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Abstract: Semantic event analysis in sports videos faces challenges such as
complex actions and high annotation costs. To address these issues, this paper
proposes a novel framework that integrates domain knowledge with deep
features. The approach first translates sports rules into computable
spatio-temporal constraints, then designs a knowledge-injection network to
guide deep models toward semantically critical regions. Finally, a
knowledge-conditioned attention mechanism is introduced to fuse domain
knowledge with visual features effectively. Experimental results on the
SoccerNet dataset demonstrate that the proposed method achieves a mean
average precision of 71.5%, outperforming strong baselines such as inflated 3D
ConvNet and soccer background matting network by 13.3% and 3.6%,
respectively. The framework shows significant improvements in detecting
complex and sparse events, offering enhanced accuracy, robustness and
generalisation capability with reduced reliance on large-scale annotated data.
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1 Introduction

Sports video content analysis, as a key research focus in computer vision and multimedia
analysis, has garnered sustained attention from both academia and industry in recent
years due to its extensive practical value. With the continuous expansion of major
sporting event broadcasts and the growing demand for intelligent video content
processing, automatically and accurately identifying semantically meaningful events-such
as goals, fouls, and substitutions-from massive video datasets has become a highly

Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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challenging and significant task. This capability not only enables the automatic
generation of highlight reels to enhance spectator experiences but also provides coaches
and athletes with deep tactical insights and data-driven match analysis, unlocking
substantial commercial value and research potential (Wang and Parameswaran, 2004).

In recent years, thanks to the rapid advancement of deep learning-particularly the
integration of convolutional neural networks (CNNs) with various temporal modelling
architectures-significant progress has been made in the field of sports event analysis.
Early research methods heavily relied on manually designed features such as
spatio-temporal interest points (STIP), histogram of oriented gradients (HOG), and
similar descriptors, combined with shallow classifiers, whose performance was
constrained by insufficient feature representation capabilities. Current mainstream
approaches have fully shifted toward data-driven deep models. For instance, the inflated
3D ConvNet (I3D network) proposed by extends the ImageNet-pretrained Inception
architecture to 3D convolutions and is pretrained on the large-scale kinetics dataset,
significantly enhancing its ability to extract spatio-temporal features from videos. The
SlowFast network developed by employs a dual-path architecture to capture both spatial
details and rapidly changing motion information in videos, demonstrating outstanding
performance in handling sports scenes with highly variable action rhythms. Furthermore,
the transformer architecture, leveraging its powerful long-sequence modelling
capabilities, has been introduced to video understanding tasks (Vaswani et al., 2017). By
modelling global dependencies between video segments through self-attention
mechanisms, it shows immense potential in complex event recognition.

However, despite achieving outstanding performance on multiple public benchmarks,
these deep learning methods remain fundamentally reliant on an end-to-end data-driven
paradigm, whose limitations are increasingly apparent. First, these models are often
regarded as ‘black boxes’, lacking transparency and interpretability in their
decision-making processes, making it difficult to answer critical questions like ‘why does
the model consider this a goal?’. Second, their performance heavily depends on
large-scale, high-quality manually annotated data. For many complex events in
sports-such as soccer’s ‘offside’ or basketball’s ‘pick-and-roll” plays-their low
occurrence frequency coupled with intricate semantic definitions makes acquiring
sufficient annotated samples prohibitively costly. This often results in suboptimal
generalisation capabilities for rare events (Wang et al.,, 2020). This challenge is
particularly acute in few-shot learning scenarios, where the model must recognise novel
event categories from very limited examples (Wang et al., 2017). More fundamentally,
purely data-driven models lack an understanding of sports’ inherent rules, prior logic, and
common sense. For instance, a ‘goal’ event typically follows a specific spatio-temporal
logic chain: the shooting action, the ball’s flight path, player celebrations, and the
referee’s hand signals. Learning these complex, structured constraints solely from pixels
without injecting any prior knowledge requires enormous data volumes and
computational overhead, while also making it difficult to ensure logical reliability (Han
et al., 2023).

To overcome these limitations, an emerging research trend explores integrating
human knowledge into data-driven learning frameworks to build more robust and
efficient models. This ‘knowledge-guided visual analysis’ research aims to embed
structured prior information into neural network learning processes, thereby reducing
dependence on data scale while enhancing model interpretability and generalisation
capabilities. For instance, in visual reasoning tasks, knowledge graphs are leveraged to
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model semantic relationships between objects; in visual question answering, external
common-sense databases assist answer derivation (Satama, 2025). Specifically for sports
video analysis, preliminary attempts have utilised simple spatio-temporal constraints
(e.g., player position trajectories, ball location) or logical event relationships (e.g., a
‘corner kick’ often precedes a ‘header shot’) to aid recognition. These efforts demonstrate
that domain knowledge, as a potent inductive bias, effectively constrains the hypothesis
space, guiding models to focus on semantically relevant visual content. However,
existing approaches largely remain at shallow knowledge representations (e.g., rigid
rules) or loose post-processing fusion, failing to achieve deep, differentiable integration
between knowledge representation and deep feature learning (Apriceno et al., 2021).
Unlike traditional rule-based systems that rely on rigid, hand-crafted logic, our approach
represents domain knowledge as soft, differentiable constraints. This design allows the
model to adapt to new scenarios or varying video conditions through data-driven
fine-tuning, thereby offering significantly greater flexibility and robustness. This
limitation constrains further performance improvements. Therefore, exploring how to
deeply integrate structured domain knowledge into the learning framework of deep neural
networks in a tighter, more systematic manner has become a critical breakthrough for
advancing this field-which is precisely the core starting point of this research. The
adoption of a knowledge-guided framework is motivated by inherent limitations of purely
data-driven methods, which include a lack of interpretability (‘black-box’ decisions), a
heavy dependency on large-scale annotated data, and a fundamental difficulty in
capturing the structured logic and rules inherent to the sports domain.

2 Related work

2.1 Early analysis methods based on handwritten features

Before the rise of deep learning technologies, sports video event analysis primarily relied
on meticulously designed manual features. The core idea of such methods involves
extracting low-level or mid-level visual features from video frames and utilising
statistical models or machine learning classifiers for event recognition. Among these,
spatial interest points (SIP) and STIP are representative feature descriptors capable of
capturing significant changes in local regions within videos (Laptev, 2005). Building
upon this foundation, the bag-of-words (BoW) model and its variants gained widespread
adoption by quantifying local features into visual words to form a global representation
of the video. To model temporal information, researchers further developed methods such
as dense trajectories, generating rich motion descriptors by tracking the movement paths
of interest points across consecutive frames (Wang et al., 2013). Although these
handcrafted features embody researchers’ deep insights into visual content and achieved
initial success in early studies, their limitations are evident (Poppe, 2010): first, their
representational capacity faces inherent constraints, making it challenging to capture
complex and high-level semantic information. Second, method performance heavily
relies on the expertise and skill in feature design, resulting in poor generalisation
capabilities and difficulty adapting to video data from different sports or visual styles.
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2.2 Deep learning-based video event recognition

With the revolutionary success of deep CNNs in image recognition tasks, researchers
quickly extended their application to the domain of video, propelling sports video
analysis into the era of deep learning. Depending on how temporal information is
processed, deep learning approaches can be broadly categorised into several types. The
first category comprises 2D CNN-based methods, such as the temporal segment network
(TSN), which models long-range temporal structures by sparsely sampling video frames
and aggregating predictions, achieving a good balance between efficiency and
performance. The second category comprises 3D CNN-based approaches aimed at
simultaneously learning spatial and temporal features. Originally developed by expanding
the successful 2D ImageNet architecture into 3D, the 13D model is pre-trained on the
large-scale video dataset Kinetics. This pre-training significantly enhances its feature
extraction capabilities, establishing it as the mainstream benchmark model for a period.
The third category comprises specialised architectures designed to address long-term
temporal dependencies in video, such as using long short-term memory (LSTM) or gated
recurrent units (GRU) as temporal modellers to encode frame-level features extracted by
CNN:s. In recent years, the transformer architecture has demonstrated immense potential
in capturing global spatio-temporal dependencies through its powerful self-attention
mechanism, achieving successful application in video action recognition tasks. These
data-driven deep learning methods learn end-to-end mappings from raw pixels to
high-level semantics, exhibiting feature representation capabilities and model
performance far surpassing traditional handcrafted approaches (Simonyan and Zisserman,
2014).

2.3 Knowledge-guided visual analytics methodology

Despite the outstanding performance of deep learning models, their ‘black-box’ nature
and reliance on large-scale labelled data have prompted researchers to explore new
paradigms for integrating human prior knowledge into models. Knowledge-guided visual
analysis aims to combine structured domain knowledge-such as physical laws, logical
rules, and semantic relationships-with data-driven learning to enhance model efficiency,
robustness, and interpretability. This research direction has made progress across multiple
visual tasks. For instance, in visual question answering (VQA), external knowledge bases
supplement image information (Lin et al., 2022), while in scene graph generation,
linguistic prior constrains object relationships (Chen et al., 2022). Specifically for video
event analysis, particularly in sports domains, some efforts have introduced
domain-specific knowledge. For instance, object detection and tracking techniques
capture player and ball trajectories (Intille and Bobick, 2001), while spatio-temporal logic
rules like ‘player approaches ball’ or ‘ball moves toward goal’ are applied as
post-processing to filter or validate deep learning predictions (Kamble et al., 2019). Other
studies have attempted to construct probabilistic graph models (e.g., dynamic Bayesian
networks) or Markov logic networks to explicitly represent temporal causal and logical
relationships between events (Patel et al., 2022). However, most of these approaches have
limitations: either the use of knowledge is loosely coupled (e.g., post-fusion), failing to
sufficiently influence the feature learning process; or they rely on rigid rules, making the
system difficult to optimise end-to-end and lacking flexibility (Khan and Curry, 2020). In
recent years, embedding logical knowledge into neural networks in a differentiable
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manner-such as through neuro-symbolic learning or using attention mechanisms to
simulate knowledge routing has emerged as a prominent frontier topic. This approach
aims to achieve a tight integration between deep features and structured knowledge. The
pursuit of such integration has also spurred the development of novel spatial-temporal
reasoning frameworks that can explicitly model the interactions between objects and their
context over time (Geng et al., 2022). This line of work is often categorised under the
umbrella of neuro-symbolic integration, which seeks to combine the pattern recognition
strengths of neural networks with the reasoning capabilities of symbolic systems.

2.4  Summary and comparison

In summary, the technological evolution of sports video event analysis has progressed
from shallow models reliant on explicit feature engineering to deep representation
learning models driven by big data, and is now advancing toward collaborative models
that integrate data and knowledge. To more clearly illustrate this evolutionary trajectory
and the characteristics of each approach, the following table provides a systematic
comparison of these related works.

Table 1 Comparative analysis of sports video incident analysis methods
Method category Core concept Key features
Handcrafted Low-level/mid-level features Highly interpretable, but with

feature method

Deep learning
model

Knowledge-guided
approach

The method of this
paper (KIN)

designed manually (e.g., STIP,
trajectories) with shallow
classifiers

End-to-end learning of high-level
spatio-temporal features using
networks such as CNNs and
recurrent neural networks (RNNs)

Incorporate domain rules, logic,
and other prior information into the
analysis process

Deeply embed domain knowledge
in a differentiable manner within
neural networks to guide feature
learning and decision-making

limited feature representation and
generalisation capabilities

Feature expression capability and
performance are superior, but data
dependency is strong and
interpretability is poor

The sample is highly efficient and
logically sound, but knowledge
construction is complex and
difficult to integrate deeply

Combines strong representational
power with interpretability, but
knowledge definition requires
human involvement

3 Methodology

This section will detail our proposed semantic event analysis framework for sports
videos, which integrates domain knowledge with deep features. The core concept of this
approach is embedding structured domain knowledge in a differentiable form within deep
neural networks. This imposes powerful prior constraints on data-driven learning,
ultimately achieving more precise and reliable event recognition.
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3.1 Problem formulation

We formalise the task of semantic event analysis in sports videos as a temporal action
detection problem. We formalise the task as a temporal action detection problem because
it is uniquely suited for identifying and localising sparse semantic events in long,
untrimmed sports videos. This framework directly addresses the need to pinpoint both the
category and the temporal boundaries of an event, which is not effectively handled by
frame-level classification or dense captioning. Given an uncropped long video V
composed of T frames, i.e., V' = {f1, f2, ..., fr}. Our objective is to predict a set of event
instances {(s;, e, ¢;, p;)}¥,, where s; and e; denote the start and end timestamps of the i

event, respectively. ¢; € {1, 2, ..., C} denotes its event category (e.g., goal, corner kick,
foul), p; € [0, 1] represents the confidence score for this prediction, and M is the total
number of events predicted in the video.

In practical modelling, we typically partition a long video V into multiple
non-overlapping short video segments {S1, S», ..., Sy}, each containing a fixed number of
frames. The model’s task is to determine whether each segment S, contains a specific
event and provide its category probability. The model’s overall prediction can be
expressed as a function:

Y=FV;0,Q) 1)

where Y denotes the final set of predicted results, ® represents the learnable parameters
of the deep neural network, and Q signifies the encoded domain knowledge parameter
set. Our innovation lies in how to construct F, particularly in effectively integrating Q

with ©.

3.2 Overview of the overall framework

The overall architecture of our proposed knowledge-injected network (KIN) is shown in
Figure 1. It primarily consists of three core modules:

1 deep vision-temporal feature extraction module: responsible for extracting rich,
multi-level spatio-temporal features from raw video frames

2 domain knowledge representation and encoding module: responsible for converting
abstract sports rules into computable, structured vector representations

3 knowledge-feature fusion module: deeply integrates knowledge vectors with visual
features through a novel attention mechanism, ultimately feeding the output to the
classifier for prediction.

These three modules undergo joint optimisation in an end-to-end manner, enabling
domain knowledge to guide feature learning and decision making during forward
propagation while fine-tuning the specific parameters of knowledge based on training
data during backpropagation. The knowledge module was designed with computational
efficiency in mind. The sub-concept predictor and the KCA fusion mechanism are
lightweight components, whose minimal overhead is justified by the significant
performance gains, as evidenced in our ablation studies.
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Figure 1 KIN framework diagram (see online version for colours)
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3.3 Deep vision-temporal feature extraction

To capture appearance and motion information in videos, we employ a robust
dual-stream architecture as our feature extraction backbone network (Rodriguez-Moreno
et al., 2019). We employ a dual-stream architecture to explicitly and effectively capture
complementary information: static appearance from RGB frames and dynamic motion
from optical flow. This separation is particularly beneficial for analysing dynamic sports
actions. Given a video segment S,, we represent it as S, = {fu1, fn2, ..., fur}, Where L
denotes the segment length.

Spatial stream processes RGB frames to capture static appearance information. We
employ a 2D CNN pretrained on ImageNet (such as the spatial component of ResNet-50
or the Inflated 3D (I3D) network) as the encoder:

Fnrgb = q)spatial (S;gba pratial ) (2)

where Fj*” € R?: is the extracted spatial feature vector, D; denotes the feature
dimension, and Og,qia represents the parameters of the spatial flow network.

Temporal stream processes dense optical flow frames to explicitly model motion
information. For the temporal stream, we compute dense optical flow using a standard
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algorithm (Farneback), which provides a reliable motion representation and is
computationally efficient, ensuring a practical trade-off for model training. We employ a
network with the same architecture as the spatial stream (but with a different number of
input channels):

Tow low
Fh/ = q)lemporal (Snf o 5 Hlemporal ) (3)

where F/”" e R? is the extracted motion feature vector.

Subsequently, we fuse the features from both streams to form a joint visual
representation of the fragment:

Fyisual — ¢([F,fgb ;F/ Ow]) 3

where [-; -] denotes concatenation, ¢ is a fully connected layer used to project the fused
features into a unified feature space RP .. E)** represents the final deep
visual-temporal features obtained.

3.4 Representation and encoding of domain knowledge

This is the core innovation of this approach. We no longer treat domain knowledge as
rigid rules but instead represent it as a differentiable, learnable soft constraint. Take the
‘goal” event in soccer as an example: its occurrence typically depends on the coordinated
emergence of a series of sub-concepts (atomic actions), such as Shot, TowardsGoal,
Celebration, with specific temporal relationships between these sub-concepts. The
proposed knowledge representation framework is generalisable. For application in other
sports or domains, the core architecture remains, while adaptation primarily involves
redefining the domain-specific sub-concepts and their logical relationships to the target
events.

We first define a set of subconcepts K = {ki, k», ..., k;} where each k; represents an
atomic action or state (e.g., ‘goalkeeper present’, ‘ball in penalty area’). For each video
segment S,, we employ a lightweight pre-convolution module (typically a small CNN or
a simple linear classifier) to predict the probability of each subconcept’s presence:

p(k;|Sy)=0c (W, -Eysl +b,) Q)

where W; and b; are the classifier parameters for subconcept &j, and o is the sigmoid
activation function. The probabilities of all sub-concepts form a probability vector
P = [p(kilS,), p(kalS,), ..., p(kiAS]" € [0, 1.

Next, we use first-order logic rules to encode the relationships between high-level
events and these subconcepts. For example, the rule for the ‘goal scored’ event can be
expressed as:

p. =[p(klS,). p(kS, ). .. p(ks1S,)] ©)

where p, € [0, 1}V is a probability vector composed of the probabilities of all
subconcepts, J is the predefined total number of subconcepts.
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To embed such logical rules into differentiable neural networks (Bach et al., 2017),
we adopt t-norm fuzzy logic from real-valued logic (van Krieken et al., 2022). The ‘and’
() operation in this logic can be approximated by a continuously differentiable operator:

krg’oal = l//goal (pn) (7)
= p(Shot|S, ) p(TowardsGoallS, ) p(Celebration|S,, )

where k2 €[0,1] can be understood as the confidence level for the ‘goal’ event

calculated based on the rules. For each target event category ¢, we define its
corresponding rule function . to map the subconcept probability vector p, to a domain
knowledge vector K, € R¢:

K, =[v1 (9a)ov2 (pn) s v (pa) ] ®)

where K, represents the encoded domain knowledge, expressing the logical relationship
between high-level events and underlying visual evidence in a structured and
differentiable manner. This paradigm of representing symbolic knowledge in a
continuous vector space is a cornerstone of neuro-symbolic Al, enabling seamless
coupling with gradient-based learning.

3.5 The integration mechanism of knowledge and characteristics

After obtaining the deep visual features F)**? and domain knowledge vector K, the key

lies in how to effectively fuse them. We designed a knowledge-conditioned channel
attention (KCA) module (Guo et al., 2022). The KCA module was selected for its ability
to use the domain knowledge vector as a conditioning signal to dynamically recalibrate
channel-wise feature importance. This active guidance promotes a more focused fusion
than passive mechanisms like concatenation.

This module uses knowledge vectors as prior information to recalibrate the
importance of each channel in visual features (Jin et al., 2022). Specifically, the
knowledge vector K, is first transformed through a small bottleneck network (composed
of two fully connected layers with a rectified linear unit (ReLU) activation function in
between) to generate an attention weight vector:

an=W2'5(wl'Kn+bl)+b2 (9)

C C. . . .
where W, € RE7, W, € R7? | by, b, are learnable parameters, » is the reduction ratio,

and ¢ is the ReLU activation function. Then, we normalise a, to the range between 0 and
1 using the sigmoid function, yielding the final attention gating vector:

g 20'(3,,) (10)

where each element of g, € R? represents the importance assessment of the knowledge

signal for the corresponding channel of the visual feature. Ultimately, the fused features
are obtained through channel-wise multiplication:

Fhﬁtsed — F’;)[sual ® g, (1 1)
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where ® denotes element-wise multiplication. F/“* is a knowledge-guided and

enhanced feature representation that preserves the richness of the original data while
highlighting the aspects most relevant to semantic events.

Finally, we feed F/““ into a simple classifier (such as a linear layer + softmax) to
obtain the final segment-level event prediction probability distribution:

yn = Softmax (Wcls : Fhﬁlsed + bc/s ) (12)

where W, and b, represent the weight and bias parameters of the classification layer,
while §, denotes the model-predicted segment-level event probability distribution.

The entire model, including the feature extraction network @, sub-concept predictor,
and fusion module, undergoes end-to-end joint training by minimising the cross-entropy
loss between the predicted output y, $andthetruelabelSy,:

N C

L=-L3"3y, log(he) (13)

N n=1 c=l1

Through this design, domain knowledge not only imposes constraints during inference
but also directly participates in gradient calculations during training, guiding the direction
of parameter updates. This achieves a deep synergy between knowledge and data-driven
approaches.

4 Experimental verification

To comprehensively evaluate the effectiveness and superiority of our proposed KIN, we
conducted extensive experiments on a large public dataset. This section details the
experimental setup, comparison results, ablation studies, and visualisation analysis.

4.1 Dataset and experimental setup

We chose to conduct our experiments on one of the most challenging and authoritative
public benchmarks in sports video analysis-the SoccerNet-v2 dataset. We conducted
experiments on the SoccerNet-v2 dataset due to its large scale, long untrimmed videos,
and fine-grained event annotations. Its established status as a benchmark allows for a fair
and comprehensive evaluation against state-of-the-art methods in sports video analysis.
This dataset comprises 500 complete soccer matches from Europe’s top six leagues,
totaling over 1,000 hours of video footage. It provides fine-grained annotations for three
event categories: match events (e.g., goals, corner kicks, free kicks), video segment
boundaries (e.g., start/end of halves), and primary camera views. We focused on the most
challenging task of match event recognition, which encompasses 17 fine-grained event
categories and over 30,000 event instances. We strictly adhere to official classifications,
using 400 matches as the training set, 50 as the validation set, and 50 as the test set.
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Model performance is evaluated using the widely adopted average precision (AP)
metric to assess detection capabilities for each event category, with the mean average
precision (mAP) serving as the core comprehensive evaluation metric (Everingham et al.,
2010).

In terms of implementation details, our model is built upon the PyTorch framework.
For the deep feature extraction module, we adopt the 13D network, pre-trained on the
Kinetics-400 dataset, as the backbone architecture. Input video clips are downsampled to
25 frames per second, with each clip lasting 64 frames (approximately 2.56 seconds) and
adjusted to a spatial resolution of 224 x 224 pixels. We employ the Adam with Weight
Decay (AdamW) optimiser with an initial learning rate of le-4, decaying using a cosine
annealing strategy. The batch size was set to 16, and the model was trained for
50 epochs across four NVIDIA V100 GPUs. The domain knowledge sub-concept
predictor design is based on general knowledge within the soccer domain. We defined
12 atomic sub-concepts, including BallVisible, PlayerCelebrating, BallNearGoal,
GoalkeeperVisible, and CameraShotOnGoal.

4.2 Comparative experiment

To fairly evaluate KIN’s performance, we compare it against a suite of state-of-the-art
methods, including:

1 13D: a powerful 3D CNN baseline renowned for its exceptional spatio-temporal
feature extraction capabilities

2 SlowFast: utilises a dual-path architecture processing video at different temporal
rates, demonstrating strong performance on action recognition tasks

3 TimeSformer: a pure transformer-based video classification model adept at capturing
long-term temporal dependencies (Bertasius et al., 2021)

4  SBMNet: a state-of-the-art approach specifically designed for the SoccerNet dataset
in recent years, leveraging background modelling and feature fusion for event
localisation, achieving outstanding performance on this benchmark (Cioppa et al.,
2024).

Table 2 Overall performance comparison on the SoccerNet-v2 test set (mAP, %)
Method Backbone Publication Average mAP
13D 13D ICCV’17 58.2
SlowFast SlowFast ICCV’19 62.7
TimeSformer TimeSformer-L ICCV21 65.4
SBMNet 13D CVPRW’21 67.9
KIN (Ours) 13D - 71.5

As shown in Table 2, our proposed KIN method achieves a mAP of 71.5%, significantly
outperforming all baseline models. Compared to the baseline using the same 13D
backbone network, KIN delivers absolute performance gains of 13.3% and 3.6% over
I3D and SBMNet, respectively. This result strongly demonstrates the substantial
advantage of integrating domain knowledge (Deng et al., 2020). Even when compared to
the larger, more complex TimeSformer model, KIN exhibits a lead of approximately 6%.
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Analysing the reasons, we believe that purely data-driven models, despite their strong
representation learning capabilities, lack the utilisation of structured rules in the football
domain (Lake et al., 2017). Consequently, they are prone to errors when handling events
with complex logic or sparse samples. By injecting knowledge a priori, KIN effectively
constrains the model’s hypothesis space, guiding it to focus on visual cues most relevant
to event semantics, thereby making more accurate judgements.

4.3  Melting experiment

To thoroughly investigate the contributions of each component within the KIN
framework, we conducted exhaustive ablation experiments, the results of which are
summarised in Table 3.

1  Importance of knowledge modules (A vs. B): when the domain knowledge encoding
and fusion module was removed, the model degraded into a pure I3D model,
experiencing a sharp performance drop of 11.3%. This clearly demonstrates that the
injection of domain knowledge is the key driver of performance improvement, rather
than solely stemming from the backbone network’s capabilities.

2 Effectiveness of fusion mechanism (A vs. C): replacing the carefully designed KCA
attention fusion mechanism with simple feature concatenation resulted in a 4.8%
performance drop. This proves that our proposed KCA module enables more
efficient and intelligent interaction between knowledge and visual features, with its
‘recalibration’ function outperforming simple concatenation.

3 The foundational role of visual features (A vs. D): models performed worst when
using only rule-derived knowledge vectors while discarding raw visual features. This
indicates that domain knowledge serves to ‘guide’ and ‘enhance’ rather than
‘replace’ the rich visual representations learned from data. The two elements are
complementary and indispensable.

Table 3 Ablation study analysis (mAP on SoccerNet-v2 validation set)

Model variant Description mAP (%)
Full model Complete KIN framework 70.1
w/o knowledge Remove the entire knowledge module (sub-concept 58.8

prediction + fusion), retaining only the 13D backbone

w/o fusion Retain sub-concept prediction while removing the KCA 65.3
fusion module, replacing it with direct feature concatenation

Only knowledge Predict using only the output K, from the knowledge 52.4
module, without utilising the visual features Fy'

4.4 Visualisation and analysis

To gain a more intuitive understanding of the model’s decision-making process, we
conducted a visualisation analysis.
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Figure 2 Confusion matrix comparison, (a) I3D baseline model (b) our KIN model (see online
version for colours)

Prediction probability

1.00
Yel-Red

Substitution
Save

Clearance

Shot Off

Shot On

Offside

Goal

Penalty

Direct free-kick
Indirect free-kick
Red card

 0.60

 0.40

Yellow card
Toul 0.20

Corner
Throw-in

Kick-off

¥ \a ¥ 0{\ &S

<
5 &v & Ves ¥
&< 0%%%\ G
%\)

@

Prediction probability

1.00
Yel-Red

Substitution

Save

Clearance

Shot Off

Shot On
Offside

Goal

Penalty

Direct free-kick

 0.60

Indirect free-kick ~ 0.40

Red card
Yellow card
Foul

Corner
Throw-in
Kick-off

> D> P @ oS
<°<¢° S EFF IS I Fos'

J
@e\&och\@%%&@cQ

&@JQ \,\‘Z/



102 R. Xu

Analysis: comparing Figures 2(a) and 2(b), it is evident that the diagonal in the KIN
model [Figure 2(b)] is brighter and more concentrated, while noise along the
non-diagonal is significantly reduced. For instance, the I3D model [Figure 2(a)] exhibits
severe confusion between ‘yellow card’ and ‘red card’, whereas the KIN model
substantially mitigates this issue. This demonstrates that incorporating domain knowledge
enhances the model’s ability to distinguish semantically similar yet fundamentally
different events.

Figure 3 Precision-recall curves for different methods across four key events (see online version
for colours)
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Analysis: as shown in Figure 3, our proposed KIN method (red solid line) maintains
higher curves than other methods across nearly all event categories, particularly
sustaining high accuracy even in high recall regions. This demonstrates that the
confidence scores output by the KIN model are more accurate and reliable (Mukhoti
et al., 2020). The ability to produce well-calibrated confidence scores is a key indicator of
a model’s trustworthiness, especially in safety-critical applications (Mukhoti et al., 2020).
Notably, KIN’s advantage is particularly pronounced for events with complex definitions
and sparse samples, such as ‘offside’ and ‘yellow card’. This outcome aligns perfectly
with its design philosophy of leveraging prior knowledge to compensate for data scarcity.
In summary, both quantitative and qualitative experimental results consistently
demonstrate that our proposed KIN framework, which integrates domain knowledge with
deep features, significantly enhances the performance of semantic event analysis in sports
videos. Its core design elements have been proven to be both effective and essential.
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5 Conclusions

This paper addresses the issues of poor interpretability and heavy reliance on labelled
data in purely data-driven approaches for semantic event analysis in sports video. It
proposes a novel paradigm that integrates domain knowledge with deep features. By
translating sports rules into computable, differentiable constraints and designing a
knowledge-injection network to achieve end-to-end fusion of deep features and structured
knowledge, this method significantly improves event recognition performance on the
public SoccerNet dataset. Experimental results demonstrate that this approach not only
achieves significantly higher average accuracy than mainstream baseline models but,
more importantly, validates the critical role of the knowledge module and fusion
mechanism through ablation studies. Visualisation analysis further substantiates the
rationality and interpretability of the model’s decision-making process.

The theoretical contributions of this study are twofold: first, it proposes a universal,
transferable knowledge representation and fusion framework, offering a novel technical
approach for incorporating human prior knowledge into deep learning models and
bridging the gap between data-driven and knowledge-driven methods. Second, it
advances the practical application of neuro-symbolic learning in a specific vertical
domain (sports video analysis), demonstrating the critical value of structured knowledge
in enhancing model sample efficiency and logical reasoning capabilities.

At the practical level, this study provides a feasible solution for constructing
next-generation intelligent sports video analysis systems. The system can more accurately
generate automatic highlights, perform tactical breakdowns, and conduct data statistics,
significantly enhancing the efficiency of content production and consumption.
Simultaneously, this approach holds important implications for other video understanding
tasks with scarce annotated data-such as surveillance event detection and industrial
anomaly recognition-offering new insights for addressing few-shot learning challenges.

Of course, this study still has certain limitations, primarily manifested in the fact that
domain knowledge construction remains dependent on expert experience and cannot be
automatically learned from data. Future work will focus on exploring self-learning and
evolutionary mechanisms for knowledge, and attempting to extend this framework to
broader video understanding and reasoning tasks to validate its generality and scalability.
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