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Abstract: To overcome the problems of low signal-to-noise ratio, low accuracy, and long task
completion time in traditional electrical equipment abnormal vibration state detection methods, a
new detection method based on random forest is proposed. A signal acquisition architecture is
built using fibre Bragg grating sensors to obtain vibration signals of electrical equipment. The
joint approximation diagonalisation algorithm performs blind separation on the collected signals,
with the high-quality signals obtained through blind separation being input into a random forest
to obtain detection results of abnormal vibration states. Experimental results indicate the
maximum signal-to-noise ratio of electrical equipment vibration signals reaches 43.67 dB under
this method, with abnormal vibration state identification accuracy consistently exceeding 95.6%,
and the minimum task completion time being 3.58 s, demonstrating high accuracy and efficiency
characteristics.

Keywords: random forest; electrical equipment; abnormal vibration state; state detection; fibre
Bragg grating sensors; blind separation.

Reference to this paper should be made as follows: Xing, X. and Huang, J. (2025)
‘Detection method of abnormal vibration state of electrical equipment based on random forest’,
Int. J. Modelling, Identification and Control, Vol. 46, No. 2, pp.91-99.

Biographical notes: Xiaoli Xing graduated from the Tianjin Engineering Teachers College in
2007, majoring in Electrical Technology Education. She is currently an Associate Professor at
the Xinxiang Vocational and Technical College. Her research interests include automation
system integration and application, virtual simulation resource development and application in
teaching.

Jin Huang graduated from the Henan University of Technology in 2015, majoring in Mechanical
Engineering and Automation. He is currently a Lecturer at the Zhengzhou Commercial
Technician College. His research interests include automation system integration and application,
as well as methods and applications of electromechanical equipment fault diagnosis.

1 Introduction

Electrical equipment plays a crucial role in modern industry
and social life, and its operational status directly affects the
stability and safety of the power system (Zhou et al., 2023;
Geng et al., 2024). The technology of electrical equipment
is constantly developing and advancing, and its application
scope is expanding day by day. Shortcomings in the design
phase of the equipment, aging of materials over time,
improper operation during installation, or prolonged
operation under load can all potentially cause abnormal
vibration of the equipment. Once the equipment
experiences abnormal vibration, the impact should not be

underestimated (Wu et al.,, 2024; Yushuai et al., 2024).
Failure to detect abnormal vibrations in electrical equipment
in a timely manner can lead to a series of serious potential
consequences. From the perspective of equipment,
abnormal vibration may be an external manifestation of
problems such as loose, worn, and unbalanced internal
components of the equipment. If not dealt with in a timely
manner, these problems will gradually worsen and
ultimately lead to equipment failure. From a safety
perspective, abnormal vibrations of electrical equipment
may pose significant safety hazards. Abnormal vibrations of
some equipment may cause secondary disasters such as fires
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and explosions, posing a serious threat to personnel safety
and equipment facilities. From an economic perspective,
equipment failures and safety hazards caused by undetected
abnormal vibrations will result in significant economic
losses. On one hand, equipment maintenance and
replacement require a significant investment of funds; on
the other hand, power outages can cause interruptions in
industrial production and damage to commercial activities,
resulting in incalculable indirect losses to socio-economic
development. In addition, the stable operation of the
electricity market depends on the reliable operation of
various electrical equipment. Equipment failures and power
outages can affect the supply-demand balance and price
stability of the electricity market, causing economic losses
to market participants. Accurately identifying abnormal
vibration states of electrical equipment is of great
significance for ensuring the stable operation of the
electricity market.

In the operation and maintenance of electrical
equipment, vibration monitoring and fault diagnosis are key
links to ensure safe and stable equipment operation.
Although numerous domestic and foreign experts and
scholars have conducted extensive research in this field and
proposed various effective diagnostic methods and models,
some urgent problems still exist in the current technology,
limiting its practical application effectiveness under
complex working conditions. Zhang et al. (2024a) proposed
a method for identifying abnormal vibration states of
electrical equipment in cold environments, which combines
empirical mode decomposition and Stan unbiased
estimation for signal denoising, and uses long short-term
memory networks to classify spectrogram voiceprint
samples. However, this method has shown a problem of low
signal-to-noise ratio (SNR) in actual testing of vibration
signals, which has affected the subsequent detection quality.
Similarly, the abnormal vibration detection method for
electrical equipment based on fieldbus communication
proposed by Zhang et al. (2024b) although using wavelet
transform and ultra-high frequency methods to denoise and
monitor signal changes through fieldbus technology, did not
achieve the expected detection accuracy. In addition, Jin
(2024) used an isolated forest based method for identifying
abnormal vibrations in equipment. Although they improved
the smoothness and feature expression ability of the data
through moving average filtering and feature fusion
techniques, they found that the task completion time was
long and the feasibility was poor during the testing process.

The identification of abnormal vibration states in
electrical equipment represents a key technology for
ensuring power system safety. Existing methods face three
main technical bottlenecks in practical applications: SNR, a
core concept in signal processing and communication,
measures the relative strength between useful information
and noise interference. During signal acquisition, traditional
electrical sensors demonstrate insufficient anti-interference
capability in complex electromagnetic environments,
resulting in original signal SNR typically below 30 dB. In
feature extraction, inadequate separation of mixed vibration

sources limits anomaly identification accuracy below 90%.
Poor algorithm real-time performance causes existing
models to average over 5 s processing time, failing online
monitoring requirements. A random forest-based electrical
equipment abnormal vibration state detection method is
proposed as the target solution, addressing the low SNR in
vibration signals, high detection accuracy requirements, and
lengthy task completion time present in current approaches.
Therefore, this scheme features high SNR in electrical
equipment vibration signals, high accuracy in abnormal
vibration state detection, and short task completion time.
The research on identifying abnormal vibration states of
electrical equipment contributes through continuous
exploration and innovation, proposing and optimising a
series of efficient and accurate identification methods that
significantly improve electrical equipment vibration
monitoring sensitivity and accuracy. This advancement
provides strong technical support for ensuring safe and
stable operation of electrical equipment, reducing
maintenance costs, extending equipment service life, and
promoting technological progress with industrial upgrading
in related fields. The technical roadmap is as follows:

1 Build a signal acquisition architecture using fibre Bragg
grating sensors to obtain electrical equipment vibration
signals. Perform blind separation on the collected
signals using the joint approximation diagonalisation
algorithm. Fibre Bragg grating sensors provide
advantages including high sensitivity, anti-interference
capability, and long-distance transmission, enabling
high-precision acquisition of electrical equipment
vibration signals and supplying high-quality raw data
for subsequent signal processing and analysis. The joint
approximate diagonalisation algorithm, as a blind
signal separation technique, separates source signals
from observed signals without requiring prior
knowledge of source signal forms or mixing matrices.
This technique proves particularly effective for
multi-source vibration signal separation, successfully
eliminating noise and interference while enhancing
signal quality.

2 Input the high-quality signal obtained through blind
separation processing into a random forest to obtain the
detection results of abnormal vibration states of
electrical equipment. The random forest algorithm is an
ensemble learning method that classifies and recognises
input signals by constructing multiple decision trees
and voting on their results. Applying the random forest
algorithm to abnormal vibration state detection in
electrical equipment can fully utilise its advantages in
handling complex data and classification problems,
thereby improving detection accuracy and robustness.

3 The effectiveness of this method was validated using
the SNR of electrical equipment vibration signals, the
accuracy of abnormal vibration state identification, and
task completion time as performance indicators.
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2 Detection method for abnormal vibration state
of electrical equipment

2.1 Vibration signal acquisition of electrical
equipment based on fibre Bragg grating sensors

This study employs fibre Bragg grating sensors for
electrical equipment vibration signal collection, with
necessity demonstrated in three aspects: first, fibre Bragg
grating sensors operate on optical sensing principles,
exhibiting  superior anti-electromagnetic  interference
capability to reduce noise interference at the source and
significantly enhance SNR; second, inherent corrosion
resistance and temperature stability of optical fibre materials
ensure reliable data acquisition in complex industrial
environments; third, theoretical derivation and experimental
calibration prove fibre Bragg grating sensors’ acceleration
sensitivity  precisely matches electrical  equipment
micro-vibration characteristics, effectively preventing signal
omission. These characteristics directly address existing
methods’ insufficient SNR caused by sensor limitations,
establishing high-quality data foundations for subsequent
blind source separation and random forest modelling.
Compared with traditional electrical sensors, fibre Bragg
grating sensors’ signal acquisition quality superiority
ensures this method’s high-precision anomaly detection
capability. Fibre Bragg grating sensors (Burhanuddin et al.,
2025; Sahota et al., 2024) utilise internal grating structures
as sensing elements, where applied external physical
quantities, (e.g., vibration) alter grating refractive
index or period, modifying optical signal transmission
characteristics.  This  optically-based sensing mode
demonstrates sensitivity and accuracy advantages over
traditional electrical or mechanical sensors (Kuroda, 2023).
Figure 1 displays the basic fibre Bragg grating structure.

Fibre Bragg grating sensors exhibit high sensitivity
capable of detecting minute vibration signals. As optical
fibres constitute non-conductive materials, fibre Bragg
grating sensors demonstrate exceptional electromagnetic
interference resistance and maintain stable operation in
complex electromagnetic environments. Additionally, these
sensors possess outstanding corrosion resistance and
thermal stability, enabling vibration signal acquisition in
harsh conditions, significantly enhancing signal collection
efficiency and accuracy (Srivatzen et al., 2024).

When detecting minute vibration signals with
corresponding acceleration (along the sensor’s sensitive
axis), the fibre Bragg grating sensor achieves torque balance

through inertial force, establishing the following
relationship:
mad —kAlh— KO =0 1)

In formula (1), m represents the mass of mass block z; d
represents the distance between the centre of gravity of z
and the centre of gravity of the hinge rotation; & represents

the elastic coefficient of optical fibre U; Al represents the
elongation of the optical fibre; K represents the rotational
stiffness of the hinge, and 8 represents the rotational angle
of z; h represents the height of U (Chandana et al., 2024).

According to the definition of Young’s modulus, the
calculation formula for the elastic coefficient of U is as
follows:

_4/Ey
l

k 2
In formula (2), A represents the cross-sectional area of U; Ef
represents the Young’s modulus of U.

The hinge rotational stiffness is calculated using the
following formula:

2 3 34443 + 4 +
o BR [ 25(657 +453 +1) | 12525 +1) acrtgdB1| (3)
12 2s+D(@As+1)*  (4s+1)?

In formula (3), w represents the width of the hinge; s
represents its hinge quality.

In general, the calculation formula for the acceleration
sensitivity of a sensor is as follows:

S=— 4
a
In formula (4), A4 represents the change in the centre
wavelength of the grating.
The strain relationship between the A1 and U axes can
be described using the following formula:

A =(1-p.)Ages (5

In formula (5), p. represents the elastic optical coefficient;
Ap represents the centre wavelength of the grating.

The strain of U can be calculated using the following
formula:

(6)

g = AL
"
Substitute the obtained &r into formula (4) to obtain the
acceleration sensitivity of the fibre Bragg grating sensor.

The specific calculation formula is as follows:

S= (1-pe)iy md

(7
! kh+£
h
Based on actual electrical equipment operation conditions,
the fibre Bragg grating sensors’ acceleration sensitivity
undergoes adjustment. The calibrated fibre Bragg grating
sensors subsequently acquire electrical equipment vibration
signals, with the specific signal acquisition architecture
illustrated in Figure 2.
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Figure 1 Basic structure of fibre Bragg grating (see online version for colours)
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Figure 2 Vibration signal acquisition architecture for electrical equipment (see online version for colours)
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Fibre Bragg grating sensors have advantages such

as high sensitivity, anti-interference, and long-distance
transmission, which can achieve high-precision acquisition
of vibration signals from electrical equipment. Compared to
traditional sensors, fibre Bragg grating sensors are not
affected by electromagnetic interference and can work
stably in harsh environments, providing high-quality raw
data for subsequent signal processing and analysis. They
can comprehensively capture equipment vibration
information, improve monitoring accuracy and reliability.
The main features of this architecture are as follows:

1 High precision measurement: utilising the fibre Bragg
grating principle, fibre Bragg grating sensors enable
high-precision vibration signal measurement with
significantly greater accuracy than conventional
sensors, capable of detecting minute vibration
variations to facilitate precise identification of electrical
equipment abnormal vibration states.

High sensitivity: exhibiting exceptional vibration signal
sensitivity, fibre Bragg grating sensors rapidly respond
to vibration variations while generating corresponding
electrical signals, permitting real-time monitoring of
electrical equipment vibration status for timely
potential issue detection.

Electromagnetic immunity: employing optical fibres as
transmission media, fibre Bragg grating sensors exhibit
inherent electromagnetic immunity characteristics.
Within power environments where electromagnetic
interference constitutes a common noise source, these
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sensors maintain unaffected signal transmission and
stable vibration data acquisition.

Corrosion resistance and high temperature resistance:
fibre Bragg grating sensors demonstrate corrosion
resistance and high temperature tolerance, enabling
long-term stable operation in harsh industrial
environments, thereby ensuring wide applicability in
power equipment vibration monitoring.

Real-time monitoring: fibre Bragg grating sensors
perform real-time vibration signal acquisition and
transmission to fulfil electricity market monitoring
requirements, allowing timely detection of electrical
equipment abnormal vibration states and prompt
implementation of corresponding measures.

Large dynamic range: fibre Bragg grating sensors
possess an extensive dynamic range capable of
measuring signals ranging from subtle vibrations to
intense vibrations, enabling adaptation to diverse
vibration intensity monitoring requirements.

High integration capability: fibre Bragg grating sensors
readily integrate with existing monitoring systems and
equipment to facilitate data sharing and interaction,
allowing seamless incorporation into current power
monitoring systems.

2.2 Blind separation of vibration signals from
electrical equipment

The signal acquisition architecture utilising fibre Bragg
grating sensors obtains electrical equipment vibration
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signals, while the joint approximate diagonalisation
algorithm performs blind separation and processing of
collected signals, establishing a critical foundation for
subsequent electrical equipment abnormal vibration state
detection.

Blind vibration signal separation technology enables
extraction of independent vibration source signals from
complex mixed signals. During electrical equipment
operation, multiple vibration sources typically coexist with
overlapping signal patterns, forming complex mixed
signals. The blind separation technique effectively isolates
individual vibration source components from these mixed
signals, allowing precise analysis of each vibration source’s
characteristics (Dhoulath et al., 2024; Esmaeiloghli et al.,
2024) while generating data support for subsequent
research.

This section presents an improved joint approximation
diagonalisation (JADE) algorithm to resolve the separation
challenge of multi-source mixed vibration signals in
electrical equipment, with the method comprising the
following key steps:

Assuming the mixed vibration signal collected by the
fibre Bragg grating sensor is x(¢) = [x1(2), x1(2), ..., xu(D]",
it is linearly mixed from » independent source signals

s(6) = [510), $10),s -, (D]
x(#) = As() +n(7) (3

In formula (8), 4 € R™" represents the unknown mixing
matrix, and 7(¢) represents additive noise.

Step 1 Centralisation and decorrelation

e Calculate the covariance matrix of the sample:
R, = E[x(0)x(1)"] €)

e By performing eigenvalue decomposition
R, = U A U", the whitening matrix is obtained:

B=A12UT (10)

In formula (10), A = diag(41, A2, ..., Am)
represents the eigenvalue matrix and U
represents the eigenvector matrix.

e  Whitening signal

The JADE algorithm performs whitening operation
on the vibration signal x(¢) of electrical equipment
to remove the correlation of the signal, resulting in:

z(t) = Bx(t) (11)

In formula (11), B represents the whitening
matrix; z(#) represents the vibration signal of
electrical equipment after whitening, satisfying
z(f) = E[Z()Z()T] = L.

Step 2 Calculate the fourth-order cumulative quantity

For whitening signal z(¢), its fourth-order cumulant
tensor O € R™"*™" is defined, and the definition of
the fourth-order cumulant is:

Oy = cum(z;, z;, z, 21 ) = E|ziz;zz]
—E[z,—zj]E[zkz,]—E[z,-zk]E[zjzl] (12)
—E[z[z,]E[zjzk]

Step 3 Build a cumulative matrix set

Select a set of basis matrices {M, }’,’il (usually the

standard basis matrix £;) and calculate the
corresponding fourth-order cumulative matrix:

0.(M)=3" Ou(M)yisj=12n  (13)

Step 4 Joint approximation diagonalisation

Find orthogonal matrix V so that all Q.(M,) are
approximately diagonalised simultaneously:

VIO, (M,)V = A, (14)
In formula (14), A- represents the diagonal matrix.

By minimising the energy of non-diagonal
elements:

JV) = Zl logr (VvTo. (M) (15)

In formula (15), off(.) represents preserving the
non-diagonal elements of the matrix.

Step 5 Source signal recovery

The final separation matrix is W= V7B and the
calculation formula for blind separation of
electrical equipment vibration signals is as follows:

X (@) =Wx(t) (16)

2.3 Abnormal vibration state detection of electrical
equipment based on random forest

Through the above process, the joint approximation
diagonalisation algorithm efficiently separates vibration
signals of different types of electrical equipment, improving
the generality and practicality of the method. Applying the
random forest algorithm to detect abnormal vibration states
in electrical equipment can utilise its advantages in handling
complex data and classification problems, improving the
accuracy and robustness of detection. Traditional vibration
signal detection methods rely on a single vibration feature,
which is easily affected by noise and interference, resulting
in biased detection results. The random forest algorithm can
comprehensively consider multiple features and reduce
errors caused by single feature detection by integrating the
judgement results of multiple decision trees, thereby
improving detection accuracy. Random forest, as an
ensemble learning algorithm, demonstrates significant
innovation in identifying abnormal vibration states of
electrical equipment.
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Figure 3 CART decision tree construction process
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1 Advantages of ensemble learning: random forest
significantly improves model accuracy and stability by
constructing multiple decision trees and combining
their outputs. This integrated learning approach proves
particularly important in detecting abnormal vibration
states of electrical equipment; as vibration signals are
often complex and variable, making it difficult for a
single model to fully capture their characteristics.

2 Randomness and diversity: in random forest, each
decision tree is constructed based on different random
samples and feature subsets, increasing model diversity.
This diversity enables random forest to handle various
complex vibration signals and improves abnormal
vibration state identification capability.

3 Automatic feature selection: random forest
automatically evaluates feature importance during
training and selects the most critical features for
abnormal vibration state identification. This automatic
feature selection mechanism reduces manual
intervention while improving feature extraction
efficiency and accuracy.

4 Nonlinear feature capture: abnormal vibration signals
of electrical equipment often contain nonlinear features,
which traditional methods are difficult to effectively
capture. Random forest can process nonlinear data and
better capture complex patterns in vibration signals by
constructing multiple decision trees.

5 Robustness and generalisation ability: random forest
demonstrates strong robustness against noise and
outliers while maintaining stable performance in
complex environments. This method exhibits excellent
generalisation capability for identifying abnormal
vibration states across various electrical equipment
types and scales.

The original training sample dataset construction utilises
blind-separated electrical equipment vibration signals as the
foundation, with abnormal vibration labels incorporated to
complete the training sample dataset.

The dataset is mainly represented by X = (xi, yi)um, Where
n represents the number of electrical equipment vibration
signals, m represents the number of electrical equipment
vibration signal properties, that is, the number of sample
feature quantities, x; is the i of m™ training sample vector,
represented as x; = [xj, Xi2, ..., Xin], and y; is the label
corresponding to x;, including normal and abnormal. Using
bootstrap resampling method, n samples were randomly
placed back from X = (xi, 3i)m to form a new training
sample subset X; = {(x1, 1), (x2, ¥2), (X3, 3), -+o» (X, Yu)}. A
total of & such training subsets were constructed, forming a
training sample set of D = {Xi, X2, X, ..., Xi}.

Assuming that the vibration signal dataset d of electrical
equipment is split into d; and @, based on the value a, of
feature Ay, the calculation formula for Gini coefficient and
information gain rate of dataset d is as follows:

Gini(d, au):ld?lﬂGini(dl)Jr%Gini(dz) (17)
InfGaiRat(d) = —Sam@)_ (18)
SplInf(d)

In the formula, Gini represents the Gini coefficient;
InfGaiRa represents the information gain ratio; Gain
represents the information gain value, and InfGaiRat
represents the node splitting information. The construction
process of CART decision tree is shown in Figure 3.

Merge the trained & decision trees into the required
random forest classifier, which is {Ai(x), h:(x), A3(X), ...,
hi(x)}. The random forest model serves as a powerful
classifier without requiring high performance from
individual decision trees. Each decision tree generates
randomly and operates independently, with final results
determined through collective voting by all decision trees.
The specific classification voting process appears in
Figure 4.

The decision-making formula for electrical equipment
abnormal vibration state identification using random forest
appears as follows:

i

H(x)=arg mgxzkzll(h,-(x) -Y) (19)

In formula (17), x represents the input variable, which is the
vibration signal of the electrical equipment; /;(x) represents
the i decision tree; Y represents the target classification
label; I(-) represents a demonstrative function, which is 1
when the expression is satisfied and 0 otherwise.

3 Experimental design
3.1 Experimental scheme

To validate the practical application effectiveness of the
random forest-based electrical equipment abnormal
vibration state detection method, experimental testing was
implemented according to the following specific
experimental plan:

1 Experimental data

Electrical equipment abnormal vibration state
identification experiments utilise sensors to collect
relevant experimental data ensuring result authenticity
and reliability. The main experimental data types
include:

e Vibration signal data: fundamental data for
identifying abnormal vibration states, collected via
vibration sensors to reflect equipment operational
vibration conditions.

e Sound signal data: captured through sound sensors
and converted into digital signals for analysis,
revealing equipment acoustic characteristics
including frequency and loudness to assist
abnormal vibration identification.
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e  Temperature/pressure data: operational equipment
may exhibit physical quantity variations including
temperature and pressure changes potentially
related to abnormal vibration states.

e  Operating history data: records of equipment
operational status and fault conditions during
specific historical periods.

2 Evaluation indicators

Selected experimental comparison methods include the
Zhang et al. (2024a, 2024b) method, and the proposed
method. Method effectiveness verification involves
comparing electrical equipment vibration signal SNRs,
abnormal vibration state detection accuracy, and
detection task completion times.

e In electrical equipment abnormal vibration state
identification experiments, signals represent useful
vibration state information while noise denotes
interference components during signal acquisition,
transmission and processing. The SNR indicates
the power ratio between signal and noise, where
higher ratios correspond to better method-collected
signal quality.

e  The accuracy of electrical equipment abnormal
vibration state identification measures the
proportion of correctly identified states among all
detected vibration states, serving as a key indicator
for evaluating detection method effectiveness.

e  The task completion time for electrical equipment
abnormal vibration state identification represents
the total duration from vibration-related data
collection (including signals and operating
parameters) to final diagnosis confirmation.
Shorter durations indicate higher method
efficiency.

3.2 Experimental result

3.2.1 Signal to noise ratio of vibration signals in
electrical equipment

Table 1 presents the SNR test results of electrical equipment
vibration signals obtained by three methods.

Analysis of Table 1 data indicates the -electrical
equipment vibration signal achieves maximum SNRs of
29.75 dB with Zhang et al. (2024a) method and 17.41 dB
with Zhang et al. (2024b) method, while reaching 43.67 dB
with the proposed method — representing 13.72 dB and
26.26 dB improvements respectively. Minimum SNRs
measure 20.39 dB for Zhang et al. (2024a) method and
12.36 dB for Zhang et al. (2024b) method, compared to
36.78 dB for the proposed method, demonstrating 16.39 dB
and 24.42 dB enhancements. Comparative results confirm
the proposed method’s superior vibration signal collection
quality, enabling more accurate motor vibration state
representation and ensuring reliable abnormal vibration
state identification.

Table 1 Signal to noise ratio of three methods
Signal to noise ratio/dB
Number of
experiments Zhang et al. Zhang et al. Proposed
(2024a) method ~ (2024b) method method

10 20.39 15.23 36.78
20 21.46 17.41 38.99
30 23.51 14.32 37.41
40 21.49 16.33 36.97
50 22.37 12.45 39.42
60 24.58 12.36 40.12
70 26.31 15.48 43.67
80 29.75 16.31 38.76

3.2.2 Detection accuracy

Figure 5 displays the accuracy test results for identifying
abnormal vibration states in electrical equipment using three
methods.

Figure 5 Detection accuracy of three methods (see online
version for colours)
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Analysis of Figure 5 data reveals the Zhang et al. (2024a)
method achieves 73.6%—82.4% accuracy in identifying
electrical equipment abnormal vibration states, compared to
72.3%-86.3% for Zhang et al. (2024b) method. The
proposed method maintains consistent accuracy above
95.6%, demonstrating high reliability for practical electrical
equipment monitoring applications and suitability for
equipment status monitoring and fault warning systems.

3.2.3 Identify task completion time

The completion time test results of the three methods for
identifying abnormal vibration states of electrical equipment
are shown in Table 2.

Table 2 data analysis shows maximum task completion
times of 9.67 s for Zhang et al. (2024a) method and 8.63 s
for Zhang et al. (2024b) method, while the proposed method
achieves 2.98 s — representing 6.69 s and 5.65 s reductions
respectively. Minimum task completion times measure
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5.89 s for Zhang et al. (2024a) method and 5.62 s for Zhang
et al. (2024b) method, with the proposed method reaching
3.58 s (2.31 s and 2.04 s reductions). These results confirm
shorter task completion times, demonstrating the method’s
advanced random forest algorithm effectively processes
electrical equipment vibration data for rapid abnormal state
identification.

Table 2 Task completion time for three methods
Task completion time/s
Number of
experiments Zhang et al. Zhang et al. Proposed
(2024a) method ~ (2024b) method method

10 8.96 5.62 2.36
20 7.41 5.74 2.47
30 5.89 8.63 2.58
40 7.45 6.74 2.46
50 7.63 6.55 2.33
60 6.38 7.18 2.98
70 6.87 7.26 275
80 9.67 7.39 231

4 Conclusions

Electrical equipment inevitably encounters various

operational fault risks, with abnormal vibration representing
a common and critical fault manifestation. This study
proposes a novel random forest-based detection method
for electrical equipment abnormal vibration states.
Experimental results demonstrate 43.67 dB maximum
vibration SNR, consistent abnormal state identification
accuracy exceeding 95.6%, and 3.58 s minimum task
completion time, confirming high accuracy and efficiency
characteristics. Equipment vibration state identification
enables timely detection of potential faults and hazards,
allowing the implementation of preventive measures that
reduce maintenance costs and production loss while
enhancing equipment reliability and safety. Future research
should prioritise exploring new signal processing
technologies and algorithms, emphasising multi-source
information integration and utilisation to advance electrical
equipment fault diagnosis technology innovation.
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