body.

Consequently, the overall vestibular system can be
modelled by combining the state-space representations of
the semicircular canals, the otolith organs, and the tilt
coordination mechanism:

rp = Apzp + Bpuy %)
Yp = Cpxp (6)

where z, = [Totn Trirt Zace)' € RZX! denotes the overall
state vector of the human vestibular model, with x,,
Tyip, and x4 representing the state vectors of the
otolith organ, tilt coordination, and semicircular canal
models, respectively. The input vector is defined as
up = [ap Wptit WProt 1" € R8*!, where ap, Wp e, and
wp,rot denote the platform translational acceleration,
tilt coordination angular velocity, and rotational angular
velocity, respectively. The output vector is given by
Yp = [ ap Gprin @P,rot]T € R®*! where ap, apti, and
Wp,rot correspond to the perceived platform translational
acceleration, the translational acceleration generated by tilt
coordination, and the perceived rotational angular velocity,
respectively. The state-space model matrices are denoted
as A, € R?1>21 B, € R?!*8 and C, € R®*?! for the
integrated vestibular system.

2.2 Stewart motion platform model

The geometric configuration and reference inertial frames
of the 6-DoF Stewart platform are illustrated in Figure 5.
In this figure, the coordinate origin and the platform’s fixed
base centroid (point Og) are defined, where Op remains
stationary and does not follow the motion of the platform.
The platform frame is attached to the platform’s centre of
mass (point Py in Figure 4) and moves together with the
platform. The operator frame is fixed to the operator’s head
and undergoes the corresponding motions. The coordinate
origin of this frame coincides with the operator’s eye point,
and the associated coordinate system is denoted as Dy.

Figure 4 Geometric configuration and reference coordinate
frames of the simulator platform.

The inverse kinematic relations of the motion platform are
considered to constrain the actuator velocity and length,
incorporating the kinematic formulations proposed by Harib
and Srinivasan (2003). To determine the leg length, a
closed-loop equation is derived for each mounting point c;
associated with its corresponding leg [; as:

ci=7+RP-cf (7

where r denotes the position vector of Op on the motion
platform expressed in the inertial frame. ¢; and ¢!’ represent
the position vectors of the connection point between the
platform and the i leg, expressed in the inertial frame and
the platform coordinate frame, respectively.

Rg denotes the rotation matrix that transforms vectors
from the platform-fixed coordinate frame to the inertial
frame:

ccop — chspsyy —syep — chspeyy sfso
R103 = |[cso + clcpsy) —sipsp + chepeyy —sbed
sysl cys c

where ¢ and s denote the cosine and sine functions,
respectively, and ¢, 6, and 1 represent the roll, pitch, and
yaw angles.

The closed-loop equation for the i leg vector I; can
then be expressed as:

Li=1;-3;=c;—b,=7r+RS-cl — b, (8)
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where L; denotes the vector of the i leg, ; is its length,
and §; represents the corresponding unit direction vector. b;
denotes the position vector of the connection point between
the base and the i™ leg in the inertial frame. Based on
these definitions, the closed-loop leg equation introduced in
equation (9) can be reformulated in terms of leg vectors.
Furthermore, the rate of change of the leg length I;
can be derived by differentiating the closed-loop relation in
equation (9). This yields the following expression:

. d
i = = (VL L) ©)
The rate of change of the i leg length, l;, is a nonlinear
function of two factors: the platform linear velocity v, and
the angular velocity w,. Accordingly, I; can be expressed
as:

I; = h(xy) (10)

where x; = [v, wp]T € R*! denotes the platform motion
state vector, consisting of the linear velocity v,, and angular
velocity wy,.

For analytical tractability, the nonlinear relation in
equation (11) is linearised about the origin of the coordinate
system O, yielding:

l.i = Aﬂ)p + Biwp (11)

2.3 Integrated system model

The integrated system model consists of the vestibular
system model with tilt coordination and the kinematic
model of the simulator motion platform. The state-space
representation of the integrated system, expressed in the
simulator’s inertial frame, is given by:

Tp = Up
Up = Gp

. 5p,rot = Wp,rot
Xy = ;

(12)

Bpﬂilt = Wy tilt
. D.,. D . D
Ty = Apxp + By {ap, WP il wP,rot}

li = Aﬂ)p + Biwp

ap = ap + v, % (Ryq") +wp x w, x (Rg'q”)  (13)

wlg,rot = C%wp,rot (14)
D

Wi = CHWh,in (15)

Wp = Wp,rot + Wptilt (16)

where 7,, v,, a,, Bp, and w, denote the displacement
vector, translational velocity  vector, translational
acceleration vector, angular displacement vector, and
angular velocity vector of the simulator motion platform
in the platform frame, respectively. Similarly, a2, wlg (il
and wpB . denote the translational acceleration vector,
tilt coordination angular velocity, and rotational angular

velocity vector at the operator’s eyepoint in the operator
frame, respectively.

The discretised state-space representation of the MPC
system can be expressed as:

Tm(k+1) = Apan (k) + Bhu(k) (17)
y(k) = Cpwy (k) (18)

T, = [Tp Vp Ap Bprot By iitt Tp li]T and y denote the state
and output vectors of the MPC model, respectively. A,,,
B,,, and C,, are the corresponding system matrices,
while w(k) represents the input vector, defined as
[ap W, rot wp,tilt]T-

Accordingly, the iterative state-space representation of
equations (17)—(18) can be written as:

x(k+1) = Az(k) + BAu(k) (19)
y(k) = Cx(k) (20)

In the above equations, the control input increment
is  defined as  Awu(k)=wu(k) —u(k—1), and
the augmented state vector is given by x(k)=
[@pm (k) — m(k —1) y(k)]". The corresponding system
matrices A, B, and C are defined as:

A, 0 [ B B
A:[CmAmI]’ B‘[CmBm]’ c=[o1en

3 S-MPC-MCA

The proposed S-MPC-MCA is developed to enhance the
dynamic simulation capability of aircraft simulators by
improving motion cue fidelity, reducing tracking errors, and
ensuring stable performance, particularly under complex
and rapidly changing flight conditions. Unlike conventional
MPC-based MCAs, where insufficient terminal conditions
often cause unexpected fluctuations of the simulator
platform, the S-MPC-MCA incorporates a switching
mechanism to ensure stable and realistic motion cues.

The overall architecture of the S-MPC-MCA consists of
five main components:

e an MPC-based MCA with COTC

e an MPC-based MCA without COTC
e an adaptive weight regulator (AWR)
e a supervisory controller (SC)

e a switch mixer (SM).

3.1 S-MPC-MCA system architecture

The system architecture of the S-MPC-MCA is illustrated
in Figure 5. At its core, the SC continuously evaluates
the feasibility of the two MPC-based controllers and
orchestrates the switching between them. Specifically, when
the MPC with COTC fails to generate a feasible solution,
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the SC initiates a switch to the MPC without COTC to
maintain continuity of control. Conversely, once the lateral
or longitudinal acceleration tracking errors are reduced
below a predefined threshold, the SC re-engages the MPC
with COTC to ensure higher-fidelity motion cueing.

Direct switching, however, may result in abrupt state
changes that induce noticeable motion artefacts and even
destabilise the simulator platform. To address this, a
time-varying weighting mechanism is embedded within
the SC. This mechanism gradually adjusts control weights
during transitions, thereby smoothing the switching process,
suppressing undesirable transients, and improving both
system stability and pilot perception of motion cues.

3.2 Controller design for MPC-MCA with COTC

The MPC-MCA with COTC is formulated with a cost
function J(k) designed to minimise motion sensation
errors while faithfully reproducing the perceptual dynamics
experienced by aircraft pilots. To achieve this, the reference
trajectory s is explicitly incorporated into the objective
function, ensuring that predicted platform states accurately
follow the desired motion cues.

Here, = (t + n|t) denotes the predicted state at the n'
prediction step, with sampling period 7. Based on this
formulation, the optimisation problem for the MPC-MCA
with COTC can be expressed as:

min  J(k)
u(i),z(k)EU

Np—1
=2 Gl i )~k i )T

X Q (xrer(k+i| k) —x(k+1]k))

+Z (k+i|k)Su(k+i|k) (22)
Nc—l

+ ) AuT(k+i| k)RAu(k+i | k)
i=1

+ (@rer(k + Ny | k) —x(k + N, | k)"
X Qn, (®wei(k + N, | k) — z(k + N, | k)

x(k+i|k)e E,Auc AU,

i=1,...,N,

wlb+ilkev, o

oh(k+ Ny | k) + ™k + N, | k) =™ (k) (24)
x(k+ N, | k)=0 (25)

In the above equations, N, and NN, denote the prediction
horizon and the control horizon, respectively. R, S, and
@ are diagonal weighting matrices (DWMs) associated
with the input rate, input, and output, respectively. The
constraints are defined as (k +i | k) € E, Au € AU, and
u(k + ¢ | k) € U, which correspond to the admissible state
set, input rate limits, and input bounds.

Furthermore, z?(k + N, | k) and a2''(k+ N, | k)
represent the predicted translational acceleration and tilt
coordination acceleration of the vestibular system, while
x®™f(k) denotes the acceleration perceived by the aircraft
pilot’s vestibular system at the initial instant of the
prediction.

It should be noted that Qy, is the terminal weighting
matrix for the outputs under terminal conditions. Based on
the Riccati equation, it can be computed as:

Qn, =A"Qn,A— AQN,B
x B"Qn,A+Q

—1

T
(B"Qn,B + R) 26)

The acceleration perceived by the simulator pilot’s
vestibular system is primarily composed of the translational
acceleration generated by the platform’s linear motion
and the acceleration induced by the platform’s tilting
mechanism. Equation (25) ensures that the simulator pilot’s
vestibular system experiences the same acceleration &
as that of the aircraft pilot’s vestibular system. To broaden
the feasible range of optimised control solutions, constraints
are imposed only at the terminal stage of the cost function,
where the terminal state is denoted as x(k+ N, | k). A
further distinction between the MPC-MCA without COTC
and its counterpart with COTC lies in the terminal state
condition: in the latter, the endpoint constraint is set to zero,
as specified in equation (26).

3.3 Controller design for MPC-MCA without COTC

The presence of terminal state constraints in the MPC-MCA
with COTC may render the optimisation problem infeasible.
To ensure solvability, the optimisation problem is
reformulated by removing these terminal constraints.

Two main distinctions exist between the MPC-MCA
with and without COTC. First, the version without COTC
eliminates the terminal state constraint. Second, its TWMs
are set equal to the original weighting matrices @ defined
in equation (23) (Dagdelen et al., 2009). With these
modifications, the optimisation problem for the MPC-MCA
without COTC is formulated as:

Z :crefk—&—z\k)—w(k—i—ﬂk))

=1

Q( ref(k+z|k)—m(k+z\k))

ul (k+i|k)Su(k +i| k)
27)
ul'(k+i| k)RAu(k +1i | k)

In the above equation, R, S, and @@ denote the DWMs
specific to the input rate, input, and output.
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Figure 5 S-MPC integrated MCA system diagram (see online version for colours)
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3.4 Stability analysis P(t+k|t)

Previous studies (Cleij et al., 2019; Rengifo et al., 2018)
developed a feedback control law for linear systems to
address the minimum-energy regulator problem with fixed
terminal constraints. This formulation was later extended
to linear time-varying systems using a receding-horizon
approach, which has been demonstrated to guarantee
asymptotic stability. Building on these results, the present
study adopts the same methodology to evaluate the stability
of the MPC-based MCA. In addition, for the case without
COTC, stability can still be ensured by selecting a
sufficiently long prediction horizon, such as the infinite
output prediction horizon (Rengifo et al., 2018). Based
on these considerations, the feedback control law can be
expressed as:

u(t) = —R'BPP(t + Ty, t + N, T5) Az (t) (28)

The Riccati equation is employed to compute P~!, which
serves as the solution for the associated optimal control
problem and provides the basis for the feedback gain
calculation:

=A'Pt+k+1]|)ATT

_ A‘lP(t+ k41| t)A—lT _ A WTCOTET
x [T+ ECA'P(t+k+1|t)C"E"] ™"
x ECAT'P(t+k+1|t)A~T
+BR'B”

(29)

The matrix P is obtained from equation (29) together with
the inverse sum spanning from IV, to the specified time
step. In addition, P(t+ Ts,t+ NpTs) is constrained to
zero as an additional condition imposed on the system.

It should be emphasised that the prediction horizon
N, must be sufficiently long to satisfy the requirements
of the feedback control law in equation (30). The
closed-loop system remains stable provided that the system
in equation (15) is both controllable and observable.
Specifically, if the pair (A, B) is controllable and (A, C) is
observable, then, following Theorems 1 and 2 of (Kwon and
Pearson, 1978), the stability of the system in equation (15)
under terminal state constraints can be formally guaranteed.
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To further assess the robustness of the proposed
control framework against lateral stall error injections, three
representative scenarios are considered: violent turbulence,
wind shear-induced stall, and lateral stall with details to be
discussed in the next section.

3.5 Time complexity analysis

The computational complexity of the proposed algorithm
is primarily determined by matrix multiplications and
additions. These operations typically exhibit a complexity
ranging from O(n?) to O(n®), depending on matrix
dimensions. However, since the sizes of the matrices
involved are fixed and independent of the prediction
horizon N, the associated computational cost can be
regarded as constant.

The dominant factor in the overall complexity arises
from the for-loop in the MPC algorithm, whose number
of iterations is directly proportional to N,. This loop
is responsible for constructing the prediction model and
solving the optimisation problem, and since each iteration
involves a constant number of fixed-size matrix operations,
the resulting complexity scales linearly with INV,,.

Therefore, the overall time complexity of the
algorithm can be expressed as O(XN,), indicating that
the computational cost grows linearly with the prediction
horizon while remaining independent of the fixed matrix
dimensions.

4 Simulation and results

4.1 Simulation setup

Both the S-MPC-MCA with and without COTC were
implemented in MATLAB to assess controller performance.
A virtual sensor was positioned at the pilot’s eyepoint
to capture reference acceleration and angular velocity
signals, which were subsequently processed through the
vestibular system model. The simulation data structure
comprised lateral and longitudinal acceleration components,
which served as equality constraints, together with angular
velocity signals and corresponding platform state variables
required for solving the optimisation problem.

Table 1 6-DoF Stewart simulator configurations

Excursion Vel. Acc.

X +1.7 m +1.5 m/s +10 m/s’
y +1.7 m +1.5 m/s +10 m/s’
z [2.2,3.8] m +1 m/s +7 my/s’
row +25 ° +30°/s +200°/s>
pitch 425 ° +30°/s +200°/s?
yaw +30 ° +30°/s +200°/s*
lis [2.5, 45] m

Comprehensive simulations were performed under two
representative flight scenarios — aircraft turbulence and
horizontal wing stall — to examine the robustness and

fidelity of the proposed approach. The results indicate that
the S-MPC-MCA achieves a 25% improvement in error
reduction compared with the conventional MPC-MCA,
yielding an error rate of 0.0000125 versus 0.00001 for
MPC-MCA.

The simulator parameters employed for performance
evaluation are summarised in Table 1.

4.2 S-MPC performance under bumpy flight scenario

Bumpy flight conditions represent a typical challenge for
flight simulators, as they induce rapid variations in lateral
acceleration over short time intervals. Upset prevention
and recovery training (UPRT) requires simulators to
accurately reproduce these abrupt acceleration changes,
which demands a MCA with both rapid response capability
and high-fidelity somatosensory simulation.

Figure 6(a) illustrates the tracking performance of
different MCAs under such conditions. To quantitatively
compare performance, the normalised average absolute
difference (NAAD) and average absolute scale (AAS)
metrics were employed, with reference tracking evaluated
across S-MPC, MPC-based MCA, and CWF. For fairness,
each algorithm was tuned to maximise reference tracking
accuracy while ensuring actuator positions remained within
physical constraints.

The results show that the S-MPC-MCA achieves
consistently lower NAAD and AAS values compared
with  MPC-MCA and CWF, confirming its superior
tracking performance. Notably, during the intervals 10-13 s
and 16-18 s, the S-MPC-MCA automatically switched
controllers in response to physical platform limitations,
thereby maintaining higher motion fidelity. Figure 6(b)
further supports these findings, highlighting that S-MPC
outperforms both benchmarks, whereas CWF consistently
demonstrates inferior tracking performance due to its
limited adaptability.

Figures 6(c)-6(f) provide additional insights into
angular velocity tracking. Although all algorithms remained
bounded within the range of —0.5 to 0.5 deg/s due to
platform constraints, the S-MPC-MCA achieved the closest
approximation to reference trajectories, combining accuracy
with adaptability. While CWF exhibited performance
comparable to the MPC-MCA in certain conditions, it
lacked the responsiveness and robustness observed in the
S-MPC-MCA.

4.3 S-MPC performance under horizontal stall scenario

Horizontal stall of aircraft wings is another critical stall
phenomenon, characterised by abrupt and severe changes
in lateral acceleration. As with the bumpy scenario,
accurate replication of these dynamics is essential for UPRT
applications. Figure 6(a) presents the tracking performance
of the S-MPC-MCA under horizontal stall conditions,
verifying its ability to deliver realistic motion cues with
enhanced fidelity compared to conventional MPC and CWF
approaches.
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Figure 6 Performance analysis of UPRT simulation results in the bumpy scenario, (a) lateral acceleration (b) longitudinal acceleration
(c) vertical acceleration (d) roll rate, (e) pitch rate(f) yaw rate (see online version for colours)
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As illustrated in Figures 7 and 8, the S-MPC-based
MCA demonstrates a substantial improvement in tracking
performance compared with both the CWF- and MPC-based
MCAs, particularly in terms of its rapid convergence to
reference trajectories. The transitions between stages 1-2
and 3-4 are effectively managed by employing the MPC
without COTC, thereby ensuring accurate approximation
tracking at the edge of the simulator’s performance
envelope. For the remaining simulation phases, the MPC
with COTC is applied to achieve the best possible
approximation tracking within the simulator’s operational
envelope, while maintaining high motion fidelity.

During the horizontal stall scenario, the AAS indices
obtained for the S-MPC, MPC, and CWF algorithms
are 0.196, 0.279, and 0.324, respectively. These results
highlight the superior stability and precision of the S-MPC
approach. Quantitatively, the S-MPC algorithm outperforms
the MPC- and CWF-based approaches by 42.34% and
65.30%, respectively, thereby validating its robustness
under demanding UPRT conditions.

5 Conclusions

This study proposed a novel S-MPC-MCA, which integrates
the dynamic response of the human vestibular system with
the kinematic model of a six-DoF Stewart platform. Within
the simulator’s operating envelope, accurate and rapid
tracking of high-dynamic manoeuvres is achieved through
the MPC-MCA with COTC. Beyond the operational
envelope, optimal tracking is ensured by switching
to the MPC-MCA without COTC, thereby preserving
fidelity under conditions that would otherwise compromise

feasibility.
The proposed algorithm was evaluated under
representative ~ UPRT  scenarios, with performance

benchmarked against CWF- and MPC-based MCAs.
Results confirm that while MPC-based MCA consistently
outperforms CWF by reducing motion perception errors,
its performance remains constrained by terminal state
feasibility issues. By contrast, the S-MPC approach
dynamically switches between controllers in real time,
achieving superior convergence, higher stability, and greater
adaptability. Overall, the S-MPC-MCA demonstrates
excellent simulation performance under both nominal and
overloaded UPRT conditions, offering a promising solution
for next-generation high-fidelity flight simulators.
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