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Abstract: Hospital social security settlement is a core link connecting medical 
services, medical insurance systems and patient interests, with its operational 
efficiency directly affecting medical service quality and social security system 
sustainability. Expanded medical insurance coverage, surging daily settlements 
and frequent policy adjustments make traditional static scheduling unable to 
adapt to system dynamics, causing long patient waits, low terminal 
utilisation and high verification failures. This study proposes a dynamic 
scheduling framework for hospital social security settlement based on 
multi-agent reinforcement learning, with four intelligent agents for distributed 
decision-making, plus a multi-objective reward function and constrained action 
mechanism. Experiments with real data from a tertiary Grade A hospital show 
the framework cuts average settlement delay by 38.2% and 21.5%, raises 
terminal utilisation by 27.6% and maintains over 99.5% compliance. It offers 
an intelligent solution to boost settlement efficiency and supports medical 
insurance service digital transformation. 

Keywords: hospital social security settlement; dynamic scheduling;  
multi-agent reinforcement learning; MARL; intelligent agent; settlement 
efficiency. 
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1 Introduction 

Medical insurance is a key component of China’s social security system, covering over 
1.36 billion people and accounting for more than 97% of the total population. Hospital 
social security settlement, as the ‘last mile’ of medical insurance services, involves 
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real-time interaction among three core subjects: hospitals serving as settlement service 
providers, medical insurance bureaus responsible for policy enforcement and fund 
management, and patients acting as service recipients (Musleh et al., 2019). With the 
deepening of healthcare reform – including the implementation of the ‘national unified 
medical insurance information platform’ and the adjustment of outpatient co-ordination 
policies – the daily settlement volume of large tertiary hospitals has increased by an 
average of 45% annually, and the frequency of medical insurance policy updates – 
including adjustment of reimbursement ratios and addition of covered drugs – has risen to 
2–3 times per quarter (Yang et al., 2019). 

Nevertheless, the current hospital social security settlement system faces prominent 
dynamic challenges (Tu and Jin, 2024). Patient flow volatility leads to sudden surges in 
tasks during peak settlement periods, with queue lengths increasing by 3–5 times within 1 
hour; policy-driven uncertainty arises from changes in medical insurance verification 
rules, which increase the complexity of settlement tasks and prolong processing time for 
individual cases; resource constraint conflicts occur as the number of settlement terminals 
combining self-service machines and window counters is fixed in the short term, and 
unbalanced allocation results in idle terminals in non-peak areas and overloaded 
terminals in peak areas, reducing overall system efficiency (Musleh, et al., 2019). These 
challenges render traditional static scheduling methods ineffective (Tagde et al., 2021). 
The first-come-first-served (FCFS) rule ignores differences in task complexity, leading to 
excessive waiting times for high-priority patients; fixed terminal allocation cannot 
respond to real-time changes in patient flow, resulting in a utilisation rate gap of up to 
50% between peak and non-peak terminals (Cox, 2012). Therefore, there is an urgent 
need to develop adaptive dynamic scheduling methods to achieve real-time optimisation 
of settlement resources under multi-subject and multi-constraint conditions (Neha et al., 
2022). 

Scholars at home and abroad have conducted extensive research on scheduling 
optimisation in medical service scenarios, but few have focused on the specific field of 
social security settlement (Cortés et al., 2004). In terms of medical service scheduling, 
early studies mainly adopted mathematical programming methods. These methods 
optimise the allocation of outpatient service windows by pre-setting daily patient flow 
forecasts to minimise patient waiting time, but they rely on accurate prediction data and 
cannot adapt to sudden changes in patient flow (Khemakhem et al., 2020). In recent 
years, reinforcement learning (RL) has been widely used in dynamic scheduling due to its 
ability to learn optimal strategies through interaction with the environment. Single-agent 
RL models for hospital bed scheduling adjust bed allocation in real-time to reduce bed 
idle time, but such models treat the system as a whole, making it difficult to handle 
distributed decision-making scenarios involving multiple independent subjects including 
settlement terminals and medical insurance interfaces (Kumar and Singh, 2022). 

In terms of multi-agent reinforcement learning (MARL) applications, MARL has 
shown advantages in distributed system optimisation (Karamshetty et al., 2022). It has 
been applied to intelligent transportation scheduling to realise collaborative optimisation 
of multiple traffic signal agents and reduce traffic congestion, and in the medical field, 
MARL frameworks for emergency department triage have been designed with multiple 
agents collaborating to improve emergency response efficiency (Chen et al., 2006). 
However, these studies do not involve the unique constraints of social security settlement 
– including medical insurance policy compliance and real-time data interaction with 
third-party bureaus – and their reward functions cannot directly address the  
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multi-objective balance of settlement delay, resource utilisation, and policy compliance 
(Gong et al., 2022). In terms of hospital social security settlement research, existing 
literature mainly focuses on process optimisation and risk control (Goumiri et al., 2025). 
Some studies optimise the settlement process by simplifying the verification steps of  
non-critical items to reduce average processing time, but this method is limited by policy 
constraints and cannot be widely promoted; other studies propose risk early warning 
models for settlement fraud using machine learning to identify abnormal settlement 
behaviours, but they do not involve scheduling optimisation (Avtar et al., 2021). 

This study aims to solve the dynamic scheduling problem of hospital social security 
settlement under multi-subject, multi-constraint, and multi-dynamic conditions by 
constructing a MARL-based framework, realising real-time optimisation of settlement 
resources and improving the comprehensive performance of the settlement system 
(Delwar et al., 2024). 

Figure 1 Schematic diagram of core elements and logical relationships in hospital social security 
settlement system challenges (see online version for colours) 
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To systematically clarify the interconnections between the status quo, challenges, and 
multi-subject demands of the hospital social security settlement system – key issues 
addressed in this study – Figure 1 integrates core elements extracted from the 
Introduction chapter, including the scale of medical insurance coverage, the impact of 
healthcare reform, limitations of traditional scheduling, and conflicts of interest among 
multiple subjects. This diagram not only visually presents quantitative indicators and 
qualitative problems but also reflects the logical chains between these elements: for 
instance, how healthcare reform initiatives drive the surge in settlement volume, how 
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traditional scheduling limitations lead to system efficiency issues, and how conflicting 
demands of patients, hospitals, and medical insurance bureaus converge into the core 
contradiction to be resolved. The following analysis will further combine this schematic 
to elaborate on the necessity of constructing a MARL-based dynamic scheduling 
framework, laying a foundation for subsequent model design and experimental 
verification. 

2 Relevant technologies 

2.1 Hospital social security settlement system 

The hospital social security settlement system is a complex information system 
integrating hardware, software, and data interaction, consisting of three core modules. 
The settlement terminal module includes self-service settlement machines dedicated to 
outpatient patients and window counters for inpatient discharge and complex settlement 
cases, which are responsible for collecting patient information ID card, medical insurance 
card and generating settlement requests; to quantify the real-time load of each terminal, 
the terminal load rate li,t time t for terminal i is defined as:  

,
, 1

,

i tq
i t kk

i t
i

n w
l

C
=

+
=   (1) 

where ni,t is the number of ongoing tasks at terminal i at time t, and Ci is the maximum 
number of concurrent tasks that terminal i can handle (Machele et al., 2024). The medical 
insurance interface module serves as a bridge between the hospital and the medical 
insurance bureau, realising real-time data interaction including verifying patient 
insurance status, calculating reimbursement amounts, and confirming fund transfers 
through the national unified medical insurance interface; the interface response efficiency 
ηj,t for interface j at time t is calculated as: 

( ),,
1

1 j t rth
j t rη

e −
=

+ β  (2) 

where rj,t is the actual response time of interface j at time t, and rmax is the maximum 
allowable response time for the interface (Jamont and Occello, 2015). The data 
management module stores two categories of data – settlement data patient information, 
medical expenses, reimbursement records and policy data reimbursement ratios, covered 
drug lists – and provides data support for scheduling decisions such as real-time terminal 
load, patient queue length; to eliminate the impact of dimension differences on data 
utilisation, all state variables including terminal load rate, interface response time, and 
queue length are normalised using the min-max normalisation method:  

min
norm

max min

x xx
x x

−=
−

 (3) 

where x is the original variable value, xmin is the minimum value of x in historical data, 
and xmax is the maximum value of x in historical data. 
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The social security settlement process can be divided into five consecutive steps, with 
total processing time ranging from 30 seconds for simple outpatient settlement to 5 
minutes for complex inpatient settlement (Huang et al., 2022). First, in patient 
information collection, the terminal collects patient ID and medical insurance 
information, and verifies the validity of the insurance card including checks on whether 
the card is in normal status and whether the regional scope is covered . Second, in 
expense data aggregation, the system retrieves the patient’s medical expense data drugs, 
examinations, treatments from the hospital information system (HIS). Third, in medical 
insurance verification, the interface module sends expense data to the medical insurance 
bureau for real-time verification including checks on whether drugs are covered by 
insurance and whether dosage exceeds the limit. Fourth, in settlement calculation, the 
system calculates the self-payment amount Pself and reimbursement amount Preim based on 
the verified data and current reimbursement ratio α:  

( )
1 1

,  
m m

reim k k self k reim
k k

P c α P c P
= =

= × = −   (4) 

where ck is the cost of the kth medical item, αk is the reimbursement ratio for the kth 
medical item, and m is the total number of medical items for the patient. Fifth, in 
payment and confirmation, the patient pays the self-payment amount via cash, mobile 
payment, or medical insurance personal account, after which the system generates a 
settlement receipt and synchronises the record to the medical insurance bureau. 

Figure 2 System performance contribution by components across time periods (see online 
version for colours) 
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The dynamic scheduling of social security settlement faces three unique challenges. First, 
policy constraints require all scheduling actions to comply with medical insurance 
regulations including no skipping of verification steps and no modification of 
reimbursement ratios; failure to comply will result in invalid settlement and may subject 
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the hospital to penalties. Second, multi-subject interest balance involves conflicting 
objectives among different subjects – patients pursue short waiting times, hospitals 
pursue high resource utilisation, and medical insurance bureaus pursue compliance – and 
prioritising one objective may lead to issues for another such as terminal overload when 
prioritising patient speed. Third, real-time data dependence means scheduling decisions 
rely on real-time data from multiple sources terminal load, patient queue, insurance 
interface status, and data transmission delays including those in cross-provincial 
verification may affect the accuracy of decision-making; the decision reliability ρt at time 
t is thus defined as: 

( )
3

,
1

1t s t
s

ρ δ
=

= −∏  (5) 

where δ1,t is the terminal load data delay rate, δ2,t is the queue length data delay rate, and 
δ3,t is the interface status data delay rate at time t. 

To intuitively illustrate the dynamic contribution of different components of the 
hospital social security settlement system to overall performance across various time 
periods, Figure 2 presents a stacked bar chart. This chart integrates the impacts of 
medical insurance interfaces, terminals, and task types, which will help us better analyse 
the system’s operational characteristics in the following sections. 

2.2 Multi-agent reinforcement learning 

MARL extends single-agent RL to multi-agent scenarios, where multiple intelligent 
agents interact with the environment and each other to learn optimal decision-making 
strategies, and its core elements include agents, environment, state space, action space, 
reward function, and policy (Chamola et al., 2020). Agents are independent  
decision-making entities such as settlement terminal Agent, medical insurance interface 
Agent in this study that observe the environment state and select actions to maximise 
their cumulative reward; the environment refers to the external system where agents are 
located the entire social security settlement system, which provides state feedback to 
agents and updates the system state based on agent actions; the state space St at time t is a 
high-dimensional vector integrating multi-source data: 

1, , 1, , , ,, ..., , ,..., , , ,t t N t t M t o t i t tS l l η η q q=   α  (6) 

where N is the number of settlement terminals, M is the number of medical insurance 
interfaces, qo,t and q1,t are the outpatient and inpatient queue lengths at time t, and αt is the 
vector of current reimbursement ratios. The action space At is the union of individual 
agents’ action spaces: for settlement terminal agent i, the action αT,i,t.∈{0, 1, 2} with a 
probability distribution determined by the policy; for medical insurance interface agent j, 
the action αI,j.t.∈[0, 1] representing the resource allocation ratio to settlement tasks with 
continuous value output. 
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3 Mathematical model of dynamic scheduling for social security settlement 

The hospital social security settlement system is defined as a discrete-time dynamic 
system with a time step of Δt = 1 minute, which matches the real-time update frequency 
of settlement data to ensure that scheduling decisions can respond promptly to system 
changes. The scheduling time horizon T is set to 8 hours, aligning with the typical daily 
operational cycle of hospital settlement systems. This period covers both morning and 
afternoon peak patient flows, ensuring that the scheduling strategy adapts to real-world 
business rhythms. A mismatch – a shorter horizon – would fail to account for end-of-day 
backlog, while a longer one could introduce unnecessary computational overhead without 
performance gains, and the system consists of N settlement terminals, M medical 
insurance interfaces, and a patient queue that updates dynamically with patient arrivals, 
task processing, and task completion. The core goal of dynamic scheduling is to 
determine the action of each agent at every time step t where t∈ {1, 2, ..., T} such that the 
comprehensive cost of the system is minimised while all constraints are satisfied; this 
comprehensive cost integrates the costs caused by settlement delays affecting patient 
satisfaction, resource waste idle terminals or overloaded terminals, and compliance 
violations failed medical insurance verifications, forming a clear optimisation target for 
the scheduling strategy. The state space St of the system at time t is a high-dimensional 
vector that integrates multi-source data to fully reflect the system’s real-time operating 
status, specifically defined as: St = [Qt, Lt, Rt, Pt] Among this, Qt = [qt,1, qt,2] is the patient 
queue length vector – qt,1 represents the number of outpatient patients waiting in the 
queue at time t, and qt,2 represents the number of inpatient discharge patients in the 
queue; Lt = [lt,1, lt,2, …, lt,N] is the settlement terminal load vector, where lt,i denotes the 
load rate of terminal i at time t, calculated as the ratio of the number of ongoing tasks at 
the terminal to its maximum number of concurrent tasks, ensuring that the load status of 
each terminal is quantified for scheduling reference; Rt = [rt,1, rt2] is the medical insurance 
interface response time vector – is the response time of the local interface (measured in 
seconds), and rt,2 is the response time of the cross-provincial interface, reflecting the  
real-time efficiency of data interaction with the medical insurance bureau; Pt = [pt,1, pt2] is 
the policy parameter vector – rt,1 is the current outpatient reimbursement ratio, and pt2 is a 
binary variable, ensuring that scheduling strategies can adapt to policy changes. To 
eliminate the impact of dimension differences between different state variables on model 
training, all state variables are normalised to the [0, 1] interval using the min-max 
normalisation method:  

min
norm

max min

x xx
x x

−=
−

 (7) 

where xmin and xmax are the minimum and maximum values of variable x in the historical 
operation data of the settlement system, respectively. Each agent in the scheduling 
framework has an independent action space to realise distributed decision-making, and 
the total action space At of the system at time t is the union of the action spaces of all 
agents, expressed as At = AT,t ∪ AI,t ∪ AQ,t ∪ AC,t, AT,t is the action space of the settlement 
terminal agent: for each terminal i, the action aT,t,i∈{0, 1, 2} where 0 means ‘accept a 
new outpatient settlement task’, 1 means ‘accept a new inpatient discharge settlement 
task’, and 2 means ‘pause to process accumulated tasks’ this action is triggered when the 
terminal’s load rate exceeds 0.8 to avoid further overload; AI,t is the action space of the 
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medical insurance interface agent: for each interface j, the action aI,tj∈[0, 1], where the 
value of the action represents the resource allocation ratio of the interface to settlement 
verification tasks a value of 0.6 means 60% of the interface’s computing resources are 
allocated to processing settlement verification requests; AQt is the action space of the 
patient queue agent: the action AQt aQ,t∈{0, 1}, where 0 means ‘prioritise assigning 
outpatient tasks to terminals’ and 1 means ‘prioritise assigning inpatient discharge tasks 
to terminals’, with the priority setting based on the urgency of inpatient discharge delayed 
discharge will affect hospital bed turnover efficiency; AC,t is the action space of the 
coordination agent: the action aC,t∈{1, 2, …, N}, where the value of the action indicates 
the specific terminal to which the coordination agent assigns high-priority tasks, ensuring 
that key patient groups receive timely service. To balance the three core objectives of 
minimising settlement delay, maximising terminal utilisation, and ensuring medical 
insurance compliance objectives that often conflict, a weighted multi-objective reward 
function Rt is constructed to guide agents toward optimal decision-making: 

1 , 2 , 3 ,t delay t util t comp tR ω R ω R ω R= + +  (8) 

where ω1, ω2, ω3 are the weights of the three sub-rewards, satisfying ω1 + ω2 + ω3 = 1, 
the initial values of these weights are set as ω1 = 0.5, ω2 = 0.3, ω3 = 0.2. This initial 
configuration was determined through a sensitivity analysis conducted during preliminary 
experiments, where we systematically varied the weights and evaluated the impact on the 
composite reward and individual performance metrics. The chosen combination achieved 
the best balance, ensuring that settlement delay received due emphasis without 
compromising terminal utilisation or compliance. Their values are dynamically adjusted 
based on the system’s real-time state – for example, during peak hours, ω1 = 0.5,  
ω2 = 0.3, ω3 = 0.2 to prioritise reducing settlement delay; during non-peak hours  
ω1 = 0.5, ω2 = 0.3, ω3 = 0.2 to focus on improving terminal utilisation. The settlement 
delay reward is designed to penalise long patient waiting times: let dt,i be the average 
waiting time of tasks processed by terminal i at time t, and dmax be the maximum 
allowable waiting time set to 15 minutes based on hospital service quality standards, then 

,
,

1

11 min ,1 ;
N

t i
delay t

maxi

d
R

N d=

 
= −  

 
  when dt,i ≤ dmax, the reward increases as the waiting 

time decreases, and when dt,i ≤ dmax, the reward is 0 to strongly discourage excessive 
delays. The first is the terminal load constraint: the load rate of any terminal cannot 
exceed 1 at any time step t, expressed as li,t ≤ 1, ∀∈{1, …, N}, t∈{1, …, T}; this 
constraint prevents terminal overload, which would lead to prolonged task processing 
time and increased error rates. The second is the medical insurance verification 
constraint: all settlement tasks must go through mandatory verification steps including 
verifying patient insurance status, checking whether treatments are covered by insurance, 
and confirming reimbursement ratios, and the verification failure rate at any time step t 
cannot exceed 1% a requirement based on hospital service agreements with medical 
insurance bureaus, expressed as ft ≤ 0.01, ∀t∈{1, …, T}; this constraint ensures that the 
settlement system complies with national medical insurance regulations and avoids 
financial losses caused by invalid settlements. The third is the task priority constraint: 
inpatient discharge tasks have higher priority than outpatient tasks, so the average waiting 
time of inpatient discharge tasks at any time step t cannot exceed that of outpatient tasks, 
expressed as dt,inpatient ≤ dt,outpatient, ∀t∈{1, …, T}; this constraint is necessary because 
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delayed inpatient discharge will occupy hospital beds, affecting the admission of new 
patients and reducing the hospital’s overall service capacity. 

Figure 3 Terminal load rate variation by task type (see online version for colours) 
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To visually demonstrate the dynamic changes of terminal load rate under different task 
processing scenarios and its relationship with the load constraint, Figure 3 is presented. 
This figure reflects the variations of terminal load rate when handling no tasks, outpatient 
tasks, and inpatient tasks, which is closely related to the state variables and constraint 
conditions defined in this chapter. 

4 MARL-based dynamic scheduling framework design 

The proposed dynamic scheduling framework for hospital social security settlement is 
built on MARL and consists of four types of intelligent agents, each designed to align 
with core business links in the actual settlement process. The settlement terminal agent 
corresponds to the task execution layer, managing the operational status of individual 
terminals. The medical insurance interface agent aligns with the policy verification layer, 
handling real-time interactions with medical insurance bureaus. The patient queue agent 
maps to the service sequencing layer, responsible for patient classification and 
prioritisation. The coordination agent serves as the global optimisation layer, integrating 
information from all preceding links to make system-wide decisions. This four-agent 
structure ensures comprehensive coverage of the entire settlement business chain from 
task initiation to completion. If the number of agents were reduced, functional gaps 
would emerge: merging the terminal and Interface agents would blur the distinction 
between resource management and policy compliance, potentially leading to verification 
failures during peak loads; eliminating the coordination agent would disrupt global 
resource balancing, causing terminal overload and increased patient waiting times. The 
settlement terminal agent is responsible for managing the task queue of a single 
settlement terminal, selecting the type of tasks to process, and adjusting the terminal’s 



   

 

   

   
 

   

   

 

   

   104 Y. Tian    
 

    
 
 

   

   
 

   

   

 

   

       
 

working status – for instance, pausing to clear accumulated tasks when the terminal is 
overloaded; it observes both local state information and global state information provided 
by the coordination Agent, then selects whether to accept outpatient tasks, inpatient tasks, 
or pause task acceptance based on the output of its policy network, and finally sends task 
processing results to the data management module for storage and statistics. The medical 
insurance interface agent focuses on allocating computing resources to settlement 
verification tasks, monitoring the real-time response time of the interface, and prioritising 
the processing of high-urgency tasks; it observes the interface’s current response time, 
the number of pending verification tasks, and the urgency level of each task, adjusts the 
proportion of computing resources allocated to settlement tasks, and sends the 
verification results pass or fail back to the corresponding settlement terminal agent to 
support subsequent settlement steps (Wattanapanit, 2025). The patient queue agent is 
tasked with classifying incoming patients into outpatient and inpatient queues, adjusting 
task priority based on the system’s real-time state, and sending queue information to the 
coordination agent; it observes the real-time patient arrival rate, the length of each queue, 
and task urgency , sets the priority of outpatient and inpatient queues , and pushes tasks to 
the appropriate settlement terminal agent according to the allocation instructions from the 
coordination agent. 

The coordination agent acts as the core of global optimisation, integrating global state 
information including the load status of all terminals, the length of each patient queue, the 
operating status of medical insurance interfaces, and current medical insurance policy 
parameters and local action feedback from each agent, coordinating the actions of local 
agents to avoid conflicts; it assigns high-priority tasks to underloaded terminals to 
balance resource utilisation, adjusts the resource allocation ratio of the medical insurance 
interface agent based on verification task volume, and dynamically updates the weights 
of the reward function according to the system’s operating state to align local agent 
decisions with global optimisation goals. Based on the multi-agent deep deterministic 
policy gradient (MADDPG) algorithm, each agent in the framework is equipped with a 
local policy network and a local critic network, while the coordination agent is 
additionally equipped with a global critic network to evaluate the overall scheduling 
strategy and ensure that local decisions do not deviate from global objectives. The policy 
network of each agent is a 3-layer fully connected neural network (FCN): the input layer 
receives a normalised state vector, with the dimension varying by agent – the critic 
network includes local and global versions: the local critic network evaluates the quality 
of the local agent’s action based on the agent’s local state and selected action, outputting 
a Q-value that reflects the expected cumulative reward of the current state-action pair, 
and this Q-value provides feedback for the local policy network’s update guiding the 
network to generate actions with higher Q-values; the global critic network takes the 
system’s global state and the joint actions of all agents as input, evaluates the overall 
performance of the scheduling strategy, and ensures that the independent decisions of 
each local agent are consistent with the global optimisation objectives. Like the policy 
network, the critic network is also a 3-layer FCN, with the input layer integrating both 
state and action vectors to fully capture the impact of actions on state transitions, and the 
output layer outputting a scalar Q-value to quantify the value of the state-action pair. 

To improve the training stability and convergence speed of the MARL framework, 
three key training strategies are adopted. The first is experience replay: all agents store 
their interaction data with the environment – including state, action, reward, and next 
state tuples – in a shared experience replay buffer; during model training, a mini-batch of 
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samples with a batch size of 256 is randomly sampled from the buffer to update the 
policy and critic networks. This strategy breaks the temporal correlation between 
consecutive samples, reduces the variance of parameter updates, and improves the 
stability of the training process. The second is target network: each agent has a target 
policy network and a target critic network, which are updated slowly based on the 
corresponding local networks using a soft update strategy. The update rule is expressed 
as: 

(1 )target local targetθ τθ τ θ← + −  (9) 

where θtarget and θlocal are the parameter sets of the target network and local network 
respectively, and τ = 0.001 is the soft update rate. This slow update mechanism reduces 
the fluctuation of the target Q-value the Q-value predicted by the target critic network, 
avoids drastic changes in the training objective, and speeds up the convergence of the 
model. The third is exploration rate decay: to balance exploration trying new actions to 
discover potentially better strategies and exploitation, the exploration rate ε of the 
settlement terminal agent and patient queue agent decays exponentially with training 
steps. The decay rule is:  

0
t

tε ε γ= ×  (10) 

where ε0 = 0.9 is the initial exploration rate, γ = 0.995 is the decay factor, and t is the 
current training step. In the early stage of training, a high exploration rate enables agents 
to try a variety of actions and explore the entire action space; in the later stage, the 
exploration rate decreases, and agents focus on exploiting known optimal actions to 
stabilise the scheduling strategy. To ensure that agent actions comply with the constraint 
conditions defined in Section 3.5 terminal load constraint, medical insurance verification 
constraint, task priority constraint, a two-layer constraint handling mechanism is 
designed. The first layer is pre-action filtering: before an agent selects an action, the 
system predicts the impact of each candidate action on the system state based on the 
current state, and filters out actions that obviously violate constraints. For example, if the 
current load rate of a settlement terminal is 0.9, and accepting a new inpatient task would 
increase the load rate by 0.2 exceeding the maximum allowable load rate of 1, this action 
is directly filtered out to avoid terminal overload. The second layer is post-action penalty: 
if an agent’s action still violates constraints due to state prediction errors, a penalty term 
is added to the reward function to discourage such actions in future training. The adjusted 
reward function is: 

t t tR R V′ = − ×α  (11) 

where Rt is the original reward for agent t, α is the penalty coefficient, and Vt is the 
degree of constraint violation for agent t. The penalty coefficient α is set to 0.1. This 
value was determined through a grid search over the set {0.01, 0.05, 0.1, 0.5, 1.0} using a 
validation dataset. The objective of the search was to identify the value that optimally 
balances the need to suppress constraint violations against the risk of overly inhibiting 
agent exploration. Our validation results indicated that a coefficient that is too small fails 
to adequately penalise violations, resulting in a violation rate persistently above 3%. 
Conversely, a coefficient that is too large strongly discourages exploration, leading to the 
convergence of suboptimal policies with 15–20% lower cumulative rewards. The selected 
value of α = 0.1 successfully maintained the constraint violation rate below 1% without 
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significantly compromising the learning performance or the final cumulative reward. The 
rationality of this choice is further corroborated by the ablation experiments presented in 
Section 5.2, where removing the penalty term was shown to increase the violation rate to 
4.2% without yielding a meaningful improvement in reward. This two-layer mechanism 
ensures that the framework’s scheduling strategies are both feasible complying with 
constraints and optimal maximising the reward function. To further optimise the policy 
network’s update process and enhance the framework’s ability to adapt to complex 
settlement scenarios, the policy gradient calculation for each agent’s local policy network 
is improved by integrating global state information. The policy gradient ( )

kθ kJ θ∇  for 
agent is the expected cumulative reward of the policy is calculated as: 

( ) ( )
( ) ( )( )

~ , ~

1

log | ,

, , ,...,
k k kθ k s a π θ k k k global

l
k k k global global K

J θ π a s s

Q s a λ Q s a a

∇

× +
= ∇

×


 (12) 

where   is the experience replay buffer, τk(ak|sk, sglobal) is the probability of agent k 
selecting action ak given its local state sk and the global state sglobal, ( ),l

k k kQ s a  is the  
Q-value output by agent k’s local critic network, λ = 0.3 is the weight of the global  
Q-value balancing local and global objectives, and   denotes the expectation over the 
sampled experience. This improved policy gradient calculation enables each agent to 
consider both local and global benefits when updating its policy, avoiding local 
optimality and enhancing the overall optimisation effect of the scheduling framework. 

Figure 4 MARL-SS multi-agent training: reward and compliance curves (see online version  
for colours) 
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To verify the effectiveness of the training strategies designed in this section, and to 
intuitively reflect the convergence process of multi-agent rewards and the compliance of 
actions with constraints during training, Figure 4 is presented. This figure takes training 
steps as the time dimension, synchronously displaying the average cumulative reward 
changes of four core agents in the MARL-SS framework, as well as the dynamic trend of 
constraint compliance rate. It not only reflects the impact of training strategies on the 
framework’s convergence speed – for example, the experience replay mechanism reduces 
the variance of parameter updates – but also verifies the role of the two-layer constraint 
handling mechanism in ensuring policy compliance, providing direct empirical support 
for the subsequent convergence analysis. 

5 Experimental results and analysis 

5.1 Experimental environment and data sources 

The experimental environment is configured to meet the computational demands of 
MARL model training and hospital social security settlement system simulation, with 
hardware and software optimised for efficiency and accuracy. The hardware setup 
includes an Intel Core i9-13900K CPU 16 cores, 32 threads, base frequency 3.0 GHz, 
maximum turbo frequency 5.8GHz to handle data pre-processing and lightweight 
computing tasks; an NVIDIA RTX 4090 GPU with 24GB GDDR6X memory, which 
accelerates the parallel computing of policy and critic networks in the MARL framework 
by leveraging CUDA cores for high-speed matrix operations; and 64GB DDR5 RAM 
(3,200 MHz) to store large-scale datasets and a 1,000,000-sized experience replay buffer, 
avoiding data access bottlenecks during training. The software environment is built on 
Python 3.9: PyTorch 2.0 serves as the deep learning framework, enabling automatic 
differentiation and model parallelism to simplify network training; open AI Gym is used 
to construct a high-fidelity simulation of the settlement system, where the environment’s 
state transition follows the function st+1 = f(st, at, ξt), where, st is the system state at time t, 
at is the joint action of all agents, and ξt is a random disturbance term following N(0, 
0.032) simulating real-world noise like sudden changes in task complexity; Pandas 1.5.3 
is applied for data processing, and Matplotlib 3.7.1 for visualising experimental results. 

The three-month period (January–March 2024) was chosen to capture seasonal 
variations in patient flow and policy updates. This duration is sufficient to reflect typical 
operational patterns while avoiding excessive data volume that could slow training. 
Shorter periods might miss policy dynamics, while longer ones could introduce noise 
from non-stationary system behaviours, and includes three categories of high-quality 
real-world data to ensure the model’s practical relevance. The first category is settlement 
task data: 120,000 records containing task type inpatient with a 6:4 ratio, task processing 
time 30 seconds to 5 minutes, average 2.1 minutes, verification result fail with an overall 
pass rate of 98.5%, and patient waiting time average 7.8 minutes during peak hours. The 
second category is system operation data: real-time load rates of 10 settlement terminals 
sampled every minute, peak average 78%, non-peak average 32%, response times of 2 
medical insurance interfaces local interface average 1.2 seconds, cross-provincial 
interface average 3.5 seconds, and patient arrival rates peak hours 8:00–12:00 and  
14:00–17:00 with 15 patients/minute, non-peak hours with 5 patients/minute. The third 
category is policy data: 70% outpatient reimbursement ratio, 85% inpatient 
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reimbursement ratio, and 2 policy adjustments February 1, 2024: covered drug list 
update; March 15, 2024: 5% outpatient co-payment ratio adjustment. To enhance the 
model’s generalisation ability and avoid overfitting, the data is split into an 80% training 
set January–February 2024 and a 20% test set March 2024. The training set is augmented 
using a time-series method that preserves temporal trends:  

( ), 1aug t t t tx x λ= × + ∈ ×  (13) 

where xt is the original data at time t, ∈t∼U(–0.05, 0.05) is a random fluctuation term, and 
λt is a time-dependent weight 1 for peak hours, 0.5 for non-peak hours to prevent 
unrealistic data deviations in low-activity periods. 

Furthermore, while the experimental data is sourced from a tertiary Grade A hospital 
characterised by high settlement volume and complex policy scenarios, the proposed 
framework demonstrates potential for broader applicability. The challenges addressed – 
such as patient flow fluctuations, resource allocation, and policy compliance – are 
universal across hospital settlement systems, though their intensity may vary. To 
preliminarily investigate the model’s performance in simpler environments, we 
conducted a supplementary simulation mimicking the operational conditions of a primary 
hospital. Parameters were adjusted to reflect lower patient arrival rates 3 patients/minute 
during peaks, fewer settlement terminals 3 units, and streamlined policy rules. The results 
showed that our framework maintained robust performance, with an average settlement 
delay (ASD) of 2.1 minutes and a medical insurance compliance rate (MCR) of 99.7%. 
This suggests that the core scheduling strategy is adaptable. However, the model’s full 
capability in handling complex multi-interface verification and sophisticated priority 
balancing is most critically demonstrated and validated in the tertiary hospital setting, 
where these challenges are most pronounced and impactful. 

5.2 Experimental design, result analysis, and robustness verification 

The experimental design comprehensively verifies the effectiveness, superiority, and 
reliability of the proposed MARL-SS framework, covering comparison algorithms, 
evaluation indicators, and training parameters. First, three benchmark algorithms are 
selected: FCFS, a static method processing tasks by arrival order without priority 
distinction, single-agent RL using DDPG to model the entire system as one agent for 
global optimisation, and Standard MADDPG original MARL without MARL-SS’s 
dynamic reward weights and constraint handling. Second, four evaluation indicators are 
defined: ASD, minutes lower is better, terminal utilisation rate (TUR), % higher is better, 
MCR, % higher is better, and system throughput (ST), cases/hour higher is better. A 
weighted comprehensive performance score is constructed for intuitive comparison:  

0.3 1 0.25 0.25 0.2
100 100max max

ASD TUR MCR STScore
ASD ST

 = × − + × + × + × 
 

 (14) 

where ASDmax and STmax are the maximum ASD and ST among all algorithms for 
normalisation, ensuring each indicator contributes proportionally to overall performance. 
Third, training parameters are optimised via preliminary experiments: 100,000 training 
steps 1 step = 1 minute of real-time, 1,000,000 experience replay buffer size, 10–4 policy 
network learning rate, 10–3 critic network learning rate, 0.99 discount factor γ, and 256 
mini-batch size – balancing convergence speed and model stability. 
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This confirms dynamic reward weights and constraint handling accelerate 
convergence and improve stability. For performance, MARL-SS outperforms 
benchmarks: ASD 3.3 minutes, TUR 72.9%, MCR 99.6%, and ST 198 cases/hour 
attributed to collaborative agents and dynamic optimisation. Ablation experiments and 
robustness tests verify component contributions and adaptability. Three ablation models 
are designed: Ablation 1 no dynamic reward weights, fixed ω1 = 0.4, ω2 = 0.3, ω3 = 0.3, 
Ablation 2 no constraint handling, and Ablation 3 no coordination agent. The component 
contribution index quantifies each component’s role:  

100%full ablation

full

Perf Perf
Cont

Perf
−

= ×  (15) 

results show: Contweight = 3.45%, Contconstraint = 2.41%, Contcoord = 5.15% confirming all 
components are critical. Robustness tests simulate extreme scenarios: 100% patient surge 
flu outbreak and sudden outpatient reimbursement ratio adjustment 70% → 80%.  
MARL-SS maintains ASD 5.2 minutes, FCFS’s 15.8 minutes, and MCR 99.3%, Standard 
MADDPG’s 96.8% proving strong adaptability to dynamic changes. 
Table 1 Performance comparison of MARL-SS full model and ablation models in key 

indicators 

Model Components ASD 
(minutes) TUR (%) MCR (%) 

MARL-SS Dynamic reward weights + constraint 
handling + coordination agent 

3.3 72.9 99.6 

Ablation 1 No dynamic reward weights 4.1 68.5 99.5 
Ablation 2 No constraint handling 3.5 71.8 97.2 
Ablation 3 No coordination agent 4.5 62.3 99.4 

To further quantify the contribution of each core component in the MARL-SS framework 
to system performance and verify whether the integration of dynamic reward weights, 
constraint handling, and the coordination agent is indispensable for optimising settlement 
efficiency, this section designs three ablation models by removing each component 
individually and conducts comparative experiments with the MARL-SS full model. The 
specific performance differences between the full model and ablation models across key 
indicators – ASD, TUR, and MCR – are systematically presented in Table 1. This table 
not only intuitively reflects the performance degradation caused by the absence of each 
component but also provides empirical evidence for the necessity of each design in the 
MARL-SS framework, laying a foundation for subsequent in-depth analysis of 
component functions and their collaborative mechanisms. 

6 Conclusions 

This study tackles the dynamic scheduling issue of hospital social security settlement 
amid multi-subject, multi-constraint, and multi-dynamic conditions, with key efforts 
summarised below. It first conducts in-depth problem analysis to identify core challenges 
of the current settlement system – patient flow volatility, policy uncertainty, and  
multi-subject interest conflicts – while pointing out that traditional static scheduling 
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methods and single-agent reinforcement learning models fall short in handling distributed 
decision-making involving multiple independent subjects. Second, it proposes a  
MARL-based dynamic scheduling framework, dividing the settlement system into four 
collaborative agents to enable distributed decision-making and global optimisation. 
Third, in model construction, it defines the system’s state space, action space, and a 
multi-objective reward function that balances settlement delay, terminal utilisation, and 
medical insurance compliance, and designs a two-layer constraint handling mechanism to 
ensure adherence to medical insurance policies and terminal load limits. Fourth, 
experimental validation using real settlement data from a tertiary Grade A hospital shows 
the framework outperforms traditional methods and single-agent reinforcement learning 
models in key indicators, fully proving its effectiveness in optimising settlement system 
performance. Despite positive outcomes, the study has three limitations: experimental 
data from a single hospital due to privacy constraints limits generalisation across different 
hospitals, high computational complexity of the multi-agent framework hinders real-time 
deployment in resource-constrained small and medium-sized hospitals, and the reactive 
scheduling mode lacks predictive capabilities for peak scenarios. To address these, future 
research will integrate federated learning for better generalisation, use knowledge 
distillation (KD) and network pruning for model lightweighting, we preliminarily analyse 
two candidate techniques: KD and network pruning. KD is suitable for our framework 
due to the presence of a coordination agent that can serve as a teacher model, distilling 
knowledge into smaller student agents. Pruning is also applicable given the sparse 
interactions among agents in non-peak hours. We plan to compare their trade-offs: KD 
preserves performance better in distributed settings, while pruning offers higher 
compression rates for resource-constrained deployments, and add time-series prediction 
for proactive scheduling. In short, this framework offers an intelligent solution for the 
digital transformation of hospital social security settlement systems, with theoretical 
value in enriching MARL applications in medical scheduling and practical significance in 
improving hospital services and social security sustainability. 
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