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Abstract: This study addresses the efficiency limitations of traditional
economic data analysis methods when processing large-scale, multi-source
datasets under regulatory constraints. A blockchain-based system is proposed,
featuring a novel sharding consensus algorithm with security and performance
tradeoffs (SPTSCA) as its core component. Compared with existing approaches
such as practical Byzantine fault tolerance (PBFT) and OmniLedger, the key
innovations of SPTSCA include a dynamic shard adjustment mechanism for
improved load balancing and an optimised consensus process that minimises
communication rounds. Experimental results demonstrate that, due to more
balanced shard formation, SPTSCA achieves up to a 1.49% increase in
throughput compared with OmniLedger. More importantly, its performance
significantly surpasses that of PBFT, with maximum throughput improvements
of 143.1% and latency reductions of 89.1%. The algorithm enables secure
large-scale economic data sharing, providing robust technical support for
regulatory authorities.
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1 Introduction

In an era marked by rapid globalisation and digital transformation, economic activities
are growing exponentially in scale, complexity, and dynamism. Massive transactions by
multinational corporations, the volatility of financial markets, and the rise of new digital
economic models have created a vast and intricate economic network. For legal and
regulatory authorities, the ability to track economic activity accurately, detect emerging
risks promptly, and implement effective oversight measures has become essential. These
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capabilities are critical for maintaining market order, ensuring stable and sustainable
socio-economic development, and safeguarding fairness and justice (Kalamara et al.,
2022; Chukwuma-Eke et al., 2022; Gongada et al., 2024).

However, traditional methods of economic data analysis and management are
increasingly unable to meet the demands of today’s complex economic landscape. The
explosive growth of data has outpaced the capacity of conventional statistical and
analytical tools, which struggle to efficiently collect, process, and extract insights from
massive datasets within a reasonable time. As a result, regulatory decisions often lag
behind real-time developments. Moreover, the growing diversity of economic
data — ranging from structured to semi-structured and unstructured formats — poses
additional challenges, as traditional tools are ill-suited to integrating and analysing such
heterogeneous information. Meanwhile, legal regulation faces mounting challenges. New
forms of economic crime continue to emerge, marked by greater concealment,
complexity, and cross-border operations. These crimes frequently exploit complex
financial instruments, virtual currency transactions, and multinational corporate structures
to evade traditional oversight mechanisms (Bhuiyan et al., 2022; Li et al., 2023; Kumbure
et al., 2022). In the realm of financial technology, activities such as illegal fundraising
and money laundering have rapidly expanded by leveraging the anonymity of internet
platforms and virtual assets, making them particularly difficult to detect and trace (Tulli,
2023; Lehmann, 2023). These developments not only threaten national economic security
but also place unprecedented pressure on the effectiveness of legal supervision.

To address these challenges, big data analytics has found extensive applications in
economic monitoring, financial risk early warning, and market behaviour analysis. This
technology can process massive, heterogencous information and identify latent patterns
and anomalies within complex economic activities. However, the current application of
big data analytics in the economic domain still faces several critical bottlenecks. These
include trust deficiencies caused by diverse data sources, low efficiency in cross-system
data sharing and collaborative analysis, and significant analysis delays in regulatory
scenarios that require high real-time performance. These limitations constrain the ability
of regulatory authorities to gain timely insights and intervene in high-risk activities.

This study proposes the use of neural network algorithms to automatically extract
discriminative features from large-scale, multi-source economic data. By mining
multidimensional inputs — including corporate financial records, market transaction data,
and online public opinion — the system aims to identify indicators of economic crime,
patterns of market manipulation, and corporate compliance risks. This enables regulatory
bodies to more precisely identify high-risk entities and activities. Through a deep
integration of economic data mining techniques and blockchain technology, the study
develops an efficient, secure, and scalable system architecture. The system specifically
targets key issues in legal supervision, such as anti-money laundering, market
manipulation detection, and corporate compliance risk warning. It is designed to
automatically extract discriminative features from large-scale, multi-source economic
data, enabling regulatory authorities to more accurately identify high-risk entities and
activities. For example, the system can mine potential risk signals from corporate
financial records, market transaction data, and online public opinion, thereby improving
the detection of concealed economic crimes, supporting real-time regulatory
decision-making, and enhancing the precision and effectiveness of legal oversight. These
applications highlight the system’s practical value in maintaining market order and
promoting sustainable economic development.
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2 Related work

Over the past decade, big data and related technologies have gained rapid momentum.
Although their application in macro-finance remains in its early stages, the field is
evolving quickly. Data mining technologies provide regulatory agencies with in-depth,
‘penetrative’ analytical capabilities. These tools can extract potential risk signals from
complex economic activities, supporting more accurate and timely decision-making.
Salisu et al. (2022) noted that data mining uncovered hidden patterns within massive and
often incomplete economic datasets, revealing relationships that traditional statistical
methods struggled to detect. For instance, association rule mining can identify abnormal
transaction patterns between enterprises, aiding antitrust investigations. Classification
algorithms are widely used in credit risk assessment and financial fraud detection. Visser
et al. (2022) further demonstrated the effectiveness of the data mining tool FineDataLink
in data integration and cleaning. It addressed challenges related to poor data quality and
high heterogeneity, thus improving the reliability of analytical results.

In time series analysis and economic forecasting, Ghauri et al. (2020) highlighted the
broad use of the autoregressive integrated moving average (ARIMA) model for
predicting macroeconomic indicators. By capturing cyclical patterns in historical data,
time series models help regulatory agencies identify economic trends and inform policy
development. ARIMA also improves forecasting accuracy by differencing non-stationary
data, effectively addressing common issues like trend and seasonality. Kim (2022)
introduced a new time series model for short-and medium-term economic forecasting.
This model integrated Fourier series with an ARMA (n, n-1) structure. It first removed
long-term trends using curve fitting, then analysed seasonal variation through Fourier
components, and finally modelled irregular fluctuations with ARMA (n, n-1). Compared
to the traditional ARMA(p, q) model, this approach simplified the structure and improved
forecasting performance.

Zhu et al. (2021) examined how blockchain technology influenced the quality of
corporate financial reporting. Their empirical findings showed that blockchain-based
invoicing enhanced financial transparency, leading to outcomes such as increased stock
liquidity, reduced dispersion in analyst forecasts, and a lower cost of equity capital.
Zheng et al. (2023) proposed a blockchain-based traceability framework for sharing
personal financial data. Utilising smart contracts, the system acts as a trusted
intermediary between users and third-party platforms. It offers transparent validation,
privacy protection, and traceable provenance — features that align with the strict
authentication and traceability requirements of open banking environments.

Moreover, big data analytics has demonstrated significant potential in enhancing the
resilience and decision-making quality of economic systems. Jiang et al. (2024) showed
that the synergy between supply chain integration and big data analytics capabilities was
essential for building supply chain resilience, though its effectiveness depends heavily on
a foundation of high-quality data. At the level of small and medium-sized enterprises,
Mehmood et al. (2025) found that big data analytics could simultaneously improve
economic and environmental performance by promoting green innovation; however,
achieving this transformation imposes stringent requirements on the breadth and
reliability of available data. Research in the field of financial decision-making further
supports this point. Al-Okaily and Al-Okaily (2025) emphasised that data quality,
analytical capability, and system integration were the key factors influencing the quality
of data-driven financial decisions. Similarly, Kumar et al. (2024), in their systematic
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review on supply chain decarbonisation, emphasised that big data analytics was a key
enabling technology. However, its effective implementation is still limited by several
factors, including restricted data accessibility, barriers to inter-organisational
collaboration, and the absence of standardised frameworks. These challenges also extend
to the field of management accounting. Abdelhalim (2024) revealed that the integration
of management accounting practices with big data analytics could effectively enhance
corporate sustainability, but the entire process relied heavily on reliable and verifiable
data inputs. In summary, while existing research affirms the value of big data analytics, it
also consistently points to deep-seated bottlenecks such as data credibility, cross-system
sharing inefficiencies, and governance challenges. This underscores the urgent need to
build a new type of infrastructure that ensures data authenticity, transparency, and
efficient circulation — thereby providing a clear theoretical and practical foundation for
the blockchain-based economic data management and analysis system proposed in this
study.

Recent research has made notable progress in applying blockchain technology to
economic data analysis. However, most existing studies emphasise its theoretical
advantages while overlooking its real-world impact. Specifically, there has been limited
examination of how blockchain can improve data trustworthiness and sharing efficiency
in practical settings. This study addresses that gap by exploring how to design a secure
and high-performance blockchain-based framework for economic data analysis from a
legal and regulatory perspective. The goal is to enable trustworthy data sharing and
deeper insight into economic behaviour.

3 Method

3.1 Economic data mining and analysis methods

In economics, data are a fundamental object of analysis and come in diverse forms, each
with unique characteristics. Extracting their full value often requires specialised
analytical approaches tailored to the data type. At the macroeconomic level, quantitative
data typically include indicators such as gross domestic product (GDP), inflation,
unemployment rates, and interest rates. In contrast, qualitative data — such as information
on economic policy types or industrial policy directions — play a different role.
Government measures, including expansionary fiscal policy or contractionary monetary
policy, exert wide-ranging impacts on economic performance. Industrial policies, in
particular, guide resource allocation toward key sectors, supporting structural
transformation and industrial upgrading. These policies are generally developed through
qualitative assessments and strategic planning.

Compared to traditional datasets, big data are defined primarily by their immense
volume. While conventional data are measured in bits or megabytes, big data typically
span terabytes (TB) or even petabytes (PB). In addition to size, big data are highly varied
in form and require the ability to process both structured and unstructured content. As a
comprehensive problem-solving approach, big data mining facilitates the acquisition,
storage, processing, and application of data resources. Its primary goal is to extract
meaningful insights from vast, complex datasets. Compared with traditional data
analysis, big data mining differs significantly in its targets, scope, and objectives, as
illustrated in Figure 1.
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Figure 1 Comparison between traditional data analysis and big data mining (see online version
for colours)
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Figure 2 Data mining process flow (see online version for colours)
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Data mining is the process of uncovering inherent patterns and valuable insights from
large volumes of seemingly unstructured and irregular data. It typically combines
statistical software with modern computing technologies to extract meaningful and
actionable information from massive datasets, facilitating informed decision-making in
various domains. However, as data volumes grow excessively large — often reaching
terabyte or petabyte scales — the efficiency of traditional mining algorithms tends to
decline due to computational and memory constraints. In such scenarios, scalable
infrastructure such as cloud computing platforms becomes essential for handling data
storage, processing, and real-time analytics. These platforms offer distributed computing
capabilities and elastic resources that help overcome the limitations of conventional data
analysis tools. Data mining typically consists of four key stages. The first is data
acquisition, where raw data are gathered from various sources. The second is data
preparation, involving cleaning, integration, and transformation of the data. The third
stage is data mining, where analytical methods are applied to uncover patterns. Finally,
result interpretation involves evaluating and visualising the findings for practical use
(Korinek, 2023). These stages are illustrated in Figure 2 and serve as a foundational
framework for conducting structured and efficient data analysis.

Association rule mining seeks to identify frequent co-occurrence relationships
between itemsets in a dataset. It is commonly used in applications like market basket
analysis. For example, if customers who buy item A are also likely to purchase item B,
this information can guide product recommendations and marketing strategies to boost
cross-selling and customer retention. The Apriori algorithm is a classic method for
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mining such association rules. It finds frequent itemsets and generates rules based on
minimum support and confidence thresholds, effectively filtering out statistically
insignificant patterns. In economic data analysis, association rule mining can uncover
correlations between different economic indicators. For instance, it can identify patterns
linking inflation and unemployment rates over specific periods, helping policymakers
monitor macroeconomic dynamics. Time series analysis examines data points collected
sequentially over time to detect trends, seasonality, and cycles, and to forecast future
values. This technique is widely applied in economics, including stock price forecasting,
sales prediction, GDP growth estimation, and other forms of macroeconomic indicator
analysis (Li et al., 2023; Lee and Mangalaraj, 2022; Tiozzo Pezzoli and Tosetti, 2022).
Table 1 summarises key data mining methods, their objectives, common algorithms, and
typical application scenarios.

Table 1 Comparison of data mining methods
Data mining . Lo . S .
Primary objective Common algorithms Application scenarios
method
Classification Predict the category or ~ Decision trees, Credit scoring, stock price
and value of new neural networks, forecasting, consumer
prediction observations based on logistic regression behaviour prediction.
known labels.
Clustering Group data objects into  K-means, Market segmentation,
analysis clusters to reveal hierarchical industry analysis, customer
underlying structure. clustering profiling.
Association Discover frequent Apriori algorithm Market basket analysis,
rule mining co-occurrence economic indicator
relationships among correlation analysis.
items.
Time series Identify temporal ARIMA model Stock market forecasting,
analysis patterns and forecast sales forecasting,
future values. macroeconomic predictions.
Anomaly Identify abnormal data  Statistical, Fraud detection, data quality
detection points within a dataset clustering-based, monitoring, abnormal
classification-based  economic event
methods. identification.

Clustering analysis aims to reveal inherent patterns within large datasets by grouping data
based on shared characteristics. It organises data into distinct clusters and often presents
the results visually; using charts or tables, to help users better understand underlying
structures. Unlike classification methods, clustering is especially useful when dealing
with large datasets that lack predefined categories. Given a dataset M, the objective is to
partition it into x clusters based on selected features. Various clustering algorithms group
samples with similar characteristics into specific clusters, ensuring that each data point
belongs to exactly one cluster. The resulting organisation must satisfy the following
conditions equation (1):

{MluMzuMg...uMX :M} W

After performing clustering analysis on a text dataset, the entire sample set can be
divided into multiple subclasses based on user requirements and certain feature
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conditions. Subsequently, an unsupervised classification of the sample data can be
completed, which is valuable for implementing personalised recommendations based on
the classification results. In clustering analysis, to determine the similarity between
different data points, it is first necessary to define the clustering statistic. Once this
quantitative metric is established, quantitative methods can be applied for clustering
analysis. Suppose there are n variable objects and p objects in an n-dimensional space.
Each object exists as a point in this space, and the distance between points reflects the
similarity between objects. If two n-dimensional vectors are x; = (xi1, Xi2, ..., Xin) and
X; = (X1, Xj2, ..., Xju), there are various ways to measure the dissimilarity between objects,
including Minkowski distance, Manhattan distance, Euclidean distance, and Chebyshev
distance. These are respectively expressed in equations (2)—(5):

n q
dq(x;,xj)=||xi—xj||q= Z|x,k—xjk| (2)
k=1
n
dl(xi;xj):"xi_xjul :[Z|xik_xij 3)
k=1
1
n 2 5
dz(x,v,xj)zux,—xj”z: Z|xl~k _-xjk| (4)
k=1
de. (x1,x;) = ||x,« —xj”m = ki?i%,m'xik —xjk| )

Equation (2) generalises the distance metric with parameter ¢ € [1, ©). When ¢
equals 1, 2 or oo, the Minkowski distance between objects corresponds to the Manhattan
distance (3) or Euclidean distance (4), respectively, with Chebyshev distance shown in
equation (5).

3.2 Blockchain technology and principles

Blockchain is essentially a decentralised distributed database that records all transactions
since the network’s inception. Authorised parties can access these records. The
blockchain consists of two main parts: the block header and the block body, as shown in
Figure 3. The block header contains essential information such as the current block’s
hash value, timestamp, and the Merkle tree root, which is used to efficiently and securely
summarise all transactions in the block. The block body stores multiple transaction
records bundled within the block. The blockchain network is maintained by distributed
nodes without a central authority. Each node stores a complete copy of the ledger and
communicates through a peer-to-peer network for data transmission and verification. This
decentralised design provides the system with high fault tolerance and strong resistance
to attacks. Once a transaction is recorded on the blockchain, it becomes immutable — it
cannot be altered or deleted. This permanence is ensured because each block includes the
hash of the previous block. Any attempt to modify a block changes its hash and all
subsequent hashes, which other nodes in the network can easily detect and reject as
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invalid (Wang et al., 2022; Jabeur et al., 2024). This design reinforces trust and data
integrity across the entire network.

Figure 3 Block structure (see online version for colours)
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The blockchain hash algorithm is expressed by equation (6):
Hpioek = H (H prey, Data, Nonce) (©6)

The block hash value Hpioer is generated from the previous block’s hash H,.., the current
block’s transaction Data, and a Nonce.
The difficulty target of the proof-of-work (PoW) can be represented by equation (7):

W =2k (7

where k denotes the difficulty parameter, and W specifies the required number of leading
zeros that the block hash must satisfy.

Figure 4 Operational flow of smart contracts (see online version for colours)
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Smart contracts are a crucial part of blockchain technology. They are computer programs
that run on the blockchain and automatically enforce contract terms without requiring
third-party intermediaries (Sabirov and Abduvaliyeva, 2022; Bakir et al., 2022; Rao et
al., 2023). By encoding contract terms into code, smart contracts execute automatically
when specified conditions are met, enhancing both transaction efficiency and
transparency. When active, a smart contract receives external input data alongside
contract conditions. Once these inputs fulfil the preset conditions, the contract triggers a
series of actions — from action 1 through action N — based on predefined rules. As these
actions execute, the contract’s state and values are updated accordingly. These updates
are then recorded in a new blockchain block. This block contains the latest contract state,
its updated values, and all relevant transaction details. It is added to the end of the
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blockchain, guaranteeing the immutability and permanence of the data. This automated
mechanism eliminates manual intervention, reduces execution time, and minimises the
risk of errors or fraud, making smart contracts highly applicable in financial, legal, and
supply chain contexts. Figure 4 illustrates the operational flow of smart contracts.

The state transition of a smart contract can be expressed by equation (8):

Y(S,T)=5" 8)

where S represents the previous state of the smart contract, 7 denotes the set of input
transactions, and ' is the new state after executing the transactions.
The execution logic of the smart contract is given by equation (9):

cC=f1~P,T,S) )

P refers to contract writing, 7 to contract deployment, and S to contract execution.
The digital signature algorithm is equation (10):

Sign(m, s)=(r, s) (10)

This equation indicates that the private key s is used to sign message m, generating the
signature (7, ).

The algorithm KeyPair generates the public key pk and private key sk as
equation (11):

KeyPair(n) = (pk, sk) (11)
The automated execution of smart contracts can be represented as equation (12):

S+ :St+f(St9]—;) (12)

where S; is the contract state at time ¢, and 7; is the external input at time ¢.

3.3 Trusted economic data sharing and management system

This section focuses on constructing a trusted economic data sharing and management
system. It innovatively proposes the sharding consensus algorithm with security and
performance tradeoffs (SPTSCA) to significantly enhance system performance while
ensuring data security. SPTSCA operates in epochs, each divided into two parts: sharding
and consensus. This design guarantees both efficient system operation and data security
and consistency across the network. The sharding component is responsible for logically
partitioning the blockchain network into multiple shards based on resource availability
and node capabilities, enabling parallel transaction processing. The consensus component
ensures the validity of transactions within each shard and maintains overall network state
consistency through coordinated validation mechanisms. This dual-phase structure
effectively balances scalability, reliability, and fault tolerance. The operational cycle of
SPTSCA is illustrated in Figure 5.

During the sharding phase, SPTSCA first determines the optimal shard size based on
network conditions and historical data. This process considers factors such as node
computing power, network bandwidth, and storage capacity to ensure optimal resource
allocation. By analysing real-time network status, the algorithm dynamically adjusts the
number and size of shards to maintain balanced processing capacity across all shards.
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When new nodes seek to join the blockchain network, they send requests to existing
nodes containing their identity, resource status, and proof of capability. The existing
nodes rigorously verify the new node’s legitimacy, reputation, and capabilities. Once
approved, the new node selects the most suitable shard based on its resources and
network guidance, then submits a join request to that shard. The shard’s nodes vote on
the request, and if it gains sufficient support, the new node officially joins the shard and
participates in transaction processing and consensus. During node migration, nodes are
ranked by resource capacity and reputation. High-resource, high-reputation nodes are
prioritised for migration to shards with lighter workloads. The migration cost function
Chigrate measures the cost of node migration, including data transmission and state
synchronisation overhead equation (13):

Coigrae = 00X DataSize + x SyncTime (13)

where DataSize is the amount of data to be migrated, SyncTime is the state
synchronisation time, and « and [ are weighting coefficients.

Figure 5 Operational cycle of SPTSCA (see online version for colours)
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To strictly maintain data consistency during node migration and dynamic shard
reconfiguration, the system employs a state snapshot and incremental synchronisation
mechanism. When a shard requires restructuring, the source shard first generates a
deterministic state snapshot that captures all pending, non-finalised transactions. Before a
migrating node leaves its original shard, it synchronises the intermediate state
data — based on this snapshot — to the target shard. During this process, the system
temporarily activates a global lock mechanism, which pauses the processing of new
transactions within the affected data range to ensure snapshot stability. Once
synchronisation is complete, nodes in the target shard execute a cross-validation
procedure using the same verification function to confirm the accuracy and integrity of
the received state data. Only after successful verification does the migrating node
officially participate in consensus within the target shard, at which point the global lock
is released and the system resumes normal operation. This strategy effectively prevents
data inconsistency or double-spending issues that may arise from node movement,
ensuring global consistency throughout shard reorganisation.

To further clarify the dynamic shard adjustment strategy, Algorithm 1 outlines the
procedure for periodically optimising shard configuration based on real-time system load
and node performance metrics.

In the consensus phase, SPTSCA utilises an innovative, scalable reconfiguration
consensus mechanism. Each shard runs an optimised consensus protocol involving three
stages: pre-prepare, prepare, and commit. The proposing node first creates a block
proposal and broadcasts it to the shard’s nodes. Upon receiving the proposal, nodes verify
it and, if valid, send out pre-prepare messages. Once enough pre-prepare messages are
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collected, nodes move to the prepare phase and broadcast prepare messages. After
gathering sufficient prepare messages, the system advances to the commit phase, where
commit messages are broadcast, finalising the transaction and updating the local state.

Algorithm 1  Dynamic shard adjustment algorithm

Input: Current shard set S, total system transaction load L, node performance metric set P
Output: Updated shard set S’
1 For each shard s; in S:

. 8; - transation
2 Compute shard load ratio: [, = -~ ————""

L
3 Compute average node performance: p; = average(s..nodes.performance)
4 End for
5  ifany /i > load threshold 61 or p; < performance threshold 6p:
6 Perform shard splitting: divide the overloaded or low-performance shard s; evenly based on
node performance
7  Elseif any /; < merge threshold 8, and |S| > 1:

Perform shard merging: merge the underloaded shard s; with an adjacent shard s;
9  Endif
10  Return the updated shard set S’

The internal workflow of the scalable reconfigurable consensus mechanism operates
within each shard and consists of three stages, as shown in Algorithm 2.

Algorithm 2 Scalable reconfigurable consensus mechanism (within a single shard)

Input: Transaction proposal 7, current shard node list N
Output: Consensus result (Commit or discard)
// Stage 1: Pre-prepare

1 The proposer constructs a block B and broadcasts a pre-prepare message (PRE-PREPARE,
B)to N.

2 Upon receiving the message, each node n;:

3 Verifies the validity of B (e.g., signature, format).

4 If valid, broadcasts a prepare message (PREPARE, B, n;).
/I Stage 2: Prepare

5 Each node n; collects prepare messages.

6 When more than 2f valid prepare messages are received (where fis the maximum number
of tolerated faulty nodes):

7 Broadcast a commit message (COMMIT, B, n).

// Stage 3: Commit

8  Each node n; collects commit messages.

9  When more than 2f valid commit messages are received:

10  Commit block B to the local blockchain and update the local state.

11  If any stage times out before reaching the threshold, discard proposal B.
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As the number of network nodes and transaction volumes change, the system periodically
reorganises and optimises shards based on predefined dynamic adjustment policies.
During this process, some nodes migrate between shards following specific rules,
allowing shards to split or merge as needed. If a shard becomes too large and
performance declines, it splits into smaller shards. Conversely, shards with light
transaction loads are merged to minimise resource waste.

3.4 Experimental validation

The financial stock dataset from Alibaba Cloud’s MaxCompute platform was chosen to
experimentally validate the performance advantages of the proposed SPTSCA method in
economic data analysis. MaxCompute encompasses a wide range of stock-related data,
including historical prices, trading volumes, and financial indicators, enabling the
simulation of diverse scenarios relevant to economic behaviour and regulatory analysis.
This dataset is stored within the public project BIGDATA PUBLIC DATASET on
MaxCompute and can be accessed via the corresponding schema name, making it
convenient for reproducibility and scalability in experimental research.

To evaluate the proposed approach, a small blockchain network was deployed using
multiple high-performance servers with the following hardware specifications: Intel Xeon
Gold 6248 CPUs and 128 GB DDR4 2933 MHz RAM, ensuring sufficient computational
power for high-throughput transaction processing. The blockchain environment was built
on the Hyperledger Fabric framework, chosen for its modular architecture and support for
permissioned networks. The SPTSCA algorithm, along with the relevant smart contract
logic, was implemented using the Go programming language, which is natively supported
by Hyperledger Fabric. The system operated under Ubuntu Server 20.04 LTS, providing
a stable and secure Linux environment suitable for enterprise-grade distributed
applications.

4 Results and discussion

4.1 Evaluation of SPTSCA latency and throughput

The throughput and latency of SPTSCA, practical Byzantine fault tolerance (PBFT), and
OmniLedger were tested by varying the number of nodes, as shown in Figures 6 and 7.
The experiments used between 4 and 48 nodes, increasing in steps of 4, with 5% of nodes
designated as malicious. As the number of nodes grew, both SPTSCA and OmniLedger
maintained a stable throughput of about 2,000 transactions per second (tx/s). In contrast,
PBFT’s throughput dropped sharply. This decline is due to PBFT’s consensus process
relying on full network broadcasting. As more nodes join, communication overhead rises,
reducing transaction efficiency. SPTSCA and OmniLedger address this by using sharding
to process transactions in parallel, allowing Byzantine consensus algorithms to scale
effectively. With the same number of nodes, SPTSCA showed a slight throughput
improvement over Omniledger, peaking at a 1.49% increase. This gain results from
SPTSCA’s optimised shard formation, which balances shard distribution more evenly.
OmniLedger’s random sharding, by contrast, ignores node performance differences,
potentially causing bottlenecks in some shards. Regarding latency, when node counts are
low, SPTSCA experiences the highest latency, followed by OmniLedger, with PBFT
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performing best. This is because SPTSCA’s dynamic sharding and optimisation require
extra time to build effective shard sets. Overall, in the tested environment, SPTSCA
achieved up to a 143.1% increase in throughput and reduced latency by as much as
89.1% compared to PBFT. These results show that SPTSCA significantly outperforms
PBEFT in scalability and also holds a slight advantage over OmniLedger.

Figure 6 SPTSCA throughput evaluation (see online version for colours)
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Figure 7 SPTSCA latency evaluation (see online version for colours)
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4.2 SPTSCA fault tolerance evaluation

The total number of nodes was set at 150, with the proportion of malicious nodes ranging
from 5% to 30%. A total of 2,000 transactions were submitted to evaluate the
performance of both algorithms under varying levels of malicious activity and to test
their fault tolerance capabilities. As the share of Byzantine nodes increased, OmniLedger
experienced a significant drop in the number of correctly processed transactions. In
contrast, SPTSCA maintained relatively stable performance and was less impacted by
malicious behaviour. Further analysis showed that OmniLedger’s random sharding leads
to uneven distribution of Byzantine nodes across shards. When any shard contains more
than one-third Byzantine nodes, its normal operation is severely compromised. This
disruption causes transactions to be processed out of order, increases the likelihood of
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consensus delays, and may ultimately result in consensus failure or system instability.
Figure 8 presents SPTSCA fault tolerance evaluation.

Figure 8 SPTSCA fault tolerance evaluation (see online version for colours)
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To quantitatively verify the advantages of SPTSCA in shard load balancing, this study
analysed the distribution of transaction processing across shards under a 48-node
configuration. During the experiment, both SPTSCA and OmniLedger processed 10,000
transactions. The standard deviation of the load for each shard was calculated, as shown
in Table 2. A smaller standard deviation indicates a more balanced load. The results
showed that under the same total transaction volume, the load standard deviation of
shards generated by SPTSCA was significantly lower than that of OmniLedger. This
finding directly confirms that the dynamic sharding strategy of SPTSCA — based on node
performance and resource status — effectively creates shard sets with more balanced load
capacities. It also prevents the issue of individual shards becoming early performance
bottlenecks, which may occur in OmniLedger’s random sharding. Consequently, this
balance provides a solid explanation for SPTSCA’s stable throughput and slight
performance improvement.

Table 2 Comparison of shard load balancing (48 nodes)

Algorithm Number of shards Average load (tx/shard) Load std. dev.
SPTSCA 4 2,500 86.4
OmniLedger 4 2,500 342.7

4.3 Cold start latency decomposition

To investigate the reasons behind the higher latency of SPTSCA under a small number of
nodes, the study conducted a fine-grained time breakdown of the consensus process
during the cold start phase (16 nodes). The focus was on the additional overhead
introduced by dynamic sharding and optimisation. Table 3 presents the time consumption
comparison between SPTSCA and PBFT during their first consensus round.

Analysis of Table 3 shows that among the total latency of 91.1 ms for SPTSCA, shard
formation alone accounted for 45.2 ms — nearly half of the total delay. In contrast, PBFT
did not require this process. This result quantitatively confirms that the extra time mainly
stemmed from the construction of the initial shard set, which involved computation-and
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communication-intensive tasks such as node resource evaluation, shard planning, and
node allocation. This analysis points to future optimisation directions, such as
accelerating startup through pre-configuration or lightweight sharding protocols, which is
particularly critical for small-scale deployment scenarios.

Table 3 Cold start latency breakdown (ms)

Algorithm  Shard formation — Pre-prepare Prepare Commit Total latency
SPTSCA 452 12.1 15.3 18.5 91.1
PBFT N/A 10.5 13.8 16.2 40.5

4.4  Performance across different economic data scenarios

To evaluate the adaptability of the SPTSCA algorithm in various economic data analysis
tasks, the study simulated three representative scenarios:

a  High-frequency stock trading data.
b  Macroeconomic indicator time-series data.
¢ Complex inter-firm supply chain transaction networks.

The experiments were conducted using 64 nodes, and the results are summarised in
Table 4.

Table 4 Performance comparison across different economic data scenarios

Data scenario Algorithm Avg. throughput Avg. latency CPU utilisation

(tx/s) (ms) (%)
Scenario A SPTSCA 21,50 89 78.5
(high-frequency)
RapidChain 1,980 95 82.1
Scenario B SPTSCA 2,080 92 72.3
(macroeconomic)
RapidChain 1,920 101 75.6
Scenario C SPTSCA 1,950 105 85.2
(complex network)
RapidChain 1,750 128 88.7

From Table 4, it can be observed that across different economic data types and
complexity levels, SPTSCA consistently outperformed the benchmark RapidChain in
both throughput and latency. The advantage was most pronounced when processing the
structurally complex and highly interconnected supply chain network data, where
throughput improved by approximately //.4%, and latency decreased by about 18.0%.
These results indicate that SPTSCA’s dynamic resource management mechanism
effectively adapts to the processing demands imposed by varying data characteristics.
Moreover, SPTSCA exhibited slightly lower CPU utilisation in all scenarios compared to
RapidChain, suggesting more efficient resource usage achieved through balanced load
distribution. Overall, the findings demonstrate SPTSCA’s strong adaptability and
robustness in handling diverse economic data analysis tasks.
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4.5 Security analysis

Although the inherent characteristics of blockchain — such as immutability and Byzantine
fault tolerance — form the foundation of system security, sharded blockchains face
specific types of attacks that require dedicated countermeasures. This section discusses
how SPTSCA addresses two major threats: Sybil attacks and shard-specific attacks. In a
Sybil attack, an adversary attempts to create numerous fake identities to gain control over
the network. SPTSCA mitigates this threat through a strict node admission mechanism.
When a new node joins, it must provide verifiable proof of its real resource capacity and
performance. Existing nodes then validate and vote on its admission based on a
reputation-based consensus. This process significantly increases the difficulty for
attackers to cheaply generate large numbers of malicious nodes. For attacks targeting the
sharding mechanism, such as an adversary concentrating resources on a specific
shard to disrupt its consensus, SPTSCA employs dynamic node migration and periodic
re-sharding as effective defences. The system periodically reorganises shard
memberships, preventing attackers from maintaining prolonged associations with
particular shards. This strategy increases the difficulty of locking or corrupting specific
targets. Moreover, the node migration policy incorporates historical behaviour and
reputation evaluation, prioritising high-reputation nodes for migration to shards that are
more critical or under heavier load. This proactive reinforcement helps strengthen
potentially vulnerable parts of the system. Together with the consensus mechanism, these
design elements ensure that SPTSCA maintains a robust security posture while achieving
high performance.

5 Conclusions

At the economic data analysis level, a system framework was designed and implemented
that deeply integrates data mining with blockchain technology. This framework
effectively processes multi-source heterogeneous economic data and automatically
identifies potential risk patterns through association rule mining and time-series analysis.
It provides regulatory agencies with a systematic approach for accurately detecting
abnormal economic behaviours within large-scale datasets. At the blockchain technology
level, an innovative security-performance trade-off shard consensus algorithm (SPTSCA)
was developed. By integrating dynamic sharding with an optimised reconfigurable
consensus mechanism, SPTSCA significantly enhances blockchain throughput and
scalability when processing high-concurrency economic transactions, while maintaining
data integrity and consistency. This approach presents a new technical pathway and
practical paradigm for the application of blockchain in economic data management
scenarios that require both high performance and strict regulatory compliance.

Building upon the proposed architecture, future research may advance along several
technical directions. One promising direction involves the integration of advanced
cryptographic primitives, such as zero-knowledge proofs, into the SPTSCA framework.
This integration would enable compliance verification without revealing raw transaction
details, thereby achieving a balance between transparency, auditability, and privacy
protection. Another direction concerns leveraging the system’s low latency and high
throughput to develop real-time detection algorithms and smart contract logic tailored to
specific financial crime patterns, including cross-border money laundering and market
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manipulation behaviours. These efforts aim to translate the system’s performance
advantages into proactive regulatory intelligence and real-time risk interception
capabilities. Together, these future directions will further enhance the practicality,
adaptability, and proactive resilience of the proposed system in complex real-world
regulatory environments.
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