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Abstract: To address Japanese pronunciation error detection, this paper
proposes a fusion method based on cross-modal attention mechanisms and
constructs a Japanese pronunciation corpus. The model integrates audio
Mel-spectrogram and visual lip-motion features through attention mechanisms,
effectively capturing fine-grained cross-modal interactions and enabling precise
phoneme-level error recognition. Evaluated on both the public corpus from
Saruwatari Lab, University of Tokyo and a self-built corpus, the proposed
approach achieves an accuracy of 92.3%, which is 3.1% higher than the best
baseline model. Moreover, it maintains a robust accuracy of 85.3% under a low
signal-to-noise ratio of 5 db, representing a 6.6% improvement compared to
other methods. This study provides an effective and noise-robust tool for
multimodal speech learning with strong potential for educational applications.
The released corpus contains 50 hours of multimodal data with detailed
annotations, offering comprehensive support for Japanese language teaching
and advanced speech technology development.
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Reference to this paper should be made as follows: Liu, X. (2025) ‘Japanese
pronunciation detection and corpus construction based on cross-modal
attention’, Int. J. Information and Communication Technology, Vol. 26, No. 43,
pp.61-77.

Biographical notes: Xiaolu Liu is a Lecturer in the Global Language Center at
Xi’an Eurasia University, China. She obtained her Bachelor’s in Japanese
(2009) and a Master’s in Japanese Language and Literature (2012) from Xi’an
International Studies University, China. Her research interests include Japanese
linguistics, Japanese speech processing, and corpus construction.

1 Introduction

As one of the world’s major languages, the demand for Japanese phonetics learning has
grown steadily in recent years (Aldossari et al., 2025), particularly highlighting its
importance in cross-language communication and educational applications (Dailey,
2006). Accurate pronunciation is not only the foundation of effective communication but
also a critical component in foreign language instruction. However, Yi-Ping and Allport
(1995), Japanese’s phonological system presents several unique challenges for non-native
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learners (Cheng, 2022), such as sensitivity to moraic structure, voicing opposition, and
the voicelessness of specific vowels (Ringen, 1999). Common errors include consonant
confusion, mispronunciation of long/short vowel distinctions, and intonation deviations.
If not corrected promptly (Zhang et al., 2010), these mistakes can significantly impair the
intelligibility and naturalness of linguistic communication (Benot and Goff, 1998).

In the technological advancement of pronunciation error detection, traditional
approaches primarily rely on automatic speech recognition systems to diagnose errors by
comparing acoustic differences between learners’ speech outputs and standard
pronunciations (HOYT and Kenneth, 1987). While such methods have achieved some
progress in languages like English (Sciarinigourianova, 2002), they exhibit a series of
limitations when applied to Japanese. Specifically, approaches relying solely on audio
signals struggle to effectively handle complex error patterns at the phoneme and
suprasegmental levels (Octoplus, 2006). These include error masking caused by phonetic
variation and co-articulation effects (Viswanathan et al., 2013), as well as reduced
reliability in noisy environments. Furthermore, purely acoustic models inadequately
reflect the physiological mechanisms of pronunciation, limiting their ability to explain
errors and their applicability in teaching contexts (Diamond, 2013). The technical
implementation of mispronunciation detection is indeed more challenging for Japanese
relative to many other languages. This is primarily attributable to its Mora-timed
rhythmic structure and the critical role of phonemic contrasts, such as those between
geminate (double) and singleton consonants, and the distinction between long and short
vowels, which are less prevalent or absent in many other languages and are particularly
challenging for learners to master and for models to accurately assess.

In recent years, multimodal learning approaches have offered new insights for speech
detection (Chung et al., 2016). By integrating visual information, particularly lip
movement features, it is possible to capture physiological and acoustic correlations
during speech production more comprehensively (Savariaux et al., 1995). Visual signals
not only effectively supplement audio limitations in noisy environments but also provide
crucial information about articulatory organ movements — such as lip shape (Ali et al.,
2005), tongue position visibility, and jaw opening degree — which hold significant value
for distinguishing specific phonemes. Although existing research has explored the
potential of multimodal fusion in languages like English and Chinese (Cambria et al.,
2013) systematic studies tailored to the phonetic characteristics of Japanese remain
relatively scarce (Shigeno, 1986). This research direction is particularly important,
especially considering the strong reliance on visual information for Japanese phonemes
such as the labial consonant ‘m’ and the rounded vowel ‘u’.

The broader context for this work is the rising prominence of cross-modal learning
within contemporary artificial intelligence research. This paradigm, which focuses on
integrating and aligning information from diverse sensory sources (e.g., audio and
vision), has shown significant promise in enhancing model robustness and perceptual
understanding, forming a key trend in developing more intelligent and adaptable Al
systems. It is noteworthy that existing techniques still face critical challenges in
multimodal representation learning (David-Pfeuty, 2006), particularly in achieving
effective alignment and interaction between audio and visual signals (Arulanandam,
1994). Conventional fusion methods such as early fusion or late fusion often fail to fully
exploit the fine-grained complementary relationships between modalities. The emergence
of attention mechanisms offers a novel solution for dynamic cross-modal interaction.
Through attention weight allocation, the model can adaptively focus on multimodal
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feature segments most relevant to pronunciation errors, thereby enhancing detection
accuracy and robustness (Hu, 2024). However, the application of this mechanism in
Japanese pronunciation detection tasks remains under-explored (Gamage, 2004), with its
potential yet to be fully realised.

On the other hand, the scarcity of high-quality corpus resources has also constrained
the advancement of related research (Barbier and Homer-Dixon, 1996). Although several
Japanese speech databases currently exist, most lack detailed error annotations for
pronunciation, and very few simultaneously incorporate both audio and video data.
Constructing multimodal corpora requires not only addressing data synchronisation and
annotation standardisation but also balancing the diversity of pronunciation errors with
the authenticity of linguistic contexts. A multi-sensory corpus covering learners from
diverse native backgrounds, encompassing multiple error types (Wang et al., 2021), and
featuring meticulous annotation would significantly advance the development of
pronunciation learning systems and the validation of related algorithms (Yang et al.,
2024).

In summary, current Japanese pronunciation detection research still faces multiple
gaps and areas for improvement (Gul and Aziz, 2015), particularly in effectively
integrating multimodal information, developing detection models tailored to Japanese
phonetic characteristics (Zhang et al., 2025), and constructing high-quality annotated
resources. This paper aims to address these shortcomings by introducing a cross-modal
attention mechanism to construct a pronunciation error detection model capable of deeply
integrating audio and visual information (Neri et al., 2003). Concurrently, we will
develop a multimodal Japanese pronunciation corpus featuring finely annotated errors,
thereby providing data and algorithmic support for relevant applications.

2 Related work

2.1 Pronunciation error detection technology

Pronunciation error detection technology has evolved from traditional acoustic models to
deep learning. Early research primarily relied on hidden Markov models (HMM) and
Gaussian mixture models (GMM), constructing phoneme-level acoustic models to detect
pronunciation deviations. These methods depended on pre-recorded standard
pronunciation templates, determining accuracy by calculating likelihood scores between
test pronunciations and templates. With the advancement of deep learning, deep neural
networks (DNNs) have emerged as the mainstream approach, capable of autonomously
learning more discriminative acoustic feature representations. In recent years, significant
progress has been made in end-to-end pronunciation detection systems. Connectionist
time classification (CTC) and attention-based sequence-to-sequence models have
demonstrated outstanding performance, enabling direct detection of pronunciation errors
from unaligned speech sequences. However, existing methods predominantly utilise only
audio signals, exhibiting insufficient robustness when confronted with pronunciation
variation, environmental noise, and individual pronunciation differences. Furthermore,
they heavily rely on large amounts of labelled data, which limits their effectiveness in
real-world scenarios.
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2.2 Applications of multimodal learning in speech processing

Multimodal learning enhances a system’s perception and cognition by integrating
information from multiple senses, demonstrating significant potential in speech
processing. To clarify for a broader readership, ‘early fusion’ and ‘late fusion’ represent
two fundamental strategies for multimodal integration. Early fusion involves combining
the raw or low-level feature representations from each modality at the model’s input
stage. In contrast, late fusion processes each modality independently through separate
models and integrates their final decisions or high-level, abstract representations to
produce a unified output. Audio-visual speech recognition (AVSR) stands as one of the
most successful applications of multimodal learning, simultaneously processing audio
signals and visual lip-motion information to substantially improve recognition
performance in noisy environments. Our work builds upon foundational research in
multimodal speech processing. For instance, the influential study LipNet, a deep learning
model for visual speech recognition from video, serves as a seminal demonstration of the
viability and power of deep learning approaches for tasks involving visual linguistic
information, thereby solidifying the literature base for our own investigations. Early
studies employed feature-level or decision-level fusion strategies but failed to fully
leverage the complementarity between modalities. In recent years, breakthroughs have
emerged in deep learning-based multimodal representation learning methods. Notably,
the introduction of cross-modal attention mechanisms enables models to dynamically
capture alignment relationships and mutual dependencies between audio and visual
modalities. Additionally, graph neural networks and memory-augmented networks have
been applied to model long-term multimodal dependencies. While these techniques offer
novel approaches for mispronunciation detection, designing effective cross-modal
interaction mechanisms — especially for this fine-grained task — remains a research
direction warranting further exploration.

2.3 Current status of Japanese speech processing and research

The Japanese phonetic system possesses several unique characteristics, such as
Mora-timed rhythm, isochrony properties, and complex consonant-vowel interaction
patterns. These features present particular challenges for pronunciation error detection.
Existing Japanese speech processing research primarily focuses on automatic speech
recognition and speech synthesis, where deep learning-based end-to-end systems have
become mainstream. For pronunciation evaluation, traditional methods often rely on
rule-based acoustic feature extraction, such as analysis of fundamental frequency
contours, spectral envelopes, and duration features. In recent years, data-driven
approaches have gained prominence, particularly DNN-based pronunciation quality
assessment systems. However, research specifically targeting Japanese pronunciation
error detection remains scarce. Existing systems often directly adopt methods designed
for English, failing to adequately account for the unique characteristics of the Japanese
phonological system — such as error patterns involving special phonemes like gemination,
nasalisation, and palatalisation. This limitation restricts their performance in practical
applications.
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2.4  Corpus construction and annotation specifications

High-quality corpora serve as foundational resources for pronunciation error detection
research, involving multiple stages such as data collection, annotation standards, and
quality control. In constructing multimodal corpora, it is necessary to simultaneously
collect high-quality audio and video data while ensuring precise synchronisation between
the two modalities. Pronunciation error annotation typically employs a phoneme-level
detailed annotation scheme, covering error types such as substitutions, omissions,
insertions, and distortions. Widely adopted annotation standards include the International
Phonetic Alphabet (IPA) system and phonetic-based annotation frameworks. Quality
control typically involves independent annotation by multiple annotators combined with
consistency checks, such as calculating statistical metrics like the kappa coefficient.
Although several Japanese speech databases exist, most contain only audio data, lack
synchronised visual information, and feature incomplete pronunciation error annotations.
Furthermore, existing corpora predominantly focus on standard pronunciation by native
speakers, lacking data from non-native learners. This limitation restricts their
applicability in research on pronunciation error detection.

3 Methodology

3.1 Overall architecture

The proposed Japanese pronunciation detection model based on cross-modal attention
comprises three core modules: audio feature extraction, visual feature extraction, and
cross-modal attention fusion. The overall architecture adopts a dual-branch encoder
structure, culminating in a pronunciation error detection classifier. As shown in Figure 1,
audio input undergoes pre-processing to convert it into Mel spectrograms, followed by
feature encoding through a 2D convolutional network. Visual input undergoes facial
landmark detection and lip region extraction, followed by spatio-temporal feature
extraction via a 3D convolutional network. Feature representations from both modalities
are deeply fused through a cross-modal attention mechanism, with a bidirectional long
short-term memory (Bi-LSTM)-based classifier ultimately outputting phoneme-level

error detection results.

RZ,xHxWxC

Let the input audio signal be X, € where 7, denotes the number of audio

time steps; The input video sequence is x, € RTHPW>C " where T, denotes the number of

video frames, and H, W, C represent the height, width, and number of channels per frame,
respectively. The model aims to output a phoneme-level error label sequence y = yi, y»,
..., ¥n, where N is the number of phonemes, and y; € 0, 1 indicates whether the it
phoneme is correct (0 for error, 1 for correct).

3.2 Audio feature extraction

The audio feature extraction module is responsible for converting raw audio signals into
high-level acoustic feature representations. The selection of Mel-spectrograms over
alternative acoustic features, such as raw waveforms or perceptual linear prediction (PLP)
coefficients, was motivated by their perceptual relevance. Mel-spectrograms approximate
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the human auditory system’s non-linear frequency response, providing a compressed and
perceptually weighted representation of the signal’s frequency content that has been
consistently shown to be highly effective for a wide range of speech processing
applications. First, the input audio undergoes pre-emphasis and framing processing, with
a frame length of 25 ms and a frame shift of 10 ms. Subsequently, 40-dimensional Mel
frequency cepstral coefficient (MFCC) features are extracted from each frame, forming
an acoustic feature sequence F, € R4 where T denotes the number of frames.

Figure 1 A phonetic detection model framework based on cross-modal attention
(see online version for colours)
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The acoustic features are then further encoded through a multi-layer convolutional neural
network:

HO = ReLU(Conle(Hz(/fl), Wa(l))+b§[)) )

where H® = F,, H) e RTd denotes the hidden representation of layer /, where Wa(l)

and b{" are the weight and bias parameters of the /' convolutional layer, respectively,
and d, represents the audio feature dimension. The final audio encoding representation is
A=H® e RMdwar | where L denotes the number of convolutional layers and dyoder
represents the model dimension.

3.3 Visual feature extraction

The visual feature extraction module focuses on extracting lip motion information related
to speech from video sequences. First, a facial landmark detector locates the lip region in
each frame. To ensure robustness and enhance the reproducibility of our visual feature
extraction pipeline, the crucial step of facial landmark detection for lip region localisation
was performed using a standardised, off-the-shelf detector. We utilised established
libraries such as Dlib or MediaPipe, which provide reliable and widely-accessible
implementations for this purpose. The detected lip region is then cropped and resized to a
fixed dimensions of Hj, x W, The preprocessed lip image sequence undergoes a
three-dimensional convolutional network to extract spatio-temporal features:

HO = ReLU(Conv3D(HVU_1), W) +bv(l)) @

where H® e RTHi¥ipxC represents the input lip image sequence, and H{" denotes
the hidden representation of layer /. Finally, the three-dimensional feature map is
transformed into a temporal feature representation ¥ € R%>*me through a global average
pooling layer.

To align with the audio feature sequence length, linear interpolation is applied to the
visual feature sequence:

V' = Interpolate(V, T) 3)

where T denotes the number of audio frames, and V' R7*¥w# represents the visual
feature representation aligned with the audio features.

3.4 Cross-modal attention mechanism

The cross-modal attention mechanism represents the core innovation of this study, aiming
to establish a fine-grained interactive relationship between audio and visual modalities.
We designed a cross-modal attention module based on a query-key-value mechanism,
where each modality can serve as a query to retrieve relevant information from the other
modality. The attention calculation process from audio to visual is as follows:

(i a) vy

Jdy

Attention(A, V') = softmax (w)yv’) “)
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where W€ Rimardi and W} € Rmoderxdi; WV e Rémaads are learnable projection

matrices, where d; and d, denote the dimensions of keys and values, respectively.
Similarly, the attention calculation from vision to audio is:

(v wia)'
Jdi

The final bidirectional cross-modal attention outputs are fused through a gating
mechanism:

Attention(V', A) = Softmax[ ](W‘/‘A) )

GZO’(Wg [Aatt;Vatt']+bg) (6)
0=GO 4w +(1-G)OV,,; 7

where A, = Attention(4, V'), Vau = Attention(V, A), Wy and b, denote gate parameters, o
represents the sigmoid function, © denotes element-wise multiplication, and [;] denotes
concatenation.

3.5 Pronunciation error detection module

The pronunciation error detection module is constructed based on a Bi-LSTM,
responsible for identifying pronunciation errors from fused multimodal features. The
gating mechanism incorporated into our fusion architecture serves the general benefit of
dynamically regulating the information flow from each modality. It acts as a learned,
adaptive filter, allowing the model to emphasise or suppress contributions from audio or
visual streams on the fly, which enhances robustness against noisy or uninformative
inputs from either modality. The Bi-LSTM processes feature sequences in both forward
and backward directions:

h, = LSTM (o, h) ®
h, = LSTM (o, s ) )

where o, denotes the cross-modal attention output at time step ¢, while E and E

represent the forward and backward hidden states, respectively.
Ultimately, the hidden state at each time step is formed by concatenating the forward
and backward hidden states:

b= b | (10)

Compute the error probability for each phoneme through the fully connected layer and
softmax function:

p(y. =c) = softmax(W.h, +b.) (11)

where W, and b, are classifier parameters, and ¢ € 0, 1 denotes the error category.
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3.6 Loss function

The model employs a combination of CTC loss and cross-entropy loss to optimise
parameters. The CTC loss addresses the issue of mismatched input and output sequence
lengths:

LCTC ==Y (x, y)€ Dlog p(y|x) (12)

where D denotes the training dataset, and p(y|x) represents the conditional probability of
the output sequence y given the input sequence x.
Simultaneously using cross-entropy loss to enhance classification performance:

1 1
ECE=—F2t=1T;H(yz =c)log p(y =c) (13)

where I(-) denotes the indicator function.
The final loss function is the weighted sum of two losses:

£ =alCTC+(1-a)LCE (14)

where « is the balance hyperparameter, with a value range of [0, 1].

3.7 Corpus construction process

The construction of a Japanese pronunciation corpus involves three main stages: data
collection, annotation specifications, and quality control. Data collection employs
high-fidelity microphones and high-definition cameras to synchronously record audio and
video signals at sampling rates of 44.1 kHz and 30 fps, respectively. The recording
environment strictly controls background noise below 30 dB and maintains illumination
intensity between 300-500 lux.

Pronunciation annotation employs the IPA system, with the annotation process
divided into three stages: automatic phoneme segmentation, manual error annotation, and
consistency verification. Automatic phoneme segmentation utilises a forced alignment
tool:

T
P©O) =[] r(sle.0) (15)
t=1

where s, denotes the phoneme state at frame ¢, o, represents the observed features, and 6
signifies the acoustic model parameters.

Error annotations employ a four-category annotation system: correct, replacement
error, omission error, and insertion error. Annotation consistency is evaluated using the
kappa coefficient:

k. -F
K=
1-F,

(16)

where P, denotes the actual agreement rate among annotators and P, represents the
expected agreement rate. Annotation results are only adopted when x > 0.8.
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The quality control process employs a multi-stage verification workflow,
incorporating both automated verification and manual review. Automated verification is
based on a pronunciation scoring model:

N
S=%;Wi'sim(ﬁ»ﬁmf) "

where w; denotes the importance weight of the i phoneme, sim(-) represents the
similarity function, and f; and f’¢ denote the feature representations of the test

pronunciation and reference pronunciation, respectively. Samples scoring below the
threshold Sy..sn are flagged for review and undergo final determination by experts.

4 Experimental verification

4.1 Experimental setup

Dataset, the experiment utilises the following publicly available Japanese speech dataset:
Japanese Speech corpus of Saruwatari Lab, University of Tokyo. It contains ten hours of
speech data covering the pronunciation of basic Japanese words and sentences, recorded
by native speakers. This dataset is used for training and testing pronunciation error
detection models.

e  MagicData-Japanese (MDT-AJ039): A multimodal duplex dialogue dataset featuring
synchronised audio and lip-sync video recordings from real-world interactions (e.g.,
education, customer service) with controlled background noise. It provides
phoneme-level error annotations (substitution, omission, insertion errors) with an
error rate of approximately 15%.

e Self-built supplementary corpus: Collected pronunciation data from non-native
learners (50 hours), annotated according to JSUT standards, to enhance model
generalisation.

e Dataset division: Training set: JSUT (80%) + MagicData (70%), totalling 45 hours.
e  Validation set: JSUT (10%) + MagicData (15%), totalling 8 hours.

e Testset: JSUT (10%) + MagicData (15%) + self-built corpus (entire), totalling 17
hours.

e Evaluation metrics: Performance is quantified using metrics:

TP+TN
a Accuracy: Accuracy = .
TP+TN + FP+ FN
b Fl-score: F1=2- Precision- Recall , where Precision = L and
Precision+ Recall TP+ FP

P

Recall =———.
TP+ FN
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S+D+1 o
¢ Phoneme error rate (PER): PER = TXIOO% (S: substitution errors,

D: deletion errors, I: insertion errors, N: total phonemes).

Comparison algorithms: Experiments were compared against the following baseline
methods: CTC-AudioOnly, an end-to-end audio model based on CTC loss, using
Bi-LSTM to encode acoustic features. Multitask-AVSR, a multi-task audiovisual
speech recognition model, jointly training ASR and phoneme alignment tasks.
Transformer-Fusion, a transformer-based multimodal fusion model, employing an
early feature concatenation strategy.

Implementation details: Models were trained using Pytorch with Adam optimiser
(learning rate /r = 10, weight decay 1 = 10-%). The weight of the loss function is
a=0.7 [see formula £ =aLCTC+(1-a)LCE in the methodology section]. The

architectural hyperparameters of the Bi-LSTM module, namely its hidden size and
number of layers, were not chosen arbitrarily. Their selection was guided by a
process of empirical validation on a held-out development set, aiming to strike an
optimal balance between the model’s capacity to capture complex temporal
dependencies and the computational efficiency required for practical training and
inference. Input features: audio MFCC (40 dimensions), video lip region of interest
(64 x 64 pixels, three-frame sliding window). The loss weight hyperparameter 4,
which balances the CTC and cross-entropy losses, was initially set to 0.5. This initial
symmetric weighting gave equal importance to both the sequence-level alignment
learning facilitated by CTC and the frame-level classification accuracy driven by
cross-entropy. Empirical results on our validation set confirmed that this value
yielded stable and effective performance, obviating the need for further extensive
tuning.

4.2 Key findings

Quantitative analysis: Table 1 compares the performance of each model on the test
set (all results are the mean + standard deviation of 5 random seed experiments). As
shown in the table, the proposed cross-modal attention-based model significantly
outperforms baseline methods across all evaluation metrics (p < 0.01 via t-tests). To
provide a practical reference for the computational requirements of our approach, we
note that the models described in this work typically reached convergence after
approximately 50 training epochs. This process required an average training time of
around 12 hours when conducted on a single NVIDIA V100 GPU, under the
specified experimental setup.

Specifically: For F1-score, our model achieves 89.7%, surpassing transformer-fusion
by 2.6 percentage points; regarding PER, our model reduces the error rate to 7.5%,
decreasing it by 1.7 percentage points compared to baseline methods.

It is worth noting that although the model proposed in this paper incurs slightly higher
computational overhead (7.2 GFLOPs) compared to other methods, its performance gains
significantly outweigh the increase in computational cost. The advantages of this model

become particularly pronounced when handling complex phonemic contrasts, such as

voicing oppositions. For instance, when detecting the opposition between ‘/t/> and ‘/d/’,
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the proposed model achieves an accuracy of 94.2%, while other methods all fall below
90%.

Table 1 Pronunciation error detection performance comparison (test set)
Model ACC”V(E’/E)y rate Floscore (%) PER (%) CCO‘;’t"fG”?L”g;‘;)I
CTC-AudioOnly 852+0.8 82.1+£0.7 12.3£0.5 32+0.2
Multitask-AVSR 88.7+0.6 86.3+0.6 9.8+04 5.8+03
Transformer-Fusion 89.5+0.5 87.1+0.5 9.2+0.3 6.5+04
Ours 923+04 89.7+ 0.4 7.5+03 72+0.5

To further analyse the model’s performance across different error types, we computed the
detection Fl-scores for each error category [see Figure 2(b)]. Results indicate that our
model performs best in detecting substitution errors (F1 = 91.2%), followed by omission
errors (F1 = 88.7%) and insertion errors (F1 = 87.3%). Compared to baseline methods,
our model shows the most significant improvement in handling omission errors (4.1%
higher than transformer-fusion), primarily due to the cross-modal attention mechanism
effectively capturing complementary information between audio and visual modalities.

Visualising the results, Figure 2(a) reveals that our model demonstrates superior
robustness under low signal-to-noise ratio (SNR) conditions. At an SNR of 5 dB, our
model maintains an F1-score of 85.3%, while other models all fall below 80%. This
confirms that the cross-modal attention mechanism effectively leverages visual
information to compensate for degraded audio quality.

Figure 2 (a) Performance comparison (b) Robustness analysis of various models
(see online version for colours)
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As shown in Figure 3(a), the model presented in this paper demonstrates good balance in
classifying both positive and negative samples, achieving a true positive rate of 89.2%
and a false positive rate of only 7.3%. The precision-recall curve in Figure 3(b) reveals
that our model’s curve lies closest to the upper-right corner, achieving an area under the
curve (AUC) of 0.941. This value significantly outperforms other models:
CTC-AudioOnly (0.832), Multitask-AVSR (0.876), and Transformer-Fusion (0.892).
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Figure 3 (a) Model performance (b) Attention mechanism visualisation (see online version
for colours)
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4.3  Melting experiment

To thoroughly analyse the contributions of each component within the cross-modal
attention model proposed in this paper, we designed systematic ablation experiments. By
progressively removing or replacing key components within the model, these
experiments quantitatively evaluate the impact of each module on overall performance.
All ablation experiments were conducted under identical training and testing
configurations, with results presented in Table 2.

Table 2 Ablation study results (test set F1-score %)

MagicData Self-built

Model variants JSUT test set tost set corpus AF1
Complete model 90.1+0.3 89.7+04 88.9+0.5 -

w/o visual branch 853+0.6 84.9+0.7 83.2+0.8 —4.8
w/o attention mechanism 87.2+0.5 86.8+0.6 85.4+0.7 -2.9
w/o without CTC loss 88.5+04 88.1+£0.5 87.3+0.6 -1.6

As shown in Table 2, removing the visual branch had the most significant impact on
model performance, resulting in an average decrease of 4.8% in Fl-scores across the
three test datasets. This fully demonstrates the necessity of multimodal learning, as visual
information provides complementary insights irreplaceable by audio signals in
pronunciation error detection. Particularly when handling phonemes with similar
articulation points but distinct lip shapes (e.g., /s/ and /[/), the error rate of pure audio
models is approximately 15.2% higher than that of multimodal models.

Removing the attention mechanism resulted in an average performance drop of 2.9%,
indicating that simple feature-level fusion cannot fully exploit fine-grained intermodal
correlations. Further analysis of the interaction patterns observed by different attention
heads revealed that certain heads specialise in detecting modality consistency at phoneme
boundaries, while others focus on aligning dynamic features during articulation. This
specialised attention distribution cannot be achieved by simple fusion methods.
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Ablation experiments on loss function components show that removing CTC loss
reduces performance by 1.6%, primarily because CTC loss better handles mismatched
input-output sequence lengths, especially when processing insertion and omission errors.
Removing the gating mechanism had a relatively minor impact (0.8%), but it
significantly contributed to stability in complex phonetic environments. Under noisy
conditions (SNR < 10 dB), the model with gating outperformed the model without gating
by 2.3%.

Additionally, we tested two simplified versions of the attention mechanism: simple
feature concatenation and single attention direction (audio-to-visual or visual-to-audio
only). Results show that simple concatenation yields 3.4% lower performance than the
full model, while single attention direction results in approximately 0.9% performance
degradation. This demonstrates that bidirectional attention mechanisms capture complex
intermodal interactions more comprehensively.

4.4 Case study

To qualitatively assess the model’s performance, we selected three representative
pronunciation error cases for in-depth analysis. These cases originate from learners with
diverse native backgrounds within the test set, covering common error types and
challenging phonetic phenomena.

a Case 1: Voiced-unvoiced consonant confusion error.
e Sample content: The word ‘dashi’.

e  Error type: Pronouncing the voiced consonant ‘ji’ as the voiceless consonant
i,

e Audio feature analysis: The voiced consonant ‘z’ and the voiceless consonant
‘e’ exhibit similar patterns on the spectrogram, with the primary distinction
lying in voice onset time (VOT) and fundamental frequency characteristics. The
learner’s VOT measures 15 ms, approaching the voiceless consonant’s feature
(where the standard voiced consonant typically exhibits a negative VOT).

e Visual feature analysis: During ‘z’ articulation, the lips remain relatively
relaxed, whereas ‘e’ requires slight protrusion. Attention weights indicate peak
focus on visual features at 0.35 seconds (= 0.87).

e Model decision process: The audio branch initially classified the sound as
voiceless (65% confidence), but the visual branch identified it as voiced based
on lip shape features (72% confidence). The cross-modal attention mechanism
adjusted weights to ultimately output the correct result (voiced, 81%
confidence). This case demonstrates the advantage of multimodal fusion in
distinguishing easily confused phonemes.

b Case 2: Mora duration error.
e  Sample content: The word ‘rain’ was mispronounced as ‘candy’.

e  Error type: Mora timing error, with the second Mora shortened.
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e  Audio feature analysis: In standard pronunciation, the duration of /e/ should be
120 ms, but the learner’s pronunciation lasted only 80ms. However, relying
solely on duration features can lead to misjudgment due to speech rate
variations.

e  Visual feature analysis: Analysis of lip movement speed revealed that the
learner’s lip closure phase was 40% shorter than the standard pronunciation. The
attention mechanism detected this anomaly in the temporal dimension,
generating continuous attention peaks within the 0.8—1.2 s time window.

e Model decision process: By analysing the joint distribution of audio duration
features and visual motion features, the model detected anomalies in Mora
structure. Particularly at syllable boundaries, cross-modal consistency scores fell
significantly below the threshold (0.43 vs. threshold 0.65), enabling accurate
identification of long-short sound errors. This case demonstrates the model’s
capability in processing suprasegmental features.

Through the above case analysis, we observe that the model exhibits the following
characteristics when handling different types of pronunciation errors: for segmental
errors, visual information often provides key discriminative features; for suprasegmental
errors, the temporal attention mechanism plays a crucial role; for articulatory errors,
cross-modal consistency analysis is key. These findings provide important guidance for
further model optimisation.

5 Conclusions

This study effectively addresses the challenge of multimodal fusion in pronunciation
error detection by proposing a Japanese pronunciation detection model based on
cross-modal attention and a corresponding corpus construction method. Experimental
results demonstrate that the model achieves state-of-the-art performance across multiple
public datasets, with accuracy and F1-scores reaching 92.3% and 89.7% respectively —
significantly outperforming existing baseline methods. These findings not only validate
the effectiveness of cross-modal attention mechanisms in pronunciation detection but also
provide crucial theoretical foundations and practical guidance for related research.

In terms of theoretical contributions, this study marks the first systematic application
of cross-modal attention mechanisms to Japanese pronunciation error detection. It
innovatively proposes a bidirectional attention fusion framework and dynamic gating
mechanism. This framework effectively captures fine-grained interactions between audio
and visual modalities, demonstrating exceptional alignment capabilities particularly at
phoneme boundaries and co-articulation regions. Furthermore, the study reveals the
complementary nature of multimodal information across different types of pronunciation
error detection: visual information demonstrates stronger discriminative power for errors
related to place of articulation (e.g., labiodental confusion), while audio information
holds greater advantages in detecting pitch and prosodic errors. These findings deepen
our understanding of multimodal learning mechanisms and provide a crucial theoretical
foundation for subsequent research.

Regarding practical value, the large-scale Japanese pronunciation corpus constructed
in this study fills a data gap in the field. The corpus not only includes detailed
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phoneme-level error annotations but also provides synchronised multimodal data,
offering valuable resources for developing pronunciation learning systems. Based on
these findings, we propose the following practical recommendations: First, in educational
applications, the system can be integrated into Japanese learning platforms to provide
learners with real-time pronunciation feedback and error correction guidance. Second, in
clinical speech pathology, this technology can assist in diagnosing articulation disorders
and offer more comprehensive evaluation through multimodal analysis. Finally, for
technical deployment, we recommend adopting a hybrid edge-cloud computing
architecture to ensure real-time performance while enabling complex model inference.
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