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Abstract: This study addresses the efficiency limitations of traditional 
economic data analysis methods when processing large-scale, multi-source 
datasets under regulatory constraints. A blockchain-based system is proposed, 
featuring a novel sharding consensus algorithm with security and performance 
tradeoffs (SPTSCA) as its core component. Compared with existing approaches 
such as practical Byzantine fault tolerance (PBFT) and OmniLedger, the key 
innovations of SPTSCA include a dynamic shard adjustment mechanism for 
improved load balancing and an optimised consensus process that minimises 
communication rounds. Experimental results demonstrate that, due to more 
balanced shard formation, SPTSCA achieves up to a 1.49% increase in 
throughput compared with OmniLedger. More importantly, its performance 
significantly surpasses that of PBFT, with maximum throughput improvements 
of 143.1% and latency reductions of 89.1%. The algorithm enables secure 
large-scale economic data sharing, providing robust technical support for 
regulatory authorities. 
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1 Introduction 

In an era marked by rapid globalisation and digital transformation, economic activities 
are growing exponentially in scale, complexity, and dynamism. Massive transactions by 
multinational corporations, the volatility of financial markets, and the rise of new digital 
economic models have created a vast and intricate economic network. For legal and 
regulatory authorities, the ability to track economic activity accurately, detect emerging 
risks promptly, and implement effective oversight measures has become essential. These 
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capabilities are critical for maintaining market order, ensuring stable and sustainable 
socio-economic development, and safeguarding fairness and justice (Kalamara et al., 
2022; Chukwuma-Eke et al., 2022; Gongada et al., 2024). 

However, traditional methods of economic data analysis and management are 
increasingly unable to meet the demands of today’s complex economic landscape. The 
explosive growth of data has outpaced the capacity of conventional statistical and 
analytical tools, which struggle to efficiently collect, process, and extract insights from 
massive datasets within a reasonable time. As a result, regulatory decisions often lag 
behind real-time developments. Moreover, the growing diversity of economic  
data – ranging from structured to semi-structured and unstructured formats – poses 
additional challenges, as traditional tools are ill-suited to integrating and analysing such 
heterogeneous information. Meanwhile, legal regulation faces mounting challenges. New 
forms of economic crime continue to emerge, marked by greater concealment, 
complexity, and cross-border operations. These crimes frequently exploit complex 
financial instruments, virtual currency transactions, and multinational corporate structures 
to evade traditional oversight mechanisms (Bhuiyan et al., 2022; Li et al., 2023; Kumbure 
et al., 2022). In the realm of financial technology, activities such as illegal fundraising 
and money laundering have rapidly expanded by leveraging the anonymity of internet 
platforms and virtual assets, making them particularly difficult to detect and trace (Tulli, 
2023; Lehmann, 2023). These developments not only threaten national economic security 
but also place unprecedented pressure on the effectiveness of legal supervision. 

To address these challenges, big data analytics has found extensive applications in 
economic monitoring, financial risk early warning, and market behaviour analysis. This 
technology can process massive, heterogeneous information and identify latent patterns 
and anomalies within complex economic activities. However, the current application of 
big data analytics in the economic domain still faces several critical bottlenecks. These 
include trust deficiencies caused by diverse data sources, low efficiency in cross-system 
data sharing and collaborative analysis, and significant analysis delays in regulatory 
scenarios that require high real-time performance. These limitations constrain the ability 
of regulatory authorities to gain timely insights and intervene in high-risk activities. 

This study proposes the use of neural network algorithms to automatically extract 
discriminative features from large-scale, multi-source economic data. By mining 
multidimensional inputs – including corporate financial records, market transaction data, 
and online public opinion – the system aims to identify indicators of economic crime, 
patterns of market manipulation, and corporate compliance risks. This enables regulatory 
bodies to more precisely identify high-risk entities and activities. Through a deep 
integration of economic data mining techniques and blockchain technology, the study 
develops an efficient, secure, and scalable system architecture. The system specifically 
targets key issues in legal supervision, such as anti-money laundering, market 
manipulation detection, and corporate compliance risk warning. It is designed to 
automatically extract discriminative features from large-scale, multi-source economic 
data, enabling regulatory authorities to more accurately identify high-risk entities and 
activities. For example, the system can mine potential risk signals from corporate 
financial records, market transaction data, and online public opinion, thereby improving 
the detection of concealed economic crimes, supporting real-time regulatory  
decision-making, and enhancing the precision and effectiveness of legal oversight. These 
applications highlight the system’s practical value in maintaining market order and 
promoting sustainable economic development. 
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2 Related work 

Over the past decade, big data and related technologies have gained rapid momentum. 
Although their application in macro-finance remains in its early stages, the field is 
evolving quickly. Data mining technologies provide regulatory agencies with in-depth, 
‘penetrative’ analytical capabilities. These tools can extract potential risk signals from 
complex economic activities, supporting more accurate and timely decision-making. 
Salisu et al. (2022) noted that data mining uncovered hidden patterns within massive and 
often incomplete economic datasets, revealing relationships that traditional statistical 
methods struggled to detect. For instance, association rule mining can identify abnormal 
transaction patterns between enterprises, aiding antitrust investigations. Classification 
algorithms are widely used in credit risk assessment and financial fraud detection. Visser 
et al. (2022) further demonstrated the effectiveness of the data mining tool FineDataLink 
in data integration and cleaning. It addressed challenges related to poor data quality and 
high heterogeneity, thus improving the reliability of analytical results. 

In time series analysis and economic forecasting, Ghauri et al. (2020) highlighted the 
broad use of the autoregressive integrated moving average (ARIMA) model for 
predicting macroeconomic indicators. By capturing cyclical patterns in historical data, 
time series models help regulatory agencies identify economic trends and inform policy 
development. ARIMA also improves forecasting accuracy by differencing non-stationary 
data, effectively addressing common issues like trend and seasonality. Kim (2022) 
introduced a new time series model for short-and medium-term economic forecasting. 
This model integrated Fourier series with an ARMA (n, n-1) structure. It first removed 
long-term trends using curve fitting, then analysed seasonal variation through Fourier 
components, and finally modelled irregular fluctuations with ARMA (n, n-1). Compared 
to the traditional ARMA(p, q) model, this approach simplified the structure and improved 
forecasting performance. 

Zhu et al. (2021) examined how blockchain technology influenced the quality of 
corporate financial reporting. Their empirical findings showed that blockchain-based 
invoicing enhanced financial transparency, leading to outcomes such as increased stock 
liquidity, reduced dispersion in analyst forecasts, and a lower cost of equity capital. 
Zheng et al. (2023) proposed a blockchain-based traceability framework for sharing 
personal financial data. Utilising smart contracts, the system acts as a trusted 
intermediary between users and third-party platforms. It offers transparent validation, 
privacy protection, and traceable provenance – features that align with the strict 
authentication and traceability requirements of open banking environments. 

Moreover, big data analytics has demonstrated significant potential in enhancing the 
resilience and decision-making quality of economic systems. Jiang et al. (2024) showed 
that the synergy between supply chain integration and big data analytics capabilities was 
essential for building supply chain resilience, though its effectiveness depends heavily on 
a foundation of high-quality data. At the level of small and medium-sized enterprises, 
Mehmood et al. (2025) found that big data analytics could simultaneously improve 
economic and environmental performance by promoting green innovation; however, 
achieving this transformation imposes stringent requirements on the breadth and 
reliability of available data. Research in the field of financial decision-making further 
supports this point. Al-Okaily and Al-Okaily (2025) emphasised that data quality, 
analytical capability, and system integration were the key factors influencing the quality 
of data-driven financial decisions. Similarly, Kumar et al. (2024), in their systematic 
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review on supply chain decarbonisation, emphasised that big data analytics was a key 
enabling technology. However, its effective implementation is still limited by several 
factors, including restricted data accessibility, barriers to inter-organisational 
collaboration, and the absence of standardised frameworks. These challenges also extend 
to the field of management accounting. Abdelhalim (2024) revealed that the integration 
of management accounting practices with big data analytics could effectively enhance 
corporate sustainability, but the entire process relied heavily on reliable and verifiable 
data inputs. In summary, while existing research affirms the value of big data analytics, it 
also consistently points to deep-seated bottlenecks such as data credibility, cross-system 
sharing inefficiencies, and governance challenges. This underscores the urgent need to 
build a new type of infrastructure that ensures data authenticity, transparency, and 
efficient circulation – thereby providing a clear theoretical and practical foundation for 
the blockchain-based economic data management and analysis system proposed in this 
study. 

Recent research has made notable progress in applying blockchain technology to 
economic data analysis. However, most existing studies emphasise its theoretical 
advantages while overlooking its real-world impact. Specifically, there has been limited 
examination of how blockchain can improve data trustworthiness and sharing efficiency 
in practical settings. This study addresses that gap by exploring how to design a secure 
and high-performance blockchain-based framework for economic data analysis from a 
legal and regulatory perspective. The goal is to enable trustworthy data sharing and 
deeper insight into economic behaviour. 

3 Method 

3.1 Economic data mining and analysis methods 

In economics, data are a fundamental object of analysis and come in diverse forms, each 
with unique characteristics. Extracting their full value often requires specialised 
analytical approaches tailored to the data type. At the macroeconomic level, quantitative 
data typically include indicators such as gross domestic product (GDP), inflation, 
unemployment rates, and interest rates. In contrast, qualitative data – such as information 
on economic policy types or industrial policy directions – play a different role. 
Government measures, including expansionary fiscal policy or contractionary monetary 
policy, exert wide-ranging impacts on economic performance. Industrial policies, in 
particular, guide resource allocation toward key sectors, supporting structural 
transformation and industrial upgrading. These policies are generally developed through 
qualitative assessments and strategic planning. 

Compared to traditional datasets, big data are defined primarily by their immense 
volume. While conventional data are measured in bits or megabytes, big data typically 
span terabytes (TB) or even petabytes (PB). In addition to size, big data are highly varied 
in form and require the ability to process both structured and unstructured content. As a 
comprehensive problem-solving approach, big data mining facilitates the acquisition, 
storage, processing, and application of data resources. Its primary goal is to extract 
meaningful insights from vast, complex datasets. Compared with traditional data 
analysis, big data mining differs significantly in its targets, scope, and objectives, as 
illustrated in Figure 1. 
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Figure 1 Comparison between traditional data analysis and big data mining (see online version 
for colours) 
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Figure 2 Data mining process flow (see online version for colours) 
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Data mining is the process of uncovering inherent patterns and valuable insights from 
large volumes of seemingly unstructured and irregular data. It typically combines 
statistical software with modern computing technologies to extract meaningful and 
actionable information from massive datasets, facilitating informed decision-making in 
various domains. However, as data volumes grow excessively large – often reaching 
terabyte or petabyte scales – the efficiency of traditional mining algorithms tends to 
decline due to computational and memory constraints. In such scenarios, scalable 
infrastructure such as cloud computing platforms becomes essential for handling data 
storage, processing, and real-time analytics. These platforms offer distributed computing 
capabilities and elastic resources that help overcome the limitations of conventional data 
analysis tools. Data mining typically consists of four key stages. The first is data 
acquisition, where raw data are gathered from various sources. The second is data 
preparation, involving cleaning, integration, and transformation of the data. The third 
stage is data mining, where analytical methods are applied to uncover patterns. Finally, 
result interpretation involves evaluating and visualising the findings for practical use 
(Korinek, 2023). These stages are illustrated in Figure 2 and serve as a foundational 
framework for conducting structured and efficient data analysis. 

Association rule mining seeks to identify frequent co-occurrence relationships 
between itemsets in a dataset. It is commonly used in applications like market basket 
analysis. For example, if customers who buy item A are also likely to purchase item B, 
this information can guide product recommendations and marketing strategies to boost 
cross-selling and customer retention. The Apriori algorithm is a classic method for 
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mining such association rules. It finds frequent itemsets and generates rules based on 
minimum support and confidence thresholds, effectively filtering out statistically 
insignificant patterns. In economic data analysis, association rule mining can uncover 
correlations between different economic indicators. For instance, it can identify patterns 
linking inflation and unemployment rates over specific periods, helping policymakers 
monitor macroeconomic dynamics. Time series analysis examines data points collected 
sequentially over time to detect trends, seasonality, and cycles, and to forecast future 
values. This technique is widely applied in economics, including stock price forecasting, 
sales prediction, GDP growth estimation, and other forms of macroeconomic indicator 
analysis (Li et al., 2023; Lee and Mangalaraj, 2022; Tiozzo Pezzoli and Tosetti, 2022). 
Table 1 summarises key data mining methods, their objectives, common algorithms, and 
typical application scenarios. 
Table 1 Comparison of data mining methods 

Data mining 
method Primary objective Common algorithms Application scenarios 

Classification 
and 
prediction 

Predict the category or 
value of new 
observations based on 
known labels. 

Decision trees, 
neural networks, 
logistic regression 

Credit scoring, stock price 
forecasting, consumer 
behaviour prediction. 

Clustering 
analysis 

Group data objects into 
clusters to reveal 
underlying structure. 

K-means, 
hierarchical 
clustering 

Market segmentation, 
industry analysis, customer 
profiling. 

Association 
rule mining 

Discover frequent  
co-occurrence 
relationships among 
items. 

Apriori algorithm Market basket analysis, 
economic indicator 
correlation analysis. 

Time series 
analysis 

Identify temporal 
patterns and forecast 
future values. 

ARIMA model Stock market forecasting, 
sales forecasting, 
macroeconomic predictions. 

Anomaly 
detection 

Identify abnormal data 
points within a dataset 

Statistical, 
clustering-based, 
classification-based 
methods. 

Fraud detection, data quality 
monitoring, abnormal 
economic event 
identification. 

Clustering analysis aims to reveal inherent patterns within large datasets by grouping data 
based on shared characteristics. It organises data into distinct clusters and often presents 
the results visually; using charts or tables, to help users better understand underlying 
structures. Unlike classification methods, clustering is especially useful when dealing 
with large datasets that lack predefined categories. Given a dataset M, the objective is to 
partition it into x clusters based on selected features. Various clustering algorithms group 
samples with similar characteristics into specific clusters, ensuring that each data point 
belongs to exactly one cluster. The resulting organisation must satisfy the following 
conditions equation (1): 

1 2 3 X

i j

M M M M M
M M

∪ ∪ ∪ = 
 ∪ = ∅ 


 (1) 

After performing clustering analysis on a text dataset, the entire sample set can be 
divided into multiple subclasses based on user requirements and certain feature 
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conditions. Subsequently, an unsupervised classification of the sample data can be 
completed, which is valuable for implementing personalised recommendations based on 
the classification results. In clustering analysis, to determine the similarity between 
different data points, it is first necessary to define the clustering statistic. Once this 
quantitative metric is established, quantitative methods can be applied for clustering 
analysis. Suppose there are n variable objects and p objects in an n-dimensional space. 
Each object exists as a point in this space, and the distance between points reflects the 
similarity between objects. If two n-dimensional vectors are xi = (xi1, xi2, …, xin) and  
xj = (xj1, xj2, …, xjn), there are various ways to measure the dissimilarity between objects, 
including Minkowski distance, Manhattan distance, Euclidean distance, and Chebyshev 
distance. These are respectively expressed in equations (2)–(5): 

( )

1

1

,
q qn

q i j i j ik jkq
k

d x x x x x x
=

 
 = − = − 
 
  (2) 

( )1 1
1

,
n

i j i j ik jk
k

d x x x x x x
=

 
= − = −  

 
  (3) 

( )

1
2 2

2 2
1

,
n

i j i j ik jk
k

d x x x x x x
=

 
 = − = − 
 
  (4) 

( )
(1,2,..., )

, maxi j i j ik jk
k n

d x x x x x x∞ ∞ ∈
= − = −  (5) 

Equation (2) generalises the distance metric with parameter q ∈ [1, ∞). When q  
equals 1, 2 or ∞, the Minkowski distance between objects corresponds to the Manhattan 
distance (3) or Euclidean distance (4), respectively, with Chebyshev distance shown in  
equation (5). 

3.2 Blockchain technology and principles 

Blockchain is essentially a decentralised distributed database that records all transactions 
since the network’s inception. Authorised parties can access these records. The 
blockchain consists of two main parts: the block header and the block body, as shown in 
Figure 3. The block header contains essential information such as the current block’s 
hash value, timestamp, and the Merkle tree root, which is used to efficiently and securely 
summarise all transactions in the block. The block body stores multiple transaction 
records bundled within the block. The blockchain network is maintained by distributed 
nodes without a central authority. Each node stores a complete copy of the ledger and 
communicates through a peer-to-peer network for data transmission and verification. This 
decentralised design provides the system with high fault tolerance and strong resistance 
to attacks. Once a transaction is recorded on the blockchain, it becomes immutable – it 
cannot be altered or deleted. This permanence is ensured because each block includes the 
hash of the previous block. Any attempt to modify a block changes its hash and all 
subsequent hashes, which other nodes in the network can easily detect and reject as 
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invalid (Wang et al., 2022; Jabeur et al., 2024). This design reinforces trust and data 
integrity across the entire network. 

Figure 3 Block structure (see online version for colours) 
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The blockchain hash algorithm is expressed by equation (6): 

( ), ,block prevH H H Data Nonce=  (6) 

The block hash value Hblock is generated from the previous block’s hash Hprev, the current 
block’s transaction Data, and a Nonce. 

The difficulty target of the proof-of-work (PoW) can be represented by equation (7): 

2kW =  (7) 

where k denotes the difficulty parameter, and W specifies the required number of leading 
zeros that the block hash must satisfy. 

Figure 4 Operational flow of smart contracts (see online version for colours) 
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Smart contracts are a crucial part of blockchain technology. They are computer programs 
that run on the blockchain and automatically enforce contract terms without requiring 
third-party intermediaries (Sabirov and Abduvaliyeva, 2022; Bakır et al., 2022; Rao et 
al., 2023). By encoding contract terms into code, smart contracts execute automatically 
when specified conditions are met, enhancing both transaction efficiency and 
transparency. When active, a smart contract receives external input data alongside 
contract conditions. Once these inputs fulfil the preset conditions, the contract triggers a 
series of actions – from action 1 through action N – based on predefined rules. As these 
actions execute, the contract’s state and values are updated accordingly. These updates 
are then recorded in a new blockchain block. This block contains the latest contract state, 
its updated values, and all relevant transaction details. It is added to the end of the 
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blockchain, guaranteeing the immutability and permanence of the data. This automated 
mechanism eliminates manual intervention, reduces execution time, and minimises the 
risk of errors or fraud, making smart contracts highly applicable in financial, legal, and 
supply chain contexts. Figure 4 illustrates the operational flow of smart contracts. 

The state transition of a smart contract can be expressed by equation (8): 

( , )Y S T S ′=  (8) 

where S represents the previous state of the smart contract, T denotes the set of input 
transactions, and S′ is the new state after executing the transactions. 

The execution logic of the smart contract is given by equation (9): 

( , , )C f P T S=  (9) 

P refers to contract writing, T to contract deployment, and S to contract execution. 
The digital signature algorithm is equation (10): 

( , ) ( , )Sign m s r s=  (10) 

This equation indicates that the private key s is used to sign message m, generating the 
signature (r, s). 

The algorithm KeyPair generates the public key pk and private key sk as  
equation (11): 

( ) ( , )KeyPair n pk sk=  (11) 

The automated execution of smart contracts can be represented as equation (12): 

( )+1 + ,t t t tS S f S T=  (12) 

where St is the contract state at time t, and Tt is the external input at time t. 

3.3 Trusted economic data sharing and management system 

This section focuses on constructing a trusted economic data sharing and management 
system. It innovatively proposes the sharding consensus algorithm with security and 
performance tradeoffs (SPTSCA) to significantly enhance system performance while 
ensuring data security. SPTSCA operates in epochs, each divided into two parts: sharding 
and consensus. This design guarantees both efficient system operation and data security 
and consistency across the network. The sharding component is responsible for logically 
partitioning the blockchain network into multiple shards based on resource availability 
and node capabilities, enabling parallel transaction processing. The consensus component 
ensures the validity of transactions within each shard and maintains overall network state 
consistency through coordinated validation mechanisms. This dual-phase structure 
effectively balances scalability, reliability, and fault tolerance. The operational cycle of 
SPTSCA is illustrated in Figure 5. 

During the sharding phase, SPTSCA first determines the optimal shard size based on 
network conditions and historical data. This process considers factors such as node 
computing power, network bandwidth, and storage capacity to ensure optimal resource 
allocation. By analysing real-time network status, the algorithm dynamically adjusts the 
number and size of shards to maintain balanced processing capacity across all shards. 
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When new nodes seek to join the blockchain network, they send requests to existing 
nodes containing their identity, resource status, and proof of capability. The existing 
nodes rigorously verify the new node’s legitimacy, reputation, and capabilities. Once 
approved, the new node selects the most suitable shard based on its resources and 
network guidance, then submits a join request to that shard. The shard’s nodes vote on 
the request, and if it gains sufficient support, the new node officially joins the shard and 
participates in transaction processing and consensus. During node migration, nodes are 
ranked by resource capacity and reputation. High-resource, high-reputation nodes are 
prioritised for migration to shards with lighter workloads. The migration cost function 
Cmigrate measures the cost of node migration, including data transmission and state 
synchronisation overhead equation (13): 

+migrateC DataSize SyncTime= × ×α β  (13) 

where DataSize is the amount of data to be migrated, SyncTime is the state 
synchronisation time, and α and β are weighting coefficients. 

Figure 5 Operational cycle of SPTSCA (see online version for colours) 
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To strictly maintain data consistency during node migration and dynamic shard 
reconfiguration, the system employs a state snapshot and incremental synchronisation 
mechanism. When a shard requires restructuring, the source shard first generates a 
deterministic state snapshot that captures all pending, non-finalised transactions. Before a 
migrating node leaves its original shard, it synchronises the intermediate state  
data – based on this snapshot – to the target shard. During this process, the system 
temporarily activates a global lock mechanism, which pauses the processing of new 
transactions within the affected data range to ensure snapshot stability. Once 
synchronisation is complete, nodes in the target shard execute a cross-validation 
procedure using the same verification function to confirm the accuracy and integrity of 
the received state data. Only after successful verification does the migrating node 
officially participate in consensus within the target shard, at which point the global lock 
is released and the system resumes normal operation. This strategy effectively prevents 
data inconsistency or double-spending issues that may arise from node movement, 
ensuring global consistency throughout shard reorganisation. 

To further clarify the dynamic shard adjustment strategy, Algorithm 1 outlines the 
procedure for periodically optimising shard configuration based on real-time system load 
and node performance metrics. 

In the consensus phase, SPTSCA utilises an innovative, scalable reconfiguration 
consensus mechanism. Each shard runs an optimised consensus protocol involving three 
stages: pre-prepare, prepare, and commit. The proposing node first creates a block 
proposal and broadcasts it to the shard’s nodes. Upon receiving the proposal, nodes verify 
it and, if valid, send out pre-prepare messages. Once enough pre-prepare messages are 
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collected, nodes move to the prepare phase and broadcast prepare messages. After 
gathering sufficient prepare messages, the system advances to the commit phase, where 
commit messages are broadcast, finalising the transaction and updating the local state. 
Algorithm 1 Dynamic shard adjustment algorithm 

Input: Current shard set S, total system transaction load L, node performance metric set P 
Output: Updated shard set S′ 
1 For each shard si in S: 

2 Compute shard load ratio: i count
i

s transationl
L

⋅=  

3 Compute average node performance: pi = average(si.nodes.performance) 
4 End for 
5 if any li > load threshold θ1 or pi < performance threshold θp: 
6 Perform shard splitting: divide the overloaded or low-performance shard si evenly based on 

node performance 
7 Else if any li < merge threshold θm and |S| > 1: 
8 Perform shard merging: merge the underloaded shard si with an adjacent shard sj 
9 End if 
10 Return the updated shard set S′ 

The internal workflow of the scalable reconfigurable consensus mechanism operates 
within each shard and consists of three stages, as shown in Algorithm 2. 
Algorithm 2 Scalable reconfigurable consensus mechanism (within a single shard) 

Input: Transaction proposal Tx, current shard node list N 
Output: Consensus result (Commit or discard) 
// Stage 1: Pre-prepare 
1 The proposer constructs a block B and broadcasts a pre-prepare message PRE-PREPARE, 

B to N. 
2 Upon receiving the message, each node ni: 
3 Verifies the validity of B (e.g., signature, format). 
4 If valid, broadcasts a prepare message PREPARE, B, ni. 
// Stage 2: Prepare 
5 Each node ni collects prepare messages. 
6 When more than 2f valid prepare messages are received (where f is the maximum number 

of tolerated faulty nodes): 
7 Broadcast a commit message COMMIT, B, ni. 
// Stage 3: Commit 
8 Each node nᵢ collects commit messages. 
9 When more than 2f valid commit messages are received: 
10 Commit block B to the local blockchain and update the local state. 
11 If any stage times out before reaching the threshold, discard proposal B. 
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As the number of network nodes and transaction volumes change, the system periodically 
reorganises and optimises shards based on predefined dynamic adjustment policies. 
During this process, some nodes migrate between shards following specific rules, 
allowing shards to split or merge as needed. If a shard becomes too large and 
performance declines, it splits into smaller shards. Conversely, shards with light 
transaction loads are merged to minimise resource waste. 

3.4 Experimental validation 

The financial stock dataset from Alibaba Cloud’s MaxCompute platform was chosen to 
experimentally validate the performance advantages of the proposed SPTSCA method in 
economic data analysis. MaxCompute encompasses a wide range of stock-related data, 
including historical prices, trading volumes, and financial indicators, enabling the 
simulation of diverse scenarios relevant to economic behaviour and regulatory analysis. 
This dataset is stored within the public project BIGDATA_PUBLIC_DATASET on 
MaxCompute and can be accessed via the corresponding schema name, making it 
convenient for reproducibility and scalability in experimental research. 

To evaluate the proposed approach, a small blockchain network was deployed using 
multiple high-performance servers with the following hardware specifications: Intel Xeon 
Gold 6248 CPUs and 128 GB DDR4 2933 MHz RAM, ensuring sufficient computational 
power for high-throughput transaction processing. The blockchain environment was built 
on the Hyperledger Fabric framework, chosen for its modular architecture and support for 
permissioned networks. The SPTSCA algorithm, along with the relevant smart contract 
logic, was implemented using the Go programming language, which is natively supported 
by Hyperledger Fabric. The system operated under Ubuntu Server 20.04 LTS, providing 
a stable and secure Linux environment suitable for enterprise-grade distributed 
applications. 

4 Results and discussion 

4.1 Evaluation of SPTSCA latency and throughput 

The throughput and latency of SPTSCA, practical Byzantine fault tolerance (PBFT), and 
OmniLedger were tested by varying the number of nodes, as shown in Figures 6 and 7. 
The experiments used between 4 and 48 nodes, increasing in steps of 4, with 5% of nodes 
designated as malicious. As the number of nodes grew, both SPTSCA and OmniLedger 
maintained a stable throughput of about 2,000 transactions per second (tx/s). In contrast, 
PBFT’s throughput dropped sharply. This decline is due to PBFT’s consensus process 
relying on full network broadcasting. As more nodes join, communication overhead rises, 
reducing transaction efficiency. SPTSCA and OmniLedger address this by using sharding 
to process transactions in parallel, allowing Byzantine consensus algorithms to scale 
effectively. With the same number of nodes, SPTSCA showed a slight throughput 
improvement over OmniLedger, peaking at a 1.49% increase. This gain results from 
SPTSCA’s optimised shard formation, which balances shard distribution more evenly. 
OmniLedger’s random sharding, by contrast, ignores node performance differences, 
potentially causing bottlenecks in some shards. Regarding latency, when node counts are 
low, SPTSCA experiences the highest latency, followed by OmniLedger, with PBFT 
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performing best. This is because SPTSCA’s dynamic sharding and optimisation require 
extra time to build effective shard sets. Overall, in the tested environment, SPTSCA 
achieved up to a 143.1% increase in throughput and reduced latency by as much as 
89.1% compared to PBFT. These results show that SPTSCA significantly outperforms 
PBFT in scalability and also holds a slight advantage over OmniLedger. 

Figure 6 SPTSCA throughput evaluation (see online version for colours) 
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Figure 7 SPTSCA latency evaluation (see online version for colours) 
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4.2 SPTSCA fault tolerance evaluation 

The total number of nodes was set at 150, with the proportion of malicious nodes ranging 
from 5% to 30%. A total of 2,000 transactions were submitted to evaluate the 
performance of both algorithms under varying levels of malicious activity and to test 
their fault tolerance capabilities. As the share of Byzantine nodes increased, OmniLedger 
experienced a significant drop in the number of correctly processed transactions. In 
contrast, SPTSCA maintained relatively stable performance and was less impacted by 
malicious behaviour. Further analysis showed that OmniLedger’s random sharding leads 
to uneven distribution of Byzantine nodes across shards. When any shard contains more 
than one-third Byzantine nodes, its normal operation is severely compromised. This 
disruption causes transactions to be processed out of order, increases the likelihood of 
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consensus delays, and may ultimately result in consensus failure or system instability. 
Figure 8 presents SPTSCA fault tolerance evaluation. 

Figure 8 SPTSCA fault tolerance evaluation (see online version for colours) 
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To quantitatively verify the advantages of SPTSCA in shard load balancing, this study 
analysed the distribution of transaction processing across shards under a 48-node 
configuration. During the experiment, both SPTSCA and OmniLedger processed 10,000 
transactions. The standard deviation of the load for each shard was calculated, as shown 
in Table 2. A smaller standard deviation indicates a more balanced load. The results 
showed that under the same total transaction volume, the load standard deviation of 
shards generated by SPTSCA was significantly lower than that of OmniLedger. This 
finding directly confirms that the dynamic sharding strategy of SPTSCA – based on node 
performance and resource status – effectively creates shard sets with more balanced load 
capacities. It also prevents the issue of individual shards becoming early performance 
bottlenecks, which may occur in OmniLedger’s random sharding. Consequently, this 
balance provides a solid explanation for SPTSCA’s stable throughput and slight 
performance improvement. 
Table 2 Comparison of shard load balancing (48 nodes) 

Algorithm Number of shards Average load (tx/shard) Load std. dev. 
SPTSCA 4 2,500 86.4 
OmniLedger 4 2,500 342.7 

4.3 Cold start latency decomposition 

To investigate the reasons behind the higher latency of SPTSCA under a small number of 
nodes, the study conducted a fine-grained time breakdown of the consensus process 
during the cold start phase (16 nodes). The focus was on the additional overhead 
introduced by dynamic sharding and optimisation. Table 3 presents the time consumption 
comparison between SPTSCA and PBFT during their first consensus round. 

Analysis of Table 3 shows that among the total latency of 91.1 ms for SPTSCA, shard 
formation alone accounted for 45.2 ms – nearly half of the total delay. In contrast, PBFT 
did not require this process. This result quantitatively confirms that the extra time mainly 
stemmed from the construction of the initial shard set, which involved computation-and 
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communication-intensive tasks such as node resource evaluation, shard planning, and 
node allocation. This analysis points to future optimisation directions, such as 
accelerating startup through pre-configuration or lightweight sharding protocols, which is 
particularly critical for small-scale deployment scenarios. 
Table 3 Cold start latency breakdown (ms) 

Algorithm Shard formation Pre-prepare Prepare Commit Total latency 
SPTSCA 45.2 12.1 15.3 18.5 91.1 
PBFT N/A 10.5 13.8 16.2 40.5 

4.4 Performance across different economic data scenarios 

To evaluate the adaptability of the SPTSCA algorithm in various economic data analysis 
tasks, the study simulated three representative scenarios: 

a High-frequency stock trading data. 

b Macroeconomic indicator time-series data. 

c Complex inter-firm supply chain transaction networks. 

The experiments were conducted using 64 nodes, and the results are summarised in  
Table 4. 
Table 4 Performance comparison across different economic data scenarios 

Data scenario Algorithm Avg. throughput 
(tx/s) 

Avg. latency 
(ms) 

CPU utilisation 
(%) 

Scenario A  
(high-frequency) 

SPTSCA 21,50 89 78.5 

 RapidChain 1,980 95 82.1 
Scenario B 
(macroeconomic) 

SPTSCA 2,080 92 72.3 

 RapidChain 1,920 101 75.6 
Scenario C 
(complex network) 

SPTSCA 1,950 105 85.2 

 RapidChain 1,750 128 88.7 

From Table 4, it can be observed that across different economic data types and 
complexity levels, SPTSCA consistently outperformed the benchmark RapidChain in 
both throughput and latency. The advantage was most pronounced when processing the 
structurally complex and highly interconnected supply chain network data, where 
throughput improved by approximately 11.4%, and latency decreased by about 18.0%. 
These results indicate that SPTSCA’s dynamic resource management mechanism 
effectively adapts to the processing demands imposed by varying data characteristics. 
Moreover, SPTSCA exhibited slightly lower CPU utilisation in all scenarios compared to 
RapidChain, suggesting more efficient resource usage achieved through balanced load 
distribution. Overall, the findings demonstrate SPTSCA’s strong adaptability and 
robustness in handling diverse economic data analysis tasks. 
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4.5 Security analysis 

Although the inherent characteristics of blockchain – such as immutability and Byzantine 
fault tolerance – form the foundation of system security, sharded blockchains face 
specific types of attacks that require dedicated countermeasures. This section discusses 
how SPTSCA addresses two major threats: Sybil attacks and shard-specific attacks. In a 
Sybil attack, an adversary attempts to create numerous fake identities to gain control over 
the network. SPTSCA mitigates this threat through a strict node admission mechanism. 
When a new node joins, it must provide verifiable proof of its real resource capacity and 
performance. Existing nodes then validate and vote on its admission based on a 
reputation-based consensus. This process significantly increases the difficulty for 
attackers to cheaply generate large numbers of malicious nodes. For attacks targeting the 
sharding mechanism, such as an adversary concentrating resources on a specific  
shard to disrupt its consensus, SPTSCA employs dynamic node migration and periodic  
re-sharding as effective defences. The system periodically reorganises shard 
memberships, preventing attackers from maintaining prolonged associations with 
particular shards. This strategy increases the difficulty of locking or corrupting specific 
targets. Moreover, the node migration policy incorporates historical behaviour and 
reputation evaluation, prioritising high-reputation nodes for migration to shards that are 
more critical or under heavier load. This proactive reinforcement helps strengthen 
potentially vulnerable parts of the system. Together with the consensus mechanism, these 
design elements ensure that SPTSCA maintains a robust security posture while achieving 
high performance. 

5 Conclusions 

At the economic data analysis level, a system framework was designed and implemented 
that deeply integrates data mining with blockchain technology. This framework 
effectively processes multi-source heterogeneous economic data and automatically 
identifies potential risk patterns through association rule mining and time-series analysis. 
It provides regulatory agencies with a systematic approach for accurately detecting 
abnormal economic behaviours within large-scale datasets. At the blockchain technology 
level, an innovative security-performance trade-off shard consensus algorithm (SPTSCA) 
was developed. By integrating dynamic sharding with an optimised reconfigurable 
consensus mechanism, SPTSCA significantly enhances blockchain throughput and 
scalability when processing high-concurrency economic transactions, while maintaining 
data integrity and consistency. This approach presents a new technical pathway and 
practical paradigm for the application of blockchain in economic data management 
scenarios that require both high performance and strict regulatory compliance. 

Building upon the proposed architecture, future research may advance along several 
technical directions. One promising direction involves the integration of advanced 
cryptographic primitives, such as zero-knowledge proofs, into the SPTSCA framework. 
This integration would enable compliance verification without revealing raw transaction 
details, thereby achieving a balance between transparency, auditability, and privacy 
protection. Another direction concerns leveraging the system’s low latency and high 
throughput to develop real-time detection algorithms and smart contract logic tailored to 
specific financial crime patterns, including cross-border money laundering and market 
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manipulation behaviours. These efforts aim to translate the system’s performance 
advantages into proactive regulatory intelligence and real-time risk interception 
capabilities. Together, these future directions will further enhance the practicality, 
adaptability, and proactive resilience of the proposed system in complex real-world 
regulatory environments. 
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