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Abstract: Semantic event analysis in sports videos faces challenges such as 
complex actions and high annotation costs. To address these issues, this paper 
proposes a novel framework that integrates domain knowledge with deep 
features. The approach first translates sports rules into computable  
spatio-temporal constraints, then designs a knowledge-injection network to 
guide deep models toward semantically critical regions. Finally, a  
knowledge-conditioned attention mechanism is introduced to fuse domain 
knowledge with visual features effectively. Experimental results on the 
SoccerNet dataset demonstrate that the proposed method achieves a mean 
average precision of 71.5%, outperforming strong baselines such as inflated 3D 
ConvNet and soccer background matting network by 13.3% and 3.6%, 
respectively. The framework shows significant improvements in detecting 
complex and sparse events, offering enhanced accuracy, robustness and 
generalisation capability with reduced reliance on large-scale annotated data. 

Keywords: semantic event analysis; domain knowledge; deep features; video 
understanding; sports videos. 
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1 Introduction 

Sports video content analysis, as a key research focus in computer vision and multimedia 
analysis, has garnered sustained attention from both academia and industry in recent 
years due to its extensive practical value. With the continuous expansion of major 
sporting event broadcasts and the growing demand for intelligent video content 
processing, automatically and accurately identifying semantically meaningful events-such 
as goals, fouls, and substitutions-from massive video datasets has become a highly 



   

 

   

   
 

   

   

 

   

   90 R. Xu    
 

    
 
 

   

   
 

   

   

 

   

       
 

challenging and significant task. This capability not only enables the automatic 
generation of highlight reels to enhance spectator experiences but also provides coaches 
and athletes with deep tactical insights and data-driven match analysis, unlocking 
substantial commercial value and research potential (Wang and Parameswaran, 2004). 

In recent years, thanks to the rapid advancement of deep learning-particularly the 
integration of convolutional neural networks (CNNs) with various temporal modelling 
architectures-significant progress has been made in the field of sports event analysis. 
Early research methods heavily relied on manually designed features such as  
spatio-temporal interest points (STIP), histogram of oriented gradients (HOG), and 
similar descriptors, combined with shallow classifiers, whose performance was 
constrained by insufficient feature representation capabilities. Current mainstream 
approaches have fully shifted toward data-driven deep models. For instance, the inflated 
3D ConvNet (I3D network) proposed by extends the ImageNet-pretrained Inception 
architecture to 3D convolutions and is pretrained on the large-scale kinetics dataset, 
significantly enhancing its ability to extract spatio-temporal features from videos. The 
SlowFast network developed by employs a dual-path architecture to capture both spatial 
details and rapidly changing motion information in videos, demonstrating outstanding 
performance in handling sports scenes with highly variable action rhythms. Furthermore, 
the transformer architecture, leveraging its powerful long-sequence modelling 
capabilities, has been introduced to video understanding tasks (Vaswani et al., 2017). By 
modelling global dependencies between video segments through self-attention 
mechanisms, it shows immense potential in complex event recognition. 

However, despite achieving outstanding performance on multiple public benchmarks, 
these deep learning methods remain fundamentally reliant on an end-to-end data-driven 
paradigm, whose limitations are increasingly apparent. First, these models are often 
regarded as ‘black boxes’, lacking transparency and interpretability in their  
decision-making processes, making it difficult to answer critical questions like ‘why does 
the model consider this a goal?’. Second, their performance heavily depends on  
large-scale, high-quality manually annotated data. For many complex events in  
sports-such as soccer’s ‘offside’ or basketball’s ‘pick-and-roll’ plays-their low 
occurrence frequency coupled with intricate semantic definitions makes acquiring 
sufficient annotated samples prohibitively costly. This often results in suboptimal 
generalisation capabilities for rare events (Wang et al., 2020). This challenge is 
particularly acute in few-shot learning scenarios, where the model must recognise novel 
event categories from very limited examples (Wang et al., 2017). More fundamentally, 
purely data-driven models lack an understanding of sports’ inherent rules, prior logic, and 
common sense. For instance, a ‘goal’ event typically follows a specific spatio-temporal 
logic chain: the shooting action, the ball’s flight path, player celebrations, and the 
referee’s hand signals. Learning these complex, structured constraints solely from pixels 
without injecting any prior knowledge requires enormous data volumes and 
computational overhead, while also making it difficult to ensure logical reliability (Han  
et al., 2023). 

To overcome these limitations, an emerging research trend explores integrating 
human knowledge into data-driven learning frameworks to build more robust and 
efficient models. This ‘knowledge-guided visual analysis’ research aims to embed 
structured prior information into neural network learning processes, thereby reducing 
dependence on data scale while enhancing model interpretability and generalisation 
capabilities. For instance, in visual reasoning tasks, knowledge graphs are leveraged to 
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model semantic relationships between objects; in visual question answering, external 
common-sense databases assist answer derivation (Satama, 2025). Specifically for sports 
video analysis, preliminary attempts have utilised simple spatio-temporal constraints 
(e.g., player position trajectories, ball location) or logical event relationships (e.g., a 
‘corner kick’ often precedes a ‘header shot’) to aid recognition. These efforts demonstrate 
that domain knowledge, as a potent inductive bias, effectively constrains the hypothesis 
space, guiding models to focus on semantically relevant visual content. However, 
existing approaches largely remain at shallow knowledge representations (e.g., rigid 
rules) or loose post-processing fusion, failing to achieve deep, differentiable integration 
between knowledge representation and deep feature learning (Apriceno et al., 2021). 
Unlike traditional rule-based systems that rely on rigid, hand-crafted logic, our approach 
represents domain knowledge as soft, differentiable constraints. This design allows the 
model to adapt to new scenarios or varying video conditions through data-driven  
fine-tuning, thereby offering significantly greater flexibility and robustness. This 
limitation constrains further performance improvements. Therefore, exploring how to 
deeply integrate structured domain knowledge into the learning framework of deep neural 
networks in a tighter, more systematic manner has become a critical breakthrough for 
advancing this field-which is precisely the core starting point of this research. The 
adoption of a knowledge-guided framework is motivated by inherent limitations of purely 
data-driven methods, which include a lack of interpretability (‘black-box’ decisions), a 
heavy dependency on large-scale annotated data, and a fundamental difficulty in 
capturing the structured logic and rules inherent to the sports domain. 

2 Related work 

2.1 Early analysis methods based on handwritten features 

Before the rise of deep learning technologies, sports video event analysis primarily relied 
on meticulously designed manual features. The core idea of such methods involves 
extracting low-level or mid-level visual features from video frames and utilising 
statistical models or machine learning classifiers for event recognition. Among these, 
spatial interest points (SIP) and STIP are representative feature descriptors capable of 
capturing significant changes in local regions within videos (Laptev, 2005). Building 
upon this foundation, the bag-of-words (BoW) model and its variants gained widespread 
adoption by quantifying local features into visual words to form a global representation 
of the video. To model temporal information, researchers further developed methods such 
as dense trajectories, generating rich motion descriptors by tracking the movement paths 
of interest points across consecutive frames (Wang et al., 2013). Although these 
handcrafted features embody researchers’ deep insights into visual content and achieved 
initial success in early studies, their limitations are evident (Poppe, 2010): first, their 
representational capacity faces inherent constraints, making it challenging to capture 
complex and high-level semantic information. Second, method performance heavily 
relies on the expertise and skill in feature design, resulting in poor generalisation 
capabilities and difficulty adapting to video data from different sports or visual styles. 
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2.2 Deep learning-based video event recognition 

With the revolutionary success of deep CNNs in image recognition tasks, researchers 
quickly extended their application to the domain of video, propelling sports video 
analysis into the era of deep learning. Depending on how temporal information is 
processed, deep learning approaches can be broadly categorised into several types. The 
first category comprises 2D CNN-based methods, such as the temporal segment network 
(TSN), which models long-range temporal structures by sparsely sampling video frames 
and aggregating predictions, achieving a good balance between efficiency and 
performance. The second category comprises 3D CNN-based approaches aimed at 
simultaneously learning spatial and temporal features. Originally developed by expanding 
the successful 2D ImageNet architecture into 3D, the I3D model is pre-trained on the 
large-scale video dataset Kinetics. This pre-training significantly enhances its feature 
extraction capabilities, establishing it as the mainstream benchmark model for a period. 
The third category comprises specialised architectures designed to address long-term 
temporal dependencies in video, such as using long short-term memory (LSTM) or gated 
recurrent units (GRU) as temporal modellers to encode frame-level features extracted by 
CNNs. In recent years, the transformer architecture has demonstrated immense potential 
in capturing global spatio-temporal dependencies through its powerful self-attention 
mechanism, achieving successful application in video action recognition tasks. These 
data-driven deep learning methods learn end-to-end mappings from raw pixels to  
high-level semantics, exhibiting feature representation capabilities and model 
performance far surpassing traditional handcrafted approaches (Simonyan and Zisserman, 
2014). 

2.3 Knowledge-guided visual analytics methodology 

Despite the outstanding performance of deep learning models, their ‘black-box’ nature 
and reliance on large-scale labelled data have prompted researchers to explore new 
paradigms for integrating human prior knowledge into models. Knowledge-guided visual 
analysis aims to combine structured domain knowledge-such as physical laws, logical 
rules, and semantic relationships-with data-driven learning to enhance model efficiency, 
robustness, and interpretability. This research direction has made progress across multiple 
visual tasks. For instance, in visual question answering (VQA), external knowledge bases 
supplement image information (Lin et al., 2022), while in scene graph generation, 
linguistic prior constrains object relationships (Chen et al., 2022). Specifically for video 
event analysis, particularly in sports domains, some efforts have introduced  
domain-specific knowledge. For instance, object detection and tracking techniques 
capture player and ball trajectories (Intille and Bobick, 2001), while spatio-temporal logic 
rules like ‘player approaches ball’ or ‘ball moves toward goal’ are applied as  
post-processing to filter or validate deep learning predictions (Kamble et al., 2019). Other 
studies have attempted to construct probabilistic graph models (e.g., dynamic Bayesian 
networks) or Markov logic networks to explicitly represent temporal causal and logical 
relationships between events (Patel et al., 2022). However, most of these approaches have 
limitations: either the use of knowledge is loosely coupled (e.g., post-fusion), failing to 
sufficiently influence the feature learning process; or they rely on rigid rules, making the 
system difficult to optimise end-to-end and lacking flexibility (Khan and Curry, 2020). In 
recent years, embedding logical knowledge into neural networks in a differentiable 
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manner-such as through neuro-symbolic learning or using attention mechanisms to 
simulate knowledge routing has emerged as a prominent frontier topic. This approach 
aims to achieve a tight integration between deep features and structured knowledge. The 
pursuit of such integration has also spurred the development of novel spatial-temporal 
reasoning frameworks that can explicitly model the interactions between objects and their 
context over time (Geng et al., 2022). This line of work is often categorised under the 
umbrella of neuro-symbolic integration, which seeks to combine the pattern recognition 
strengths of neural networks with the reasoning capabilities of symbolic systems. 

2.4 Summary and comparison 

In summary, the technological evolution of sports video event analysis has progressed 
from shallow models reliant on explicit feature engineering to deep representation 
learning models driven by big data, and is now advancing toward collaborative models 
that integrate data and knowledge. To more clearly illustrate this evolutionary trajectory 
and the characteristics of each approach, the following table provides a systematic 
comparison of these related works. 
Table 1 Comparative analysis of sports video incident analysis methods 

Method category Core concept Key features 
Handcrafted 
feature method 

Low-level/mid-level features 
designed manually (e.g., STIP, 
trajectories) with shallow 
classifiers 

Highly interpretable, but with 
limited feature representation and 
generalisation capabilities 

Deep learning 
model 

End-to-end learning of high-level 
spatio-temporal features using 
networks such as CNNs and 
recurrent neural networks (RNNs) 

Feature expression capability and 
performance are superior, but data 
dependency is strong and 
interpretability is poor 

Knowledge-guided 
approach 

Incorporate domain rules, logic, 
and other prior information into the 
analysis process 

The sample is highly efficient and 
logically sound, but knowledge 
construction is complex and 
difficult to integrate deeply 

The method of this 
paper (KIN) 

Deeply embed domain knowledge 
in a differentiable manner within 
neural networks to guide feature 
learning and decision-making 

Combines strong representational 
power with interpretability, but 
knowledge definition requires 
human involvement 

3 Methodology 

This section will detail our proposed semantic event analysis framework for sports 
videos, which integrates domain knowledge with deep features. The core concept of this 
approach is embedding structured domain knowledge in a differentiable form within deep 
neural networks. This imposes powerful prior constraints on data-driven learning, 
ultimately achieving more precise and reliable event recognition. 
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3.1 Problem formulation 

We formalise the task of semantic event analysis in sports videos as a temporal action 
detection problem. We formalise the task as a temporal action detection problem because 
it is uniquely suited for identifying and localising sparse semantic events in long, 
untrimmed sports videos. This framework directly addresses the need to pinpoint both the 
category and the temporal boundaries of an event, which is not effectively handled by 
frame-level classification or dense captioning. Given an uncropped long video V 
composed of T frames, i.e., V = {f1, f2, …, fT}. Our objective is to predict a set of event 
instances 1{( , , , )} ,M

i i i i is e c p =  where si and ei denote the start and end timestamps of the ith 
event, respectively. ci ∈ {1, 2, …, C} denotes its event category (e.g., goal, corner kick, 
foul), pi ∈ [0, 1] represents the confidence score for this prediction, and M is the total 
number of events predicted in the video. 

In practical modelling, we typically partition a long video V into multiple  
non-overlapping short video segments {S1, S2, …, SN}, each containing a fixed number of 
frames. The model’s task is to determine whether each segment Sn contains a specific 
event and provide its category probability. The model’s overall prediction can be 
expressed as a function: 

( ; Θ, Ω)V=Y   (1) 

where Y denotes the final set of predicted results, Θ represents the learnable parameters 
of the deep neural network, and Ω signifies the encoded domain knowledge parameter 
set. Our innovation lies in how to construct ,  particularly in effectively integrating Ω 
with Θ. 

3.2 Overview of the overall framework 

The overall architecture of our proposed knowledge-injected network (KIN) is shown in 
Figure 1. It primarily consists of three core modules: 

1 deep vision-temporal feature extraction module: responsible for extracting rich, 
multi-level spatio-temporal features from raw video frames 

2 domain knowledge representation and encoding module: responsible for converting 
abstract sports rules into computable, structured vector representations 

3 knowledge-feature fusion module: deeply integrates knowledge vectors with visual 
features through a novel attention mechanism, ultimately feeding the output to the 
classifier for prediction. 

These three modules undergo joint optimisation in an end-to-end manner, enabling 
domain knowledge to guide feature learning and decision making during forward 
propagation while fine-tuning the specific parameters of knowledge based on training 
data during backpropagation. The knowledge module was designed with computational 
efficiency in mind. The sub-concept predictor and the KCA fusion mechanism are 
lightweight components, whose minimal overhead is justified by the significant 
performance gains, as evidenced in our ablation studies. 
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Figure 1 KIN framework diagram (see online version for colours) 

 

3.3 Deep vision-temporal feature extraction 

To capture appearance and motion information in videos, we employ a robust  
dual-stream architecture as our feature extraction backbone network (Rodríguez-Moreno 
et al., 2019). We employ a dual-stream architecture to explicitly and effectively capture 
complementary information: static appearance from RGB frames and dynamic motion 
from optical flow. This separation is particularly beneficial for analysing dynamic sports 
actions. Given a video segment Sn, we represent it as Sn = {fn,1, fn,2, …, fn,L}, where L 
denotes the segment length. 

Spatial stream processes RGB frames to capture static appearance information. We 
employ a 2D CNN pretrained on ImageNet (such as the spatial component of ResNet-50 
or the Inflated 3D (I3D) network) as the encoder: 

( )spatialΦ ;rgb rgb
n n spatialS θ=F  (2) 

where srgb D
n ∈F   is the extracted spatial feature vector, Ds denotes the feature 

dimension, and θspatial represents the parameters of the spatial flow network. 
Temporal stream processes dense optical flow frames to explicitly model motion 

information. For the temporal stream, we compute dense optical flow using a standard 
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algorithm (Farneback), which provides a reliable motion representation and is 
computationally efficient, ensuring a practical trade-off for model training. We employ a 
network with the same architecture as the spatial stream (but with a different number of 
input channels): 

( )Φ ;flow flow
n temporal n temporalS θ=F  (3) 

where tflow D
n ∈F   is the extracted motion feature vector. 

Subsequently, we fuse the features from both streams to form a joint visual 
representation of the fragment: 

( );rgb flowvisual
n n n =  F F Fφ  (4) 

where [·; ·] denotes concatenation, φ is a fully connected layer used to project the fused 
features into a unified feature space .vD . visual

nF  represents the final deep  
visual-temporal features obtained. 

3.4 Representation and encoding of domain knowledge 

This is the core innovation of this approach. We no longer treat domain knowledge as 
rigid rules but instead represent it as a differentiable, learnable soft constraint. Take the 
‘goal’ event in soccer as an example: its occurrence typically depends on the coordinated 
emergence of a series of sub-concepts (atomic actions), such as Shot, TowardsGoal, 
Celebration, with specific temporal relationships between these sub-concepts. The 
proposed knowledge representation framework is generalisable. For application in other 
sports or domains, the core architecture remains, while adaptation primarily involves 
redefining the domain-specific sub-concepts and their logical relationships to the target 
events. 

We first define a set of subconcepts 1 2{ , , , }Jk k k=   where each kj represents an 
atomic action or state (e.g., ‘goalkeeper present’, ‘ball in penalty area’). For each video 
segment Sn, we employ a lightweight pre-convolution module (typically a small CNN or 
a simple linear classifier) to predict the probability of each subconcept’s presence: 

( ) ( )visual
j n j n jp k S σ b= ⋅ +W F  (5) 

where Wj and bj are the classifier parameters for subconcept kj, and σ is the sigmoid 
activation function. The probabilities of all sub-concepts form a probability vector  
pn = [p(k1|Sn), p(k2|Sn), …, p(kJ|Sn)]T ∈ [0, 1]J. 

Next, we use first-order logic rules to encode the relationships between high-level 
events and these subconcepts. For example, the rule for the ‘goal scored’ event can be 
expressed as: 

( ) ( ) ( )1 2, , ,
T

n n n J np k S p k S p k S =  p   (6) 

where pn ∈ [0, 1]J is a probability vector composed of the probabilities of all 
subconcepts, J is the predefined total number of subconcepts. 
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To embed such logical rules into differentiable neural networks (Bach et al., 2017), 
we adopt t-norm fuzzy logic from real-valued logic (van Krieken et al., 2022). The ‘and’ 
(^) operation in this logic can be approximated by a continuously differentiable operator: 

( )
( ) ( ) ( )Shot TowardsGoal Celebration

goal
n goal n

n n n

ψ

p S p S p S

=

= ⋅ ⋅

k p
 (7) 

where [0, 1]goal
n ∈k  can be understood as the confidence level for the ‘goal’ event 

calculated based on the rules. For each target event category c, we define its 
corresponding rule function ψc to map the subconcept probability vector pn to a domain 
knowledge vector :C

n ∈K   

( ) ( ) ( )1 2, , , T
n n n C nψ ψ ψ =  K p p p  (8) 

where Kn represents the encoded domain knowledge, expressing the logical relationship 
between high-level events and underlying visual evidence in a structured and 
differentiable manner. This paradigm of representing symbolic knowledge in a 
continuous vector space is a cornerstone of neuro-symbolic AI, enabling seamless 
coupling with gradient-based learning. 

3.5 The integration mechanism of knowledge and characteristics 

After obtaining the deep visual features visual
nF  and domain knowledge vector Kn, the key 

lies in how to effectively fuse them. We designed a knowledge-conditioned channel 
attention (KCA) module (Guo et al., 2022). The KCA module was selected for its ability 
to use the domain knowledge vector as a conditioning signal to dynamically recalibrate 
channel-wise feature importance. This active guidance promotes a more focused fusion 
than passive mechanisms like concatenation. 

This module uses knowledge vectors as prior information to recalibrate the 
importance of each channel in visual features (Jin et al., 2022). Specifically, the 
knowledge vector Kn is first transformed through a small bottleneck network (composed 
of two fully connected layers with a rectified linear unit (ReLU) activation function in 
between) to generate an attention weight vector: 

( )2 1 1 2n nδ= ⋅ ⋅ + +a W W K b b  (9) 

where 1 ,
C
rC×∈W   42 ,

C vD×∈W   b1, b2 are learnable parameters, r is the reduction ratio, 
and δ is the ReLU activation function. Then, we normalise an to the range between 0 and 
1 using the sigmoid function, yielding the final attention gating vector: 

( )n nσ=g a  (10) 

where each element of vD
n ∈g   represents the importance assessment of the knowledge 

signal for the corresponding channel of the visual feature. Ultimately, the fused features 
are obtained through channel-wise multiplication: 

fused visual
n n n= ⊗F F g  (11) 
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where ⊗ denotes element-wise multiplication. fused
nF  is a knowledge-guided and 

enhanced feature representation that preserves the richness of the original data while 
highlighting the aspects most relevant to semantic events. 

Finally, we feed fused
nF  into a simple classifier (such as a linear layer + softmax) to 

obtain the final segment-level event prediction probability distribution: 

( )Softmaxˆ fused
n cls n cls= ⋅ +y W F b  (12) 

where Wcls and bcls represent the weight and bias parameters of the classification layer, 
while ˆ ny  denotes the model-predicted segment-level event probability distribution. 

The entire model, including the feature extraction network Φ, sub-concept predictor, 
and fusion module, undergoes end-to-end joint training by minimising the cross-entropy 
loss between the predicted output ˆ :$ $n nandthetruelabely y  

( ), ,
1 1

1 ˆlog
N C

n c n c
n c

y y
N = =

= −   (13) 

Through this design, domain knowledge not only imposes constraints during inference 
but also directly participates in gradient calculations during training, guiding the direction 
of parameter updates. This achieves a deep synergy between knowledge and data-driven 
approaches. 

4 Experimental verification 

To comprehensively evaluate the effectiveness and superiority of our proposed KIN, we 
conducted extensive experiments on a large public dataset. This section details the 
experimental setup, comparison results, ablation studies, and visualisation analysis. 

4.1 Dataset and experimental setup 

We chose to conduct our experiments on one of the most challenging and authoritative 
public benchmarks in sports video analysis-the SoccerNet-v2 dataset. We conducted 
experiments on the SoccerNet-v2 dataset due to its large scale, long untrimmed videos, 
and fine-grained event annotations. Its established status as a benchmark allows for a fair 
and comprehensive evaluation against state-of-the-art methods in sports video analysis. 
This dataset comprises 500 complete soccer matches from Europe’s top six leagues, 
totaling over 1,000 hours of video footage. It provides fine-grained annotations for three 
event categories: match events (e.g., goals, corner kicks, free kicks), video segment 
boundaries (e.g., start/end of halves), and primary camera views. We focused on the most 
challenging task of match event recognition, which encompasses 17 fine-grained event 
categories and over 30,000 event instances. We strictly adhere to official classifications, 
using 400 matches as the training set, 50 as the validation set, and 50 as the test set. 
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Model performance is evaluated using the widely adopted average precision (AP) 
metric to assess detection capabilities for each event category, with the mean average 
precision (mAP) serving as the core comprehensive evaluation metric (Everingham et al., 
2010). 

In terms of implementation details, our model is built upon the PyTorch framework. 
For the deep feature extraction module, we adopt the I3D network, pre-trained on the 
Kinetics-400 dataset, as the backbone architecture. Input video clips are downsampled to 
25 frames per second, with each clip lasting 64 frames (approximately 2.56 seconds) and 
adjusted to a spatial resolution of 224 × 224 pixels. We employ the Adam with Weight 
Decay (AdamW) optimiser with an initial learning rate of 1e-4, decaying using a cosine 
annealing strategy. The batch size was set to 16, and the model was trained for  
50 epochs across four NVIDIA V100 GPUs. The domain knowledge sub-concept 
predictor design is based on general knowledge within the soccer domain. We defined  
12 atomic sub-concepts, including BallVisible, PlayerCelebrating, BallNearGoal, 
GoalkeeperVisible, and CameraShotOnGoal. 

4.2 Comparative experiment 

To fairly evaluate KIN’s performance, we compare it against a suite of state-of-the-art 
methods, including: 

1 I3D: a powerful 3D CNN baseline renowned for its exceptional spatio-temporal 
feature extraction capabilities 

2 SlowFast: utilises a dual-path architecture processing video at different temporal 
rates, demonstrating strong performance on action recognition tasks 

3 TimeSformer: a pure transformer-based video classification model adept at capturing 
long-term temporal dependencies (Bertasius et al., 2021) 

4 SBMNet: a state-of-the-art approach specifically designed for the SoccerNet dataset 
in recent years, leveraging background modelling and feature fusion for event 
localisation, achieving outstanding performance on this benchmark (Cioppa et al., 
2024). 

Table 2 Overall performance comparison on the SoccerNet-v2 test set (mAP, %) 

Method Backbone Publication Average mAP 
I3D I3D ICCV’17 58.2 
SlowFast SlowFast ICCV’19 62.7 
TimeSformer TimeSformer-L ICCV’21 65.4 
SBMNet I3D CVPRW’21 67.9 
KIN (Ours) I3D - 71.5 

As shown in Table 2, our proposed KIN method achieves a mAP of 71.5%, significantly 
outperforming all baseline models. Compared to the baseline using the same I3D 
backbone network, KIN delivers absolute performance gains of 13.3% and 3.6% over 
I3D and SBMNet, respectively. This result strongly demonstrates the substantial 
advantage of integrating domain knowledge (Deng et al., 2020). Even when compared to 
the larger, more complex TimeSformer model, KIN exhibits a lead of approximately 6%. 



   

 

   

   
 

   

   

 

   

   100 R. Xu    
 

    
 
 

   

   
 

   

   

 

   

       
 

Analysing the reasons, we believe that purely data-driven models, despite their strong 
representation learning capabilities, lack the utilisation of structured rules in the football 
domain (Lake et al., 2017). Consequently, they are prone to errors when handling events 
with complex logic or sparse samples. By injecting knowledge a priori, KIN effectively 
constrains the model’s hypothesis space, guiding it to focus on visual cues most relevant 
to event semantics, thereby making more accurate judgements. 

4.3 Melting experiment 

To thoroughly investigate the contributions of each component within the KIN 
framework, we conducted exhaustive ablation experiments, the results of which are 
summarised in Table 3. 

1 Importance of knowledge modules (A vs. B): when the domain knowledge encoding 
and fusion module was removed, the model degraded into a pure I3D model, 
experiencing a sharp performance drop of 11.3%. This clearly demonstrates that the 
injection of domain knowledge is the key driver of performance improvement, rather 
than solely stemming from the backbone network’s capabilities. 

2 Effectiveness of fusion mechanism (A vs. C): replacing the carefully designed KCA 
attention fusion mechanism with simple feature concatenation resulted in a 4.8% 
performance drop. This proves that our proposed KCA module enables more 
efficient and intelligent interaction between knowledge and visual features, with its 
‘recalibration’ function outperforming simple concatenation. 

3 The foundational role of visual features (A vs. D): models performed worst when 
using only rule-derived knowledge vectors while discarding raw visual features. This 
indicates that domain knowledge serves to ‘guide’ and ‘enhance’ rather than 
‘replace’ the rich visual representations learned from data. The two elements are 
complementary and indispensable. 

Table 3 Ablation study analysis (mAP on SoccerNet-v2 validation set) 

Model variant Description mAP (%) 
Full model Complete KIN framework 70.1 
w/o knowledge Remove the entire knowledge module (sub-concept 

prediction + fusion), retaining only the I3D backbone 
58.8 

w/o fusion Retain sub-concept prediction while removing the KCA 
fusion module, replacing it with direct feature concatenation 

65.3 

Only knowledge Predict using only the output Kn from the knowledge 
module, without utilising the visual features visual

nF  
52.4 

4.4 Visualisation and analysis 

To gain a more intuitive understanding of the model’s decision-making process, we 
conducted a visualisation analysis. 
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Figure 2 Confusion matrix comparison, (a) I3D baseline model (b) our KIN model (see online 
version for colours) 

 
(a) 

 
(b) 
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Analysis: comparing Figures 2(a) and 2(b), it is evident that the diagonal in the KIN 
model [Figure 2(b)] is brighter and more concentrated, while noise along the  
non-diagonal is significantly reduced. For instance, the I3D model [Figure 2(a)] exhibits 
severe confusion between ‘yellow card’ and ‘red card’, whereas the KIN model 
substantially mitigates this issue. This demonstrates that incorporating domain knowledge 
enhances the model’s ability to distinguish semantically similar yet fundamentally 
different events. 

Figure 3 Precision-recall curves for different methods across four key events (see online version 
for colours) 

 

Analysis: as shown in Figure 3, our proposed KIN method (red solid line) maintains 
higher curves than other methods across nearly all event categories, particularly 
sustaining high accuracy even in high recall regions. This demonstrates that the 
confidence scores output by the KIN model are more accurate and reliable (Mukhoti  
et al., 2020). The ability to produce well-calibrated confidence scores is a key indicator of 
a model’s trustworthiness, especially in safety-critical applications (Mukhoti et al., 2020). 
Notably, KIN’s advantage is particularly pronounced for events with complex definitions 
and sparse samples, such as ‘offside’ and ‘yellow card’. This outcome aligns perfectly 
with its design philosophy of leveraging prior knowledge to compensate for data scarcity. 

In summary, both quantitative and qualitative experimental results consistently 
demonstrate that our proposed KIN framework, which integrates domain knowledge with 
deep features, significantly enhances the performance of semantic event analysis in sports 
videos. Its core design elements have been proven to be both effective and essential. 
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5 Conclusions 

This paper addresses the issues of poor interpretability and heavy reliance on labelled 
data in purely data-driven approaches for semantic event analysis in sports video. It 
proposes a novel paradigm that integrates domain knowledge with deep features. By 
translating sports rules into computable, differentiable constraints and designing a 
knowledge-injection network to achieve end-to-end fusion of deep features and structured 
knowledge, this method significantly improves event recognition performance on the 
public SoccerNet dataset. Experimental results demonstrate that this approach not only 
achieves significantly higher average accuracy than mainstream baseline models but, 
more importantly, validates the critical role of the knowledge module and fusion 
mechanism through ablation studies. Visualisation analysis further substantiates the 
rationality and interpretability of the model’s decision-making process. 

The theoretical contributions of this study are twofold: first, it proposes a universal, 
transferable knowledge representation and fusion framework, offering a novel technical 
approach for incorporating human prior knowledge into deep learning models and 
bridging the gap between data-driven and knowledge-driven methods. Second, it 
advances the practical application of neuro-symbolic learning in a specific vertical 
domain (sports video analysis), demonstrating the critical value of structured knowledge 
in enhancing model sample efficiency and logical reasoning capabilities. 

At the practical level, this study provides a feasible solution for constructing  
next-generation intelligent sports video analysis systems. The system can more accurately 
generate automatic highlights, perform tactical breakdowns, and conduct data statistics, 
significantly enhancing the efficiency of content production and consumption. 
Simultaneously, this approach holds important implications for other video understanding 
tasks with scarce annotated data-such as surveillance event detection and industrial 
anomaly recognition-offering new insights for addressing few-shot learning challenges. 

Of course, this study still has certain limitations, primarily manifested in the fact that 
domain knowledge construction remains dependent on expert experience and cannot be 
automatically learned from data. Future work will focus on exploring self-learning and 
evolutionary mechanisms for knowledge, and attempting to extend this framework to 
broader video understanding and reasoning tasks to validate its generality and scalability. 
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