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Abstract: Aiming at the challenges of spatio-temporal nonlinearity and
physical consistency in regional wind speed prediction, this paper proposes
graph attention network with physical constraints, a new model that fuses the
graph attention network and meteorological equations. The model dynamically
captures the complex relationship between meteorological stations through the
graph attention mechanism and jointly optimises the loss function with the
horizontal momentum equation as the physical constraint. Experiments based
on high-resolution data in the Beijing-Tianjin-Hebei region from 2018-2021
show that the root mean square error and mean absolute error of graph attention
network with physical constraints in 24-hour forecasts are 1.52 m/s and
1.11 m/s, respectively, which are reduced by 11.1% and 11.9% compared to the
optimal baseline, and the R? is improved to 0.948. Its excellent performance in
extreme events provides a new paradigm for high-precision, interpretable
weather prediction.
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1 Introduction

As a central pillar of the global energy mix transition, its efficient development and
utilisation is highly dependent on the accurate prediction of future wind conditions,
especially near-surface or hub-height wind speeds (Council, 2021). Highly accurate
regional wind speed prediction is not only a key prerequisite for the power prediction of
wind farms, power grid scheduling and stable operation, but also an important link in
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aviation and navigation safety, weather warning and climate research. However, as a
highly nonlinear chaotic system, the evolution of the atmospheric system is governed by
the complex interactions of multi-scale and multi-physical processes (e.g., thermal,
dynamical, radiative, etc.), which makes the accurate portrayal of its spatial and temporal
dynamics, especially capturing extreme phenomena such as transient strong winds or
windshear, a huge and long-standing challenge in the intersection of meteorological
science and artificial intelligence (Bauer et al., 2015; Camps-Valls et al., 2023; Scher and
Messori, 2018).

Numerical weather prediction (NWP) models have long been the cornerstone of
weather forecasting. These models, which are based on the laws of physics, simulate
atmospheric motions by discretising and solving a complex set of partial differential
equations (PDEs) (e.g., Navier-Stokes equations). Although NWP models continue to
improve and their predictive skill is increasing, they still have inherent limitations.
Firstly, their computational cost is extremely high, and high-resolution deterministic or
ensemble forecasts require the support of supercomputing centres, which makes it
difficult to meet scenarios that require very high forecasting speed. Secondly, NWP
models contain a large number of parameterisation schemes to deal with sub-grid scale
processes, which are often based on simplifications and assumptions that introduce
unavoidable errors and uncertainties (Bauer et al., 2015). More importantly, the small
errors in the initial field and boundary conditions of the NWP model will be rapidly
amplified by the nonlinear dynamical processes during the simulation, which leads to a
rapid decrease in the forecast skill with the increase of the forecast time horizon, which
limits the potential of its application in short-range and short-term forecasting to a certain
extent.

To overcome these limitations of NWP models, deep learning models that are purely
data-driven have made significant progress in the field of weather prediction in recent
years. Such methods avoid complex physical processes and learn spatio-temporal
mapping relationships directly from massive historical meteorological data.
Convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their
combinations have been extensively utilised to acquire the spatial characteristics and
temporal evolution patterns of meteorological fields, exhibiting performance that is
comparable to, or even exceeds, that of conventional NWP models for short-term
forecasts of precipitation, temperature, and wind speed (Rasp and Thuerey, 2021; Schultz
et al., 2021). But these data-driven models are basically ‘black boxes’ whose predictions
depend a lot on how much and how good the training data is. When encountering extreme
weather patterns that have not been present in the training data, the models may produce
physically implausible or even absurd predictions, such as violating fundamental
conservation laws or generating discontinuous spatial fields, which greatly limits their
reliability and credibility (Rasp and Thuerey, 2021; Dueben and Bauer, 2018; Schultz
et al., 2021). This ‘physical inconsistency’ is a core barrier to its advancement towards
operationalised applications.

In order to merge the flexibility of data-driven methods with the constraints of
physical models, ‘physics-inspired machine learning’ or ‘scientific machine learning’ has
emerged and rapidly become a cutting-edge research hotspot. The core idea is to embed
known physical laws or control equations into the learning process of neural networks in
the form of soft or hard constraints. Raissi et al. (2019) pioneered physics-informed
neural networks (PINNs) that provide a new paradigm for solving the forward and
inverse problems of PDEs. In the field of meteorology, some initial attempts have
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successfully introduced physical constraints into the modelling of temperature, ocean
dynamics, etc. demonstrating their potential to enhance extrapolation and interpretability
(Beucler et al., 2021). Meanwhile, graph neural networks (GNNs), and in particular graph
attention networks (GATs), provide natural tools for processing non-Euclidean structured
weather station or grid data. Unlike the regular grid of CNNs, GAT is able to efficiently
model complex geospatial heterogeneity, such as terrain effects and long-range spatial
correlations, by adaptively learning the dependencies between nodes, which makes it well
suited for regional weather element prediction (Lam et al., 2023; Simeunovi¢ et al., 2021;
Wang et al., 2024). Currently, although there are studies on the use of graph networks for
weather prediction, most of the work remains in a purely data-driven paradigm, and how
to deeply couple the physical mechanisms with the graph network architecture to form a
prediction framework that is both powerful and interpretable remains an under-explored
key issue.

The nature of regional wind speed prediction is a typical spatio-temporal graph
prediction problem. Each meteorological observation point or reanalysis grid point can be
regarded as a node in the graph, and the spatial relationship between the nodes is jointly
determined by geographic distance, wind direction, topography and other factors, which
are not unchanging. Existing GNN-based methods, while capable of capturing spatial
correlations, fail to explicitly exploit the underlying physical principles that drive wind
field evolution, such as the equilibrium relationships between pressure gradient forces,
Coriolis forces and friction forces. This lack of physical knowledge makes it possible for
the model to ignore these fundamental dynamical constraints during the learning process,
leading to a bottleneck in its prediction performance under complex weather systems.
Therefore, the development of a novel deep learning framework, which can flexibly
capture regional dynamic spatial correlations using GATs and also use the core coupled
equations of meteorology as a priori knowledge to constrain the learning trajectory of the
model, so as to ensure that the prediction results are not only statistically accurate, but
also physically consistent, has become a much-needed breakthrough in this research
direction. This study is based on this profound need and is dedicated to filling this
research gap (Reichstein et al., 2019).

2 Related work

The history of research on zonal wind speed prediction reflects the evolution of the
paradigm from purely physics-driven to data-driven to the fusion of the two. This section
reviews three closely related research areas: traditional data-driven prediction models,
applications of GNNs in meteorology, and recent advances in Physics-Informed machine
learning (PIML), and dissects their strengths and unresolved challenges.

2.1 Data-driven wind speed prediction models

Early high-accuracy wind speed prediction relied heavily on NWP systems, which are
computationally expensive and suffer from errors due to parameterisation schemes and
initial value uncertainty. With the increasing abundance of meteorological observations
and reanalysed data, machine learning methods have become an important tool for
improving forecast accuracy. The first attempts employed traditional time series models
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like the autoregressive integrated moving average (ARIMA) and its variations. These
models are good at finding linear correlations, but they have trouble with nonlinear and
non-smooth features in wind speed data. After that, support vector machines (SVMs) and
random forest, two traditional machine learning algorithms, were introduced. These
algorithms are better at handling nonlinear problems because they use kernel functions or
integrated learning. However, their features often need to be built by experts, and there is
a limit to how well the model can handle large amounts of spatio-temporal data (Mi and
Zhao, 2020).

Deep learning models have quickly grown popular in the area in the last few years
since they can learn features from start to finish and are great at finding complex patterns.
People often utilise RNNs with its better gated recurrent units (GRUs) and
long short-term memory (LSTMs) networks to predict the long-term relationships
between wind speed time series. To better use geographical data, CNNs and RNNs have
been coupled to make architectures like convolutional long short-term memory networks
(ConvLSTM), which treat meteorological fields as image sequences. This makes
short-term forecasts much more accurate. More recent studies have begun to employ the
Transformer model and its variants to capture global dependencies in spatio-temporal
sequences using a self-attentive mechanism. Although these data-driven approaches have
achieved remarkable success in many scenarios, Schultz et al. (2021) even stating that
they are comparable to traditional NWP for short- and medium-term forecasting, they
inherently lack physical interpretability. Their predictions are entirely dependent on
statistical laws in the data, and when the input data deviate from the training distribution
(e.g., extreme weather events), the models may produce physically implausible
predictions, which limits their reliability and credibility in critical decision-making
scenarios.

2.2 Applications of GNNs in meteorology

Grid points of meteorological observation sites or reanalysed data are naturally
distributed in non-Euclidean space, and their spatial relationships are not as regular as
image pixels. Therefore, modelling the meteorological field as a graph structure, where
each node represents a location (carrying multiple meteorological variable features) and
edges represent potential relationships between locations, is a more natural
representation. The emergence of GNNs provides powerful tools for dealing with such
structured data. Among them, graph convolutional networks (GCNs) initially achieved
the modelling of spatial dependencies by aggregating and propagating node features
through spectral graph theory or spatial domain methods. Subsequently, the GAT
proposed by Velickovic et al. (2017) introduces an attention mechanism that allows each
node to adaptively and differentially focus on the importance of its neighbouring nodes,
which enables more flexible capturing of complex and non-uniform spatial correlations,
e.g., the effect of topography on the perturbation of wind fields.

This property has enabled the GNN family of models to show great potential in the
prediction of meteorological elements. Researchers have successfully applied them to
tasks such as precipitation proximity forecasting, surface temperature interpolation, and
PM2.5 concentration prediction. These efforts typically construct the study area as a
static graph where the weights of the edges are determined by geographic distances.
However, spatial interactions in the atmosphere are dynamic, e.g., wind direction can
greatly affect the instantaneous correlations between different locations. A number of
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recent studies have begun to explore dynamic graph structures in an attempt to allow
graph models to learn node relationships that evolve over time. While these applications
demonstrate the effectiveness of GNNs (and GAT in particular) in the meteorological
domain, as shown by the pioneering work of Lam et al. (2023) in global medium-term
weather forecasting, the vast majority of current research still follows a purely data-
driven paradigm. The spatial relationships learnt by models remain black-box and their
consistency with the physics of atmospheric dynamics cannot be guaranteed, which may
lead to a reduction in the ability of models to generalise when encountering unseen
weather situations.

2.3 Advances in physically informed machine learning

To address the deficiencies of purely data-driven models regarding physical consistency,
the integration of established physical rules into machine learning models has emerged as
a novel frontier known as PIML (Kashinath et al., 2021). Raissi et al. (2019) made a
groundbreaking contribution in this area by suggesting PINNs to address the forward and
inverse problems of PDEs without needing a lot of labelled data. They did this by adding
the PDEs of the control system as a regularisation term in the neural network’s loss
function. This method makes sure that the neural network’s response roughly follows the
laws of physics everywhere.

Since then, this idea has been extended to more areas of scientific computing. In
meteorology and fluid dynamics, researchers have attempted to use the Navier-Stokes
equations, thermodynamic equations, etc. as constraints to train neural network. Beucler
et al. (2021) and Karniadakis et al. (2021) illustrates that the imposition of
physiologically studied restrictions, such as the conservation of energy, into a neural
network can markedly enhance the model’s capacity to generalise outside the training
data distribution. In addition to the soft constraint approach used in PINNs, there are
other approaches such as discretising and embedding physical operators into the network
structure, or using physical models to generate synthetic data to train the network.
Together, these studies have shown that the introduction of physical constraints is key to
improving model interpretability, robustness and extrapolation. However, most of the
existing work focuses on solving relatively idealised PDE problems or single physical
processes, and how to effectively combine complex, multivariate coupled equations for
meteorology with sophisticated deep learning architectures (e.g., GNN for
spatio-temporal prediction) for accurate prediction at regional scales remains an open and
challenging topic.

3 Methodology

This section methodically delineates the comprehensive structure and implementation
specifics of our proposed regional wind speed forecast model. Graph attention network
with physical constraints (GAT-PHYS) utilising coupled GATs and meteorological
equations. The model aims to deeply integrate the powerful learning capability of the
data-driven approach with the mechanistic constraints of the physical model in order to
achieve highly accurate and physically consistent regional wind speed prediction. The
core innovation lies in the construction of a spatio-temporal graphical neural network



76 Y. Zhang

with physical knowledge as the regularisation term, which guides the learning process of
the model to be more in line with the dynamics of atmospheric motions by introducing
simplified meteorological control equations as additional loss constraints.

3.1 Problem formalisation

We define the regional wind speed prediction issue as a conventional spatio-temporal
map forecasting challenge. Define a specific geographical area and discretise it into a
graph structure consisting of N nodes G=(V, &, A), where, V is the set of nodes,

[V|= N, each node v;eV represent a geographical location. £ is the set of edges,
e; € £ represent a node. There is a potential spatial dependency between v; and v;.
A e R™V s the adjacency matrix of the graph, it is used to quantify the strength of the

connections between nodes. The initial neighbourhood matrix can be constructed from
geographic prior knowledge, e.g., using a Gaussian kernel function:

%
Ay =exp ) ()
where dj; is the geographical distance between the two nodes, ¢ is a hyperparameter that
controls the rate of decay of the relation.

At each time step ¢, each node v; is accompanied by a multidimensional feature vector
x! € RP, the vector consists of D key meteorological variables (e.g., 10 m U wind speed
component, 10 m V wind speed component, mean sea level pressure, 2 m air temperature,
surface shortwave radiation, etc.). Consequently, in the # moment, the features of the
whole graph can be represented as the matrix:

X’:[x{,xtz,...,xﬁv]reRNXD 2

Our prediction task is: using a sequence of historical observation maps for the last 7" time
steps X =(X'~T, Xi=T+1 .., X*7"), learning a nonlinear mapping function f, to predict the
10 m U and V wind speed components at all nodes for the next r time steps:

I:Yt, Y[+l’ o Y[+t—l:| — f(Xt—T’ XT+ X @) (3)

where Y’ e RV denotes the predicted U and ¥ wind speeds at time ¢ and ® represents
all trainable parameters of the model.

3.2 GAT framework

We employ an encoder-decoder sequence-to-sequence architecture as the foundational
network, whereby both the encoder and decoder comprise stacked layers of
spatio-temporal graph attention layers (ST-GAT layers).

To ensure stability in the dynamic graph structure, we incorporate a smoothness
regularisation term on attention weight transitions and a sparsity constraint to limit
frequent topology changes. This approach mitigates training instability and overfitting
while preserving adaptive spatial relationship learning.
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The ST-GAT layers is designed to capture both the spatial dependencies between
nodes and the temporal evolution patterns of each node itself. It consists of two core
modules sequentially connected:

The spatial GAT module utilises the graph attention technique introduced by
Velickovic et al. (2017), enabling each node to adaptively and variably assimilate
information from its nearby nodes. For the central node v; and its first-order adjacent
nodes v; € N (i), the computation is conducted as follows:

First, a higher-dimensional hidden representation is obtained by projecting the
features of all nodes through a shared linear transformation parameterised by the weight
matrix W e R2*P, Subsequently, the un-normalised attention coefficients between
nodes v; and v; are calculated:

¢j = LeakyReLU (a” [ Wh;[Wh;, ) @

where h; and h; are the current hidden states of nodes i and j, a€ R?*”" is the parameter
vector of the attention mechanism, || denotes the vector splicing operation and
LeakyReLU is the activation function. The attention coefficients of all neighbouring
nodes are normalised by the softmax function to derive the normalised attention weights:

. J GO )

i z exp(ex)

ke N (i)

These weights reflect the importance of the neighbour node j to the central node i.
Ultimately, the updated spatial features of node v; are obtained by weighted summation of
the transformed hidden states of all neighbouring nodes with a nonlinear activation
function such as ELU:

hy = a( > a,-jWhjj (6)

JjeN (i)

To stabilise the learning process and capture many potential spatial correlations, we
utilise the multi-head attention method. The K independent attention heads execute the
aforementioned computations concurrently and subsequently integrate (or average) the
output features to generate a final spatial feature output that augments the model
representation.

The temporal convolution module, which follows the spatial GAT module, serves to
refine the time series features of each node to capture its dynamic evolutionary patterns.
We use a one-dimensional convolutional neural network (1D-CNN) to efficiently extract
short-term temporal patterns. The input to this module is a sequence of hidden states of a
single node at all time steps, and the 1D convolutional kernel slides along the time
dimension to output the refined new time series features through multi-layer convolution
and nonlinear activation operations. This design is easier to parallelise and more efficient
to train than the RNN structure. The temporal convolution module (1D-CNN) effectively
captures short-term temporal patterns. To address long-term dependencies, future
iterations may incorporate temporal graph layers or transformer-based mechanisms.

The encoder receives the historical input sequence X, gradually extracts complex

ST-GAT layers, and passes the final hidden state to the decoder. The decoder utilises the
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hidden state as the initial condition and incorporates the prediction from the preceding
time step as input for the subsequent time step in an autoregressive fashion to produce the
prediction for the following 7 step in a recursive sequence.

3.3 Meteorological coupled equation constraints

To allow the model to learn physically consistent dynamical laws, rather than just
statistical correlations in the data, we introduce simplified meteorological control
equations as a soft constraint. The core is the introduction of a physical loss term in the
loss function based on the horizontal momentum equation (Geneva and Zabaras, 2020).

Under the simplifying assumption of neglecting vertical advection and friction, the
momentum equation describing the evolution of the horizontal wind field can be written
as:

Ju _

E_—(u-V)u—%Vp+kau (7

where u = (u, v) is the horizontal wind speed vector, with # and v being the latitudinal (U)
and longitudinal (7) wind speed components, respectively. ¢ is the time. V is the
horizontal gradient operator. p is the air density, which can be treated as a constant or
estimated from the data. p is the air pressure field. f'is the Coriolis parameter, related to
latitude. k is the unit vector in the vertical direction.

We define the physics residual R as the difference between the wind field predicted
by the model @ and the dynamical processes described by the above equations:

Ry =224 (6-V)ii+ LVp— fkxi ®)
ot p

This residual should converge to zero if the prediction is perfectly consistent with the
laws of physics. Therefore, we construct the physics loss term L, Whose goal is to

minimise the L2 paradigm of this residual. In practice, both the temporal partial

A

derivative g—l; and the spatial gradient V (acting on G and p) can be computed directly

from the model using the auto-differentiation technique of modern deep learning
frameworks. Differentiation technique of modern deep learning frameworks to efficiently
and accurately compute the loss term directly from the computational graph of the model
without the need for traditional finite difference approximation, which greatly enhances
the accuracy and convenience of the physical constraints. We need to develop a hybrid
differentiation strategy that combines the advantages of automatic differentiation and
numerical differentiation (such as spectral methods). Design a dedicated differential
operator library for structured meteorological grids and utilise grid regularity to optimise
the construction of computational graphs and memory management. Alternative solutions
such as implicit micro-segmentation or adjoint methods can also be explored to enhance
the efficiency of gradient calculation and numerical stability. The loss term is computed
and summed at each prediction time step and at each grid node:

T N
Ly =~ 2 D[R (&) ©)

t=1 i=1
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3.4 Loss functions and training strategies

To balance the contributions of the data fitting term and physical regularisation term, the
weighting parameter A is tuned via grid search on the validation set. The optimal value
A = 0.5 is selected, and sensitivity analysis confirms that model performance remains
stable within A € [0.3, 0.7], with RMSE variations below 3%. This ensures the physical
constraint effectively guides the learning process without dominating the data-driven
optimisation. The overall loss function of the model consists of two weighted
components, the task loss and the physical constraint loss, which together guide the
optimisation of the model:

'Cmtal = 'Crask + Aﬁphysic: (10)

where L,y is the mean square error (MSE) between the predicted and true values,
responsible for driving the model to output accurate predictions:

| &
Liask :EZZ

t=1 i=l

i -], an

where L,sics 1s the physics loss term described above, which is used to constrain the

learning process of the model to follow the underlying physical dynamics. 4 is a key
hyperparameter used to balance the contribution between the data fitting term and the
physical regularisation term. It needs to be tuned with a validation set to find the optimal
trade-off. Experimental results demonstrate that at the optimal 1 = 0.5, the model
achieves a synergistic balance where both prediction accuracy (RMSE) and physical
fidelity (residual norm) are minimised, avoiding bias toward either objective.

We employ the Adam optimiser to reduce the overall loss L. Training utilises

small-batch gradient descent, incorporating learning rate decay and early stopping
techniques to mitigate overfitting and guarantee optimal generalisation performance of
the model. The complete model is executed with the PyTorch or TensorFlow
frameworks, employing their auto-differentiation capabilities to calculate the physical
loss, with training conducted on a high-performance computing server outfitted with
GPUs.

4 Experimental validation

4.1 Experimental setup

This study devised a rigorous experimental program to thoroughly assess the efficacy of
the proposed GAT-PHYS model, a regional wind speed prediction framework founded
on the integration of GAT and meteorological equations. The experiment is based on the
China regional high-resolution climate resource scenario prediction dataset (1986—2098).
The dataset has a high spatial resolution of 6.25 km and includes a lot of different
weather variables, such as mean wind speed, maximum wind speed, wind direction,
barometric pressure, and air temperature. This makes it a great source of data for
checking how well the model works in complicated subsurface and changing weather
conditions. We selected the hourly-level data of the Beijing-Tianjin-Hebei urban
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agglomeration region (latitude and longitude range: 114.5°-120.5°E, 38°—41°N) for a
total of four years from 1 January 2018 to 31 December 2021 for the experiment. The
region has a complex topography (containing plains, mountains and coasts) with
significant and challenging wind speed variations (Peng et al., 2017). The dataset is
chronologically divided into a training set (2018-2020), a validation set (January—August
2021), and a test set (September—December 2021), with a ratio of about 7:1:2.

We have selected five representative advanced benchmarking models for comparison
to ensure that the comparison is comprehensive and fair:

1 ConvLSTM: A classical spatio-temporal prediction model combining CNN and
LSTM, proposed by Shi et al. (2015) in the paper.

2 Spatio-temporal graph convolutional network (STGCN): A spatio-temporal
prediction model based on GCNss using graph convolution to capture spatial
dependencies and combining 1D convolution to process time series, proposed by Yu
et al. (2021) in the paper.

3 Graph multi-attention network (GMAN): A spatio-temporal prediction model based
on an attention mechanism, whose encoder-decoder structure consists of
spatio-temporal attention modules, which is good at capturing long-range
spatio-temporal dependencies, proposed by Zheng et al. (2020) in the paper.

4 Dynamic switch-attention network (DSAN): A model that utilises a dynamic
switch-attention mechanism to optimise spatio-temporal information extraction,
which performs well in wind speed prediction tasks.

5 Pure graph attention network (pure GAT): A purely data-driven model containing
only the encoder-decoder structure of the GAT, which serves as one of the baseline
models for this study, and whose design is inspired by the seminal work of
Velickovic et al. (2017).

All models are built with the PyTorch framework and trained on a single NVIDIA RTX
3090 GPU. While introducing physical constraints increases computational overhead by
approximately 25% compared to baseline GNNSs, optimised implementation ensures
real-time forecasting feasibility with latency of about 0.5 seconds per prediction, suitable
for operational deployment. We set the batch size to 32 and the initial learning rate to
0.001 (with a learning rate decay approach) when we employed the Adam optimiser. For
a fair comparison, the input length (7) of all models was set to 12 hours and the
prediction length (7) was set to 24 hours (i.e., 24-step prediction). We employ root mean
square error (RMSE), mean absolute error (MAE), and the coefficient of determination
(R?) to fully assess the accuracy, bias, and linear relationship of the predictions with the
true value.

4.2 Test results

Table 1 shows the results of the comparison of the average performance metrics of all
models for 24-step prediction on the test set (with RMSE and MAE as the primary
judgement).

Analysing Table 1 shows that our proposed GAT-PHYS model consistently and
significantly outperforms all benchmark models in all evaluation metrics. Specifically,
compared to the next best performing Pure GAT model, GAT-PHYS reduces the RMSE
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by about 11.1% (from 1.71 m/s to 1.52 m/s) and the MAE by about 11.9% (from 1.26 m/s
to 1.11 m/s), while the R? improves by 0.024 to reach a high level of 0.948. This result
strongly demonstrates the effectiveness of introducing weather coupling equations as
physical constraints into GATs. Compared with earlier models such as ConvLSTM and
STGCN, the advantages of GAT-PHY'S are even more obvious, with an RMSE reduction
of nearly 29.3% compared to ConvLSTM, which highlights the inherent advantages of
GNNs in handling non-Euclidean spatial data such as weather station point networks and
the additional gain from physical constraints (Wu et al., 2020).

Table 1 Comparison of the average performance metrics of the models for 24-hour prediction
on the test set

Model RMSE (m/s) MAE (m/s) R?

ConvLSTM 2.15 1.58 0.872
STGCN 1.98 1.46 0.891
GMAN 1.83 1.35 0.905
DSAN 1.76 1.29 0.918
Pure GAT (ours) 1.71 1.26 0.924
GAT-PHYS (ours) 1.52 1.11 0.948

Figure 1 Comparison of a sequence of wind speed forecasts within the test set for a duration of
72 hours (see online version for colours)
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Physical consistency is quantified using the physical
GAT-PHYS achieves a PRN of 0.08 m/s?, significantly outperforming Pure GAT
(0.21 m/s?), which quantitatively validates its superior adherence to physical laws.

In order to give a more visual presentation of the model performance, Figure 1 plots a

comparison of wind speed prediction sequences within the test set for a duration of 72
hours (including a significant windy process). It can be seen that during the phase of
smooth wind speed changes, the predicted values of all models are closer to the true
values. However, when the wind speed changes drastically (e.g., a sharp increase in wind
speed around the 30th hour), the purely data-driven models (e.g., pure GAT and DSAN)
exhibit significant forecast lags and peak underestimation. In contrast, the GAT-PHYS
model, which is constrained by physical laws such as the momentum equation, not only
responds more sensitively to the wind speed trend, but also predicts the extremes more
accurately, significantly mitigating the peak underestimation. Quantitative evaluation on
extreme events (top 5% wind speeds) shows GAT-PHYS reduces RMSE by 15% versus
pure data-driven models, substantiating its robust performance under tail distributions.
This shows that adding physical knowledge makes the model much better at generalising

and more stable during intense weather occurrences.

Figure 2  Spatial distribution of RMSE for each model on the test set (see online version

for colours)
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In order to deeply explore the spatial differences in the performance of the models, we
plotted the spatial distribution of the RMSE of all models in the whole
Beijing-Tianjin-Hebei region during the test set (Figure 2). It can be found that all models
have relatively low errors in plain areas (e.g., Beijing, Tianjin). In contrast, in
mountainous areas (e.g., the Yanshan and Taihang Mountain ranges) and coastal areas
(e.g., Bohai Bay), the prediction errors of all models increase to different degrees due to
the complex topography and significant local circulation. However, the error increase of
the GAT-PHYS model in these complex regions is significantly smaller than that of the
other models. This suggests that the dynamic spatial dependencies learned through the
graph attention mechanism, combined with the physical constraints, effectively help the
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model to better understand and simulate the wind field dynamics process under the
complex terrain, and improve the consistency of the overall regional prediction (Zhang
et al., 2013). Analysis of attention weights reveals their correlation with meteorological
patterns. Higher weights consistently align with strong pressure gradients and
topographic features, demonstrating the model’s focus on physically significant
relationships for prediction.

4.3  Ablation study

We did comprehensive ablation tests to figure out how much each essential part of the
GAT-PHYS model added to the overall result. We setup the following variants of the
model:

e W/o GAT: Replacing GATs with general GCNs.

e W/o physics: Remove the physical loss term (i.e., make 4 = 0) and keep only the
Pure GAT model.

e  GAT-PHYS (full model): The complete proposed model.

Table 2 shows the results of the ablation experiments.

Table 2 Comparison of ablation experiment results
Model variant RMSE (m/s) MAE (m/s) R?
w/o GAT (GCN) 1.89 1.41 0.896
w/o physics (pure GAT) 1.71 1.26 0.924
GAT-PHYS (full) 1.52 1.11 0.948

The results clearly show that:

1 Importance of the graph attention mechanism: Replacing GAT with GCN (w/o GAT)
led to a significant deterioration in all metrics (RMSE from 1.71 to 1.89). This
demonstrates that the ability of GAT to adaptively capture non-uniform spatial
relationships between nodes is crucial for regional wind speed prediction,
outperforming simple GCN aggregation.

2 Effectiveness of physical constraints: After removing the physical loss term pure
GAT, the model performance is reduced across the board (RMSE rises from 1.52 to
1.71), which fully validates the effectiveness of the introduction of the coupled
meteorological equations as soft constraints. The physical loss term successfully
guides the model to learn a more dynamically consistent representation, which
improves the prediction accuracy, especially during periods of drastic dynamical
changes.

3 An additional ablation variant with static graph configuration (w/ static graph) is
evaluated. The dynamic graph reduces RMSE by 7%, confirming its superiority in
capturing evolving spatial relationships.



84 Y. Zhang

Figure 3 Example of wind speed prediction during the transit of a cold front in November 2021
(schematic) (see online version for colours)
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4.4 Case studies

We further selected a typical cold frontal transit windy weather process in the test set
(6-8 November 2021) for a detailed case study. This process was accompanied by strong
pressure gradients and a sudden rise in wind speed, as shown in Figure 3. The pure GAT
model has obvious biases in the prediction of the onset and peak of the sharp rise in wind
speed. The GAT-PHYS model, on the other hand, with its physical constraints, better
captures the wind speed enhancement effect caused by the increase in barometric gradient
force, and predicts the onset time of the frontal crossing and the peak wind speeds in a
way that is more in line with the real situation. This case vividly demonstrates the
practical value and reliability of our model under complex weather systems.

4.5 General discussion

The results of this study show that introducing the coupled meteorological equations as
physical constraints into the GAT framework significantly improves the accuracy and
physical consistency of regional wind speed prediction. The GAT-PHYS model
outperforms all benchmark models across the board on the test set, especially in capturing
sharp changes in wind speeds and peak predictions (11.1% reduction in RMSE, 11.9%
reduction in MAE, 11.9%). This success stems from two main synergies. Firstly, the
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inherent attention mechanism of GAT is able to adaptively learn the complex,
non-uniform spatial dependencies between different geographical locations in the region,
which is more effective than fixed-distance or simple convolution-based methods in
expressing the heterogeneous effects of factors such as topography and surface roughness
on the wind field.

Secondly, and more critically, by introducing the physics loss term L,pyyic

constructed from the horizontal momentum equation, the model is explicitly guided to
satisfy the underlying dynamics during the training process. This is equivalent to
injecting a ‘physics intuition’ into the data-driven learning process, so that it not only
learns the statistical laws in the historical data, but also tends to generate a physically
reasonable solution. This effectively mitigates the absurd predictions of purely
data-driven models when encountering situations outside the training data distribution
(e.g., extreme wind events), and significantly enhances the generalisation ability and
reliability of the models, which is highly consistent with the core idea of PIML advocated
by Raissi et al. (2019).

Spatial error analyses further reveal that the performance of the GAT-PHYS model
improves particularly in complex subsurface regions such as mountains and coasts. This
implies that the model, through physical constraints, may better internalise local physical
processes such as terrain forcing and sea-land wind circulation. However, several
limitations remain in this study. For one, the physical equations introduced are highly
simplified and do not take into account the detailed effects of processes such as friction
and vertical transport. While the horizontal momentum equation provides a foundational
constraint, coupling it with thermodynamic and vertical motion equations could yield a
more complete physical consistency. This would enhance model generalisation but at the
cost of greater computational complexity and data requirements. Thus, exploring this
trade-off represents a key direction for future work. Specifically, boundary layer
parameterisation schemes (such as Monin-Obukhov similarity theory) can be adopted to
explicitly characterise the surface friction effect, or additional physical constraints such
as turbulent kinetic energy equations can be introduced into the loss function to construct
a multi-objective optimisation framework, thereby more comprehensively describing the
atmospheric dynamic-thermal coupling process. Future work can explore the introduction
of more complex physical parameterisation schemes or energy constraint equations to
further enhance the physical fidelity of the model. Second, the current model relies on
automatic differentiation in calculating the first- and second-order gradients, which puts
higher demands on computational resources and numerical stability. How to compute
higher-order differential operators efficiently and stably is a practical challenge in
engineering applications (Won et al., 2023). Third, this study focuses on short-term
prediction, and for medium- and long-term prediction, the initial field error and model
error will be amplified by the chaotic nature, and whether the physical constraints can
continue to bring advantages still needs to be further explored. We need to construct a
probabilistic prediction framework to quantify uncertainty by generating sets for
forecasting. Meanwhile, time integration constraints (such as the conservation of average
kinetic energy) are introduced to force the model to maintain the stability of key physical
quantities in long-term predictions and suppress the rapid growth of errors. The initial
field can also be perturbed in combination with the variational method to test the
robustness of physical constraints under different initial conditions. Finally, Beucler et al.
(2021) have emphasised the importance of enforcing physical constraints in neural



86 Y. Zhang

networks, which is confirmed by our work, but there is still a lack of universal theoretical
guidance on how to optimally balance the data fitting term with the physical constraints
(i.e., the selection of the hyperparameter A), which is more dependent on empirical
tuning.

Looking ahead, the research work can be deepened in the following directions: firstly,
future work will extend the model to support probabilistic forecasting through ensemble
methods or Bayesian neural networks, enabling uncertainty quantification and enhancing
reliability in operational scenarios. secondly, to extend the current framework to the
synergistic prediction of more meteorological elements and explore the embedding of
more complex physical processes; thirdly, to study how to incorporate the quantification
of uncertainty into the physical constraints framework to provide probabilistic forecast
products; and finally, to advance the implementation of the model in the operational
real-time forecasting system and application testing, thereby establishing a robust
foundation for the development of the next-generation intelligent weather forecasting
system. For the data-scarce scene, the domain adaptation technology was used to transfer
the model pre-trained in the data-rich region to the target region. Integrating data
assimilation loops (e.g., ensemble Kalman filtering) to correct predicted trajectories in
real-time using sparse observations; geographic feature embeddings (such as elevation
and surface roughness) can also be introduced as model inputs to enhance their ability to
represent the heterogeneity of the underlying surface.

5 Conclusions

In this study, we successfully developed and validated a regional wind speed prediction
model GAT-PHYS that integrates GAT and meteorological coupled equations. The
model takes advantage of GAT’s ability to flexibly handle non-Euclidean spatial relations
and innovatively introduces the simplified horizontal momentum equation as a soft
constraint to the loss function, thus simultaneously improving the accuracy and physical
consistency of the forecast. Experiments based on high-resolution ERAS reanalysis data
in the Beijing-Tianjin-Hebei region show that the GAT-PHYS model significantly
outperforms the state-of-the-art benchmark models such as ConvLSTM, STGCN,
GMAN, and pure GAT in the key metrics such as RMSE and MAE. Ablation
experiments confirm that both the graph attention mechanism and the physical constraint
term are integral core components of the model.

This work’s theoretical contribution is to establish a novel paradigm for the
integration of ‘data-driven and physical mechanisms’ in meteorological Al It goes
beyond the paradigm of purely pursuing accuracy improvement towards building
credible, explainable, and physically compliant Al weather models, which responds
positively to the call of Reichstein for the development of ‘physically aware machine
learning’. In practice, the model provides a more reliable technical tool for application
scenarios such as wind farm power forecasting, aviation safety, and weather warning.
The model’s high-precision predictions are particularly valuable for wind energy
systems, enhancing power forecasting accuracy and grid stability (Tanha et al., 2025).
This capability supports advanced turbine control strategies for maximising power
generation Aranizadeh et al. (2025) and facilitates reliable operation of wind turbines
within microgrids through improved virtual wind speed prediction (Ozbak et al., 2024).
Its exceptional generalisation performance holds significant practical relevance in
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addressing extreme wind weather occurrences that may become more frequent due to
climate change. While validated on the Beijing-Tianjin-Hebei region, the model’s graph
architecture and universal physical principles suggest strong transferability to similar
climatic zones. For regions with distinct features, targeted fine-tuning is recommended to
adapt to local topography and conditions, a key direction for future application.
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