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Abstract: Online education, with its flexibility, has become an integral part of the education
sector. To address the challenges posed by existing research, which struggles to capture
spatio-temporal locality and handle lengthy historical evaluation sequences, this paper first inputs
historical evaluation data into a long short-term memory network (LSTM) to discover long-term
sequential relationships in the evaluation data. The LSTM’s output is then fed into the
Transformer encoder, followed by an encoding layer that feeds into the transformer layer, where
multi-head attention mechanisms enhance concurrent learning of long-term dependencies.
Second, the final evaluation prediction results are obtained through a softmax output. Finally, an
improved Bayesian optimisation algorithm is used for hyperparameter iteration, and the optimal
hyperparameters for the evaluation model are selected. Experimental outcome demonstrates that
the average evaluation accuracy of the proposed model has improved by 5.98%-12.24%,
validating the efficiency of the proposed model.
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1 Introduction

Driven by the continuous momentum of the digital
technology wave, online learning has quickly emerged as a
key component of worldwide education, thanks to its
significant advantages such as breaking through time and
space constraints and convenient resource sharing. How to
accurately and efficiently evaluate the real-time learning
effectiveness of learners in online education scenarios has
become a core issue to be solved (Castro and Tumibay,
2021). Traditional methods for evaluating the effectiveness
of online education are difficult to capture the dynamic
changes in the learning process. These methods not only fail
to provide timely feedback on the learners’ learning status,
but also struggle to adapt to the personalised and real-time
teaching needs of online education (Alemayehu and Chen,
2023). With the successful application of deep learning
technology, introducing artificial intelligence algorithms
into the online education evaluation system has provided a
new technical approach to solving the above problems.
Although some studies have attempted to apply deep
learning to online education evaluation, most of them are
limited to the application of a single model and have not

fully leveraged the complementary advantages of different
models (Dias et al, 2020). Accordingly, in-depth
investigations into hybrid deep learning applications for
real-time performance measurement in online education are
practically meaningful for driving its high-quality
advancement.

Altuwairqi et al. (2021) processed students’ login
information in online learning systems and used various
classification methods to analyse and predict students’
evaluation behaviour. Ogange et al. (2018) designed an
online education effectiveness evaluation method using the
ARIMA model, constructing a prediction model by
analysing historical student evaluation data. Ren et al.
(2017) chiefly adopted factor analysis methods when
analysing the norms affecting the effectiveness of classroom
education and pedagogy, and through the use of multiple
linear regression technology, they discovered valuable
indicator patterns. Villegas-Ch et al. (2021) analysed
students’ grades using the Hadoop platform and optimised
the standard Apriori algorithm through integration with
MapReduce’s computational paradigm, analysing the
correlation between students’ performance across different
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courses and examining how curriculum design affects
academic outcomes, thereby extracting actionable insights
to inform pedagogical improvements and enhance
educational quality. Rong (2022) first applied decision tree
analysis to online teaching effectiveness data to create an
optimal prediction model. She then conducted verification
and comparative analysis using association rule mining to
evaluate the model’s dependability.

The models based on traditional time series prediction
follow specific distributions or linear relationships, while
machine learning models can automatically capture
high-dimensional, nonlinear, and interactive complex
patterns. However, they rely on manually extracted features,
resulting in low efficiency in evaluating online education
effectiveness. Due to the strong feature extraction
capability, adaptive learning ability, and nonlinear
processing capability of deep learning, researchers have
constructed a series of deep learning-based online education
evaluation models. By introducing neural network
principles to online education quality evaluation, Zhang
(2021) first established mathematical models, then
quantified all indicators, and finally constructed a BP
neural network model that generated relatively reliable
evaluation outcomes. Zhang (2024) developed a wavelet
neural network-based mathematical framework for
online education assessment, demonstrating significant
enhancement in teaching evaluation accuracy. Mumtaz
et al. (2024) proposed a multi-scale CNN to mine
multi-dimensional data features of in-school education,
enhancing the effectiveness of educational evaluation.
Jeong and Cho (2023) proposed an online education
effectiveness evaluation model based on recurrent neural
networks (RNN), achieving an evaluation accuracy of
80.4%. However, RNN faces the problem of gradient
disappearance, which limits its capability to study long-term
relations in educational big data. LSTM effectively
overcomes this problem by introducing a gating mechanism,
achieving precise control over information flow and update.
Jiao (2024) used the BERT model to generate dynamic
vectors of teaching texts, then input the vectors into LSTM
for teaching quality assessment, achieving a classification
accuracy of 81.42%. Zhang and Yang (2024) used CNN to
extract local features of online education evaluation texts,
and used LSTM to extract global features. By concatenating
and fusing global and local features, the evaluation accuracy
was improved.

The Transformer architecture fundamentally relies on
attention mechanisms as its core operational principle,
discarding the cyclic structure and convolution structure of
traditional RNN and CNN, achieving parallel computing
and significantly improving computational efficiency.
Xiong et al. (2024) introduced a multi-scale Gaussian prior
to improve the transformer’s local feature capture
capability, while also proposing an orthogonal
regularisation technique to prevent redundancy in the
multi-head self-attention mechanism. Venkateshwarlu et al.
(2024) used empirical mode decomposition to decompose
online education evaluation indicators, and extracted

features from the decomposed indicators through the
Transformer. They used a fully connected network to output
the online education evaluation results. The results show
that the proposed model outperforms the baseline model in
mean absolute error (MAE) and root mean squared error
(MSE) metrics. Zhang (2025) used the flexible integration
of the transformer model and attention mechanism to
achieve synchronous feature extraction of evaluation
sequence information in the two dimensions of course and
time, and obtained the evaluation of online education
effectiveness through softmax.

In previous work, single LSTMs, transformers, and
traditional hybrid approaches exhibited significant
limitations. Single LSTMs rely on chain memory units to
process temporal information. While they can capture
long-term sequence dependencies, they lack sufficient focus
on locally critical information and suffer from long-term
dependency gradient decay. Single transformers rely on
global self-attention to model sequence associations. While
enabling parallel computation and focusing on local critical
information, they exhibit weak modelling capabilities for
temporal coherence in long sequences, and their
computational complexity increases quadratically with
sequence length. Traditional hybrid approaches often
employ a functionally decomposed serial connection,
lacking information exchange between LSTMs and
transformers. This prevents the synergistic optimisation of
temporal memory and attention mechanisms.

Scholars worldwide have developed various evaluation
models for assessing the effectiveness of online education.
However, as the digital transformation of education
deepens, these models have gradually revealed core
shortcomings: narrow evaluation dimensions, superficial
data utilisation, limited model adaptability, and a lack of
practical closure. These deficiencies make it difficult for the
models to align with the essential characteristics of online
education. Namely, its dynamic nature personalised learning
experiences, and complex scenarios. In addition, these
studies are difficult to capture spatiotemporal locality and
lack the introduction of algorithm parameter tuning, which
leads to an inability to achieve global control, greatly
slowing down the forward inference and training efficiency
of the algorithm. To this end, this paper puts forward an
online education real-time effectiveness evaluation model
based on the LSTM-transformer model. The model not only
includes a specific spatiotemporal feature embedding
method for online education evaluation texts to extract
high-quality spatiotemporal feature vectors, but also
integrates a high-order feature interaction module, as well as
a spatiotemporal embedding and real-time effectiveness
evaluation module. After spatiotemporal feature embedding,
the model will fuse various features to form an enhanced
feature set, which is then input into the feature interaction
module. The feature interaction module combines LSTM
and Transformer, where the former captures long-term time
dependencies, and the latter identifies key items in the
sequence and self-adaptively adjusts. After processing by
this module, the model can generate accurate real-time
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effectiveness evaluation results for online education.
Finally, a random forest improved Bayesian optimisation
algorithm (RFBO) is designed. RFBO trains the
LSTM-transformer model as a local user model, and after
the model fusion completes hyperparameter optimisation,
the best hyperparameters are selected. The local user model
then trains the fused model with the best hyperparameters,
thus improving the prediction accuracy of online education
effectiveness evaluation. Experimental results show that the
coefficient of determination R? of the proposed model is
improved by 0.73%—1.3% compared to the baseline model,
which can achieve more accurate real-time effectiveness
evaluation of online education.

2 Relevant theoretical foundations
2.1 Long short-term memory network

As an improved variant of RNNs, LSTM’s core advantage
lies in its systematic resolution of the gradient
vanishing/exploding problem inherent in traditional RNNs
through its gating mechanism and cell state design, while
significantly enhancing its modelling capabilities for
long-term sequence dependencies. The LSTM model, a
distinct RNN architecture, excels at handling sequential data
and overcoming the vanishing gradient problem in long
sequences. Compared with traditional RNN, LSTM
introduces a memory cell and gate mechanism, enabling the
network to model long-range dependencies more
effectively. The defining components of LSTM networks
are their cell states and gate structures. The LSTM
architecture incorporates dedicated memory cells that
preserve and propagate information across time steps
through regulated operations, effectively preventing the
information degradation observed in conventional RNNs
(Wen and Li, 2023). Meanwhile, the LSTM architecture
regulates information flow through three distinct gating
mechanisms: the input gate, forget gate, and output gate,
which collectively determine the retention and propagation
of temporal information. The gating mechanisms employ
tanh activation functions to compute element-wise products
between input signals and memory cell states, generating
normalised outputs that precisely regulate information
propagation through the network.

LSTM model dynamically adjusts the content of
memory by introducing these gate mechanisms and the state
of the memory cell. First, the input gate governs both the
incorporation of current input data and the subsequent
modification of the memory cell state. Then, the forget gate
regulates the extent to which prior memory contents are
preserved or discarded from the cell state. Finally,
combining these two parts of information, the updated
memory cell state is obtained. The LSTM architecture
successfully addresses the vanishing/exploding gradient
problems inherent in conventional RNNs through its gated
memory cell mechanism, which maintains stable gradient
flow during backpropagation, and can better model
long-term dependencies, achieving significant performance

improvements in many sequence-related tasks (Zhang et al.,
2020).

2.2 Transformer model

Employing scaled dot-product attention as its core
operation, the transformer architecture  achieves
state-of-the-art performance in sequential data processing
tasks without recurrent connections (Nassiri and Akhloufi,
2023). Compared with traditional RNN and CNN, the
transformer architecture demonstrates exceptional capability
in handling extended sequence lengths and modelling
long-term  dependencies through its self-attention
mechanism. The fundamental innovation of the Transformer
architecture lies in its self-attention mechanism, which
dynamically establishes pairwise relationships between all
sequence positions and utilises these inter-positional
dependencies for contextualised representation learning.

The conventional Transformer architecture comprises
two primary components: an encoder stack for input
processing and a decoder stack for output generation. The
encoder transforms the input sequence into a set of
high-level abstract characteristics, whereas the decoder
leverages these characteristics to produce the related output
sequence (Liu et al., 2021). The encoder and decoder
modules both employ deep stacks of identical structural
levels, with each level progressively refining the
representation. Every level integrates two fundamental
components: a multi-head attention module (MAM) for
contextual relationship modelling followed by a
position-wise feedforward network (FPN) for characteristic
transformation. The FPN performs nonlinear feature
transformation through learned affine transformations and
activation functions, mapping inputs to higher-dimensional
representations. The MAM enables simultaneous
self-attention operations across multiple representation
subspaces, facilitating the capture of diverse semantic
relationships within the input. The attention mechanism of
the transformer is expressed as follows, in which Q, K, V'
are the query matrix, key matrix, and value matrix,

individually; W2, WX W/ are all parameter matrices.

1

MutiHead(Q, K, V) = Concat ( head,, head,, ..., head, )W° (1)

head, = Attention(QW2, KWX , VW) ()

The transformer incorporates positional encoding to inject
sequential order information into the model, enabling it
to discern positional relationships within otherwise
permutation-invariant  attention operations.  Positional
encoding is implemented through the element-wise addition
of deterministic vector representations to corresponding
sequence positions in the input embeddings. The position
encoding calculation method of the transformer is as
follows, where ¢ is the position encoding matrix obtained
through the position encoding operation, i is the dimension
index, pos is the position index; dmod is the input dimension.

PE | pos. 21y = sin ( pos /10,000%4m ) (3)
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PE o5, 2i+1) = c0s( pos /1,000%/mea ) 4)

Transformer fundamentally resolves the core challenges
faced by RNNs and CNNs in sequence modelling. Namely,
long-range dependencies and training efficiency, through
their unique self-attention architecture and parallelised
design. This has established them as the dominant
architecture across multiple fields today, including natural
language processing and computer vision.

3 Real-time effectiveness evaluation of online
education based on the LSTM-transformer
model

3.1 Opverall framework of the evaluation model

Real-time performance evaluation of online education is an
important task in time series prediction, usually involving
feature extraction from sequence data, especially
spatiotemporal features, and then time modelling to adapt to
long-term prediction needs. To address the shortcomings of
existing models in time series modelling and capturing
long-range dependencies, this paper suggests a real-time
performance evaluation approach for online education in
light of the LSTM-Transformer model. The method first
extracts the embedding vectors of spatiotemporal features,
then performs interactive modelling of spatiotemporal and
user factors, and finally generates the prediction results.
Figure 1 shows the process of this prediction model.

Figure 1 Real-time effectiveness assessment process for online
education (see online version for colours)
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The model not only includes a specialised spatiotemporal
feature embedding method for online education evaluation
text to extract high-quality spatiotemporal feature vectors,
but also integrates a high-order feature interaction module,
as well as a spatiotemporal embedding and real-time
performance evaluation module. After spatiotemporal
feature embedding, the model will fuse various features to
form an enhanced feature set, which is then input into the
feature interaction module. The feature interaction module
combines the LSTM and the multi-head self-attention
mechanism, where the former maintains inter-temporal
connections across distant intervals, and the latter identifies
key items in the sequence and adaptively adjusts. After
processing by this module, the model can generate accurate
real-time performance evaluation results for online
education.

Input historical online education performance evaluation
data into LSTM, then process the data with LSTM to handle
long-term dependencies. The output of LSTM is used as
input for the position encoding of transformer.
Subsequently, the position encoding layer of transformer
inputs into the transformer layer, and enhances the
concurrent learning of long-term dependencies through the
MAM. Ultimately, the linear layer and softmax processing
output the final evaluation prediction result.

The goal of this section is to capture long-term patterns
by modelling the user’s historical evaluation sequence.
First, these historical subsequences are connected into an
overall trajectory and input into the spatiotemporal
embedding module to obtain information about time and
spatial relationships. The overall learning trajectory is
connected with user embedding to form a comprehensive
input. Next, a self-attention module is introduced to
generate a series of evaluation behaviour representations,
which contain important information at each time point and
can capture remote dependencies between different user
evaluation behaviours. This is to better understand the
patterns and trends in the historical user evaluation
behaviour subsequences.

3.2 Spatiotemporal embedding for real-time
effectiveness evaluation of online education

To effectively represent user learning behaviour, this paper
introduces L to indicate the stay location embedding matrix.
For learning intervals, first convert them into a tuple, T to
represent the time embedding matrix. In the absence of
additional user information, this paper uses the user
embedding matrix U to represent differences between users.
Where M is the amount of users, and d is the dimension of
the embedding vector. Through user embedding, the
similarity between users can be captured, and personalised
user needs can be considered when evaluating educational
effectiveness. During the feature processing, the dimensions
of all features after embedding remain consistent. This
standardised dimension is to ensure that in the subsequent
feature interaction module, outer product calculations can
be directly performed without introducing additional
operations to align their dimensions due to dimension
mismatches, which would increase computational
complexity and model complexity. Therefore, maintaining
consistency in embedding dimensions is very important for
improving model performance and efficiency.

There are many methods for embedding initialisation.
Word2Vec (Jang et al., 2019), as a classic word embedding
model, has a pioneering significance in the field of
pre-trained language models. Although more complex
models such as BERT and GPT have emerged later,
Word2Vec still has unique advantages in specific scenarios
due to its simplicity, efficiency, interpretability, and low
resource consumption. As a classic word vector model,
Word2Vec demonstrates advantages of low complexity,
high speed, and easy deployment in text embedding
evaluation. Its core strengths lie in the simplicity of its
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model architecture, the singularity of its training objective,
and the directness of its embedding generation. This stands
in stark contrast to the complex architectures, multi-task
objectives, and dynamic embeddings of models like BERT
and GPT. Ultimately, it achieves a unique advantage
in the trade-offs of embedding evaluation performance,
particularly well-suited for small-to-medium-sized datasets
or real-time embedding scenarios. Initialising user learning
behaviour using the pre-training method of Word2Vec is as
follows, where / represents the user’s learning behaviour.
When the pre-training cost is high, random initialisation will
not lead to a decrease in performance. By extracting word
vectors using the CBOW method as features, the model can
better understand the semantic information in the text,
thereby more accurately predicting the real-time evaluation
effect of online education.

ﬁp(zm | D gD g )
t=1

3.3 Feature interaction in real-time evaluation of
online education

Existing real-time evaluation models for online education
do not consider the higher-order interactions of these
vectors. Spatiotemporal locality has a vital effect on the
accuracy of educational effect assessment. Empirical
evidence demonstrates that direct integration of user and
temporal embeddings into the self-attention module
yields superior performance compared to post-attention
concatenation approaches. Thus, the module for
characteristic interaction modelling is required to consider
interactions up to the third order, including both
second-order and third-order combinations of embeddings.
Driven by the cross-learning framework (Semenoglou et al.,
2021), this paper stacks feature matrices of three embedded
vectors Xo row by row to convert them into the same shape
as X; and X, through the following equation.

3 3
Xho= 2 D W (Xt e X)) (©)

3 3
=D 3 R (Xt o x) ™

where X, is the ™ row of X), the parameter matrices "',

W"? represent the second-order and third-order interactions,
respectively, and o is the Hadamard product. X; catches the
second-order interaction among any three embedding
vectors, while X, catches the third-order interaction among
any three embedding vectors.

This interaction model is very flexible, allowing new
features such as user-interested learning resources to be
casily integrated into the network. For n features, the m™

interaction can be flexibly expressed as follows. When there
are many features, this module allows the order of feature
interactions to be flexibly adjusted.

xp, = Z z Wi (X e Xyt ) ®

i=1 j=1

3.4  Mining user historical evaluation behaviour
sequences based on LSTM

After the above spatial-temporal embedding and interaction
modules, to further improve the accuracy of online
education effect evaluation prediction, it is necessary to
mine the regular information in the user’s historical
sequence. Considering the advantages of RNN in time series
problems, but facing the challenges of long-term
information retention and gradient disappearance, LSTM is
adopted. As an improved version of RNN, LSTM can
effectively alleviate these problems while retaining the
advantages of RNN. In this task, the matrix U represents the
result after processing by the feature interaction layer,
where M represents the sequence length. Each input
sequence element is calculated through a specific
computational process.

ir =0 (Wiyx, + by +Wyih,_ +by) )
fi=a(Wyxi +by +Wyrh 1 +by) (10)
g =tanh (Wi, x, +byg + Wigh_y +byg ) (11)
01 =0 (WioXe +bio + Wiohyy + by, (12)
¢ =fioctiog (13)
h =0, otanh(c,) (14)

where 4, is the implicit unit at time ¢, ¢; is the cell unit at
time ¢, x, is the input at time ¢, which is the /" row of the
input matrix X. The hidden unit state 4, from the previous
time step is adopted to pass historical information. When
the time step is 0, /4, in this layer is initialised to O for the
hidden unit. Wi, Wii, Wi, Wis, Wi, Wig, Wio, Wio are weights
between different layers, and bi;, bui, bis, biy, big, big, bioy bio
are biases between different layers. Additionally, i, f;, g, o:
represent the input gate, forget gate, cell gate, and output
gate, respectively. These gates are controlled by the
Sigmoid function o, and o is the Hadamard product.

Through these calculations, the final result X with the
same dimension as the input is obtained, where each vector
at every time step contains historical information from the
beginning of the sequence to the present time step. This
information is passed to the subsequent Transformer
encoding layer to enable more accurate online education
effect evaluation.
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Figure 2  Self-attention module in transformer (see online version for colours)
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3.5 Long-term dependency modelling of user
historical evaluation behaviour based on
transformer

Users’ evaluation behaviours (such as ratings, comments,
and interaction frequency) on online education platforms are
significantly influenced by historical behaviour sequences,
but conventional RNN and GRU architectures exhibit
fundamental limitations in modelling long-range temporal
dependencies across sequential time steps. By introducing
the self-attention mechanism (Kumar and Solanki, 2023),
transformer overcomes the limitations of traditional RNN,
improves the ability to model long-term dependencies, and
significantly enhances performance in different sequence
processing tasks. The self-attention (SAM) module in
transformer is shown in Figure 2. The basis of SAM is
assigning different attention weights to each element in the
input sequence, as shown in equation (15).

Attention(Q, K, V') = softmax (%j V (15)

Jd

where O, K, and V stand for queries, keys, and values,
individually. First, the dot product of Q and K is calculated
QKT and then the softmax function is applied to obtain an
attention weight matrix. Each entry in this matrix

represents the similarity between corresponding Q and K.
Subsequently, these similarities are used as weights to
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calculate the weighted sum of values in V. To prevent the
gradient from becoming too small when the input dot
product is too large in the softmax function, a scaling factor
Jd is introduced, which helps stabilise the training
process.

When modelling historical evaluation behaviour
sequences using the self-attention module, to ensure that
future events do not affect the current stay representation,
causality needs to be reinforced. This can be achieved by
combining LSTM with the self-attention mechanism, but a
more direct method is to add negative infinity values at the
corresponding positions, so that after the softmax operation,
these positions approach 0, thereby strengthening the
constraint of causality.

Z; collects the representation of all sequence-related
activity stay records obtained through self-attention and
FPN transformations. Based on the transformer architecture,
stacking multiple self-attention blocks, each module
comprises a self-attention mechanism for contextual
relationship modelling, followed by a position-wise FPN for
nonlinear transformation, can further improve performance.
To optimise model training, stability and acceleration
measures are taken between layers, performing the
following operations, where Sublayer(x) represents the

self-attention or feed-forward network layer, and
LayerNorm(x) represents level normalisation.
f(x) = LayerNorm(x + Dropout(Sublayer(x))) (16)
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3.6 Real-time effect prediction and evaluation in
online education

To assess the real-time efficacy of online learning, the
proposed approach incorporates the unique evaluation
identifier b, of user ¢;. Since user information is static

during training, it is introduced after time modelling and is
not directly input into the RNN. Instead, after being
processed by the MAM mechanism, it is linearly combined
with the output of the fully linked level, as shown below.

0% =W°A% +b, (17)
v = softmax (0% +W*"b,,) (18)

There are two trainable weight matrices #° and W". U is the
total amount of online education users, L is the total amount
of positions, b, is the bias parameter of the fully
linked level. To train the LSTM-transformer model, the
cross-entropy function is adopted as the target function.

L
T ==Y 1 log(y)+lels (19)

uieU i=1

where /" is the true value of user u; at each position, 4 is

the L2 regularisation parameter, and regularisation involves
all learnable parameters ©®. The LSTM-Transformer model
is trained using the cross-entropy function and L2
regularisation (with parameter A). During training, the Adam
optimiser and backpropagation through time (BPTT) are
used to update the model parameters, aiming to minimise
the objective function.

4 LSTM-transformer model parameter
optimisation based on Bayesian optimisation
algorithm

The online education effect evaluation model based on
LSTM-Transformer mentioned above can enhance the
accuracy of evaluation to a certain extent. Whereas, this
hybrid structure still has a series of problems in practical
applications, involving training efficiency, algorithm
complexity, etc. Therefore, this paper proposes a Bayesian
optimisation algorithm (RFBO) based on random forest
(Speiser et al., 2019), which adaptively optimises the
hyperparameters of the LSTM-transformer combined
model, breaking the previous situation where there was no
hyperparameter optimisation in previous research. Using the
random forest algorithm for feature selection on the dataset
to generate a new training set, then combining it with
Bayesian optimisation (SMBO) (Victoria and Maragatham,
2021) to train the LSTM model. Furthermore, the test set is
used as the input of the LSTM-Transformer model trained
by Bayesian optimisation, to verify the prediction results
and output the final results.

The proposed method first designs the RFBO algorithm
to train the LSTM-transformer model as a local user model.
After the model completes hyperparameter optimisation, the

best hyperparameters are selected. The local user model
then trains the fused model with the best hyperparameters.
The following describes the RFBO algorithm used. First,
the SMBO algorithm in the RFBO framework is introduced.
The SMBO algorithm has two important parts: one is the
surrogate model, and the other is the optimisation strategy.
The surrogate model is used to model the objective
function. The optimisation strategy determines the position
of the next sample point, that is, where the function value
Jfx) should be observed next at input x.

It is usually implemented through an acquisition
function: the acquisition function is typically a function
derived from the surrogate model, whose input is any value
in the feasible set 4, and the output value measures how
worthwhile each input x is to be observed. The parameters
in the Gaussian process regression model (mainly the mean
function and the parameters in the kernel function) are
automatically learned from the observed data. The method
of learning is the maximum a posteriori estimation (MAP),
which selects the most likely parameter values given the
observed values, as shown in formula (20). Among them, #
is the parameter set, and P(y| F(xi1.) = flx14) is the
probability distribution of the parameters after all observed
values are obtained. Converted using Bayes’ formula, as
shown in equation (21).

i =argmax,, P(n|F (x,) = f (xi1)) (20)

P(F(xl:t):f(xlzt)|’7)P(’7)
P(F(xlzt):f(xl:t))

SMBO performs well in handling continuous or numerical
parameters, but is not suitable for discrete parameters or
parameters with conditional relationships in machine
learning. To this end, this paper proposes the RFBO
algorithm, aiming to solve the problem that traditional
Gaussian process optimisation cannot be directly applied to
discrete parameters, and to provide a parameter optimisation
method for the LSTM-transformer model.

First, the random forest is modelled, assuming that there
are some initial sample points {(x1, fix1)), (x2, fx2)), ..., (xn,
f(xx))}. Then, the random forest model is established based
on these points to fit the function f, and the process is
similar to building a multidimensional distribution model
using n points. Since the random forest can handle
discrete variables, it naturally applies to the case of discrete
parameters. For conditional constraints, by setting
constraints in the parameter space, impossible situations can
be avoided from being sampled by the model. When each
tree splits, the feature ratio is randomly selected as 5/6, the
minimum number of data required for the leaf node is 10,
and the number of trees is also 10.

Next, calculate the mean and variance: each tree
provides a prediction result during the Gaussian regression
process. In the random forest, when a new point x is
added, it does not form a new multidimensional normal
distribution, but instead infers its characteristics through the
prediction results of each tree. For the new point x, each tree
will give a prediction value, and the average of these

P(n|F (x,) = f (%)) =

21
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prediction values can be regarded as the predicted mean of
the point, and the standard deviation of the prediction
results is the standard deviation. Finally, the iteration point
is selected, and the point that maximises f{x) is selected as
the optimal parameter for the LSTM-transformer model.

The time complexity of LSTM is O(T-d*), where T is the
sequence length and d is the hidden layer dimension. The
recursive structure of LSTM makes parallelisation difficult,
resulting in low efficiency during training on long
sequences. The time complexity of the transformer
component is O(T*d), with multi-head attention further
amplifying computational demands. Although transformers
can be optimised using scaled dot-product attention, long
sequences still require reliance on chunking or sparse
attention. When using a sequential structure (e.g., LSTM
followed by transformer), the total time complexity is the
sum of both. When employing a parallel structure,
additional computational overhead for feature fusion must
be accounted for.

5 Experimental results and analyses

The dataset used in this paper comes from China University
MOOC, which contains 35,874 pieces of students’ online
evaluation data. After cleaning and removing dirty data, a
total of 18,627 evaluation text data were obtained. This
paper is based on a platform equipped with an NVIDIA
GeForce RTX 3090 GPU. The experiment uses Python as
the programming environment. When building and training
the model, the deep learning framework TensorFlow and the
famous machine learning library Scikit-learn are mainly
used. The optimiser uses Adam, the studying rate is set to
0.001, the activation function selects ReLU, Dropout is set
to 0.2, the weights of LSTM and transformer are both set to
0.5, and the amount of multi-head attentions is set to 4.

Figure 3 Accuracy of assessment of different educational
outcomes (see online version for colours)
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The students’ online education evaluation results are
divided into five categories: poor, bad, average, good, and
excellent. The prediction accuracy of RFBO-LSTM-
transformer model and LSTM-BERT (Jiao, 2024),
EMD-Trans (Venkateshwarlu et al., 2024), Tans-AM
(Zhang, 2025) for different evaluation results is shown in
Figure 3. The average accuracy of LSTM-BERT,
EMD-Trans, Tans-AM, and RFBO-LSTM-transformer
reached 81.42%, 84.75%, 87.68%, and 93.66%,
respectively. Compared with LSTM-BERT, EMD-Trans,
and Tans-AM, RFBO-LSTM-transformer improved by
12.24%, 8.91%, and 5.98%, respectively. Although
LSTM-BERT uses LSTM to explore the temporal features
of evaluation texts, it does not further extract the
dependency relationship between evaluation texts and
users’ learning  behaviours. EMD-Trans performs
multi-dimensional feature extraction on the decomposed
online education evaluation indicators through transformer,
further improving the evaluation accuracy compared to
LSTM-BERT, but it does not optimise the model
parameters, so the evaluation accuracy is lower than that of
RFBO-LSTM-transformer. Tans-AM uses transformer and
attention mechanism to achieve synchronous feature
extraction of evaluation sequence information in two
dimensions of course and time, but it does not optimise the
model parameters, so the evaluation accuracy is lower than
that of RFBO-LSTM-transformer.

The R%, MAE, RMSE, MAPE evaluation indicators of
RFBO-LSTM-Transformer compared with the main
baseline methods are implied in Table 1. From the above
table analysis, it can be seen that RFBO-LSTM-
Transformer achieved the best evaluation prediction effect.
Compared with LSTM-BERT, EMD-Trans, and Tans-AM
models, it improved by 0.73%, 1.08%, and 1.3%
respectively in R%. Moreover, it achieved the lowest MAE,
indicating that the model with Bayesian algorithm obtained
smaller errors. Similarly, the model also achieved the best
RMSE and MAPE, indicating the reliability and robustness
of the model.

Comparing the R? of four models, LSTM, transformer,
LSTM-transformer, and RFBO-LSTM-transformer, based
on the final simulation results, as shown in Figure 4.
Figure 4(a), Figure 4(b), Figure 4(c), and Figure 4(d)
show the R? simulation results of LSTM,
transformer, LSTM-transformer, and RFBO-LSTM-
transformer, respectively. The maximum R? of LSTM on
the training set is 0.9806, and on the test set is 0.9834. The
maximum R? of transformer on the training set is 0.963, and
on the test set is 0.9856. The maximum R? of LSTM-
transformer on the training set is 0.9638, and on the test set
is 0.9891. The maximum R? of RFBO-LSTM-transformer
on the training set is 0.9651, and on the test set is 0.9664. It
can be seen that RFBO-LSTM-transformer has the best
prediction effect. RFBO-LSTM-transformer not only mines
the temporal features of students’ historical evaluation texts,
but also further optimises the parameters of the evaluation
model through RFBO, enhancing the accuracy of real-time
effect evaluation in online education.
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Figure 4 Comparison of evaluation errors between different models, (a) LSTM, (b) transformer, (¢) LSTM-transformer,
(d) RFBO-LSTM-transformer (see online version for colours)
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Table 1 Performance comparison of real-time effectiveness
assessment of different online education methods
Model R MAE RMSE MAPE
LSTM-BERT 0.9834 0.0054 0.0069 0.0013
EMD-Trans 0.9856 0.0033 0.0061 0.0007
Tans-AM 0.9891 0.0024 0.0055 0.0002
RFBO-LSTM-transformer  0.9964 0.0018 0.0032 0.00008
6 Conclusions
Focusing on the issues of insufficient capture of

spatiotemporal locality and high model complexity in
current online education effect evaluation, this paper
proposes an online education real-time effect evaluation
model in light of the LSTM-Transformer model. First, the
historical evaluation sequence of users is modelled, and the
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historical sub-sequences are connected into an overall
trajectory, which is then sent to the spatiotemporal
embedding module to obtain information about time and
spatial relationships. The overall evaluation trajectory is
connected with the wuser embedding to form a
comprehensive input. Next, the transformer model is
introduced to generate a series of learning behaviour
representations, which contain important information at
each time point and can capture the long-range
dependencies between different user evaluation behaviours.
This is to better understand the patterns and trends in the
historical user evaluation behaviour sub-sequences. Finally,
the RFBO algorithm is designed. This algorithm trains the
LSTM-transformer model as a local user model, and after
the model completes hyperparameter optimisation, the best
hyperparameters are selected. The local user model then
trains the fused model with the best hyperparameters,
thereby improving the prediction accuracy of online
education effect evaluation. Experimental outcome indicates
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that the coefficient of determination of the proposed model
is 0.9964, which is better than the comparison models,
indicating that the proposed model can be well applied to
online education real-time effect evaluation.

This paper suggests a parameter optimisation approach
for the LSTM-Transformer model based on the RFBO
algorithm, and verifies its effectiveness in the experimental
environment. However, there may still be better feature
processing methods and more model fusion methods. For
example, hyperparameter tuning significantly improves
prediction accuracy, but also brings a greater computational
burden, affecting the training efficiency of the model.
Therefore, one of the future research directions is how to
integrate more feature information to improve the accuracy
of evaluation prediction, while paying attention to the
training efficiency of the model, further optimising the
hyperparameter tuning algorithm. In addition, the
generalisation of the model on different datasets is also a
problem that needs further study.
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