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Abstract: Online education, with its flexibility, has become an integral part of the education 
sector. To address the challenges posed by existing research, which struggles to capture  
spatio-temporal locality and handle lengthy historical evaluation sequences, this paper first inputs 
historical evaluation data into a long short-term memory network (LSTM) to discover long-term 
sequential relationships in the evaluation data. The LSTM’s output is then fed into the 
Transformer encoder, followed by an encoding layer that feeds into the transformer layer, where 
multi-head attention mechanisms enhance concurrent learning of long-term dependencies. 
Second, the final evaluation prediction results are obtained through a softmax output. Finally, an 
improved Bayesian optimisation algorithm is used for hyperparameter iteration, and the optimal 
hyperparameters for the evaluation model are selected. Experimental outcome demonstrates that 
the average evaluation accuracy of the proposed model has improved by 5.98%–12.24%, 
validating the efficiency of the proposed model. 
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1 Introduction 
Driven by the continuous momentum of the digital 
technology wave, online learning has quickly emerged as a 
key component of worldwide education, thanks to its 
significant advantages such as breaking through time and 
space constraints and convenient resource sharing. How to 
accurately and efficiently evaluate the real-time learning 
effectiveness of learners in online education scenarios has 
become a core issue to be solved (Castro and Tumibay, 
2021). Traditional methods for evaluating the effectiveness 
of online education are difficult to capture the dynamic 
changes in the learning process. These methods not only fail 
to provide timely feedback on the learners’ learning status, 
but also struggle to adapt to the personalised and real-time 
teaching needs of online education (Alemayehu and Chen, 
2023). With the successful application of deep learning 
technology, introducing artificial intelligence algorithms 
into the online education evaluation system has provided a 
new technical approach to solving the above problems. 
Although some studies have attempted to apply deep 
learning to online education evaluation, most of them are 
limited to the application of a single model and have not 

fully leveraged the complementary advantages of different 
models (Dias et al., 2020). Accordingly, in-depth 
investigations into hybrid deep learning applications for 
real-time performance measurement in online education are 
practically meaningful for driving its high-quality 
advancement. 

Altuwairqi et al. (2021) processed students’ login 
information in online learning systems and used various 
classification methods to analyse and predict students’ 
evaluation behaviour. Ogange et al. (2018) designed an 
online education effectiveness evaluation method using the 
ARIMA model, constructing a prediction model by 
analysing historical student evaluation data. Ren et al. 
(2017) chiefly adopted factor analysis methods when 
analysing the norms affecting the effectiveness of classroom 
education and pedagogy, and through the use of multiple 
linear regression technology, they discovered valuable 
indicator patterns. Villegas-Ch et al. (2021) analysed 
students’ grades using the Hadoop platform and optimised 
the standard Apriori algorithm through integration with 
MapReduce’s computational paradigm, analysing the 
correlation between students’ performance across different 
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courses and examining how curriculum design affects 
academic outcomes, thereby extracting actionable insights 
to inform pedagogical improvements and enhance 
educational quality. Rong (2022) first applied decision tree 
analysis to online teaching effectiveness data to create an 
optimal prediction model. She then conducted verification 
and comparative analysis using association rule mining to 
evaluate the model’s dependability. 

The models based on traditional time series prediction 
follow specific distributions or linear relationships, while 
machine learning models can automatically capture  
high-dimensional, nonlinear, and interactive complex 
patterns. However, they rely on manually extracted features, 
resulting in low efficiency in evaluating online education 
effectiveness. Due to the strong feature extraction 
capability, adaptive learning ability, and nonlinear 
processing capability of deep learning, researchers have 
constructed a series of deep learning-based online education 
evaluation models. By introducing neural network 
principles to online education quality evaluation, Zhang 
(2021) first established mathematical models, then 
quantified all indicators, and finally constructed a BP  
neural network model that generated relatively reliable 
evaluation outcomes. Zhang (2024) developed a wavelet 
neural network-based mathematical framework for  
online education assessment, demonstrating significant 
enhancement in teaching evaluation accuracy. Mumtaz  
et al. (2024) proposed a multi-scale CNN to mine  
multi-dimensional data features of in-school education, 
enhancing the effectiveness of educational evaluation.  
Jeong and Cho (2023) proposed an online education 
effectiveness evaluation model based on recurrent neural 
networks (RNN), achieving an evaluation accuracy of 
80.4%. However, RNN faces the problem of gradient 
disappearance, which limits its capability to study long-term 
relations in educational big data. LSTM effectively 
overcomes this problem by introducing a gating mechanism, 
achieving precise control over information flow and update. 
Jiao (2024) used the BERT model to generate dynamic 
vectors of teaching texts, then input the vectors into LSTM 
for teaching quality assessment, achieving a classification 
accuracy of 81.42%. Zhang and Yang (2024) used CNN to 
extract local features of online education evaluation texts, 
and used LSTM to extract global features. By concatenating 
and fusing global and local features, the evaluation accuracy 
was improved. 

The Transformer architecture fundamentally relies on 
attention mechanisms as its core operational principle, 
discarding the cyclic structure and convolution structure of 
traditional RNN and CNN, achieving parallel computing 
and significantly improving computational efficiency. 
Xiong et al. (2024) introduced a multi-scale Gaussian prior 
to improve the transformer’s local feature capture 
capability, while also proposing an orthogonal 
regularisation technique to prevent redundancy in the  
multi-head self-attention mechanism. Venkateshwarlu et al. 
(2024) used empirical mode decomposition to decompose 
online education evaluation indicators, and extracted 

features from the decomposed indicators through the 
Transformer. They used a fully connected network to output 
the online education evaluation results. The results show 
that the proposed model outperforms the baseline model in 
mean absolute error (MAE) and root mean squared error 
(MSE) metrics. Zhang (2025) used the flexible integration 
of the transformer model and attention mechanism to 
achieve synchronous feature extraction of evaluation 
sequence information in the two dimensions of course and 
time, and obtained the evaluation of online education 
effectiveness through softmax. 

In previous work, single LSTMs, transformers, and 
traditional hybrid approaches exhibited significant 
limitations. Single LSTMs rely on chain memory units to 
process temporal information. While they can capture  
long-term sequence dependencies, they lack sufficient focus 
on locally critical information and suffer from long-term 
dependency gradient decay. Single transformers rely on 
global self-attention to model sequence associations. While 
enabling parallel computation and focusing on local critical 
information, they exhibit weak modelling capabilities for 
temporal coherence in long sequences, and their 
computational complexity increases quadratically with 
sequence length. Traditional hybrid approaches often 
employ a functionally decomposed serial connection, 
lacking information exchange between LSTMs and 
transformers. This prevents the synergistic optimisation of 
temporal memory and attention mechanisms. 

Scholars worldwide have developed various evaluation 
models for assessing the effectiveness of online education. 
However, as the digital transformation of education 
deepens, these models have gradually revealed core 
shortcomings: narrow evaluation dimensions, superficial 
data utilisation, limited model adaptability, and a lack of 
practical closure. These deficiencies make it difficult for the 
models to align with the essential characteristics of online 
education. Namely, its dynamic nature personalised learning 
experiences, and complex scenarios. In addition, these 
studies are difficult to capture spatiotemporal locality and 
lack the introduction of algorithm parameter tuning, which 
leads to an inability to achieve global control, greatly 
slowing down the forward inference and training efficiency 
of the algorithm. To this end, this paper puts forward an 
online education real-time effectiveness evaluation model 
based on the LSTM-transformer model. The model not only 
includes a specific spatiotemporal feature embedding 
method for online education evaluation texts to extract  
high-quality spatiotemporal feature vectors, but also 
integrates a high-order feature interaction module, as well as 
a spatiotemporal embedding and real-time effectiveness 
evaluation module. After spatiotemporal feature embedding, 
the model will fuse various features to form an enhanced 
feature set, which is then input into the feature interaction 
module. The feature interaction module combines LSTM 
and Transformer, where the former captures long-term time 
dependencies, and the latter identifies key items in the 
sequence and self-adaptively adjusts. After processing by 
this module, the model can generate accurate real-time 
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effectiveness evaluation results for online education. 
Finally, a random forest improved Bayesian optimisation 
algorithm (RFBO) is designed. RFBO trains the  
LSTM-transformer model as a local user model, and after 
the model fusion completes hyperparameter optimisation, 
the best hyperparameters are selected. The local user model 
then trains the fused model with the best hyperparameters, 
thus improving the prediction accuracy of online education 
effectiveness evaluation. Experimental results show that the 
coefficient of determination R2 of the proposed model is 
improved by 0.73%–1.3% compared to the baseline model, 
which can achieve more accurate real-time effectiveness 
evaluation of online education. 

2 Relevant theoretical foundations 
2.1 Long short-term memory network 
As an improved variant of RNNs, LSTM’s core advantage 
lies in its systematic resolution of the gradient 
vanishing/exploding problem inherent in traditional RNNs 
through its gating mechanism and cell state design, while 
significantly enhancing its modelling capabilities for  
long-term sequence dependencies. The LSTM model, a 
distinct RNN architecture, excels at handling sequential data 
and overcoming the vanishing gradient problem in long 
sequences. Compared with traditional RNN, LSTM 
introduces a memory cell and gate mechanism, enabling the 
network to model long-range dependencies more 
effectively. The defining components of LSTM networks 
are their cell states and gate structures. The LSTM 
architecture incorporates dedicated memory cells that 
preserve and propagate information across time steps 
through regulated operations, effectively preventing the 
information degradation observed in conventional RNNs 
(Wen and Li, 2023). Meanwhile, the LSTM architecture 
regulates information flow through three distinct gating 
mechanisms: the input gate, forget gate, and output gate, 
which collectively determine the retention and propagation 
of temporal information. The gating mechanisms employ 
tanh activation functions to compute element-wise products 
between input signals and memory cell states, generating 
normalised outputs that precisely regulate information 
propagation through the network. 

LSTM model dynamically adjusts the content of 
memory by introducing these gate mechanisms and the state 
of the memory cell. First, the input gate governs both the 
incorporation of current input data and the subsequent 
modification of the memory cell state. Then, the forget gate 
regulates the extent to which prior memory contents are 
preserved or discarded from the cell state. Finally, 
combining these two parts of information, the updated 
memory cell state is obtained. The LSTM architecture 
successfully addresses the vanishing/exploding gradient 
problems inherent in conventional RNNs through its gated 
memory cell mechanism, which maintains stable gradient 
flow during backpropagation, and can better model  
long-term dependencies, achieving significant performance 

improvements in many sequence-related tasks (Zhang et al., 
2020). 

2.2 Transformer model 
Employing scaled dot-product attention as its core 
operation, the transformer architecture achieves  
state-of-the-art performance in sequential data processing 
tasks without recurrent connections (Nassiri and Akhloufi, 
2023). Compared with traditional RNN and CNN, the 
transformer architecture demonstrates exceptional capability 
in handling extended sequence lengths and modelling  
long-term dependencies through its self-attention 
mechanism. The fundamental innovation of the Transformer 
architecture lies in its self-attention mechanism, which 
dynamically establishes pairwise relationships between all 
sequence positions and utilises these inter-positional 
dependencies for contextualised representation learning. 

The conventional Transformer architecture comprises 
two primary components: an encoder stack for input 
processing and a decoder stack for output generation. The 
encoder transforms the input sequence into a set of  
high-level abstract characteristics, whereas the decoder 
leverages these characteristics to produce the related output 
sequence (Liu et al., 2021). The encoder and decoder 
modules both employ deep stacks of identical structural 
levels, with each level progressively refining the 
representation. Every level integrates two fundamental 
components: a multi-head attention module (MAM) for 
contextual relationship modelling followed by a  
position-wise feedforward network (FPN) for characteristic 
transformation. The FPN performs nonlinear feature 
transformation through learned affine transformations and 
activation functions, mapping inputs to higher-dimensional 
representations. The MAM enables simultaneous  
self-attention operations across multiple representation 
subspaces, facilitating the capture of diverse semantic 
relationships within the input. The attention mechanism of 
the transformer is expressed as follows, in which Q, K, V 
are the query matrix, key matrix, and value matrix, 
individually; , ,Q K V

i i iW W W  are all parameter matrices. 

( )1 2( , , ) , , ..., o
nMutiHead Q K V Concat head head head W=  (1) 

( ), ,Q K V
n i i ihead Attention QW KW VW=  (2) 

The transformer incorporates positional encoding to inject 
sequential order information into the model, enabling it  
to discern positional relationships within otherwise 
permutation-invariant attention operations. Positional 
encoding is implemented through the element-wise addition 
of deterministic vector representations to corresponding 
sequence positions in the input embeddings. The position 
encoding calculation method of the transformer is as 
follows, where c is the position encoding matrix obtained 
through the position encoding operation, i is the dimension 
index, pos is the position index; dmod is the input dimension. 

( )mod2 /
( , 2 ) sin /10,000 i d

pos iPE pos=  (3) 
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( )mod2 /
( , 2 +1) cos /1,000 i d

pos iPE pos=  (4) 

Transformer fundamentally resolves the core challenges 
faced by RNNs and CNNs in sequence modelling. Namely, 
long-range dependencies and training efficiency, through 
their unique self-attention architecture and parallelised 
design. This has established them as the dominant 
architecture across multiple fields today, including natural 
language processing and computer vision. 

3 Real-time effectiveness evaluation of online 
education based on the LSTM-transformer 
model 

3.1 Overall framework of the evaluation model 
Real-time performance evaluation of online education is an 
important task in time series prediction, usually involving 
feature extraction from sequence data, especially 
spatiotemporal features, and then time modelling to adapt to 
long-term prediction needs. To address the shortcomings of 
existing models in time series modelling and capturing 
long-range dependencies, this paper suggests a real-time 
performance evaluation approach for online education in 
light of the LSTM-Transformer model. The method first 
extracts the embedding vectors of spatiotemporal features, 
then performs interactive modelling of spatiotemporal and 
user factors, and finally generates the prediction results. 
Figure 1 shows the process of this prediction model. 

Figure 1 Real-time effectiveness assessment process for online 
education (see online version for colours) 
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The model not only includes a specialised spatiotemporal 
feature embedding method for online education evaluation 
text to extract high-quality spatiotemporal feature vectors, 
but also integrates a high-order feature interaction module, 
as well as a spatiotemporal embedding and real-time 
performance evaluation module. After spatiotemporal 
feature embedding, the model will fuse various features to 
form an enhanced feature set, which is then input into the 
feature interaction module. The feature interaction module 
combines the LSTM and the multi-head self-attention 
mechanism, where the former maintains inter-temporal 
connections across distant intervals, and the latter identifies 
key items in the sequence and adaptively adjusts. After 
processing by this module, the model can generate accurate 
real-time performance evaluation results for online 
education. 

Input historical online education performance evaluation 
data into LSTM, then process the data with LSTM to handle 
long-term dependencies. The output of LSTM is used as 
input for the position encoding of transformer. 
Subsequently, the position encoding layer of transformer 
inputs into the transformer layer, and enhances the 
concurrent learning of long-term dependencies through the 
MAM. Ultimately, the linear layer and softmax processing 
output the final evaluation prediction result. 

The goal of this section is to capture long-term patterns 
by modelling the user’s historical evaluation sequence. 
First, these historical subsequences are connected into an 
overall trajectory and input into the spatiotemporal 
embedding module to obtain information about time and 
spatial relationships. The overall learning trajectory is 
connected with user embedding to form a comprehensive 
input. Next, a self-attention module is introduced to 
generate a series of evaluation behaviour representations, 
which contain important information at each time point and 
can capture remote dependencies between different user 
evaluation behaviours. This is to better understand the 
patterns and trends in the historical user evaluation 
behaviour subsequences. 

3.2 Spatiotemporal embedding for real-time 
effectiveness evaluation of online education 

To effectively represent user learning behaviour, this paper 
introduces L to indicate the stay location embedding matrix. 
For learning intervals, first convert them into a tuple, T to 
represent the time embedding matrix. In the absence of 
additional user information, this paper uses the user 
embedding matrix U to represent differences between users. 
Where M is the amount of users, and d is the dimension of 
the embedding vector. Through user embedding, the 
similarity between users can be captured, and personalised 
user needs can be considered when evaluating educational 
effectiveness. During the feature processing, the dimensions 
of all features after embedding remain consistent. This 
standardised dimension is to ensure that in the subsequent 
feature interaction module, outer product calculations can 
be directly performed without introducing additional 
operations to align their dimensions due to dimension 
mismatches, which would increase computational 
complexity and model complexity. Therefore, maintaining 
consistency in embedding dimensions is very important for 
improving model performance and efficiency. 

There are many methods for embedding initialisation. 
Word2Vec (Jang et al., 2019), as a classic word embedding 
model, has a pioneering significance in the field of  
pre-trained language models. Although more complex 
models such as BERT and GPT have emerged later, 
Word2Vec still has unique advantages in specific scenarios 
due to its simplicity, efficiency, interpretability, and low 
resource consumption. As a classic word vector model, 
Word2Vec demonstrates advantages of low complexity, 
high speed, and easy deployment in text embedding 
evaluation. Its core strengths lie in the simplicity of its 
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model architecture, the singularity of its training objective, 
and the directness of its embedding generation. This stands 
in stark contrast to the complex architectures, multi-task 
objectives, and dynamic embeddings of models like BERT 
and GPT. Ultimately, it achieves a unique advantage  
in the trade-offs of embedding evaluation performance, 
particularly well-suited for small-to-medium-sized datasets 
or real-time embedding scenarios. Initialising user learning 
behaviour using the pre-training method of Word2Vec is as 
follows, where l represents the user’s learning behaviour. 
When the pre-training cost is high, random initialisation will 
not lead to a decrease in performance. By extracting word 
vectors using the CBOW method as features, the model can 
better understand the semantic information in the text, 
thereby more accurately predicting the real-time evaluation 
effect of online education. 

( )( ) ( ) ( 1) ( +1) ( + )

1

, ..., , , ...,
T

t t m t t t m

t

P l l l l l− −

=
∏  (5) 

3.3 Feature interaction in real-time evaluation of 
online education 

Existing real-time evaluation models for online education 
do not consider the higher-order interactions of these 
vectors. Spatiotemporal locality has a vital effect on the 
accuracy of educational effect assessment. Empirical 
evidence demonstrates that direct integration of user and 
temporal embeddings into the self-attention module  
yields superior performance compared to post-attention 
concatenation approaches. Thus, the module for 
characteristic interaction modelling is required to consider 
interactions up to the third order, including both  
second-order and third-order combinations of embeddings. 
Driven by the cross-learning framework (Semenoglou et al., 
2021), this paper stacks feature matrices of three embedded 
vectors X0 row by row to convert them into the same shape 
as X1 and X2 through the following equation. 

( )
3 3

,11 0 0
, ,,

1 1

h
ij i jh

i j

X W X X∗ ∗∗
= =

=   (6) 

( )
3 3

,22 0 0
, ,,

1 1

h
ij i jh

i j

X W X X∗ ∗∗
= =

=   (7) 

where 1
,hX ∗  is the hth row of X1, the parameter matrices Wh,1, 

Wh,2 represent the second-order and third-order interactions, 
respectively, and   is the Hadamard product. X1 catches the 
second-order interaction among any three embedding 
vectors, while X2 catches the third-order interaction among 
any three embedding vectors. 

This interaction model is very flexible, allowing new 
features such as user-interested learning resources to be 
easily integrated into the network. For n features, the mth  
 
 
 
 

interaction can be flexibly expressed as follows. When there 
are many features, this module allows the order of feature 
interactions to be flexibly adjusted. 

( ), 1 1
, ,,

1 1

n n
h mm m m

ij i jh
i j

X W X X− −
∗ ∗∗

= =

=   (8) 

3.4 Mining user historical evaluation behaviour 
sequences based on LSTM 

After the above spatial-temporal embedding and interaction 
modules, to further improve the accuracy of online 
education effect evaluation prediction, it is necessary to 
mine the regular information in the user’s historical 
sequence. Considering the advantages of RNN in time series 
problems, but facing the challenges of long-term 
information retention and gradient disappearance, LSTM is 
adopted. As an improved version of RNN, LSTM can 
effectively alleviate these problems while retaining the 
advantages of RNN. In this task, the matrix U represents the 
result after processing by the feature interaction layer, 
where M represents the sequence length. Each input 
sequence element is calculated through a specific 
computational process. 

( )1+ + +t ii t ii hi t hii σ W x b W h b−=  (9) 

( )1+ + +t if t if hf t hff σ W x b W h b−=  (10) 

( )1tanh + + +t ig t ig hg t hgg W x b W h b−=  (11) 

( )1+ + +t io t io ho t hoo σ W x b W h b−=  (12) 

1 +t t t t tc f c i g−=    (13) 

( )tanht t th o c=   (14) 

where ht is the implicit unit at time t, ct is the cell unit at 
time t, xt is the input at time t, which is the tth row of the 
input matrix X. The hidden unit state ht–1 from the previous 
time step is adopted to pass historical information. When 
the time step is 0, ht–1 in this layer is initialised to 0 for the 
hidden unit. Wii, Whi, Wif, Whf, Wig, Whg, Wio, Who are weights 
between different layers, and bii, bhi, bif, bhf, big, bhg, bio, bho 
are biases between different layers. Additionally, it, ft, gt, ot 
represent the input gate, forget gate, cell gate, and output 
gate, respectively. These gates are controlled by the 
Sigmoid function σ, and   is the Hadamard product. 

Through these calculations, the final result X with the 
same dimension as the input is obtained, where each vector 
at every time step contains historical information from the 
beginning of the sequence to the present time step. This 
information is passed to the subsequent Transformer 
encoding layer to enable more accurate online education 
effect evaluation. 
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Figure 2 Self-attention module in transformer (see online version for colours) 

 

Self-Attention Module

Add & Normalize

Feedforward Neural Network

Add & Normalize

Masked Self-Attention

Masked Attention

Softmax

ValueKeyQuery

Attention Value

MatMul

MatMul Mask Sequence

 

 
3.5 Long-term dependency modelling of user 

historical evaluation behaviour based on 
transformer 

Users’ evaluation behaviours (such as ratings, comments, 
and interaction frequency) on online education platforms are 
significantly influenced by historical behaviour sequences, 
but conventional RNN and GRU architectures exhibit 
fundamental limitations in modelling long-range temporal 
dependencies across sequential time steps. By introducing 
the self-attention mechanism (Kumar and Solanki, 2023), 
transformer overcomes the limitations of traditional RNN, 
improves the ability to model long-term dependencies, and 
significantly enhances performance in different sequence 
processing tasks. The self-attention (SAM) module in 
transformer is shown in Figure 2. The basis of SAM is 
assigning different attention weights to each element in the 
input sequence, as shown in equation (15). 

( , , ) QKAttention Q K V softmax V
d

 =  
 


 (15) 

where Q, K, and V stand for queries, keys, and values, 
individually. First, the dot product of Q and K is calculated 
QK   and then the softmax function is applied to obtain an 
attention weight matrix. Each entry in this matrix  
represents the similarity between corresponding Q and K. 
Subsequently, these similarities are used as weights to  
 
 
 

calculate the weighted sum of values in V. To prevent the 
gradient from becoming too small when the input dot 
product is too large in the softmax function, a scaling factor 

d  is introduced, which helps stabilise the training 
process. 

When modelling historical evaluation behaviour 
sequences using the self-attention module, to ensure that 
future events do not affect the current stay representation, 
causality needs to be reinforced. This can be achieved by 
combining LSTM with the self-attention mechanism, but a 
more direct method is to add negative infinity values at the 
corresponding positions, so that after the softmax operation, 
these positions approach 0, thereby strengthening the 
constraint of causality. 

Zj collects the representation of all sequence-related 
activity stay records obtained through self-attention and 
FPN transformations. Based on the transformer architecture, 
stacking multiple self-attention blocks, each module 
comprises a self-attention mechanism for contextual 
relationship modelling, followed by a position-wise FPN for 
nonlinear transformation, can further improve performance. 
To optimise model training, stability and acceleration 
measures are taken between layers, performing the 
following operations, where Sublayer(x) represents the  
self-attention or feed-forward network layer, and 
LayerNorm(x) represents level normalisation. 

( ) LayerNorm( + Dropout(Sublayer( )))f x x x=  (16) 
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3.6 Real-time effect prediction and evaluation in 
online education 

To assess the real-time efficacy of online learning, the 
proposed approach incorporates the unique evaluation 
identifier icb  of user ci. Since user information is static 
during training, it is introduced after time modelling and is 
not directly input into the RNN. Instead, after being 
processed by the MAM mechanism, it is linearly combined 
with the output of the fully linked level, as shown below. 

+i ic o c
oO W A b=  (17) 

( )+i i
i

c c u
uy softmax O W b=  (18) 

There are two trainable weight matrices Wo and Wu. U is the 
total amount of online education users, L is the total amount 
of positions, bo is the bias parameter of the fully  
linked level. To train the LSTM-transformer model, the  
cross-entropy function is adopted as the target function. 

( ) 2
1

log + Θi i

i

L
u u
i i

u U i

l y λ
∈ =

= −   (19) 

where iu
il  is the true value of user ui at each position, λ is 

the L2 regularisation parameter, and regularisation involves 
all learnable parameters Θ. The LSTM-Transformer model 
is trained using the cross-entropy function and L2 
regularisation (with parameter λ). During training, the Adam 
optimiser and backpropagation through time (BPTT) are 
used to update the model parameters, aiming to minimise 
the objective function. 

4 LSTM-transformer model parameter 
optimisation based on Bayesian optimisation 
algorithm 

The online education effect evaluation model based on 
LSTM-Transformer mentioned above can enhance the 
accuracy of evaluation to a certain extent. Whereas, this 
hybrid structure still has a series of problems in practical 
applications, involving training efficiency, algorithm 
complexity, etc. Therefore, this paper proposes a Bayesian 
optimisation algorithm (RFBO) based on random forest 
(Speiser et al., 2019), which adaptively optimises the 
hyperparameters of the LSTM-transformer combined 
model, breaking the previous situation where there was no 
hyperparameter optimisation in previous research. Using the 
random forest algorithm for feature selection on the dataset 
to generate a new training set, then combining it with 
Bayesian optimisation (SMBO) (Victoria and Maragatham, 
2021) to train the LSTM model. Furthermore, the test set is 
used as the input of the LSTM-Transformer model trained 
by Bayesian optimisation, to verify the prediction results 
and output the final results. 

The proposed method first designs the RFBO algorithm 
to train the LSTM-transformer model as a local user model. 
After the model completes hyperparameter optimisation, the 

best hyperparameters are selected. The local user model 
then trains the fused model with the best hyperparameters. 
The following describes the RFBO algorithm used. First, 
the SMBO algorithm in the RFBO framework is introduced. 
The SMBO algorithm has two important parts: one is the 
surrogate model, and the other is the optimisation strategy. 
The surrogate model is used to model the objective 
function. The optimisation strategy determines the position 
of the next sample point, that is, where the function value 
f(x) should be observed next at input x. 

It is usually implemented through an acquisition 
function: the acquisition function is typically a function 
derived from the surrogate model, whose input is any value 
in the feasible set A, and the output value measures how 
worthwhile each input x is to be observed. The parameters 
in the Gaussian process regression model (mainly the mean 
function and the parameters in the kernel function) are 
automatically learned from the observed data. The method 
of learning is the maximum a posteriori estimation (MAP), 
which selects the most likely parameter values given the 
observed values, as shown in formula (20). Among them, η 
is the parameter set, and P(η| F(x1:t) = f(x1:t)) is the 
probability distribution of the parameters after all observed 
values are obtained. Converted using Bayes’ formula, as 
shown in equation (21). 

( ) ( )( )1: 1:arg maxˆ η t tη P η F x f x= =  (20) 
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SMBO performs well in handling continuous or numerical 
parameters, but is not suitable for discrete parameters or 
parameters with conditional relationships in machine 
learning. To this end, this paper proposes the RFBO 
algorithm, aiming to solve the problem that traditional 
Gaussian process optimisation cannot be directly applied to 
discrete parameters, and to provide a parameter optimisation 
method for the LSTM-transformer model. 

First, the random forest is modelled, assuming that there 
are some initial sample points {(x1, f(x1)), (x2, f(x2)), …, (xn, 
f(xn))}. Then, the random forest model is established based 
on these points to fit the function f, and the process is 
similar to building a multidimensional distribution model 
using n points. Since the random forest can handle  
discrete variables, it naturally applies to the case of discrete 
parameters. For conditional constraints, by setting 
constraints in the parameter space, impossible situations can 
be avoided from being sampled by the model. When each 
tree splits, the feature ratio is randomly selected as 5/6, the 
minimum number of data required for the leaf node is 10, 
and the number of trees is also 10. 

Next, calculate the mean and variance: each tree 
provides a prediction result during the Gaussian regression 
process. In the random forest, when a new point x is  
added, it does not form a new multidimensional normal 
distribution, but instead infers its characteristics through the 
prediction results of each tree. For the new point x, each tree 
will give a prediction value, and the average of these 
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prediction values can be regarded as the predicted mean of 
the point, and the standard deviation of the prediction 
results is the standard deviation. Finally, the iteration point 
is selected, and the point that maximises f(x) is selected as 
the optimal parameter for the LSTM-transformer model. 

The time complexity of LSTM is O(T∙d2), where T is the 
sequence length and d is the hidden layer dimension. The 
recursive structure of LSTM makes parallelisation difficult, 
resulting in low efficiency during training on long 
sequences. The time complexity of the transformer 
component is O(T2∙d), with multi-head attention further 
amplifying computational demands. Although transformers 
can be optimised using scaled dot-product attention, long 
sequences still require reliance on chunking or sparse 
attention. When using a sequential structure (e.g., LSTM 
followed by transformer), the total time complexity is the 
sum of both. When employing a parallel structure, 
additional computational overhead for feature fusion must 
be accounted for. 

5 Experimental results and analyses 
The dataset used in this paper comes from China University 
MOOC, which contains 35,874 pieces of students’ online 
evaluation data. After cleaning and removing dirty data, a 
total of 18,627 evaluation text data were obtained. This 
paper is based on a platform equipped with an NVIDIA 
GeForce RTX 3090 GPU. The experiment uses Python as 
the programming environment. When building and training 
the model, the deep learning framework TensorFlow and the 
famous machine learning library Scikit-learn are mainly 
used. The optimiser uses Adam, the studying rate is set to 
0.001, the activation function selects ReLU, Dropout is set 
to 0.2, the weights of LSTM and transformer are both set to 
0.5, and the amount of multi-head attentions is set to 4. 

Figure 3 Accuracy of assessment of different educational 
outcomes (see online version for colours) 

 

The students’ online education evaluation results are 
divided into five categories: poor, bad, average, good, and 
excellent. The prediction accuracy of RFBO-LSTM-
transformer model and LSTM-BERT (Jiao, 2024),  
EMD-Trans (Venkateshwarlu et al., 2024), Tans-AM 
(Zhang, 2025) for different evaluation results is shown in 
Figure 3. The average accuracy of LSTM-BERT,  
EMD-Trans, Tans-AM, and RFBO-LSTM-transformer 
reached 81.42%, 84.75%, 87.68%, and 93.66%, 
respectively. Compared with LSTM-BERT, EMD-Trans, 
and Tans-AM, RFBO-LSTM-transformer improved by 
12.24%, 8.91%, and 5.98%, respectively. Although  
LSTM-BERT uses LSTM to explore the temporal features 
of evaluation texts, it does not further extract the 
dependency relationship between evaluation texts and  
users’ learning behaviours. EMD-Trans performs  
multi-dimensional feature extraction on the decomposed 
online education evaluation indicators through transformer, 
further improving the evaluation accuracy compared to 
LSTM-BERT, but it does not optimise the model 
parameters, so the evaluation accuracy is lower than that of 
RFBO-LSTM-transformer. Tans-AM uses transformer and 
attention mechanism to achieve synchronous feature 
extraction of evaluation sequence information in two 
dimensions of course and time, but it does not optimise the 
model parameters, so the evaluation accuracy is lower than 
that of RFBO-LSTM-transformer. 

The R2, MAE, RMSE, MAPE evaluation indicators of 
RFBO-LSTM-Transformer compared with the main 
baseline methods are implied in Table 1. From the above 
table analysis, it can be seen that RFBO-LSTM-
Transformer achieved the best evaluation prediction effect. 
Compared with LSTM-BERT, EMD-Trans, and Tans-AM 
models, it improved by 0.73%, 1.08%, and 1.3% 
respectively in R2. Moreover, it achieved the lowest MAE, 
indicating that the model with Bayesian algorithm obtained 
smaller errors. Similarly, the model also achieved the best 
RMSE and MAPE, indicating the reliability and robustness 
of the model. 

Comparing the R2 of four models, LSTM, transformer, 
LSTM-transformer, and RFBO-LSTM-transformer, based 
on the final simulation results, as shown in Figure 4.  
Figure 4(a), Figure 4(b), Figure 4(c), and Figure 4(d)  
show the R2 simulation results of LSTM,  
transformer, LSTM-transformer, and RFBO-LSTM-
transformer, respectively. The maximum R2 of LSTM on 
the training set is 0.9806, and on the test set is 0.9834. The 
maximum R2 of transformer on the training set is 0.963, and 
on the test set is 0.9856. The maximum R2 of LSTM-
transformer on the training set is 0.9638, and on the test set 
is 0.9891. The maximum R2 of RFBO-LSTM-transformer 
on the training set is 0.9651, and on the test set is 0.9664. It 
can be seen that RFBO-LSTM-transformer has the best 
prediction effect. RFBO-LSTM-transformer not only mines 
the temporal features of students’ historical evaluation texts, 
but also further optimises the parameters of the evaluation 
model through RFBO, enhancing the accuracy of real-time 
effect evaluation in online education. 



32 C. Wang  

Figure 4 Comparison of evaluation errors between different models, (a) LSTM, (b) transformer, (c) LSTM-transformer,  
(d) RFBO-LSTM-transformer (see online version for colours) 
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Table 1 Performance comparison of real-time effectiveness 

assessment of different online education methods 

Model R2 MAE RMSE MAPE 

LSTM-BERT 0.9834 0.0054 0.0069 0.0013 
EMD-Trans 0.9856 0.0033 0.0061 0.0007 
Tans-AM 0.9891 0.0024 0.0055 0.0002 
RFBO-LSTM-transformer 0.9964 0.0018 0.0032 0.00008 

6 Conclusions 
Focusing on the issues of insufficient capture of 
spatiotemporal locality and high model complexity in 
current online education effect evaluation, this paper 
proposes an online education real-time effect evaluation 
model in light of the LSTM-Transformer model. First, the 
historical evaluation sequence of users is modelled, and the 

historical sub-sequences are connected into an overall 
trajectory, which is then sent to the spatiotemporal 
embedding module to obtain information about time and 
spatial relationships. The overall evaluation trajectory is 
connected with the user embedding to form a 
comprehensive input. Next, the transformer model is 
introduced to generate a series of learning behaviour 
representations, which contain important information at 
each time point and can capture the long-range 
dependencies between different user evaluation behaviours. 
This is to better understand the patterns and trends in the 
historical user evaluation behaviour sub-sequences. Finally, 
the RFBO algorithm is designed. This algorithm trains the 
LSTM-transformer model as a local user model, and after 
the model completes hyperparameter optimisation, the best 
hyperparameters are selected. The local user model then 
trains the fused model with the best hyperparameters, 
thereby improving the prediction accuracy of online 
education effect evaluation. Experimental outcome indicates 
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that the coefficient of determination of the proposed model 
is 0.9964, which is better than the comparison models, 
indicating that the proposed model can be well applied to 
online education real-time effect evaluation. 

This paper suggests a parameter optimisation approach 
for the LSTM-Transformer model based on the RFBO 
algorithm, and verifies its effectiveness in the experimental 
environment. However, there may still be better feature 
processing methods and more model fusion methods. For 
example, hyperparameter tuning significantly improves 
prediction accuracy, but also brings a greater computational 
burden, affecting the training efficiency of the model. 
Therefore, one of the future research directions is how to 
integrate more feature information to improve the accuracy 
of evaluation prediction, while paying attention to the 
training efficiency of the model, further optimising the 
hyperparameter tuning algorithm. In addition, the 
generalisation of the model on different datasets is also a 
problem that needs further study. 
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