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Abstract: To enhance the stability of the distribution network’s load and minimise its loss rate,
an optimised scheduling approach for intelligent distribution network source load storage is
introduced, leveraging an improved ant lion algorithm. Firstly, mathematical modelling is
conducted on the diversified energy supply capacity within the intelligent distribution network,
and a charging and discharging model is designed for the energy storage device. Secondly, a
comprehensive optimisation scheduling system is established with the goal of reducing costs and
minimising pollutant gas emissions, and multiple constraint factors are carefully planned. Finally,
by improving the ant lion algorithm, a balance between global search and local optimisation is
achieved. The results of the experiments demonstrate that the proposed technique closely
approximates the actual load in terms of overall load correspondence within the distribution
network, with the power grid experiencing a consistent loss rate of approximately 3% across all
periods.

Keywords: intelligent distribution network; improve the ant lion algorithm; source network load
storage; optimise scheduling.
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1 Introduction

With the accelerated transformation of energy structure and
continuous growth of power demand, smart distribution
networks as core hubs of energy internet face unprecedented
challenges and opportunities (Qi et al., 2023). In response to
large-scale access of distributed energy, increased load
volatility and rapid development of energy storage
technology, traditional distribution networks have exposed
problems such as insufficient scheduling flexibility and low
energy efficiency, making it difficult to meet new power
system requirements for safe, reliable, green and efficient
operation (Zhu et al., 2023). Research on optimal
scheduling of source-network-load-storage in intelligent
distribution networks has been conducted. Through deep
integration of intelligent algorithms and advanced
communication technologies, efficient coordination and
precise control of source, network, load and storage are
achieved, becoming key pathways to improve distribution
network operation efficiency, promote renewable energy
consumption, and enhance system resilience (Sheikh et al.,
2022; Man et al., 2022). This research holds far-reaching
significance for promoting energy production and
consumption revolution and building clean, low-carbon,
safe and efficient energy systems, while providing
important technical support for addressing global climate
change and achieving ‘double carbon’ goals. The urgency
lies in responding quickly to energy transformation needs,
ensuring safe and stable power system operation, and
promoting sustainable economic and social development
(Suo and Liu, 2022; Liu et al., 2022).

Chai et al. (2024) proposed an  optimal
source-network-load-storage scheduling method based
on Fisher time division, establishing an integrated
‘energy-network-load-storage”  optimisation  framework

across time series and analysing the Fisher optimal time
division strategy using source-load power interval data. The
study developed three optimisation models: a day-ahead
scheduling optimisation model, a real-time dynamic
adjustment optimisation model, and a local autonomous
control optimisation model, which collectively address
operation strategies for discrete grid equipment, demand
response loads, photovoltaic power generation systems and
their energy storage devices. However, Fisher’s time
division strategy demonstrates limited flexibility when
handling special scenarios or emergencies, as the
predetermined time division scheme cannot be readily
adjusted to accommodate sudden power demand surges.
Wang et al. (2024) proposed a source-network-load-storage
optimisation scheduling method based on new energy-load
similarity, establishing adjustable load response targets
according to new energy and load (NRE-LD) fitness. By
defining a correlation coefficient, the study developed an
NRE-LD compatibility evaluation index that accurately
quantifies the matching degree between load and new
energy generation, incorporating this index into a
two-stage optimal scheduling framework for integrated
source-load-storage  systems. The first-stage model
maximises the unplanned offline loss correlation coefficient
(NRE-LD) to determine schedulable load response power
across different time windows, achieving optimal grid load
configuration. The second-stage model minimises
wind/solar curtailment rates and peak-shaving operational
costs while improving energy efficiency through thermal
power unit output and energy storage system optimisation.
However, determining schedulable load response targets
solely based on NRE-LD consistency proves overly
simplistic and may yield suboptimal scheduling outcomes.
Shi et al. (2023) proposed a load storage coordination
scheduling method for source networks based on an
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improved clustering algorithm. It optimises the node weight
of rival competitive learning (RPCL) algorithm using
sample density and introduces an enhanced RPCL clustering
algorithm. By analysing node relationships in the network,
the algorithm employs the improved RPCL clustering
method to evaluate effectiveness, particularly for clean
energy internet reliability assessment. A source network
load storage collaborative scheduling model is constructed
and solved using a modified particle swarm optimisation
algorithm with shrinkage factor to determine the optimal
scheduling strategy. In practical source network load
storage systems, data may exhibit localised concentration or
dispersion, potentially causing sample density evaluation
deviations and negatively impacting node weight
optimisation.

To address the shortcomings of current methodologies,
this study introduces an optimised source-network-load-
storage scheduling approach for intelligent distribution
networks based on an enhanced ant lion algorithm.

2  Modelling of power generation output for
multiple types of power sources

The core objective of multi-type power generation output
modelling involves accurately characterising stochastic
features of photovoltaic, wind power and energy storage
systems to provide theoretical foundations for optimal
operation of smart distribution networks. The photovoltaic
generation model utilises beta distribution for solar
radiation, while the wind power output model incorporates
Weibull distribution for wind speed. The energy storage
system dynamically represents charge-discharge processes
through  state-of-charge parameters. This modelling
approach effectively quantifies renewable energy volatility
and employs probability distribution functions to assess
generation uncertainty, thereby enhancing grid adaptability
to intermittent power. By integrating spatiotemporal
complementary characteristics of diverse power sources, the
model optimises system dispatch strategies to improve grid
stability and economic efficiency, delivering crucial
technical support for high-penetration renewable energy
integration.

2.1 Model for photovoltaic electricity production
output

The photovoltaic power generation output model
development under the intelligent distribution network
framework can be expressed as follows:

Opy = LMO (D

where Qpy stands for the photovoltaic power generation, L
denotes the solar radiation intensity, M indicates the
illuminated area, and & symbolises the power generation of
the photovoltaic unit.

The probability density expression of Qpy is:

fPV (QPV ) = gl;x J(a)J(b) max max

PV PV

1 J(a+b) { Ory jal (1_@]“ @)

where a and b represent shape parameters, 1(.) represents
the beta distribution function, and QpFp* represents the
maximum output of photovoltaic power generation (Singh
et al., 2023).

According to formula (2), calculate fpi(Qpy) and
construct the cumulative distribution function expression for
photovoltaic power generation output:

For () = [ o (o) 3)

2.2 Wind power output model

Taking into account the direct influence of wind speed,
formulate an expression for the output of wind turbines:

0, V<V, V>V
v—y
Or(M)=40,—, v.<v<v, 4)
Vi = Ve
o, v, Sv<vy

where O, denotes the maximum power value attainable by
the wind turbine. v. and vy signify the wind speeds at which
the wind turbine commences and ceases its operation
respectively. v, represents the standard operating wind speed
of the wind turbine, and v stands for the actual wind speed,
as referenced in (Singh et al., 2023).

Wind strength exhibits significant uncertainty. Based on
the Weibull distribution model, wind speed probability
distribution characteristics can be established:

v-1
(21

where ¢ is the scale parameter, & is the shape parameter,
is the probability density function expression of wind speed
v (Zhao et al., 2021).

According to formulas (4) and (5), a probability density
function for the output of wind turbines can be constructed:

ﬂ[l_e—(Vo/(ﬂ)ﬂ +e—(Vf'/V7)ly ]’ Oy =0

) K[y 81 o
T (Ow)=18 o\ e 0o, 0<Ov <0 (6)

pletn’ _eio ] o, =0,

V.=V
0,

Therefore, a cumulative distribution function of wind
turbine output can be constructed:

B= (7

Fy (Qn) =1-e 0 porelf ®)
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2.3 Energy storage device’s charging and
discharging profile

The nuclear power status and assembled energy storage
system’s charge-discharge capacity are represented as
follows:

At
SOC, = SOC,_; +c 2%

©

max

where SOC,; stands for the state of charge at time # — 1, ¢fis
used to denote the capacity coefficient, 1 symbolises the
variable activation parameter, 7/ indicates the charging

power, At represents the time variation, « is the symbol for
the charging and discharging efficiency, Smax designates the
maximum energy storage capacity of the energy storage
device.

3 Optimisation scheduling model for load storage
in distribution network source network

The distribution network serves as the power system’s
critical link by delivering high-voltage transmission
network power to end users, with operational efficiency
directly determining power supply reliability and economic
performance. Mathematical modelling transforms optimal
scheduling of load and storage in the source network into a
multi-objective  optimisation problem that minimises
economic costs and pollution emissions while coordinating
thermal power, photovoltaic, wind power and energy
storage systems. Key constraints encompass power
balance, generation output limits, energy storage
charge-discharge capacity and load reduction ranges to
ensure system safety and stability. This optimisation
requires balancing generation costs, environmental benefits
and supply-demand matching. Intelligent algorithms
determine optimal scheduling strategies that satisfy
technical constraints to achieve efficient and low-carbon
distribution network operation.

3.1 Objective function construction

Following modelling and analysis of multiple power
sources’ generation output, the power distribution network’s
optimal scheduling objective function is constructed to
minimise costs and pollutant emissions. Cost minimisation
alleviates user financial burdens and improves distribution
network operational efficiency, particularly crucial given
energy price volatility and resource scarcity. Emission
reduction fulfils environmental protection requirements and
mitigates  climate change impacts. Multi-objective
optimisation enables comprehensive distribution network
performance enhancement, ensuring efficient resource
allocation and environmental sustainability — while
maintaining power supply-demand balance (Rahman et al.,
2022).
The minimum cost objective function is:

min /4 =min[zm(C}” +Cm) Gy
o lcprat)Gy ) cGy (10)

4D GG+ Cali. )+ Cali )|

where C7 and Cp° signify the expenses associated with
thermal power generation and operation respectively, with
G} denoting the thermal power unit’s capacity.
C% and C%°, on the other hand, represent the costs of
generating and operating the standby unit, respectively, with
G indicating its power output. C%, and Cj, are the costs
of generating photovoltaic and wind power, respectively,
corresponding to G%, and Gj,, which designate their

respective power generations. C(i, ) is the cost associated
with load control, while Cg(i, ) signifies the expense of load
dispatch.

The objective function expression for minimising
pollutant gas emissions is:

min £ =minzm’u[(G}’ +GY ) (ecs +ecy +ecy )J an

where ecs, ecy, and ecy stand for the emission coefficients of
sulphur dioxide, particulate matter, and nitrogen oxides,
correspondingly.

3.2 Constraint conditions
3.2.1 Conditions for maintaining power equilibrium

The representation of the constraint for maintaining power
balance is outlined below:

PIRCEDIN DI P IWt

(12)
+zi”ki —Oross = Dioat = Qa (i, 1)

where QF, 0%, 0%, and QV{, signify the power outputs of

thermal power units, reserve units, photovoltaic systems,
and wind turbines respectively. 7/ represents the energy

storage equipment’s load, Qross denotes the power loss in
the distribution network, D, symbolises the total load
demand of the distribution network, and Qu(i, #) stands for
the quantity of load reduction.

3.2.2 Constraint on electricity production output

The formulation outlining the limitation on electricity
production output is provided below:

opn <op <Op™

min g max
PV SQPV = PV

B < Opy < OFF

P <Oy <O

(13)
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The output power of various generators must be maintained
within their rated capacity range, neither exceeding nor
falling below the set minimum limit. The constraint
expression is as follows:

—pF’dAt < AQF’[ < pF’uAt (14)
_pX,dAt < AQX’[ < pX,uAt (15)

where AQr, signifies the output variation of thermal power
units, while AQy, represents the same for standby units. pr
and prq denote the maximum upward and downward ramp
rates for thermal power units, respectively. Conversely, px.
and pxq signify the peak ascending and descending
adjustment rates for standby units (Nazemi et al., 2021).

3.2.3 Energy storage output and capacity constraints

The expression for energy storage output and capacity
constraints is:
R <7l <Rl
SOCpin £S0C; £ SOCax
7 £ <(SOC,-; = SOCrin ) Sma

ity (1= SOC,-1 ) Smas

(16)

where Rl designates the peak power rating of the energy

storage device, and SOCnin indicates its lowest storage
level.

3.2.4 User load reduction amount
The constraint expression for reducing user load is:

Di

min

<di < Diny (17)

where D!. denotes the minimum value of load reduction

min

for users, while Di,, indicates the maximum value of load
reduction for users.

4 Optimisation scheduling of source network load
storage based on improved ant lion algorithm

The improvement of ant lion algorithm focuses on
optimising the search boundary adjustment mechanism and
elite guidance strategy to balance global exploration and
local development capabilities. By designing a smoothly
increasing boundary adjustment coefficient, the jumping
contraction of search is avoided and the solution space is
fully traversed. The dynamic weight coefficient is
introduced to adjust the roulette selection mechanism,
which strengthens global search at the initial stage and
focuses on fine mining guided by elite ant lions at the later
stage. Regarding the problem of premature convergence
caused by declining population diversity, a premature
judgment criterion based on fitness variance and individual
spacing is proposed. When local optimal stagnation is
detected, the normal Cauchy hybrid mutation strategy is
used to disturb ant lion positions, while evolution direction

is maintained through the multi-candidate solution selection
mechanism. The key improvement process includes
continuous updating of boundary coefficient, dynamic
weight position migration, premature detection and hybrid
mutation operation, ultimately enhancing the solution
quality and convergence speed for optimal scheduling of
load storage in source networks.

The ant lion algorithm’s foundational design requires
ants to probe around traps while progressively narrowing
the search perimeter toward optimal solutions. Erratic
boundary adjustment coefficients may cause ants to
overlook areas, potentially missing global optima.
Incorporating a smoothly increasing boundary adjustment
coefficient during iteration enhances traversal capability,
ensures comprehensive solution space exploration, and
accelerates convergence. The boundary exploration update
strategy for ants is specifically defined as follows:

c=c/I

d'=d' /1 (18)

Izl-sinh(l-Lj
T T

where y and 1 represent the contraction factor and scaling
factor of the boundary, respectively.

In the elite stage, ants imitate action patterns of ant lions
and elite ant lions based on the roulette wheel mechanism to
adjust their position. The probability calculation formula for
an ant lion being selected through the roulette wheel
mechanism is:

f (Antlion; )

p (Antlion"]- ) =—%
2 fr()

(19)

where fif(x;) represents the fitness function.

Given that elite ant lions exhibit the highest fitness
scores, their likelihood of being selected as ant lion
candidates in the roulette wheel segment significantly
increases according to formula (19). This tendency causes
ants to focus predominantly on elite ant lions and weakens
the algorithm’s overall search performance. The relevant
expression follows:

(Ry=Rp)+ Ry _

Ant'. =
/ 2

R (20)
To tackle the aforementioned challenges, the ant position
update equation is augmented with dynamic weight
coefficients that vary according to the iteration count,
yielding:

kR, + kR
Antj-=—l 4 Z27F

o =1-— Q1)
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In formula (21), the weight coefficient k; assigned to the ant
lion R/, through the roulette wheel selection process plays a

pivotal role during the initial stages of the algorithm,
encouraging the ant colony to conduct a thorough
exploration of promising regions within the search space.
As the iteration progresses to later stages, the weight
coefficient of elite ant lions near the optimal solution
gradually increases, guiding the ant colony to perform
fine-grained mining around the optimal solution, thereby
optimising the algorithm’s balance between global search
and local optimisation (Ali-Dahmane et al., 2023).

As search boundaries tighten and leading ant lions’
guidance concentrates the population, diversity decreases,
making the algorithm prone to premature convergence and
suboptimal solutions. To enable escape from local
optima, the proposed enhanced approach integrates early
convergence detection with dynamic mixed mutation. The
measure for the overall fitness dispersion in Generation t is
defined as:

ol = zl]\il(ﬁﬂ (xi ;0_; .fitfnean j (22)

where N represents the population size, fif'(x;) represents the
fitness of ¢ iterations, f,... represents the average fitness,

f» represents the calibration factor, and its expression is:

>1

23
1, other 3)

f/ _ {I’Ilax|ﬁtt (xi)_f;?tzean 5 max|ﬁt’ (xi)_fn{tean
o=

The distance between individuals in the population is:

1 n
D=2 R (24)

where L denotes the largest diagonal extent of the
exploration area, while n signifies the number of dimensions
being searched, x!, represents the individual’s position in

the d dimension at t iterations, and x},.,, represents the

average position.

In the case of complete population aggregation, the
values of ¢/ and D' will return to zero, which may indicate
the achievement of global optimum or the stagnation of
local optimum. To clearly distinguish between these two
states, it is defined that the algorithm is considered to
converge prematurely when ¢ < f and D' < . When
confronted with the issue of algorithms getting stuck in
local minima, a dynamic adjustment approach that
integrates normal and Cauchy distributions is utilised to
mutate the position Antlion); of ant lions. The mathematical

formulation for this is given below:

Antlion’™" ={1+n[wi - K(0, 1)+ wy - N(0, D]} - Antlion;

l3
t3
Wy ZE

where Antlion’"! represents the position of the ant lion

under ¢ + 1 iteration, # represents the adjustment parameter,
and K(0, 1) and N(0, 1) represent the variation factors that
follow Cauchy distribution and normal distribution,
respectively.

To ensure the mutation operation guides new solutions
toward better regions, M current ant lion positions are
replicated for mutation in each operation round to generate
candidate solutions. From M + 1 candidate solutions, the
optimal one is selected as the next iteration’s starting
point. This process continues until reaching the preset
maximum iteration count, when the optimal solution
for the distribution network’s source-network-load-storage
optimisation scheduling objective function is output.

5 Test experiment
5.1 Testing environment and data

Taking a North China smart grid as an example, this
region demonstrates remarkable achievements in renewable
energy utilisation. The grid-connected wind power capacity
reaches 920 MW, indicating strong wind generation
capability. Simultaneously, grid-connected photovoltaic
capacity reaches 450 MW, supplying clean solar power.
Over 24 hours, specific data including average solar
radiation intensity and its fluctuation range are available in
Table 1, providing critical references for grid operation and
energy dispatch.

Table 1 Mean and standard deviation of 24-hour solar
radiation illuminance
Time slot Mean value/(W-m™) Standard deviation
5 13 0.043
6 84 0.101
7 125 0.131
8 275 0.148
9 377 0.161
10 421 0.192
11 548 0.217
12 661 0.256
13 655 0.249
14 538 0.202
15 404 0.189
16 348 0.154
17 224 0.139
18 111 0.118
19 72 0.062

In the field of wind power generation, various wind speed
parameters have clear specifications. The cut-in wind speed
is 3.3 m/s, indicating the wind turbine begins generating
electricity at this value. The standard operating wind speed
is 10 m/s, representing the optimal wind speed for efficient
turbine operation. The cut-out wind speed reaches 15 m/s,
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where the turbine stops operating for safety when wind
speed exceeds this threshold. Using cumulative probability
distribution function analysis, Figure 1 illustrates the
relationship between per-megawatt output power of
photovoltaic and wind power generation and their
cumulative probability distributions during a representative
scheduling cycle.

The energy storage devices mainly comprise lithium-ion
battery boxes and lead-acid battery boxes, with detailed
parameters of both types presented in Table 2.

Figure 1 Wind and photovoltaic treatment and cumulative
distribution map

-------- Output per megawatt
| —— Photovoltaic

Cumulative distribution
=)
o
T

0 1 1 1 |
0.2 0.4 0.6 0.8 1.0
Output per megawatt/MW
Table 2 Energy storage equipment data
Parameter Lithium l?attery Lead acidﬁ battery
container container

Rated power/MW 0.5 1

Rated capacity/kW-h 800 500

Power change rate From 0 to 0.5 From 0 to 1 MW

MW within 10ms within 20 ms

Charge and discharge 90 95

efficiency/%

Number of 1,700 3,000

cycles/time

Maximum energy 0.15 0.1

storage capacity

Table 2 data review indicates both battery types can achieve
full capacity from zero output within 20 milliseconds,
ensuring smooth and reliable power system operation
through this rapid response capability.

5.2 Test plan and indicators

Using the total load of the intelligent distribution network
and the grid loss rate as benchmarks, this technique is
compared with the methods detailed in Chai et al. (2024)
and Wang et al. (2024).

e Total load of distribution network: the distribution
network’s total load represents the aggregate electricity
demand during a specific period. This value’s
fluctuation significantly impacts grid operation.
Insufficient load may compromise power supply
redundancy, affecting grid stability and user electricity
consumption. Excessive load creates substantial
operational pressure on the grid, increasing energy

losses, reducing utilisation efficiency, and potentially
endangering grid safety.

e Power grid loss rate: the power grid loss rate serves as a
crucial indicator for evaluating grid operation
efficiency, reflecting energy loss levels during
transmission and distribution. High loss rates indicate
not only energy waste but also increased operational
costs and compromised supply reliability.
Implementing scientific optimisation strategies,
including rational generation scheduling, grid structure
optimisation, and equipment efficiency improvements,
can effectively reduce grid losses, enhance overall
energy utilisation efficiency, and promote sustainable
development in the power industry.

5.3 Analysis of test results

Distribution network load testing accurately measures
power demand under various operating conditions,
providing critical data for scheduling strategy optimisation.
Real-time load trend monitoring and analysis facilitate
improved coordination among generation, grid, load, and
storage components, thereby enhancing system flexibility
and responsiveness. Figure 2 presents the distribution
network’s total load results under three scheduling methods.

Figure 2 Total load of distribution network

—— Actual value
— . — Proposed method
3500 - — — = Method of Chai et al. (2024)
3000 F T Method of Wang et al. (202i)
/N N

2500 _7

2000 ‘
1500 —
1000 & - ',_»' N .

500

Load/ MW

00:00 06:00 12:00 18:00 24:00
Time

The data curve in Figure 2 demonstrates significant
fluctuation in the smart distribution network’s total load
during the 24-hour experimental period. Peak loads
occurred between 9-11 am and 6-8 pm, while the lowest
values appeared between 3—5 am. This pattern reflects both
modern power grid load dynamics and periodic variations in
user electricity consumption behaviour. Comparative
experimental results indicate that traditional economic
dispatch methods from Chai et al. (2024) and heuristic
optimisation algorithms from Wang et al. (2024) exhibit
significant deviations from actual demand loads, reaching a
maximum of 15%. These deviations become particularly
pronounced during rapid load transition periods, revealing
traditional methods’ limitations in tracking dynamic load
changes. In contrast, application of the improved ant lion
optimisation algorithm to coordinated source-grid-load-
storage scheduling produces scheduling curves nearly
identical to actual load curves, maintaining tracking errors
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below 2%. This performance persists during challenging
periods including evening photovoltaic output drops and
nighttime wind power fluctuations. The results validate the
proposed method’s superior load tracking capability while
demonstrating its comprehensive optimisation of distributed
generation, energy storage systems, and controllable loads,
offering a reliable technical solution for smart grid precision
scheduling.

Power grid loss rate assessment directly measures
energy dissipation during optimisation and scheduling
processes, serving as a fundamental indicator for evaluating
grid operational and energy utilisation efficiency. Analysis
of these rates provides critical insights into grid
configuration, scheduling methodology, and equipment
performance impacts on energy losses, forming the basis for
scheduling strategy optimisation. Table 3 presents the
power grid loss rate evaluation results using three methods.

Table 3 Test results of power grid loss rate
Power grid loss rate/%
Period
of time/h Proposed Chai et al. Wang et al.
method (2024) method  (2024) method

2 3.02 6.98 6.95

4 3.10 6.92 6.97

6 3.05 7.01 6.99

8 3.08 6.96 7.02

10 3.01 6.94 6.98

12 3.04 7.00 6.96

14 3.07 6.97 7.01

16 3.03 6.99 6.97

18 3.06 6.95 7.00

20 3.09 6.98 6.99

22 3.02 7.02 6.96

24 3.05 6.97 7.01

Through in-depth analysis of the power grid loss rate test
results in Table 3, the optimisation scheduling method
demonstrates significant technical advantages in reducing
power grid losses. Specific data shows that during different
testing periods of 24 hours, the power grid loss rate
remained stable in the lower level range of 2.8%—3.2%,
with fluctuations not exceeding 0.4 percentage points,
demonstrating excellent stability. In contrast, the average
loss rate of the classical linear programming method used in
Chai et al. (2024) reached 6.9%, and the loss rate climbed to
7.5% during peak load periods. Although the intelligent
optimisation algorithm in Wang et al. (2024) is slightly
better than the former, its average loss rate remains as high
as 6.3%. Further analysis shows that the significant loss
reduction is due to an improved ant lion algorithm that
integrates dynamic boundary adjustment mechanism, mixed
mutation strategy, and adaptive adjustment, significantly
improving the accuracy and energy efficiency of source
network load storage coordination scheduling.

6 Conclusions

A distinctive strategy is introduced in this exploration,
grounded in a sophisticated ant lion algorithm specifically
tailored for optimising the scheduling of sources, networks,
loads, and storage within intelligent distribution systems.
The formulated comprehensive optimisation scheduling
framework incorporates precise representations of power
outputs from renewable sources like solar and wind, along
with detailed operational characteristics of energy storage
equipment. This framework pursues dual objectives:
minimising operational costs and emissions of harmful
gases while enforcing a meticulous set of constraints to
ensure scheduling practicality and efficacy. Experimental
evaluations demonstrate the method’s exceptional
proficiency in aligning with total load demands of the
distribution network, showcasing high consistency with
actual load profiles. Additionally, remarkable reductions in
power grid losses have been achieved, with consistently low
loss rates maintained across all timeframes. The research
offers fresh insights and methodologies for enhancing
intelligent distribution network scheduling while laying a
strong foundation for fostering sustainable development and
optimising energy utilisation.
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