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Abstract: With the rapid development of sports and computer technology, 
accurate sports movement analysis has become crucial for enhancing athlete 
performance and rehabilitation. Traditional methods face challenges such as 
difficulty in recognising multi-scene actions and inconsistent sequence lengths. 
To address this, a novel approach combining an early fusion network with 
human key point data is proposed. By integrating skeleton node information 
and using Neville interpolation, the method enhances feature extraction and 
temporal localisation. Experimental results show significant improvements: 
compared to traditional models such as LSTM and ST-GCN, the EF-GCN 
model proposed in this study achieves an increase in classification accuracy of 
up to 18.5% across various neural networks, and performance metrics such as 
accuracy, precision, recall, and F1-score improve by around 10%. This 
approach offers substantial advancements in motion analysis and holds great 
potential for future sports training and rehabilitation applications. 
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1 Introduction 

With the popularisation and continuous improvement of sports competition, the demand 
for sports technical movement analysis is increasing day by day. Sports movements are 
not only directly related to the performance and level of competition of athletes, but also 
important factors that affect the scientificity, efficiency, and other aspects of sports 
training. Sports movement analysis can help athletes optimise their technical movements, 
which is more conducive to the prevention and rehabilitation of sports injuries. Therefore, 
sports movement analysis is extremely important for athletes. In view of this, domestic 
and foreign researchers have conducted extensive research on it. For example, Yu and Bo 
proposed a method that combines background subtraction algorithm with pedestrian 
detection technology to address the impact of sports model body movements and clothing 
prints on online advertising effectiveness. The outcomes revealed that this method could 
validly improve detection rate and accuracy, and scientifically and reasonably evaluate 
advertising effectiveness (Yu and Bo, 2024). Geisen et al. proposed a motion difference 
recognition method based on sensor clothing data to address the limitations of existing 
motion classification schemes. The results indicated that this method was feasible in 
sports training. By comparing the data of volleyball serving and handball standing 
throwing, it can be found that there were subtle differences in different operating 
techniques of the same athlete, which helped to deepen the understanding of the operating 
factors that affect specific sports movements (Geisen et al., 2024). Malawski proposed a 
method for real-time qualitative action analysis that combines depth and inertial sensor 
data to address the issue of providing useful feedback in sports. The outcomes revealed 
that this method could validly detect and analyse fencing stabbing actions, and the 
accuracy and efficiency of depth and inertia sensors in analysing fencing steps were 
verified through comparative experiments (Malawski, 2021). Fan and Lin proposed an 
automatic recognition method based on thermal imaging and deep learning to address the 
issue of how to use intelligent infrastructure to monitor athlete sports injuries. The 
outcomes revealed that this method could validly identify lower limb sports injuries, with 
an average error of less than 2.22% in detecting the severity of injuries, and the output 
results were better than traditional methods (Fan and Lin, 2025). Miyake and Miyake 
proposed a method that combines optical sensors and six axis inertial sensors to address 
the limitations of traditional muscle deformation analysis methods in finger force 
estimation. The results indicated that this method could validly improve the accuracy of 
finger force estimation (Miyake and Miyake, 2025). Ma et al. proposed an unsupervised 
action segmentation framework based on motion principles to address the issues of 
insufficient fine-grained analysis in action segmentation and lack of interpretability in 
motion representation. The outcomes revealed that the method exhibited good 
performance and universality in different subjects, datasets, and application scenarios 
(Ma et al., 2022). 

The critical importance of sports movement analysis stems from its direct and 
profound impact on enhancing athletic performance and safeguarding athletes’ health. In 
elite competitive sports, subtle optimisations in technical movements often determine the 
outcome of a competition. Through precise movement analysis, coaches can provide 
data-driven feedback to athletes, enabling the optimisation of movement efficiency, 
power output, and energy distribution, thereby facilitating scientific training. 
Furthermore, this technology plays a pivotal role in the prevention and rehabilitation of 
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sports injuries. By identifying non-standard movement patterns that may lead to injuries 
(such as improper landing postures or asymmetrical gaits), proactive intervention and 
correction can be implemented. For injured athletes, quantitative analysis of movement 
quality is indispensable for monitoring rehabilitation progress and ensuring a safe return 
to competition. However, numerous challenges remain in translating these urgent 
application needs into robust computational analysis solutions. 

Although existing sports movement analysis methods have made significant progress, 
there are still issues with insufficient adaptability to dynamic features and deficiencies in 
data quality and integrity. With the ongoing advancement of computer technology, deep 
learning technology has gradually demonstrated superior effects in various fields. The 
method based on convolutional neural networks (CNN) provides a foundation for precise 
localisation of human keypoints, and early fusion of network structures as a key strategy 
to improve detection performance has become a hot research topic today. Hasanvand  
et al. proposed a new similarity analysis method based on a deep learning framework to 
extract confidence scores for human keypoints, in response to the need to improve the 
accuracy of human motion posture assessment in the fields of sports, dance, and 
healthcare. The outcomes revealed that this approach performed better than existing 
techniques on human pose image datasets and various image sets, and could more 
accurately evaluate human pose similarity through keypoint confidence scores 
(Hasanvand et al., 2023). Li et al. proposed a novel unsupervised human keypoint 
detection scheme to address the issue of unreasonable keypoint allocation caused by 
reconstructed images in unsupervised human keypoint detection. The outcomes revealed 
that the performance of this approach was superior to existing methods on multiple 
popular datasets. On the dataset, the effective version improved performance by 7.0%, 
and the efficient version improved performance by 5.7% without sacrificing inference 
speed (Li et al., 2025). Zhang et al. (2021) proposed an efficient network structure, three 
effective training strategies, and four useful post-processing techniques to address the 
challenges faced by single image human keypoint detection, such as occlusion, blur, 
lighting, and scale changes. The results indicated that this approach outperformed 
representative state-of-the-art methods in keypoint detection benchmark tests (Zhang  
et al., 2021). Zamani and Baleghi proposed an early fusion structure method based on 
visible light and thermal imaging fusion for weed detection in rice fields. The results 
indicated that this approach effectively improved the accuracy of weed detection by 
combining the features of two image modalities (Zamani and Baleghi, 2023). Priyanka 
and Kumar proposed a novel early and late fusion CNN for multi-channel speech 
enhancement problems. The results indicated that these models performed better than 
existing popular methods on multi-condition microphone array data (Priyanka and 
Kumar, 2023). 

In summary, existing research has achieved excellent results in sports action analysis 
methods, early fusion structures, and key points of the human body. However, most 
methods have problems such as difficulty in distinguishing and recognising targets and 
actions in multi-person scenes, strong perspective dependence, and inconsistent action 
sequence lengths. Therefore, a new method for sports action analysis combining early 
fusion network structure and human key points is proposed to overcome the above 
problems and improve the accuracy of action classification and temporal positioning. The 
innovation of the research lies in the proposal of early fusion graph convolutional 
network (EF-GCN), which adopts the Neville interpolation method and smooth frame 
discrimination module to improve the accuracy of action timing localisation and the 
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completeness of feature extraction, providing a more efficient and accurate method for 
sports action analysis. 

2 Methods and materials 

The study first constructs a sports action classification model based on EF-GCN. 
Secondly, a sports action localisation model is constructed by combining key points of 
the human body, which adopts the Neville interpolation method and a smooth frame 
discrimination module optimisation algorithm. Finally, a sports action analysis model 
based on early fusion network structure and key points of the human body is constructed. 

2.1 Sports action classification model based on EF-GCN 

The classification of sports movements is the foundation and core prerequisite for sports 
analysis. Due to differences in rules, techniques, and physical fitness requirements among 
different sports, accurate classification is necessary for targeted and in-depth analysis. In 
the field of sports action classification, existing methods have achieved superior results in 
single target recognition and fixed angle action capture (Shakrani et al., 2022;  
Di Domizio and Fabrizi, 2024). However, there are still shortcomings in distinguishing 
and recognising target individuals and actions in multi-person scenes, as well as reducing 
perspective dependence. EF-GCN can fuse multi-modal data in the early stages to 
enhance the integrity of feature extraction and improve action classification accuracy (Su 
et al., 2025; Sasikaladevi et al., 2024). Therefore, a sports action classification model 
based on EF-GCN is proposed, which effectively integrates the node and edge 
information of the human skeleton to enhance the accuracy of action classification. The 
sports action classification model first fuses the position information (nodes) of human 
key points and the direction and length information (edges) of bones in the early fusion 
layer, as shown in equation (1). 

,( )
N C

M C

V R
F Fuse V E

E R

×

×

∈
=

∈




 (1) 

In equation (1), V represents the node information matrix. E represents the edge 
information matrix. M indicates the number of edges. C represents the coordinate 
dimension. N indicates the number of key points. Fuse indicates the method of 
concatenation or weighted fusion. This formula model can fully consider the structural 
information of the human skeleton, fuse the features of nodes and edges together, and 
provide a richer data foundation for the action classification of the model. The study used 
a time-space dual stream feature extraction network, as shown in Figure 1. 

Figure 1 shows the feature extraction process, which mainly includes two branches: 
spatial and temporal feature extraction. The input data is first divided into two parts, 
which are used for spatial and temporal feature extraction (Luo et al., 2024; Yu et al., 
2024). The input data is processed through multiple layers and spatial features are 
extracted through spatial convolution. In the temporal features, multiple layers of 
processing are also applied to extract temporal features. Finally, the feature fusion 
module combines the extracted spatial and temporal features to obtain fused features. The 
graph convolutional layer updates node features through aggregation operations, which 
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involves aggregating information from nodes and their neighbouring nodes to update 
node feature representations, thereby capturing the spatial structural relationships of the 
human skeleton (Bao et al., 2025). The graph convolution operation is shown in  
equation (2). 

( )
i j

j N i

h σ W h b′

∈

 = ⋅ +
 
 
  (2) 

In equation (2), N(i) represents the set of neighbouring nodes of node vi. W represents the 
weight matrix. hj represents the eigenvectors of neighbouring node j. b indicates the bias 
term. σ represents the activation function. ih′  represents the updated feature vector of 
node i. Through graph convolution operations, the model can effectively learn the 
interrelationships between key points in the human body, extract discriminative 
spatiotemporal features, and provide key feature support for the classification of sports 
movements (Mishina et al., 1995). The schematic representation of the early fusion 
network is shown in Figure 2. 

Figure 1 Schematic diagram of dual-stream network (see online version for colours) 
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Figure 2 Schematic representation of the early fusion network (see online version for colours) 
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Figure 2 presents a schematic representation of an early-fusion network. Initially, the 
input data is divided into temporal and spatial modality branches (such as RGB videos 
and depth maps) for processing. Both modalities undergo convolution operations to 
extract preliminary features. Subsequently, the processed data is concatenated and 
subjected to channel compression. This step removes redundant information while 
highlighting important features. Afterward, through a feature interaction structure, 
features from different modalities complement and fuse with each other, enabling the 
network to comprehensively utilise multi-modal information. The fused features then 
undergo convolution operations again to further extract higher-level features. This 
process demonstrates that the early-fusion network integrates data from different 
modalities at an early stage, enabling the network to exhibit stronger capabilities in 
subsequent feature extraction and task execution. The dynamic topology layer updates the 
connection relationships between nodes in real-time based on action states to adapt to the 
variations and requirements of different sports actions. Specifically, this is illustrated as 
shown in equation (3). 

O O

dynamic O O

A R
A A P

P R

×

×

∈
= +  ∈

 (3) 

In equation (3), A ∈ RO×O represents the basic adjacency matrix, which expresses the 
static connection relationship of the human skeleton. P ∈ RO×O represents a dynamic 
weight matrix. O represents the total number of nodes in the human skeleton. Adynamic 
represents a dynamic adjacency matrix. Based on this dynamic topology structure, the 
model can adjust the connection relationship of the human skeleton in real-time 
according to the actual motion pattern of sports movements, thereby more accurately 
capturing the spatiotemporal characteristics of movements and improving the motion 
classification performance of the model (Endo et al., 2023). To further highlight the 
importance of key nodes in sports action classification, the model assigns different 
weights to key points. The specific implementation is shown in equation (4). 

( )agg V V P=   (4) 

In equation (4),  represents element wise multiplication. In this way, the model can 
enhance the attention of nodes that play a major role in sports, allowing these key nodes 
to play a greater role in feature extraction and analysis, thereby improving the model’s 
ability to recognise and classify sports movements. The propagation direction of features 
is crucial for the effectiveness of feature extraction, with bidirectional propagation being 
the most effective (Dornaika, 2023). It can more comprehensively capture the motion 
characteristics of the human body in sports movements, thereby extracting richer 
spatiotemporal information. The schematic diagram of one-way graph propagation and 
two-way graph propagation pathways is shown in Figure 3. 

Figure 3 shows the propagation paths of unidirectional graph and bidirectional graph. 
Figure 3(a) is a unidirectional graph propagation pathway characterised by the one-way 
transmission of information from one node to another. Figure 3(b) shows a bidirectional 
propagation path, where information not only propagates in the forward direction, but 
also has feedback or influence in the reverse direction. In most sports movements, the 
support points, force points, and focus points of the human body will change, and the 
bidirectional graph structure can provide each element in the graph with a global view. 
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This approach can improve the accuracy of sports action classification. This enables 
bidirectional communication to exhibit better feature extraction performance in sports 
action analysis, enabling more accurate recognition and classification of various sports 
actions. Using EF-GCN to extract spatiotemporal features of human keypoints, this 
process transforms the complex motion patterns of human keypoints in sports movements 
into representative feature representations. As shown in equation (5). 

( )H Extract F=  (5) 

In equation (5), H represents the extracted feature representation. This process provides 
key feature support for subsequent classification tasks, enabling classifiers to accurately 
classify sports actions based on these features. Based on the extracted features, the 
research designs an action classifier to classify sports actions, as shown in equation (6). 

fc fc
N D

S W H b
H R ×

= ⋅ +
 ∈

 (6) 

In equation (6), D represents the feature dimension. Wfc represents the weight matrix of 
the fully connected layer. bfc indicates the bias term. Function Wfc is used to convert the 
score into a probability distribution, as shown in equation (7). 

( )P Softmax S=  (7) 

In equation (7), P represents the output probability distribution vector. In this way, the 
classifier can calculate the probability of each action category based on the extracted 
features, thereby achieving the classification of sports actions. To measure the difference 
between the predicted probability distribution and the true labels and guide the training 
process of the model, a cross entropy loss function (LF) is used, as shown in equation (8). 

1

log
C

cls i i
i

L y P
=

= −  (8) 

In equation (8), yi represents the true label. Pi represents the predicted probability. By 
minimising the LF, the model can continuously optimise its own parameters, improve the 
accuracy of sports action classification, and make the predicted results as close as 
possible to the true labels (Xiao et al., 2023). In summary, the research has completed the 
construction of a sports action classification model based on EF-GCN, and its overall 
flowchart is shown in Figure 4. 

In Figure 4, after RGB video input, data pre-processing is performed first, and a 
sequence of key points is generated to construct the skeleton map. After integrating 
multi-modal information in the early fusion layer, feature extraction is performed through 
spatial feature branches (skeleton graph convolution) and temporal feature branches 
(node graph convolution and temporal convolution). Next, the features are processed 
using dynamic topology layers and keypoint weight distributions, and their representation 
is enhanced through bidirectional graph propagation. Finally, the integrated features from 
the feature fusion module are fed into the action classifier, which uses softmax 
probability transformation and cross entropy loss for action classification and outputs the 
final action classification result. Through this flowchart, it is possible to construct an 
efficient and high-precision sports action classification model. 
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Figure 3 Schematic diagram of unidirectional graph propagation and bidirectional graph 
propagation paths, (a) the information dissemination channels of unidirectional graphs 
(b) bidirectional graph information dissemination channels (see online version  
for colours) 

  
(a)     (b) 

Figure 4 Overall flowchart of the sports action classification model based on EF-GCN  
(see online version for colours) 
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2.2 Sports movement analysis method combining EF-GCN and key points of the 
human body 

In the previous section, a sports action classification model based on EF-GCN was 
studied and constructed, which achieved excellent results in integrating human skeleton 
nodes and edge information, effectively improving the accuracy of sports action 
classification. However, the model lacks adaptability to dynamic features and has limited 
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ability in temporal localisation, making it difficult to accurately determine the starting 
and ending time points of actions (Zhang et al., 2024). Therefore, the study introduces the 
graph convolutional network-based boundary-matching network (GCN-BMN). By 
introducing new data processing techniques and capturing and utilising the 
spatiotemporal features of key points in the human body, the classification and temporal 
localisation performance of sports technology movements can be improved, providing 
more accurate solutions for sports training and movement analysis. The requirements for 
human keypoint sequences in temporal localisation and action classification tasks are 
different, and it is necessary to ensure that effective data covers the complete dimensions 
of the input tensor. The comparison chart of action and timing positioning data is shown 
in Figure 5. 

Figure 5 A comparison chart of action classification and temporal positioning data, (a) action 
classification sequence (b) temporal positioning sequence (see online version  
for colours) 

 
(a) Action classification sequence

(b) Temporal positioning sequence
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Figure 5(a) shows the spatial feature extraction under the action classification sequence. 
The input data undergoes spatial convolution operation, and the convolution kernel is 
used to extract features. The output feature map is used for subsequent action 
classification. Figure 5(b) displays spatial feature extraction under temporal localisation 
sequence, where the input data is also processed through spatial convolution, and the 
output feature map is used for temporal localisation. After extracting the spatial features 
of the two sequences, further feature fusion can be performed to provide richer 
information for subsequent action classification. In response to the problems of uneven 
quality and missing keyframes in sports action data, the Neville interpolation method was 
used to improve data augmentation, as shown in equation (9). 
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− +− − −
− − − −

− +

−

 −
+ − > −= 

 =

 (9) 

Through this interpolation method, missing data can be effectively filled, enhancing the 
integrity and availability of the data, and providing a more reliable data foundation for 
subsequent analysis (de Camargo, 2022). The collected human keypoint data are  
re-sampled to a fixed length that meets the model input requirements, as shown in 
equation (10). 
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( ),out inS Resample S L=  (10) 

In equation (10), Sin represents the input signal or data sequence. L represents re-sampling 
parameters. Resample represents the re-sampling function. Data standardisation is a key 
step in ensuring data consistency (Li et al., 2024). Re-sampling data to a fixed length 
enables the model to stably receive and process input data, thereby ensuring the reliability 
and consistency of analysis results. The process expands the data in the time dimension 
and generates additional keypoint data using the Neville interpolation method to increase 
data diversity, as shown in equation (11). 

( ),aug inS Augment S r=  (11) 

In equation (11), r represents the enhancement parameter, which controls the degree or 
manner of enhancement. Augment represents the data augmentation function. Data 
augmentation can enrich the training dataset, expose the model to more diverse motion 
patterns, thereby improving the model’s generalisation ability and adaptability to various 
sports movements (Mumuni and Mumuni, 2025). This is particularly important in sports 
movement analysis, as different athletes may perform the same movement in different 
ways. The key point data are smoothed using the sliding average method to reduce noise 
interference, as shown in equation (12). 

( ),smooth inS Smooth S w=  (12) 

In equation (12), w represents the smoothing parameter. Smooth represents a smoothing 
processing function. Smoothing processing helps to remove random noise from data, 
making the motion trajectories of key points in the human body smoother and more 
natural, and more in line with the characteristics of actual sports movements, thereby 
improving the analysis performance of the model (Movassagh et al., 2023). Temporal 
localisation is used in sports action localisation, and its temporal feature extraction is 
shown in equation (13). 

( )1 , ,temp inF Conv D S K D=  (13) 

In equation (13), K represents the size of the convolution kernel. D represents the stride 
of the convolution. Conv1D represents one-dimensional convolution operation.  
Multi-scale feature extraction can fully capture the temporal variation patterns of sports 
movements, providing rich feature information for temporal localisation (Xue et al., 
2023; Li et al., 2023). In this way, the model can more accurately identify the starting and 
ending time points of sports actions, thereby achieving precise positioning of action 
timing. Continuous actions can easily lead to sticking in time sequence. A smooth frame 
discrimination module has been introduced in the study to assign membership values to 
each moment, in order to more accurately determine the key time points of sports actions 
(Ma et al., 2024). There are usually four methods for initialising membership degrees, as 
shown in Figure 6. 
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Figure 6 Comparison of four membership degree initialisation functions, (a) one-time function 
initialisation (b) initialisation of the arctangent function (c) initialisation of the normal 
distribution function (d) cosine function initialisation (see online version for colours) 
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Figure 6(a) shows the initialisation of a linear function, which is too steep at the 
extremum, making the transition process not smooth enough. Figure 6(b) shows the 
initialisation of the normal distribution function. Although it can ensure smoothness, the 
membership degree before and after the action is not significantly different, making 
learning more difficult. Figure 6(c) shows the initialisation of the arctangent function, 
which avoids the problems of the above two functions. However, there is no point where 
the slope is 0, and there may be slight abrupt changes. Figure 6(d) shows the initialisation 
of the cosine function, and its energy curve can meet the requirements. Therefore, the 
study uses the cosine function to initialise the membership curve, as shown in  
equation (14). 

0.5cos 0.50 if

0 otherwise

( )
( )

π x μ μ half x μ half
halff x

 
 


 − + − ≤ ≤


+= 



 (14) 

In equation (14), μ represents the centre position parameter. half represents the half width 
parameter. x represents input variables. The shape of the membership curve is adjusted 
through optimisation algorithms to fit the true temporal structure of the action, as shown 
in equation (15). 

( )( ) ( )f̂ x Optimise f x=  (15) 
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In equation (15), Optimise represents the optimisation function. The LF of the temporal 
localisation task comprehensively considers three aspects: boundary matching, boundary 
regression, and frame discrimination, to ensure that the model can accurately locate the 
position of sports actions in the time series. The formula is shown in equation (16). 

1 2 3temp reg seqL λ L λ L λ L= + +  (16) 

In equation (16), Ltemp represents the boundary matching loss. Lreg represents boundary 
regression loss. Lseq represents frame discrimination loss. λ1, λ2, and λ3 represent the 
weight coefficients. By integrating these three types of losses, the model can 
comprehensively consider various aspects of temporal localisation tasks, thereby 
achieving accurate localisation of sports action timing. Based on the above model 
construction, the GCN-BMN structure is shown in Figure 7. 

Figure 7 Full-scale deep supervision network architecture diagram (see online version  
for colours) 
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Figure 7 shows the GCN-BMN network structure diagram. Firstly, in the data  
pre-processing stage, the sequence length is normalised to generate sequence information 
with uniform length and rich data. Then, it is processed by a backbone network similar to 
early fusion. Then the net work enters the dilated convolution for feature extraction. The 
final extracted features are processed through boundary regression, boundary matching 
network, and smooth frame discrimination to output recognition results. In summary, the 
research has completed the construction of the early fusion and keypoint-based sports 
action analysis (EFK-SAA) model. The flowchart is shown in Figure 8. 

Figure 8 shows the flowchart of the EFK-SAA model. Firstly, there is the pre-
processing part of the video data, followed by the introduction of Neville interpolation 
filling, re-sampling, data normalisation, time dimension expansion, and smoothing 
processing. Afterwards, EF-GCN is used for feature extraction, followed by further 
processing of features through modules such as extended convolutional feature 
extraction, bounding box matching network, boundary regression network, and frame 
discrimination network. Finally, by optimising the LF, the model outputs the temporal 
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localisation result of the action. The entire process has achieved complete processing 
from video input to action classification and time localisation. 

Figure 8 Flowchart of the EFK-SAA model (see online version for colours) 
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3 Results 

The experiment first compared the performance indicators to verify the performance of 
EF-GCN, and then verified and analysed the performance of GCN-BMN. Finally, the 
performance loss and indicators of the overall model were compared and verified. 

3.1 Verification of sports action classification method based on EF-GCN 

The study first conducted experimental verification on the sports action classification 
performance of EF-GCN. Before the experiment, the research needed to prepare the 
required experimental environment and data. This included the hardware and software 
configurations required for the experiment, as well as the dataset for the experiment. 
Efficient hardware configuration and stable software version were sufficient to support 
the smooth progress of the experiment, with specific parameters shown in Table 1. 

According to the parameters shown in Table 1, two datasets, Sports-1M and  
UCF-101, were introduced for experimental data preparation. The UCF-101 dataset has a 
rich and diverse range of action categories, with videos sourced from BBC/ESPN radio 
and television channels as well as video websites such as YouTube, demonstrating high 
diversity and representativeness. The UCF-101 dataset has a huge amount of data, 
including videos of various sports activities, which can provide rich data support for 
sports action analysis. In action classification detection, accuracy is often an important 
indicator for evaluating performance. For uneven sample distribution of data, accuracy 
indicators can alleviate this deficiency. Long short-term memory (LSTM) has wide 
applications in tasks such as sequence prediction and natural language processing. Spatio 
temporal graph convolutional networks (ST-GCN) is a neural network used for 
processing spatiotemporal sequences on graph structured data. Dynamic graph neural 
networks (DGNN) are suitable for processing dynamic graph data. The study compared 
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and validated the accuracy and precision of these different models on two datasets, as 
shown in Figure 9. 
Table 1 Hardware and software configuration parameters table 

Category Item Model/version 
Hardware Computer host Intel Core i7-10700K, 16 GB DDR4  

3,200 MHz RAM, 256 GB SSD, 1 TB HDD 
GPU accelerator card NVIDIA RTX 3080, 10 GB+ VRAM 

Camera 1,920 × 1,080 resolution, 30fps frame rate, 
autofocus 

Image acquisition card Compatible with camera, supports multiple 
resolutions and formats 

Electronic component stage Adjustable angle and position, with lighting 
equipment 

Server Multi-GPU configuration, scalable based on 
data and computation needs 

Software Operating system Linux Ubuntu 20.04 
Deep learning framework PyTorch 1.9. X 

Data processing tools Python 3.8+, NumPy, Pandas, OpenCV 
Image annotation tool labelImg 
Model evaluation tools Scikit-learn, TensorBoard 

Visualisation tools Matplotlib, Seaborn 
Database management system MySQL 

Experimental 
configuration 

Optimiser Adam 
Base learning rate 0.001 

Batch size 32 
Learning rate scheduler StepLR (step_size = 30, gamma = 0.1) 

Training epochs 100 
Weight decay 0.0001 
Loss function Cross-entropy (classification), combination of 

boundary matching, regression, and frame 
discrimination losses (localisation) 

Figures 9(a) and 9(b) compare the classification accuracy and precision of different 
models on the Sports-1M and UCF-101 datasets. In the Sports-1M dataset, the proposed 
model improved accuracy by 18.5%, 1.5%, and 3.4% respectively compared to LSTM, 
ST-GCN, and DGNN models, and improved accuracy by 18.0%, 1.4%, and 3.3% 
respectively. On the UCF-101 dataset, the accuracy improved by 17.0%, 1.4%, and 2.6% 
respectively, and the accuracy improved by 16.4%, 1.5%, and 2.5% respectively. This 
indicated that the research model had a significant effect on improving the accuracy of 
sports action classification tasks. Training loss is an important indicator for measuring the 
fitting effect. The experiment further verified the training performance of the model by 
comparing this indicator, as shown in Figure 10. 
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Figure 9 Comparison of classification accuracy rates of different models on the Sports-1M and 
UCF-101 datasets, (a) comparison of classification accuracy rates in the Sports-1M 
dataset (b) comparison of classification accuracy rates in the UCF-101 dataset  
(see online version for colours) 
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Figure 10 The training loss of different models on two datasets, (a) the training loss of different 
models on Sport-1M varying with the number of iterations (b) the training loss of 
different models varying with the number of iterations on UCF-101 (see online version 
for colours) 
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Figures 10(a) and 10(b) show the variation of training loss with iteration times for 
different models on two datasets. In the Sports-1M dataset, EF-GCN showed a 22.1%, 
9.7%, and 5.7% improvement in training loss reduction with increasing iteration times 
compared to LSTM, ST-GCN, and DGNN models, respectively. In the UCF-101 dataset, 
EF-GCN gradually increased with the number of iterations z, and the degree of reduction 
in training loss compared to LSTM, ST-GCN, and DGNN models improved by 12.9%, 
7.8%, and 4.8%, respectively. This indicated that the research model had better training 
effectiveness and convergence performance. 
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3.2 Verification of sports movement localisation method combining key points 
of the human body 

In the above content, the sports action classification performance verification of the 
relevant models was completed. Next, the performance of GCN-BMN was 
experimentally verified. Due to the inconsistency of the objects targeted by the two 
models, a new dataset needed to be established for action localisation. The THUMOS 
dataset contained a large number of large-scale video datasets for action recognition and 
behaviour localisation, which were used to evaluate the performance of video action 
recognition and action detection algorithms. The VSRep dataset contained repetitive 
movements and key points of the human body, which could better reflect the real 
situation of sports movements. It is noteworthy that the datasets used for action 
classification (Sports-1M, UCF-101) and temporal localisation (VSRep, THUMOS) 
exhibit differences in action characteristics. Sports-1M and UCF-101 encompass a broad 
range of discrete, general sports actions, whereas VSRep focuses on highly repetitive, 
fine-grained movements. This domain discrepancy imposes stricter demands on the 
model’s generalisation capability. We intentionally adopted this configuration to validate 
the ability of the EF-GCN and GCN-BMN models in learning universal spatio-temporal 
features. By measuring the performance differences under different IoU thresholds, the 
experiment accurately measured the accuracy and precision of the model’s action 
localisation in the spatiotemporal dimension. Boundary sensitive network (BSN) is a 
model used in behaviour proposal networks to improve the accuracy of behaviour 
detection. Anchor free saliency-based detector (AFSD) is commonly-used for temporal 
action localisation tasks. Gaussian temporal awareness networks (GTAN) can accurately 
locate and classify actions in videos. The comparison results are shown in Figure 11. 

Figure 11 Comparison of the performance of various models in temporal action localisation,  
(a) comparison of temporal action localisation performance of different models in the 
VSRep dataset (b) comparison of timing action localisation performance of different 
models on the THUMOS dataset (see online version for colours) 
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Figures 11(a) and 11(b) show the comparison of temporal action localisation performance 
of various models on the VSRep and THUMOS datasets, respectively. Specific analysis 
showed that when the threshold was 0.9 on the VSRep dataset. The positioning accuracy 
of GCN-BMN improved by 51.2% compared to BSN, 16.5% compared to GTAN, and 
9.5% compared to AFSD. On the THUMOS dataset, GCN-BMN improved by 67.1% 



   

 

   

   
 

   

   

 

   

   52 J. Yin and J. Chen    
 

    
 
 

   

   
 

   

   

 

   

       
 

compared to BSN, 25.7% compared to GTAN, and 10.9% compared to AFSD. These 
data indicated that the research model had stronger accuracy and robustness in handling 
action localisation tasks in complex scenes. The ablation experiment was an effective 
method for evaluating the importance of each component or module in a model. By 
gradually removing or modifying certain components, the performance of the model was 
observed to determine the contribution of each part to the overall performance. The 
comparative study of ablation experiments is shown in Figure 12. 

Figure 12 Ablation experiments on the VSRep and THUMOS datasets, (a) performance 
comparison of ablation experiments on the THUMOS dataset (b) ablation experiment 
analysis was conducted on the VSRep dataset (see online version for colours) 
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Figures 12(a) and 12(b) presented the ablation experiments of the model, from which it 
could be observed that performance gradually improved with the addition of modules. On 
the THUMOS dataset, compared to the initial GCN model, after incorporating skeletal 
vector features, the mAP and F1 scores increased by 3.6% and 3.3%, respectively, while 
the starting error frames decreased by 13.6%. With the further inclusion of bidirectional 
graph propagation, based on the previous improvements, the mAP and F1 scores 
increased by an additional 2.8% and 3.6%, respectively, and the starting error frames 
decreased by 27.1%. The final model achieved relative increases of 8.3% and 9.1% in 
mAP and F1 scores, respectively, with a reduction of 35.6% in starting error frames. On 
the VSRep dataset, after incorporating skeletal vector features, the mAP and F1 scores 
increased by 4.8% and 5.4%, respectively, while the starting error frames decreased by 
17.3%. With the further inclusion of bidirectional graph propagation, based on the 
previous improvements, the mAP and F1 scores increased by an additional 8.3% and 
8.3%, respectively, and the starting error frames decreased by 32.7%. The final model 
achieved relative increases of 11.8% and 11.0% in mAP and F1 scores, respectively, with 
a reduction of 55.8% in starting error frames. These results indicated that the research 
method had a significant effect in improving the accuracy and robustness of action 
localisation. To thoroughly analyse the performance differences among various models in 
action classification tasks, the study visually demonstrated the classification effects of 
each model through confusion matrices, as shown in Figure 13. 
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Figure 13 Comparison chart of confusion matrices between, (a) GCN-BMN model (b) BSN 
model (see online version for colours) 
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Figures 13(a) and 13(b) displayed the confusion matrices of the GCN-BMN and BSN 
models, respectively, for various sports action localisation and classification tasks. 
Through comparative analysis, it was found that, in the basketball shooting category, the 
accuracy of the research model improved by approximately 8.2% compared to the BSN 
model. In the tennis serve category, the improvement was 11.3%; in the soccer kicking 
category, it was 8.0%; in the swimming arm-stroke category, it was 9.3%; and in the 
volleyball spiking category, it was 9.9%. Overall, the GCN-BMN model demonstrated an 
average accuracy improvement of approximately 9.3% across all action categories 
compared to the BSN model, showcasing stronger localisation and classification accuracy 
as well as discriminative capability. 

3.3 Verification of sports movement analysis method combining early fusion 
network structure and key points of human body 

Finally, the performance of the proposed EFK-SAA model was studied and validated. 
The video inference for body pose and expression (VIBE) model combines Transformer 
and LSTM to simultaneously perform pose estimation and action recognition on videos. 
Therefore, the experiment compared various performance indicators and performance 
consumption of the above models to verify the practicality and accuracy of the model, as 
shown in Figure 14. 

Figure 14(a) presented a comparison of the performance metrics between the  
EFK-SAA and VIBE models. The EFK-SAA model outperformed the VIBE model 
across all four metrics – accuracy, precision, recall, and F1-score – with improvements of 
9.8%, 10.7%, 9.4%, and 10.1%, respectively. Figure 14(b) illustrated a comparison of 
resource utilisation between the EFK-SAA and VIBE models, revealing that the  
EFK-SAA model reduced GPU memory usage by 20.7% and system memory usage by 
20.0%. In summary, the EFK-SAA model demonstrated superior performance metrics 
compared to the VIBE model while also being more resource-efficient. This indicated 
that the EFK-SAA model maintained high performance with lower resource 
requirements, rendering it more appropriate for environments with limited resources. The 
pursuit of high performance must be balanced with computational efficiency to achieve 
practical deployment. For an objective evaluation of this trade-off, the study compared 
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key hardware-independent metrics – parameter count, floating-point operations (FLOPs), 
and throughput – with the results summarised in Table 2. 

Figure 14 Comparison of performance requirements and indicators between the EFK-SAA and 
VIBE models, (a) comparison of model performance indicators (b) comparison of 
model performance requirements (see online version for colours) 
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Table 2 Model efficiency and throughput comparison 

Model Parameters (M) FLOPs (G) Throughput (FPS, BS = 8) 
VIBE 45.7 12.5 37.1 
ST-GCN 32.1 9.2 51.3 
DGNN 35.2 9.9 48.5 

The data in Table 2 provides quantifiable evidence for the superior efficiency of the  
EFK-SAA model. When compared to existing graph convolutional networks, EFK-SAA 
demonstrates clear advantages. It uses 12% fewer parameters than ST-GCN and requires 
15% fewer FLOPs. Furthermore, it achieves approximately 20% reduction in both 
parameters and FLOPs compared to the DGNN model. This indicates that the early 
fusion strategy is more effective in constructing compact and computationally efficient 
graph representations than the sequential or dual-stream approaches adopted by these 
established GCNs. This architectural efficiency directly translates to the highest inference 
throughput (69.4 FPS), surpassing ST-GCN by 35% and DGNN by 43%. These 
hardware-agnostic metrics confirm that the model’s ‘high efficiency’ stems from its 
fundamental architectural innovations, making it particularly suitable for real-time 
applications. Finally, the experiment validated the analytical performance of the models 
for sports action analysis tasks using confusion matrices, as shown in Figure 15. 

Figures 15(a) and 15(b) respectively show the confusion matrices of EFK-SAA and 
VIBE models in sports action analysis tasks. Through comparative analysis, it can be 
concluded that EFK-SAA improved the accuracy of running category analysis by 4.6% 
compared to VIBE, jumping category analysis by 10.0%, throwing category analysis by 
3.66%, and hitting category analysis by 3.53%. This indicated that the EFK-SAA model 
had high accuracy and strong discriminative ability in action classification tasks. To 
evaluate the model’s tolerance to upstream keypoint detection errors, the study simulated 
varying levels of detection inaccuracies by injecting Gaussian noise into the keypoint 
coordinates and observed the corresponding changes in model performance. The results 
are presented in Table 4. 
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Figure 15 Comparison of confusion matrices for different models Dels, (a) EFK-SAA model  
(b) VIBE model (see online version for colours) 
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Table 3 Model performance under different keypoint noise levels 

Noise level (σ) Description EFK-SAA mAP (%) Δ mAP (percentage points) 
0 Clean (original) 76.5 - 
0.02 Low noise 75.1 -1.4 
0.05 Moderate noise 73.8 -2.7 

According to Table 4, under low to moderate noise levels (σ ≤ 0.05), the performance 
degradation of the EFK-SAA model is minimal (<3.5%). This indicates that the model 
does not overfit to ideal ‘clean’ data and demonstrates robust tolerance towards slight 
jitter or minor inaccuracies in keypoint coordinates. This noise-insensitive robustness is 
crucial for ensuring reliable performance in practical applications characterised by 
complex real-world conditions, such as occlusions and motion blur. To ensure the motion 
analysis model can adapt to motion capture data from different sources, its cross-device 
generalisation capability was validated. The experiment involved training the model on 
data from one type of device and conducting zero-shot testing on data from another 
device, thereby evaluating the model’s robustness to systematic biases between devices. 
The performance comparison is shown in Table 4. 
Table 4 Model performance under different keypoint noise levels 

Training device Test device ST-GCN DGNN EFK-SAA 
Vicon (high-end) Kinect (consumer) 68.3 71.5 79.2 
Kinect Vicon 65.1 68.9 76.8 
Average cross-device accuracy - 66.7 70.2 78.0 

The cross-device test results (Table 4) clearly demonstrate that the EFK-SAA model 
exhibits the strongest generalisation capability and robustness when handling keypoint 
data from different sources. Whether generalising from high-precision equipment to 
consumer-grade devices or vice versa, the model’s performance degradation is 
significantly smaller than that of ST-GCN and DGNN models. This advantage primarily 
stems from the adopted early fusion strategy and data augmentation techniques like 
Neville interpolation, which guide the model to learn more universal spatiotemporal 
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feature representations rather than overfitting to device-specific noise or data 
characteristics. This validation confirms that the EFK-SAA model can better adapt to 
motion capture hardware of varying brands and specifications, substantially enhancing its 
deployment value and application potential in heterogeneous real-world environments. 

4 Discussion 

In recent times, with the ongoing advancement of deep learning technology, sports 
movement analysis has been widely studied as a key technology for improving athlete 
movement scores and preventing injuries. To address the issue of insufficient 
applicability in traditional analysis, a sports action analysis model combining early fusion 
network structure and human key points was proposed. The experiment outcomes 
indicated that on the Sports-1M dataset, the classification accuracy of the EF-GCN model 
was improved by 18.5%, 1.5%, and 3.4% respectively compared to the LSTM, ST-GCN, 
and DGNN models, and the accuracy was improved by 18.0%, 1.4%, and 3.3% 
respectively. In contrast, the general supervised machine learning classification method 
proposed by Worsey et al., although achieving lightweight deployment in athlete state 
monitoring, relied on a single sensor data and static feature extraction strategy, making it 
difficult to capture the spatiotemporal dynamic correlations and joint coordination 
patterns of sports movements (Worsey et al., 2021). By integrating human skeleton nodes 
and edge information through EF-GCN and introducing dynamic topology layers and 
keypoint weight distributions, research could more accurately capture human motion 
patterns, thereby achieving significant improvements in classification accuracy and 
precision, providing more reliable and efficient technical support for sports action 
classification. On VSRep, when the IoU threshold was 0.9, GCN-BMN improved 
localisation accuracy by 51.2%, 16.5%, and 9.5% compared to BSN, GTAN, and AFSD 
models, respectively. According to the ablation experiment on THUMOS, adding only 
skeletal vector features increased mAP by 3.6%, while further introducing bidirectional 
graph propagation increased mAP by 2.8%. The final mAP of the model relative to the 
initial GCN increased by 8.3%. While the study did not separately report the absolute 
number of false positive segments, the model’s significantly higher precision provides 
direct and compelling evidence of its capability in false positive control. In action 
localisation tasks, precision is defined as the proportion of true positives among all 
positive samples predicted by the model (TP / (TP + FP)). Therefore, the substantial 
improvement in precision achieved by the model on the VSRep and THUMOS datasets 
compared to baseline models such as BSN and GTAN directly demonstrates a significant 
reduction in the number of erroneous proposals generated. The systematic review by Pu 
et al. pointed out that traditional trajectory analysis methods in football action localisation 
had boundary recognition errors of over 15% for emergency stop/direction change 
scenarios (Pu et al., 2024). By using a smooth frame discrimination module to adaptively 
partition action intervals, the localisation accuracy of football kicking categories was 
improved by 8.0%, which was significantly better than existing sports specific analysis 
models. 

For the EFK-SAA model, when compared to the VIBE model, its performance 
improved by 9.8%, 10.7%, 9.4%, and 10.1% in terms of accuracy, precision, recall, and 
F1-score, respectively. Meanwhile, the GPU memory and system memory usage of the 
EFK-SAA model decreased by 20.7% and 20.0%, respectively. The VIBE model relied 
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on LSTM and transformer to capture long-term temporal dependencies, whereas the 
EFK-SAA model modelled structural changes in actions within the spatial dimension 
through a dynamic topology layer and bidirectional graph propagation, supplemented by 
temporal convolutions to extract local dynamics, thereby reducing the number of 
parameters. The sports action recognition method proposed by Nadeem et al. which was 
based on deep learning and clustering-based feature extraction algorithms, achieved 
certain results in action recognition. However, its generalisation capability was limited 
when dealing with action sequences of inconsistent lengths (Nadeem et al., 2021). This 
approach primarily depended on clustering algorithms for feature extraction and 
classification of actions, leading to a decline in accuracy and robustness when handling 
complex and variable sports action sequences. In contrast, the EFK-SAA method, 
through its early-fusion network architecture and Neville’s interpolation method, was 
better able to adapt to action sequences of varying lengths, enhancing the model’s 
generalisation capability and adaptability. 

In summary, the EFK-SAA method proposed in the study achieved significant 
improvements in the classification accuracy and temporal localisation accuracy of sports 
movements compared to existing mainstream methods. This method not only performed 
well in core indicators, but also was more efficient in utilising computing resources. This 
provided a more powerful and practical analytical tool for refined sports training, 
technical movement assessment, and sports injury prevention. 

5 Conclusions 

In today’s digital age, sports movement analysis, with the help of computer technology, 
provides powerful support for athletes’ performance improvement, injury prevention, and 
rehabilitation. A new sports action analysis method combining early fusion network 
structure and human key points was proposed to address the problems of insufficient 
target differentiation in multiple scenarios, strong perspective dependence, and 
inconsistent action sequence length in existing technologies. By integrating human 
skeleton nodes and edge information, and introducing the Neville interpolation method 
and smooth frame discrimination module, the study aimed to improve the accuracy and 
stability of sports analysis. The results indicated that EFK-SAA had higher accuracy and 
efficiency in sports action classification and localisation tasks. However, the study still 
has the following limitations: Firstly, the model’s performance relies on the accuracy of 
upstream pose estimation and remains relatively sensitive to keypoint errors in occluded 
scenarios. Secondly, the current method lacks biomechanical constraints, which may 
affect the plausibility of complex movement analysis. Additionally, the model is designed 
for fixed action categories and lacks the ability to adapt to emerging sports. Future 
research will focus on: developing representation learning methods more robust to pose 
estimation noise; integrating biomechanical principles into graph convolutional networks 
to enhance the physical plausibility of analysis; and exploring incremental learning 
frameworks to enable continuous model adaptation to new sports categories. 
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