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Abstract: To enhance the stability of the distribution network’s load and minimise its loss rate, 
an optimised scheduling approach for intelligent distribution network source load storage is 
introduced, leveraging an improved ant lion algorithm. Firstly, mathematical modelling is 
conducted on the diversified energy supply capacity within the intelligent distribution network, 
and a charging and discharging model is designed for the energy storage device. Secondly, a 
comprehensive optimisation scheduling system is established with the goal of reducing costs and 
minimising pollutant gas emissions, and multiple constraint factors are carefully planned. Finally, 
by improving the ant lion algorithm, a balance between global search and local optimisation is 
achieved. The results of the experiments demonstrate that the proposed technique closely 
approximates the actual load in terms of overall load correspondence within the distribution 
network, with the power grid experiencing a consistent loss rate of approximately 3% across all 
periods. 

Keywords: intelligent distribution network; improve the ant lion algorithm; source network load 
storage; optimise scheduling. 
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1 Introduction 
With the accelerated transformation of energy structure and 
continuous growth of power demand, smart distribution 
networks as core hubs of energy internet face unprecedented 
challenges and opportunities (Qi et al., 2023). In response to 
large-scale access of distributed energy, increased load 
volatility and rapid development of energy storage 
technology, traditional distribution networks have exposed 
problems such as insufficient scheduling flexibility and low 
energy efficiency, making it difficult to meet new power 
system requirements for safe, reliable, green and efficient 
operation (Zhu et al., 2023). Research on optimal 
scheduling of source-network-load-storage in intelligent 
distribution networks has been conducted. Through deep 
integration of intelligent algorithms and advanced 
communication technologies, efficient coordination and 
precise control of source, network, load and storage are 
achieved, becoming key pathways to improve distribution 
network operation efficiency, promote renewable energy 
consumption, and enhance system resilience (Sheikh et al., 
2022; Man et al., 2022). This research holds far-reaching 
significance for promoting energy production and 
consumption revolution and building clean, low-carbon, 
safe and efficient energy systems, while providing 
important technical support for addressing global climate 
change and achieving ‘double carbon’ goals. The urgency 
lies in responding quickly to energy transformation needs, 
ensuring safe and stable power system operation, and 
promoting sustainable economic and social development 
(Suo and Liu, 2022; Liu et al., 2022). 

Chai et al. (2024) proposed an optimal  
source-network-load-storage scheduling method based  
on Fisher time division, establishing an integrated  
‘energy-network-load-storage’ optimisation framework 

across time series and analysing the Fisher optimal time 
division strategy using source-load power interval data. The 
study developed three optimisation models: a day-ahead 
scheduling optimisation model, a real-time dynamic 
adjustment optimisation model, and a local autonomous 
control optimisation model, which collectively address 
operation strategies for discrete grid equipment, demand 
response loads, photovoltaic power generation systems and 
their energy storage devices. However, Fisher’s time 
division strategy demonstrates limited flexibility when 
handling special scenarios or emergencies, as the 
predetermined time division scheme cannot be readily 
adjusted to accommodate sudden power demand surges. 
Wang et al. (2024) proposed a source-network-load-storage 
optimisation scheduling method based on new energy-load 
similarity, establishing adjustable load response targets 
according to new energy and load (NRE-LD) fitness. By 
defining a correlation coefficient, the study developed an 
NRE-LD compatibility evaluation index that accurately 
quantifies the matching degree between load and new 
energy generation, incorporating this index into a  
two-stage optimal scheduling framework for integrated  
source-load-storage systems. The first-stage model 
maximises the unplanned offline loss correlation coefficient 
(NRE-LD) to determine schedulable load response power 
across different time windows, achieving optimal grid load 
configuration. The second-stage model minimises 
wind/solar curtailment rates and peak-shaving operational 
costs while improving energy efficiency through thermal 
power unit output and energy storage system optimisation. 
However, determining schedulable load response targets 
solely based on NRE-LD consistency proves overly 
simplistic and may yield suboptimal scheduling outcomes. 
Shi et al. (2023) proposed a load storage coordination 
scheduling method for source networks based on an 
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improved clustering algorithm. It optimises the node weight 
of rival competitive learning (RPCL) algorithm using 
sample density and introduces an enhanced RPCL clustering 
algorithm. By analysing node relationships in the network, 
the algorithm employs the improved RPCL clustering 
method to evaluate effectiveness, particularly for clean 
energy internet reliability assessment. A source network 
load storage collaborative scheduling model is constructed 
and solved using a modified particle swarm optimisation 
algorithm with shrinkage factor to determine the optimal 
scheduling strategy. In practical source network load 
storage systems, data may exhibit localised concentration or 
dispersion, potentially causing sample density evaluation 
deviations and negatively impacting node weight 
optimisation. 

To address the shortcomings of current methodologies, 
this study introduces an optimised source-network-load-
storage scheduling approach for intelligent distribution 
networks based on an enhanced ant lion algorithm. 

2 Modelling of power generation output for 
multiple types of power sources 

The core objective of multi-type power generation output 
modelling involves accurately characterising stochastic 
features of photovoltaic, wind power and energy storage 
systems to provide theoretical foundations for optimal 
operation of smart distribution networks. The photovoltaic 
generation model utilises beta distribution for solar 
radiation, while the wind power output model incorporates 
Weibull distribution for wind speed. The energy storage 
system dynamically represents charge-discharge processes 
through state-of-charge parameters. This modelling 
approach effectively quantifies renewable energy volatility 
and employs probability distribution functions to assess 
generation uncertainty, thereby enhancing grid adaptability 
to intermittent power. By integrating spatiotemporal 
complementary characteristics of diverse power sources, the 
model optimises system dispatch strategies to improve grid 
stability and economic efficiency, delivering crucial 
technical support for high-penetration renewable energy 
integration. 

2.1 Model for photovoltaic electricity production 
output 

The photovoltaic power generation output model 
development under the intelligent distribution network 
framework can be expressed as follows: 

PVQ LMθ=  (1) 

where QPV stands for the photovoltaic power generation, L 
denotes the solar radiation intensity, M indicates the 
illuminated area, and θ symbolises the power generation of 
the photovoltaic unit. 

The probability density expression of QPV is: 
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where a and b represent shape parameters, ℶ(.) represents 
the beta distribution function, and max

PVQ  represents the 
maximum output of photovoltaic power generation (Singh 
et al., 2023). 

According to formula (2), calculate fPV(QPV) and 
construct the cumulative distribution function expression for 
photovoltaic power generation output: 
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0
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2.2 Wind power output model 
Taking into account the direct influence of wind speed, 
formulate an expression for the output of wind turbines: 

0, ,

( ) ,

,

c f

c
W r c r

r c

r r f

v v v v
v vQ v Q v v v
v v

Q v v v

< >
 −= ≤ ≤ −
 ≤ ≤

 (4) 

where Qr denotes the maximum power value attainable by 
the wind turbine. vc and vf signify the wind speeds at which 
the wind turbine commences and ceases its operation 
respectively. vr represents the standard operating wind speed 
of the wind turbine, and v stands for the actual wind speed, 
as referenced in (Singh et al., 2023). 

Wind strength exhibits significant uncertainty. Based on 
the Weibull distribution model, wind speed probability 
distribution characteristics can be established: 
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where φ is the scale parameter, ϑ is the shape parameter, V 
is the probability density function expression of wind speed 
v (Zhao et al., 2021). 

According to formulas (4) and (5), a probability density 
function for the output of wind turbines can be constructed: 
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Therefore, a cumulative distribution function of wind 
turbine output can be constructed: 
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2.3 Energy storage device’s charging and 
discharging profile 

The nuclear power status and assembled energy storage 
system’s charge-discharge capacity are represented as 
follows: 

1
max

Δ+
i
k

t t f
r tκ

SOC SOC c λ
S−=  (9) 

where SOCt–1 stands for the state of charge at time t – 1, cf is 
used to denote the capacity coefficient, λ symbolises the 
variable activation parameter, i

kr  indicates the charging 
power, ∆t represents the time variation, κ is the symbol for 
the charging and discharging efficiency, Smax designates the 
maximum energy storage capacity of the energy storage 
device. 

3 Optimisation scheduling model for load storage 
in distribution network source network 

The distribution network serves as the power system’s 
critical link by delivering high-voltage transmission 
network power to end users, with operational efficiency 
directly determining power supply reliability and economic 
performance. Mathematical modelling transforms optimal 
scheduling of load and storage in the source network into a 
multi-objective optimisation problem that minimises 
economic costs and pollution emissions while coordinating 
thermal power, photovoltaic, wind power and energy 
storage systems. Key constraints encompass power  
balance, generation output limits, energy storage  
charge-discharge capacity and load reduction ranges to 
ensure system safety and stability. This optimisation 
requires balancing generation costs, environmental benefits 
and supply-demand matching. Intelligent algorithms 
determine optimal scheduling strategies that satisfy 
technical constraints to achieve efficient and low-carbon 
distribution network operation. 

3.1 Objective function construction 
Following modelling and analysis of multiple power 
sources’ generation output, the power distribution network’s 
optimal scheduling objective function is constructed to 
minimise costs and pollutant emissions. Cost minimisation 
alleviates user financial burdens and improves distribution 
network operational efficiency, particularly crucial given 
energy price volatility and resource scarcity. Emission 
reduction fulfils environmental protection requirements and 
mitigates climate change impacts. Multi-objective 
optimisation enables comprehensive distribution network 
performance enhancement, ensuring efficient resource 
allocation and environmental sustainability while 
maintaining power supply-demand balance (Rahman et al., 
2022). 

The minimum cost objective function is: 
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where ,0and mm
F FC C  signify the expenses associated with 

thermal power generation and operation respectively, with 
m
FG  denoting the thermal power unit’s capacity. 

,0and ,uu
X XC C  on the other hand, represent the costs of 

generating and operating the standby unit, respectively, with 
u
XG  indicating its power output. andg f

PV WC C  are the costs 
of generating photovoltaic and wind power, respectively, 
corresponding to and ,g f

PV WG G  which designate their 
respective power generations. Cd(i, t) is the cost associated 
with load control, while CR(i, t) signifies the expense of load 
dispatch. 

The objective function expression for minimising 
pollutant gas emissions is: 

( )( )2 ,
min min + + +m u
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where eCS, eCY, and eCN stand for the emission coefficients of 
sulphur dioxide, particulate matter, and nitrogen oxides, 
correspondingly. 

3.2 Constraint conditions 

3.2.1 Conditions for maintaining power equilibrium 
The representation of the constraint for maintaining power 
balance is outlined below: 
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where , , andg fm u
F X PV WQ Q Q Q  signify the power outputs of 

thermal power units, reserve units, photovoltaic systems, 
and wind turbines respectively. i

kr  represents the energy 
storage equipment’s load, QLOSS denotes the power loss in 
the distribution network, Dtoal symbolises the total load 
demand of the distribution network, and Qd(i, t) stands for 
the quantity of load reduction. 

3.2.2 Constraint on electricity production output 
The formulation outlining the limitation on electricity 
production output is provided below: 
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The output power of various generators must be maintained 
within their rated capacity range, neither exceeding nor 
falling below the set minimum limit. The constraint 
expression is as follows: 

, , ,Δ Δ ΔF d F t F uρ t Q ρ t− ≤ ≤  (14) 

, , ,Δ Δ ΔX d X t X uρ t Q ρ t− ≤ ≤  (15) 

where ∆QF,t signifies the output variation of thermal power 
units, while ∆QX,t represents the same for standby units. ρF,u 
and ρF,d denote the maximum upward and downward ramp 
rates for thermal power units, respectively. Conversely, ρX,u 
and ρX,d signify the peak ascending and descending 
adjustment rates for standby units (Nazemi et al., 2021). 

3.2.3 Energy storage output and capacity constraints 
The expression for energy storage output and capacity 
constraints is: 
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where max
iR  designates the peak power rating of the energy 

storage device, and SOCmin indicates its lowest storage 
level. 

3.2.4 User load reduction amount 
The constraint expression for reducing user load is: 

maxmin
i i i

kD d D≤ ≤  (17) 

where min
iD  denotes the minimum value of load reduction 

for users, while max
iD  indicates the maximum value of load 

reduction for users. 

4 Optimisation scheduling of source network load 
storage based on improved ant lion algorithm 

The improvement of ant lion algorithm focuses on 
optimising the search boundary adjustment mechanism and 
elite guidance strategy to balance global exploration and 
local development capabilities. By designing a smoothly 
increasing boundary adjustment coefficient, the jumping 
contraction of search is avoided and the solution space is 
fully traversed. The dynamic weight coefficient is 
introduced to adjust the roulette selection mechanism, 
which strengthens global search at the initial stage and 
focuses on fine mining guided by elite ant lions at the later 
stage. Regarding the problem of premature convergence 
caused by declining population diversity, a premature 
judgment criterion based on fitness variance and individual 
spacing is proposed. When local optimal stagnation is 
detected, the normal Cauchy hybrid mutation strategy is 
used to disturb ant lion positions, while evolution direction 

is maintained through the multi-candidate solution selection 
mechanism. The key improvement process includes 
continuous updating of boundary coefficient, dynamic 
weight position migration, premature detection and hybrid 
mutation operation, ultimately enhancing the solution 
quality and convergence speed for optimal scheduling of 
load storage in source networks. 

The ant lion algorithm’s foundational design requires 
ants to probe around traps while progressively narrowing 
the search perimeter toward optimal solutions. Erratic 
boundary adjustment coefficients may cause ants to 
overlook areas, potentially missing global optima. 
Incorporating a smoothly increasing boundary adjustment 
coefficient during iteration enhances traversal capability, 
ensures comprehensive solution space exploration, and 
accelerates convergence. The boundary exploration update 
strategy for ants is specifically defined as follows: 

/
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where γ and λ represent the contraction factor and scaling 
factor of the boundary, respectively. 

In the elite stage, ants imitate action patterns of ant lions 
and elite ant lions based on the roulette wheel mechanism to 
adjust their position. The probability calculation formula for 
an ant lion being selected through the roulette wheel 
mechanism is: 

( ) ( )
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where fit(xi) represents the fitness function. 
Given that elite ant lions exhibit the highest fitness 

scores, their likelihood of being selected as ant lion 
candidates in the roulette wheel segment significantly 
increases according to formula (19). This tendency causes 
ants to focus predominantly on elite ant lions and weakens 
the algorithm’s overall search performance. The relevant 
expression follows: 
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To tackle the aforementioned challenges, the ant position 
update equation is augmented with dynamic weight 
coefficients that vary according to the iteration count, 
yielding: 
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In formula (21), the weight coefficient k1 assigned to the ant 
lion t

AR  through the roulette wheel selection process plays a 
pivotal role during the initial stages of the algorithm, 
encouraging the ant colony to conduct a thorough 
exploration of promising regions within the search space. 
As the iteration progresses to later stages, the weight 
coefficient of elite ant lions near the optimal solution 
gradually increases, guiding the ant colony to perform  
fine-grained mining around the optimal solution, thereby 
optimising the algorithm’s balance between global search 
and local optimisation (Ali-Dahmane et al., 2023). 

As search boundaries tighten and leading ant lions’ 
guidance concentrates the population, diversity decreases, 
making the algorithm prone to premature convergence and 
suboptimal solutions. To enable escape from local  
optima, the proposed enhanced approach integrates early 
convergence detection with dynamic mixed mutation. The 
measure for the overall fitness dispersion in Generation t is 
defined as: 

( )
1

t tN i meant
i

fit x fit
f=

 −
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

α
α  (22) 

where N represents the population size, fitt(xi) represents the 
fitness of t iterations, t

meanf  represents the average fitness, 
f ′α  represents the calibration factor, and its expression is: 
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The distance between individuals in the population is: 
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where L denotes the largest diagonal extent of the 
exploration area, while n signifies the number of dimensions 
being searched, t

idx  represents the individual’s position in 
the d dimension at t iterations, and t

meanx  represents the 
average position. 

In the case of complete population aggregation, the 
values of αt and Dt will return to zero, which may indicate 
the achievement of global optimum or the stagnation of 
local optimum. To clearly distinguish between these two 
states, it is defined that the algorithm is considered to 
converge prematurely when αt < β and Dt < σ. When 
confronted with the issue of algorithms getting stuck in 
local minima, a dynamic adjustment approach that 
integrates normal and Cauchy distributions is utilised to 
mutate the position t

jAntlion  of ant lions. The mathematical 
formulation for this is given below: 
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where +1t
jAntlion  represents the position of the ant lion 

under t + 1 iteration, η represents the adjustment parameter, 
and K(0, 1) and N(0, 1) represent the variation factors that 
follow Cauchy distribution and normal distribution, 
respectively. 

To ensure the mutation operation guides new solutions 
toward better regions, M current ant lion positions are 
replicated for mutation in each operation round to generate 
candidate solutions. From M + 1 candidate solutions, the 
optimal one is selected as the next iteration’s starting  
point. This process continues until reaching the preset 
maximum iteration count, when the optimal solution  
for the distribution network’s source-network-load-storage 
optimisation scheduling objective function is output. 

5 Test experiment 
5.1 Testing environment and data 
Taking a North China smart grid as an example, this  
region demonstrates remarkable achievements in renewable 
energy utilisation. The grid-connected wind power capacity 
reaches 920 MW, indicating strong wind generation 
capability. Simultaneously, grid-connected photovoltaic 
capacity reaches 450 MW, supplying clean solar power. 
Over 24 hours, specific data including average solar 
radiation intensity and its fluctuation range are available in 
Table 1, providing critical references for grid operation and 
energy dispatch. 

Table 1 Mean and standard deviation of 24-hour solar 
radiation illuminance 

Time slot Mean value/(W∙m–2) Standard deviation 

5 13 0.043 
6 84 0.101 
7 125 0.131 
8 275 0.148 
9 377 0.161 
10 421 0.192 
11 548 0.217 
12 661 0.256 
13 655 0.249 
14 538 0.202 
15 404 0.189 
16 348 0.154 
17 224 0.139 
18 111 0.118 
19 72 0.062 

In the field of wind power generation, various wind speed 
parameters have clear specifications. The cut-in wind speed 
is 3.3 m/s, indicating the wind turbine begins generating 
electricity at this value. The standard operating wind speed 
is 10 m/s, representing the optimal wind speed for efficient 
turbine operation. The cut-out wind speed reaches 15 m/s, 
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where the turbine stops operating for safety when wind 
speed exceeds this threshold. Using cumulative probability 
distribution function analysis, Figure 1 illustrates the 
relationship between per-megawatt output power of 
photovoltaic and wind power generation and their 
cumulative probability distributions during a representative 
scheduling cycle. 

The energy storage devices mainly comprise lithium-ion 
battery boxes and lead-acid battery boxes, with detailed 
parameters of both types presented in Table 2. 

Figure 1 Wind and photovoltaic treatment and cumulative 
distribution map 

 

Table 2 Energy storage equipment data 

Parameter Lithium battery 
container 

Lead acid battery 
container 

Rated power/MW 0.5 1 
Rated capacity/kW∙h 800 500 
Power change rate From 0 to 0.5 

MW within 10ms 
From 0 to 1 MW 

within 20 ms 
Charge and discharge 
efficiency/% 

90 95 

Number of 
cycles/time 

1,700 3,000 

Maximum energy 
storage capacity 

0.15 0.1 

Table 2 data review indicates both battery types can achieve 
full capacity from zero output within 20 milliseconds, 
ensuring smooth and reliable power system operation 
through this rapid response capability. 

5.2 Test plan and indicators 
Using the total load of the intelligent distribution network 
and the grid loss rate as benchmarks, this technique is 
compared with the methods detailed in Chai et al. (2024) 
and Wang et al. (2024). 

• Total load of distribution network: the distribution 
network’s total load represents the aggregate electricity 
demand during a specific period. This value’s 
fluctuation significantly impacts grid operation. 
Insufficient load may compromise power supply 
redundancy, affecting grid stability and user electricity 
consumption. Excessive load creates substantial 
operational pressure on the grid, increasing energy 

losses, reducing utilisation efficiency, and potentially 
endangering grid safety. 

• Power grid loss rate: the power grid loss rate serves as a 
crucial indicator for evaluating grid operation 
efficiency, reflecting energy loss levels during 
transmission and distribution. High loss rates indicate 
not only energy waste but also increased operational 
costs and compromised supply reliability. 
Implementing scientific optimisation strategies, 
including rational generation scheduling, grid structure 
optimisation, and equipment efficiency improvements, 
can effectively reduce grid losses, enhance overall 
energy utilisation efficiency, and promote sustainable 
development in the power industry. 

5.3 Analysis of test results 
Distribution network load testing accurately measures 
power demand under various operating conditions, 
providing critical data for scheduling strategy optimisation. 
Real-time load trend monitoring and analysis facilitate 
improved coordination among generation, grid, load, and 
storage components, thereby enhancing system flexibility 
and responsiveness. Figure 2 presents the distribution 
network’s total load results under three scheduling methods. 

Figure 2 Total load of distribution network 

 

The data curve in Figure 2 demonstrates significant 
fluctuation in the smart distribution network’s total load 
during the 24-hour experimental period. Peak loads 
occurred between 9–11 am and 6–8 pm, while the lowest 
values appeared between 3–5 am. This pattern reflects both 
modern power grid load dynamics and periodic variations in 
user electricity consumption behaviour. Comparative 
experimental results indicate that traditional economic 
dispatch methods from Chai et al. (2024) and heuristic 
optimisation algorithms from Wang et al. (2024) exhibit 
significant deviations from actual demand loads, reaching a 
maximum of 15%. These deviations become particularly 
pronounced during rapid load transition periods, revealing 
traditional methods’ limitations in tracking dynamic load 
changes. In contrast, application of the improved ant lion 
optimisation algorithm to coordinated source-grid-load-
storage scheduling produces scheduling curves nearly 
identical to actual load curves, maintaining tracking errors 
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below 2%. This performance persists during challenging 
periods including evening photovoltaic output drops and 
nighttime wind power fluctuations. The results validate the 
proposed method’s superior load tracking capability while 
demonstrating its comprehensive optimisation of distributed 
generation, energy storage systems, and controllable loads, 
offering a reliable technical solution for smart grid precision 
scheduling. 

Power grid loss rate assessment directly measures 
energy dissipation during optimisation and scheduling 
processes, serving as a fundamental indicator for evaluating 
grid operational and energy utilisation efficiency. Analysis 
of these rates provides critical insights into grid 
configuration, scheduling methodology, and equipment 
performance impacts on energy losses, forming the basis for 
scheduling strategy optimisation. Table 3 presents the 
power grid loss rate evaluation results using three methods. 

Table 3 Test results of power grid loss rate 

Period 
of time/h 

Power grid loss rate/% 

Proposed 
method 

Chai et al. 
(2024) method 

Wang et al. 
(2024) method 

2 3.02 6.98 6.95 
4 3.10 6.92 6.97 
6 3.05 7.01 6.99 
8 3.08 6.96 7.02 
10 3.01 6.94 6.98 
12 3.04 7.00 6.96 
14 3.07 6.97 7.01 
16 3.03 6.99 6.97 
18 3.06 6.95 7.00 
20 3.09 6.98 6.99 
22 3.02 7.02 6.96 
24 3.05 6.97 7.01 

Through in-depth analysis of the power grid loss rate test 
results in Table 3, the optimisation scheduling method 
demonstrates significant technical advantages in reducing 
power grid losses. Specific data shows that during different 
testing periods of 24 hours, the power grid loss rate 
remained stable in the lower level range of 2.8%–3.2%, 
with fluctuations not exceeding 0.4 percentage points, 
demonstrating excellent stability. In contrast, the average 
loss rate of the classical linear programming method used in 
Chai et al. (2024) reached 6.9%, and the loss rate climbed to 
7.5% during peak load periods. Although the intelligent 
optimisation algorithm in Wang et al. (2024) is slightly 
better than the former, its average loss rate remains as high 
as 6.3%. Further analysis shows that the significant loss 
reduction is due to an improved ant lion algorithm that 
integrates dynamic boundary adjustment mechanism, mixed 
mutation strategy, and adaptive adjustment, significantly 
improving the accuracy and energy efficiency of source 
network load storage coordination scheduling. 

6 Conclusions 
A distinctive strategy is introduced in this exploration, 
grounded in a sophisticated ant lion algorithm specifically 
tailored for optimising the scheduling of sources, networks, 
loads, and storage within intelligent distribution systems. 
The formulated comprehensive optimisation scheduling 
framework incorporates precise representations of power 
outputs from renewable sources like solar and wind, along 
with detailed operational characteristics of energy storage 
equipment. This framework pursues dual objectives: 
minimising operational costs and emissions of harmful 
gases while enforcing a meticulous set of constraints to 
ensure scheduling practicality and efficacy. Experimental 
evaluations demonstrate the method’s exceptional 
proficiency in aligning with total load demands of the 
distribution network, showcasing high consistency with 
actual load profiles. Additionally, remarkable reductions in 
power grid losses have been achieved, with consistently low 
loss rates maintained across all timeframes. The research 
offers fresh insights and methodologies for enhancing 
intelligent distribution network scheduling while laying a 
strong foundation for fostering sustainable development and 
optimising energy utilisation. 

Acknowledgements 
This work is supported by the technical improvement 
Project of China Southern Power Grid Co., Ltd., under 
Grant No. 030108SZ222. 

Declarations 
All authors declare that they have no conflicts of interest. 

References 
Ali-Dahmane, M., Benhamida, F. and Zeggai, R.B. (2023) 

‘Combined optimal capacitor placement and network 
reconfiguration in a distribution power system for load flow 
analysis using ETAP’, Przeglad Elektrotechniczny, Vol. 99, 
No. 9, pp.93–97. 

Chai, Y.Y., Zhao, X.B. and Lv, C.X. (2024) ‘Coordinated  
multi-time scale optimal regulation for source-grid-load-
storage of distribution network based on Fisher period 
division’, Power System Technology, Vol. 48, No. 4, 
pp.1593–1606. 

Liu, K., Zhan, H. and Wei, Y.K.T. (2022) ‘A dynamic 
optimization method for power distribution network operation 
with high ratio photovoltaics’, IET Generation, Transmission 
& Distribution, Vol. 16, No. 21, pp.4417–4432. 

Man, X., Jin, L. and Xu, F.Z.Y. (2022) ‘Multi-objective 
comprehensive optimization based on probabilistic power 
flow calculation of distribution network’, Journal of 
Electrical Systems, Vol. 18, No. 3, pp.304–317. 

Nazemi, M., Dehghanian, P. and Lu, X. (2021) ‘Uncertainty-aware 
deployment of mobile energy storage systems for distribution 
grid resilience’, IEEE Transactions on Smart Grid, Vol. 12, 
No. 4, pp.3200–3214. 



 An intelligent distribution network source grid load storage optimisation scheduling 81 

Qi, Z., Jian, S. and Jia, Y.L. (2023) ‘Coordinated optimization of 
source-storage-load in distribution network based on edge 
computation’, Energy Reports, Vol. 9, No. 8, pp.492–498. 

Rahman, T., Xu, Y. and Qu, Z. (2022) ‘Continuous-domain  
real-time distributed ADMM algorithm for aggregator 
scheduling and voltage stability in distribution network’, 
IEEE Transactions on Automation Science and Engineering, 
Vol. 19, No. 1, pp.60–69. 

Sheikh, H.I., Rathi, M.K. and Soomro, A.M. (2022) ‘Optimal 
integration of battery energy-storage system with high 
penetration of renewable energy in radial distribution 
network’, Clean Energy, Vol. 6, No. 3, pp.404–411. 

Shi, R., Wang, X.Y. and Lu, X. (2023) ‘A study on the load and 
storage coordination control of clean energy internet source 
network based on improved clustering algorithm’, Power 
System and Clean Energy, Vol. 39, No. 7, pp.134–139+146. 

Singh, A., Maulik, A. and Maheshwari, A. (2023) ‘Probabilistic 
multi-objective energy management of a distribution system 
considering reactive power injection by voltage source 
converters’, Electrical Engineering, Vol. 105, No. 4, 
pp.2107–2136. 

Suo, L. and Liu, G. (2022) ‘Research on source-load coordinated 
dispatching of flexible DC distribution network based on big 
data’, J. High Speed Networks, Vol. 28, No. 4, pp.231–241. 

Wang, T., Li, F.T. and Zhou, Y.X. (2024) ‘Source-load-energy 
storage coordinated optimal scheduling for peak regulation 
based on new energy resource-load similarity’, Electric 
Power Automation Equipment, Vol. 44, No. 3, pp.15–21. 

Zhao, J., Zhang, Q. and Liu, Z. (2021) ‘A distributed black-start 
optimization method for global transmission and distribution 
network’, IEEE Transactions on Power Systems: A 
Publication of the Power Engineering Society, Vol. 36, No. 5, 
pp.4471–4481. 

Zhu, J.H., Xu, R. and Sun, Z.C. (2023) ‘Wind/storage power 
scheduling based on time-sequence rolling optimization’, 
Arabian Journal for Science and Engineering, Vol. 48, No. 5, 
pp.6219–6236. 


