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Abstract: To overcome the problems of low signal-to-noise ratio, low accuracy, and long task 
completion time in traditional electrical equipment abnormal vibration state detection methods, a 
new detection method based on random forest is proposed. A signal acquisition architecture is 
built using fibre Bragg grating sensors to obtain vibration signals of electrical equipment. The 
joint approximation diagonalisation algorithm performs blind separation on the collected signals, 
with the high-quality signals obtained through blind separation being input into a random forest 
to obtain detection results of abnormal vibration states. Experimental results indicate the 
maximum signal-to-noise ratio of electrical equipment vibration signals reaches 43.67 dB under 
this method, with abnormal vibration state identification accuracy consistently exceeding 95.6%, 
and the minimum task completion time being 3.58 s, demonstrating high accuracy and efficiency 
characteristics. 
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1 Introduction 
Electrical equipment plays a crucial role in modern industry 
and social life, and its operational status directly affects the 
stability and safety of the power system (Zhou et al., 2023; 
Geng et al., 2024). The technology of electrical equipment 
is constantly developing and advancing, and its application 
scope is expanding day by day. Shortcomings in the design 
phase of the equipment, aging of materials over time, 
improper operation during installation, or prolonged 
operation under load can all potentially cause abnormal 
vibration of the equipment. Once the equipment  
experiences abnormal vibration, the impact should not be 

underestimated (Wu et al., 2024; Yushuai et al., 2024). 
Failure to detect abnormal vibrations in electrical equipment 
in a timely manner can lead to a series of serious potential 
consequences. From the perspective of equipment, 
abnormal vibration may be an external manifestation of 
problems such as loose, worn, and unbalanced internal 
components of the equipment. If not dealt with in a timely 
manner, these problems will gradually worsen and 
ultimately lead to equipment failure. From a safety 
perspective, abnormal vibrations of electrical equipment 
may pose significant safety hazards. Abnormal vibrations of 
some equipment may cause secondary disasters such as fires 
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and explosions, posing a serious threat to personnel safety 
and equipment facilities. From an economic perspective, 
equipment failures and safety hazards caused by undetected 
abnormal vibrations will result in significant economic 
losses. On one hand, equipment maintenance and 
replacement require a significant investment of funds; on 
the other hand, power outages can cause interruptions in 
industrial production and damage to commercial activities, 
resulting in incalculable indirect losses to socio-economic 
development. In addition, the stable operation of the 
electricity market depends on the reliable operation of 
various electrical equipment. Equipment failures and power 
outages can affect the supply-demand balance and price 
stability of the electricity market, causing economic losses 
to market participants. Accurately identifying abnormal 
vibration states of electrical equipment is of great 
significance for ensuring the stable operation of the 
electricity market. 

In the operation and maintenance of electrical 
equipment, vibration monitoring and fault diagnosis are key 
links to ensure safe and stable equipment operation. 
Although numerous domestic and foreign experts and 
scholars have conducted extensive research in this field and 
proposed various effective diagnostic methods and models, 
some urgent problems still exist in the current technology, 
limiting its practical application effectiveness under 
complex working conditions. Zhang et al. (2024a) proposed 
a method for identifying abnormal vibration states of 
electrical equipment in cold environments, which combines 
empirical mode decomposition and Stan unbiased 
estimation for signal denoising, and uses long short-term 
memory networks to classify spectrogram voiceprint 
samples. However, this method has shown a problem of low 
signal-to-noise ratio (SNR) in actual testing of vibration 
signals, which has affected the subsequent detection quality. 
Similarly, the abnormal vibration detection method for 
electrical equipment based on fieldbus communication 
proposed by Zhang et al. (2024b) although using wavelet 
transform and ultra-high frequency methods to denoise and 
monitor signal changes through fieldbus technology, did not 
achieve the expected detection accuracy. In addition, Jin 
(2024) used an isolated forest based method for identifying 
abnormal vibrations in equipment. Although they improved 
the smoothness and feature expression ability of the data 
through moving average filtering and feature fusion 
techniques, they found that the task completion time was 
long and the feasibility was poor during the testing process. 

The identification of abnormal vibration states in 
electrical equipment represents a key technology for 
ensuring power system safety. Existing methods face three 
main technical bottlenecks in practical applications: SNR, a 
core concept in signal processing and communication, 
measures the relative strength between useful information 
and noise interference. During signal acquisition, traditional 
electrical sensors demonstrate insufficient anti-interference 
capability in complex electromagnetic environments, 
resulting in original signal SNR typically below 30 dB. In 
feature extraction, inadequate separation of mixed vibration 

sources limits anomaly identification accuracy below 90%. 
Poor algorithm real-time performance causes existing 
models to average over 5 s processing time, failing online 
monitoring requirements. A random forest-based electrical 
equipment abnormal vibration state detection method is 
proposed as the target solution, addressing the low SNR in 
vibration signals, high detection accuracy requirements, and 
lengthy task completion time present in current approaches. 
Therefore, this scheme features high SNR in electrical 
equipment vibration signals, high accuracy in abnormal 
vibration state detection, and short task completion time. 
The research on identifying abnormal vibration states of 
electrical equipment contributes through continuous 
exploration and innovation, proposing and optimising a 
series of efficient and accurate identification methods that 
significantly improve electrical equipment vibration 
monitoring sensitivity and accuracy. This advancement 
provides strong technical support for ensuring safe and 
stable operation of electrical equipment, reducing 
maintenance costs, extending equipment service life, and 
promoting technological progress with industrial upgrading 
in related fields. The technical roadmap is as follows: 

1 Build a signal acquisition architecture using fibre Bragg 
grating sensors to obtain electrical equipment vibration 
signals. Perform blind separation on the collected 
signals using the joint approximation diagonalisation 
algorithm. Fibre Bragg grating sensors provide 
advantages including high sensitivity, anti-interference 
capability, and long-distance transmission, enabling 
high-precision acquisition of electrical equipment 
vibration signals and supplying high-quality raw data 
for subsequent signal processing and analysis. The joint 
approximate diagonalisation algorithm, as a blind 
signal separation technique, separates source signals 
from observed signals without requiring prior 
knowledge of source signal forms or mixing matrices. 
This technique proves particularly effective for  
multi-source vibration signal separation, successfully 
eliminating noise and interference while enhancing 
signal quality. 

2 Input the high-quality signal obtained through blind 
separation processing into a random forest to obtain the 
detection results of abnormal vibration states of 
electrical equipment. The random forest algorithm is an 
ensemble learning method that classifies and recognises 
input signals by constructing multiple decision trees 
and voting on their results. Applying the random forest 
algorithm to abnormal vibration state detection in 
electrical equipment can fully utilise its advantages in 
handling complex data and classification problems, 
thereby improving detection accuracy and robustness. 

3 The effectiveness of this method was validated using 
the SNR of electrical equipment vibration signals, the 
accuracy of abnormal vibration state identification, and 
task completion time as performance indicators. 



 Detection method of abnormal vibration state of electrical equipment based on random forest 93 

2 Detection method for abnormal vibration state 
of electrical equipment 

2.1 Vibration signal acquisition of electrical 
equipment based on fibre Bragg grating sensors 

This study employs fibre Bragg grating sensors for 
electrical equipment vibration signal collection, with 
necessity demonstrated in three aspects: first, fibre Bragg 
grating sensors operate on optical sensing principles, 
exhibiting superior anti-electromagnetic interference 
capability to reduce noise interference at the source and 
significantly enhance SNR; second, inherent corrosion 
resistance and temperature stability of optical fibre materials 
ensure reliable data acquisition in complex industrial 
environments; third, theoretical derivation and experimental 
calibration prove fibre Bragg grating sensors’ acceleration 
sensitivity precisely matches electrical equipment  
micro-vibration characteristics, effectively preventing signal 
omission. These characteristics directly address existing 
methods’ insufficient SNR caused by sensor limitations, 
establishing high-quality data foundations for subsequent 
blind source separation and random forest modelling. 
Compared with traditional electrical sensors, fibre Bragg 
grating sensors’ signal acquisition quality superiority 
ensures this method’s high-precision anomaly detection 
capability. Fibre Bragg grating sensors (Burhanuddin et al., 
2025; Sahota et al., 2024) utilise internal grating structures 
as sensing elements, where applied external physical 
quantities, (e.g., vibration) alter grating refractive  
index or period, modifying optical signal transmission 
characteristics. This optically-based sensing mode 
demonstrates sensitivity and accuracy advantages over 
traditional electrical or mechanical sensors (Kuroda, 2023). 
Figure 1 displays the basic fibre Bragg grating structure. 

Fibre Bragg grating sensors exhibit high sensitivity  
capable of detecting minute vibration signals. As optical 
fibres constitute non-conductive materials, fibre Bragg 
grating sensors demonstrate exceptional electromagnetic 
interference resistance and maintain stable operation in 
complex electromagnetic environments. Additionally, these 
sensors possess outstanding corrosion resistance and 
thermal stability, enabling vibration signal acquisition in 
harsh conditions, significantly enhancing signal collection 
efficiency and accuracy (Srivatzen et al., 2024). 

When detecting minute vibration signals with 
corresponding acceleration (along the sensor’s sensitive 
axis), the fibre Bragg grating sensor achieves torque balance 
through inertial force, establishing the following 
relationship: 

Δ 0mad k lh Kθ− − =  (1) 

In formula (1), m represents the mass of mass block z; d 
represents the distance between the centre of gravity of z 
and the centre of gravity of the hinge rotation; k represents 

the elastic coefficient of optical fibre U; ∆l represents the 
elongation of the optical fibre; K represents the rotational 
stiffness of the hinge, and θ represents the rotational angle 
of z; h represents the height of U (Chandana et al., 2024). 

According to the definition of Young’s modulus, the 
calculation formula for the elastic coefficient of U is as 
follows: 

f fA E
k

l
=  (2) 

In formula (2), Af represents the cross-sectional area of U; Ef 
represents the Young’s modulus of U. 

The hinge rotational stiffness is calculated using the 
following formula: 

( )2 3 3 3 4

2 5/2
2 6 +4 +1 12 (2 +1)+ acrtg 4 +1

12 (2 +1)(4 +1) (4 +1)
EwR s s s s sK s

s s s
 

=  
 

 (3) 

In formula (3), w represents the width of the hinge; s 
represents its hinge quality. 

In general, the calculation formula for the acceleration 
sensitivity of a sensor is as follows: 

ΔλS
a

=  (4) 

In formula (4), ∆λ represents the change in the centre 
wavelength of the grating. 

The strain relationship between the ∆λ and U axes can 
be described using the following formula: 

( )Δ 1 e B fλ p λ ε= −  (5) 

In formula (5), pe represents the elastic optical coefficient; 
λB represents the centre wavelength of the grating. 

The strain of U can be calculated using the following 
formula: 

Δ
f

Lε
l

=  (6) 

Substitute the obtained εf into formula (4) to obtain the 
acceleration sensitivity of the fibre Bragg grating sensor. 
The specific calculation formula is as follows: 

(1 )

+

Bpe λ mdS Kl kh
h

−=  (7) 

Based on actual electrical equipment operation conditions, 
the fibre Bragg grating sensors’ acceleration sensitivity 
undergoes adjustment. The calibrated fibre Bragg grating 
sensors subsequently acquire electrical equipment vibration 
signals, with the specific signal acquisition architecture 
illustrated in Figure 2. 
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Figure 1 Basic structure of fibre Bragg grating (see online version for colours) 

 

Figure 2 Vibration signal acquisition architecture for electrical equipment (see online version for colours) 

  

 
Fibre Bragg grating sensors have advantages such  
as high sensitivity, anti-interference, and long-distance 
transmission, which can achieve high-precision acquisition 
of vibration signals from electrical equipment. Compared to 
traditional sensors, fibre Bragg grating sensors are not 
affected by electromagnetic interference and can work 
stably in harsh environments, providing high-quality raw 
data for subsequent signal processing and analysis. They 
can comprehensively capture equipment vibration 
information, improve monitoring accuracy and reliability. 
The main features of this architecture are as follows: 

1 High precision measurement: utilising the fibre Bragg 
grating principle, fibre Bragg grating sensors enable 
high-precision vibration signal measurement with 
significantly greater accuracy than conventional 
sensors, capable of detecting minute vibration 
variations to facilitate precise identification of electrical 
equipment abnormal vibration states. 

2 High sensitivity: exhibiting exceptional vibration signal 
sensitivity, fibre Bragg grating sensors rapidly respond 
to vibration variations while generating corresponding 
electrical signals, permitting real-time monitoring of 
electrical equipment vibration status for timely 
potential issue detection. 

3 Electromagnetic immunity: employing optical fibres as 
transmission media, fibre Bragg grating sensors exhibit 
inherent electromagnetic immunity characteristics. 
Within power environments where electromagnetic 
interference constitutes a common noise source, these 

sensors maintain unaffected signal transmission and 
stable vibration data acquisition. 

4 Corrosion resistance and high temperature resistance: 
fibre Bragg grating sensors demonstrate corrosion 
resistance and high temperature tolerance, enabling 
long-term stable operation in harsh industrial 
environments, thereby ensuring wide applicability in 
power equipment vibration monitoring. 

5 Real-time monitoring: fibre Bragg grating sensors 
perform real-time vibration signal acquisition and 
transmission to fulfil electricity market monitoring 
requirements, allowing timely detection of electrical 
equipment abnormal vibration states and prompt 
implementation of corresponding measures. 

6 Large dynamic range: fibre Bragg grating sensors 
possess an extensive dynamic range capable of 
measuring signals ranging from subtle vibrations to 
intense vibrations, enabling adaptation to diverse 
vibration intensity monitoring requirements. 

7 High integration capability: fibre Bragg grating sensors 
readily integrate with existing monitoring systems and 
equipment to facilitate data sharing and interaction, 
allowing seamless incorporation into current power 
monitoring systems. 

2.2 Blind separation of vibration signals from 
electrical equipment 

The signal acquisition architecture utilising fibre Bragg 
grating sensors obtains electrical equipment vibration 
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signals, while the joint approximate diagonalisation 
algorithm performs blind separation and processing of 
collected signals, establishing a critical foundation for 
subsequent electrical equipment abnormal vibration state 
detection. 

Blind vibration signal separation technology enables 
extraction of independent vibration source signals from 
complex mixed signals. During electrical equipment 
operation, multiple vibration sources typically coexist with 
overlapping signal patterns, forming complex mixed 
signals. The blind separation technique effectively isolates 
individual vibration source components from these mixed 
signals, allowing precise analysis of each vibration source’s 
characteristics (Dhoulath et al., 2024; Esmaeiloghli et al., 
2024) while generating data support for subsequent 
research. 

This section presents an improved joint approximation 
diagonalisation (JADE) algorithm to resolve the separation 
challenge of multi-source mixed vibration signals in 
electrical equipment, with the method comprising the 
following key steps: 

Assuming the mixed vibration signal collected by the 
fibre Bragg grating sensor is x(t) = [x1(t), x1(t), …, xm(t)]T,  
it is linearly mixed from n independent source signals  
s(t) = [s1(t), s1(t), …, sm(t)]T: 

( ) ( ) + ( )x t As t η t=  (8) 

In formula (8), A ∈ Rm×n represents the unknown mixing 
matrix, and η(t) represents additive noise. 

Step 1 Centralisation and decorrelation 
• Calculate the covariance matrix of the sample: 

[ ]( ) ( )T
xR E x t x t=  (9) 

• By performing eigenvalue decomposition  
Rx = U ∧ UT, the whitening matrix is obtained: 

1/2 TB U−= ∧  (10) 
In formula (10), ∧ = diag(λ1, λ2, …, λm) 
represents the eigenvalue matrix and U 
represents the eigenvector matrix. 

• Whitening signal 

The JADE algorithm performs whitening operation 
on the vibration signal x(t) of electrical equipment 
to remove the correlation of the signal, resulting in: 

( ) ( )z t Bx t=  (11) 

In formula (11), B represents the whitening  
matrix; z(t) represents the vibration signal of 
electrical equipment after whitening, satisfying  
z(t) = E[Z(t)Z(t)T] = In. 

Step 2 Calculate the fourth-order cumulative quantity 

For whitening signal z(t), its fourth-order cumulant 
tensor Q ∈ Rn×n ×n×n is defined, and the definition of 
the fourth-order cumulant is: 

( ) [ ]
[ ] [ ] [ ] [ ]
[ ] [ ]

, , ,ijkl i j k l i j k l

i j k l i k j l

i l j k

Q cum z z z z E z z z z

E z z E z z E z z E z z

E z z E z z

= =

− −

−

 (12) 

Step 3 Build a cumulative matrix set 

Select a set of basis matrices 2
1{ }n

r rM =  (usually the 
standard basis matrix Eij) and calculate the 
corresponding fourth-order cumulative matrix: 

( ) ( )
, 1

, , 1, 2, ...,
n

z r ijkl r klk l
Q M Q M i j n

=
= =  (13) 

Step 4 Joint approximation diagonalisation 

Find orthogonal matrix V so that all Qz(Mr) are 
approximately diagonalised simultaneously: 

( )TV z r rQ M V ≈ ∧  (14) 

In formula (14), ∧r represents the diagonal matrix. 

By minimising the energy of non-diagonal 
elements: 

( )( )
2 2T
1

( ) V
n

z r Fr
J V off Q M V

=
=  (15) 

In formula (15), off(.) represents preserving the 
non-diagonal elements of the matrix. 

Step 5 Source signal recovery 

The final separation matrix is W = VTB and the 
calculation formula for blind separation of 
electrical equipment vibration signals is as follows: 

( ) ( )X t Wx t=  (16) 

2.3 Abnormal vibration state detection of electrical 
equipment based on random forest 

Through the above process, the joint approximation 
diagonalisation algorithm efficiently separates vibration 
signals of different types of electrical equipment, improving 
the generality and practicality of the method. Applying the 
random forest algorithm to detect abnormal vibration states 
in electrical equipment can utilise its advantages in handling 
complex data and classification problems, improving the 
accuracy and robustness of detection. Traditional vibration 
signal detection methods rely on a single vibration feature, 
which is easily affected by noise and interference, resulting 
in biased detection results. The random forest algorithm can 
comprehensively consider multiple features and reduce 
errors caused by single feature detection by integrating the 
judgement results of multiple decision trees, thereby 
improving detection accuracy. Random forest, as an 
ensemble learning algorithm, demonstrates significant 
innovation in identifying abnormal vibration states of 
electrical equipment. 
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Figure 3 CART decision tree construction process 

 

Figure 4 Classification voting process (see online version for colours) 
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1 Advantages of ensemble learning: random forest 
significantly improves model accuracy and stability by 
constructing multiple decision trees and combining 
their outputs. This integrated learning approach proves 
particularly important in detecting abnormal vibration 
states of electrical equipment; as vibration signals are 
often complex and variable, making it difficult for a 
single model to fully capture their characteristics. 

2 Randomness and diversity: in random forest, each 
decision tree is constructed based on different random 
samples and feature subsets, increasing model diversity. 
This diversity enables random forest to handle various 
complex vibration signals and improves abnormal 
vibration state identification capability. 

3 Automatic feature selection: random forest 
automatically evaluates feature importance during 
training and selects the most critical features for 
abnormal vibration state identification. This automatic 
feature selection mechanism reduces manual 
intervention while improving feature extraction 
efficiency and accuracy. 

4 Nonlinear feature capture: abnormal vibration signals 
of electrical equipment often contain nonlinear features, 
which traditional methods are difficult to effectively 
capture. Random forest can process nonlinear data and 
better capture complex patterns in vibration signals by 
constructing multiple decision trees. 

5 Robustness and generalisation ability: random forest 
demonstrates strong robustness against noise and 
outliers while maintaining stable performance in 
complex environments. This method exhibits excellent 
generalisation capability for identifying abnormal 
vibration states across various electrical equipment 
types and scales. 

The original training sample dataset construction utilises 
blind-separated electrical equipment vibration signals as the 
foundation, with abnormal vibration labels incorporated to 
complete the training sample dataset. 

The dataset is mainly represented by X = (xi, yi)nm, where 
n represents the number of electrical equipment vibration 
signals, m represents the number of electrical equipment 
vibration signal properties, that is, the number of sample 
feature quantities, xi is the ith of mth training sample vector, 
represented as xi = [xi1, xi2, …, xim], and yi is the label 
corresponding to xi, including normal and abnormal. Using 
bootstrap resampling method, n samples were randomly 
placed back from X = (xi, yi)nm to form a new training 
sample subset X1 = {(x1, y1), (x2, y2), (x3, y3), …, (xn, yn)}. A 
total of k such training subsets were constructed, forming a 
training sample set of D = {X1, X2, X3, …, Xk}. 

Assuming that the vibration signal dataset d of electrical 
equipment is split into d1 and d2 based on the value au of 
feature Ak, the calculation formula for Gini coefficient and 
information gain rate of dataset d is as follows: 

( ) ( ) ( )1 2
1 2Gini , Gini + Gini

| | | |u
d dd a d d
d d

=  (17) 

Gain( )InfGaiRat( )
SplInf ( )

dd
d

=  (18) 

In the formula, Gini represents the Gini coefficient; 
InfGaiRa represents the information gain ratio; Gain 
represents the information gain value, and InfGaiRat 
represents the node splitting information. The construction 
process of CART decision tree is shown in Figure 3. 

Merge the trained k decision trees into the required 
random forest classifier, which is {h1(x), h2(x), h3(x), …, 
hk(x)}. The random forest model serves as a powerful 
classifier without requiring high performance from 
individual decision trees. Each decision tree generates 
randomly and operates independently, with final results 
determined through collective voting by all decision trees. 
The specific classification voting process appears in  
Figure 4. 

The decision-making formula for electrical equipment 
abnormal vibration state identification using random forest 
appears as follows: 

( )
1

( ) max ( )
k

iiY
H x arg I h x Y

=
= =  (19) 

In formula (17), x represents the input variable, which is the 
vibration signal of the electrical equipment; hi(x) represents 
the ith decision tree; Y represents the target classification 
label; I(∙) represents a demonstrative function, which is 1 
when the expression is satisfied and 0 otherwise. 

3 Experimental design 
3.1 Experimental scheme 
To validate the practical application effectiveness of the 
random forest-based electrical equipment abnormal 
vibration state detection method, experimental testing was 
implemented according to the following specific 
experimental plan: 

1 Experimental data 

Electrical equipment abnormal vibration state 
identification experiments utilise sensors to collect 
relevant experimental data ensuring result authenticity 
and reliability. The main experimental data types 
include: 

• Vibration signal data: fundamental data for 
identifying abnormal vibration states, collected via 
vibration sensors to reflect equipment operational 
vibration conditions. 

• Sound signal data: captured through sound sensors 
and converted into digital signals for analysis, 
revealing equipment acoustic characteristics 
including frequency and loudness to assist 
abnormal vibration identification. 
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• Temperature/pressure data: operational equipment 
may exhibit physical quantity variations including 
temperature and pressure changes potentially 
related to abnormal vibration states. 

• Operating history data: records of equipment 
operational status and fault conditions during 
specific historical periods. 

2 Evaluation indicators 

Selected experimental comparison methods include the 
Zhang et al. (2024a, 2024b) method, and the proposed 
method. Method effectiveness verification involves 
comparing electrical equipment vibration signal SNRs, 
abnormal vibration state detection accuracy, and 
detection task completion times. 
• In electrical equipment abnormal vibration state 

identification experiments, signals represent useful 
vibration state information while noise denotes 
interference components during signal acquisition, 
transmission and processing. The SNR indicates 
the power ratio between signal and noise, where 
higher ratios correspond to better method-collected 
signal quality. 

• The accuracy of electrical equipment abnormal 
vibration state identification measures the 
proportion of correctly identified states among all 
detected vibration states, serving as a key indicator 
for evaluating detection method effectiveness. 

• The task completion time for electrical equipment 
abnormal vibration state identification represents 
the total duration from vibration-related data 
collection (including signals and operating 
parameters) to final diagnosis confirmation. 
Shorter durations indicate higher method 
efficiency. 

3.2 Experimental result 

3.2.1 Signal to noise ratio of vibration signals in 
electrical equipment 

Table 1 presents the SNR test results of electrical equipment 
vibration signals obtained by three methods. 

Analysis of Table 1 data indicates the electrical 
equipment vibration signal achieves maximum SNRs of 
29.75 dB with Zhang et al. (2024a) method and 17.41 dB 
with Zhang et al. (2024b) method, while reaching 43.67 dB 
with the proposed method – representing 13.72 dB and 
26.26 dB improvements respectively. Minimum SNRs 
measure 20.39 dB for Zhang et al. (2024a) method and 
12.36 dB for Zhang et al. (2024b) method, compared to 
36.78 dB for the proposed method, demonstrating 16.39 dB 
and 24.42 dB enhancements. Comparative results confirm 
the proposed method’s superior vibration signal collection 
quality, enabling more accurate motor vibration state 
representation and ensuring reliable abnormal vibration 
state identification. 

Table 1 Signal to noise ratio of three methods 

Number of 
experiments 

Signal to noise ratio/dB 

Zhang et al. 
(2024a) method 

Zhang et al. 
(2024b) method 

Proposed 
method 

10 20.39 15.23 36.78 
20 21.46 17.41 38.99 
30 23.51 14.32 37.41 
40 21.49 16.33 36.97 
50 22.37 12.45 39.42 
60 24.58 12.36 40.12 
70 26.31 15.48 43.67 
80 29.75 16.31 38.76 

3.2.2 Detection accuracy 
Figure 5 displays the accuracy test results for identifying 
abnormal vibration states in electrical equipment using three 
methods. 

Figure 5 Detection accuracy of three methods (see online 
version for colours) 

 

Analysis of Figure 5 data reveals the Zhang et al. (2024a) 
method achieves 73.6%–82.4% accuracy in identifying 
electrical equipment abnormal vibration states, compared to 
72.3%–86.3% for Zhang et al. (2024b) method. The 
proposed method maintains consistent accuracy above 
95.6%, demonstrating high reliability for practical electrical 
equipment monitoring applications and suitability for 
equipment status monitoring and fault warning systems. 

3.2.3 Identify task completion time 
The completion time test results of the three methods for 
identifying abnormal vibration states of electrical equipment 
are shown in Table 2. 

Table 2 data analysis shows maximum task completion 
times of 9.67 s for Zhang et al. (2024a) method and 8.63 s 
for Zhang et al. (2024b) method, while the proposed method 
achieves 2.98 s – representing 6.69 s and 5.65 s reductions 
respectively. Minimum task completion times measure  
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5.89 s for Zhang et al. (2024a) method and 5.62 s for Zhang 
et al. (2024b) method, with the proposed method reaching 
3.58 s (2.31 s and 2.04 s reductions). These results confirm 
shorter task completion times, demonstrating the method’s 
advanced random forest algorithm effectively processes 
electrical equipment vibration data for rapid abnormal state 
identification. 

Table 2 Task completion time for three methods 

Number of 
experiments 

Task completion time/s 

Zhang et al. 
(2024a) method 

Zhang et al. 
(2024b) method 

Proposed 
method 

10 8.96 5.62 2.36 
20 7.41 5.74 2.47 
30 5.89 8.63 2.58 
40 7.45 6.74 2.46 
50 7.63 6.55 2.33 
60 6.38 7.18 2.98 
70 6.87 7.26 2.75 
80 9.67 7.39 2.31 

4 Conclusions 
Electrical equipment inevitably encounters various 
operational fault risks, with abnormal vibration representing 
a common and critical fault manifestation. This study 
proposes a novel random forest-based detection method  
for electrical equipment abnormal vibration states. 
Experimental results demonstrate 43.67 dB maximum 
vibration SNR, consistent abnormal state identification 
accuracy exceeding 95.6%, and 3.58 s minimum task 
completion time, confirming high accuracy and efficiency 
characteristics. Equipment vibration state identification 
enables timely detection of potential faults and hazards, 
allowing the implementation of preventive measures that 
reduce maintenance costs and production loss while 
enhancing equipment reliability and safety. Future research 
should prioritise exploring new signal processing 
technologies and algorithms, emphasising multi-source 
information integration and utilisation to advance electrical 
equipment fault diagnosis technology innovation. 
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