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Abstract: With the rapid development of sports and computer technology,
accurate sports movement analysis has become crucial for enhancing athlete
performance and rehabilitation. Traditional methods face challenges such as
difficulty in recognising multi-scene actions and inconsistent sequence lengths.
To address this, a novel approach combining an early fusion network with
human key point data is proposed. By integrating skeleton node information
and using Neville interpolation, the method enhances feature extraction and
temporal localisation. Experimental results show significant improvements:
compared to traditional models such as LSTM and ST-GCN, the EF-GCN
model proposed in this study achieves an increase in classification accuracy of
up to 18.5% across various neural networks, and performance metrics such as
accuracy, precision, recall, and Fl-score improve by around 10%. This
approach offers substantial advancements in motion analysis and holds great
potential for future sports training and rehabilitation applications.
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1 Introduction

With the popularisation and continuous improvement of sports competition, the demand
for sports technical movement analysis is increasing day by day. Sports movements are
not only directly related to the performance and level of competition of athletes, but also
important factors that affect the scientificity, efficiency, and other aspects of sports
training. Sports movement analysis can help athletes optimise their technical movements,
which is more conducive to the prevention and rehabilitation of sports injuries. Therefore,
sports movement analysis is extremely important for athletes. In view of this, domestic
and foreign researchers have conducted extensive research on it. For example, Yu and Bo
proposed a method that combines background subtraction algorithm with pedestrian
detection technology to address the impact of sports model body movements and clothing
prints on online advertising effectiveness. The outcomes revealed that this method could
validly improve detection rate and accuracy, and scientifically and reasonably evaluate
advertising effectiveness (Yu and Bo, 2024). Geisen et al. proposed a motion difference
recognition method based on sensor clothing data to address the limitations of existing
motion classification schemes. The results indicated that this method was feasible in
sports training. By comparing the data of volleyball serving and handball standing
throwing, it can be found that there were subtle differences in different operating
techniques of the same athlete, which helped to deepen the understanding of the operating
factors that affect specific sports movements (Geisen et al., 2024). Malawski proposed a
method for real-time qualitative action analysis that combines depth and inertial sensor
data to address the issue of providing useful feedback in sports. The outcomes revealed
that this method could validly detect and analyse fencing stabbing actions, and the
accuracy and efficiency of depth and inertia sensors in analysing fencing steps were
verified through comparative experiments (Malawski, 2021). Fan and Lin proposed an
automatic recognition method based on thermal imaging and deep learning to address the
issue of how to use intelligent infrastructure to monitor athlete sports injuries. The
outcomes revealed that this method could validly identify lower limb sports injuries, with
an average error of less than 2.22% in detecting the severity of injuries, and the output
results were better than traditional methods (Fan and Lin, 2025). Miyake and Miyake
proposed a method that combines optical sensors and six axis inertial sensors to address
the limitations of traditional muscle deformation analysis methods in finger force
estimation. The results indicated that this method could validly improve the accuracy of
finger force estimation (Miyake and Miyake, 2025). Ma et al. proposed an unsupervised
action segmentation framework based on motion principles to address the issues of
insufficient fine-grained analysis in action segmentation and lack of interpretability in
motion representation. The outcomes revealed that the method exhibited good
performance and universality in different subjects, datasets, and application scenarios
(Ma et al., 2022).

The critical importance of sports movement analysis stems from its direct and
profound impact on enhancing athletic performance and safeguarding athletes’ health. In
elite competitive sports, subtle optimisations in technical movements often determine the
outcome of a competition. Through precise movement analysis, coaches can provide
data-driven feedback to athletes, enabling the optimisation of movement efficiency,
power output, and energy distribution, thereby facilitating scientific training.
Furthermore, this technology plays a pivotal role in the prevention and rehabilitation of
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sports injuries. By identifying non-standard movement patterns that may lead to injuries
(such as improper landing postures or asymmetrical gaits), proactive intervention and
correction can be implemented. For injured athletes, quantitative analysis of movement
quality is indispensable for monitoring rehabilitation progress and ensuring a safe return
to competition. However, numerous challenges remain in translating these urgent
application needs into robust computational analysis solutions.

Although existing sports movement analysis methods have made significant progress,
there are still issues with insufficient adaptability to dynamic features and deficiencies in
data quality and integrity. With the ongoing advancement of computer technology, deep
learning technology has gradually demonstrated superior effects in various fields. The
method based on convolutional neural networks (CNN) provides a foundation for precise
localisation of human keypoints, and early fusion of network structures as a key strategy
to improve detection performance has become a hot research topic today. Hasanvand
et al. proposed a new similarity analysis method based on a deep learning framework to
extract confidence scores for human keypoints, in response to the need to improve the
accuracy of human motion posture assessment in the fields of sports, dance, and
healthcare. The outcomes revealed that this approach performed better than existing
techniques on human pose image datasets and various image sets, and could more
accurately evaluate human pose similarity through keypoint confidence scores
(Hasanvand et al., 2023). Li et al. proposed a novel unsupervised human keypoint
detection scheme to address the issue of unreasonable keypoint allocation caused by
reconstructed images in unsupervised human keypoint detection. The outcomes revealed
that the performance of this approach was superior to existing methods on multiple
popular datasets. On the dataset, the effective version improved performance by 7.0%,
and the efficient version improved performance by 5.7% without sacrificing inference
speed (Li et al., 2025). Zhang et al. (2021) proposed an efficient network structure, three
effective training strategies, and four useful post-processing techniques to address the
challenges faced by single image human keypoint detection, such as occlusion, blur,
lighting, and scale changes. The results indicated that this approach outperformed
representative state-of-the-art methods in keypoint detection benchmark tests (Zhang
et al., 2021). Zamani and Baleghi proposed an early fusion structure method based on
visible light and thermal imaging fusion for weed detection in rice fields. The results
indicated that this approach effectively improved the accuracy of weed detection by
combining the features of two image modalities (Zamani and Baleghi, 2023). Priyanka
and Kumar proposed a novel early and late fusion CNN for multi-channel speech
enhancement problems. The results indicated that these models performed better than
existing popular methods on multi-condition microphone array data (Priyanka and
Kumar, 2023).

In summary, existing research has achieved excellent results in sports action analysis
methods, early fusion structures, and key points of the human body. However, most
methods have problems such as difficulty in distinguishing and recognising targets and
actions in multi-person scenes, strong perspective dependence, and inconsistent action
sequence lengths. Therefore, a new method for sports action analysis combining early
fusion network structure and human key points is proposed to overcome the above
problems and improve the accuracy of action classification and temporal positioning. The
innovation of the research lies in the proposal of early fusion graph convolutional
network (EF-GCN), which adopts the Neville interpolation method and smooth frame
discrimination module to improve the accuracy of action timing localisation and the
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completeness of feature extraction, providing a more efficient and accurate method for
sports action analysis.

2 Methods and materials

The study first constructs a sports action classification model based on EF-GCN.
Secondly, a sports action localisation model is constructed by combining key points of
the human body, which adopts the Neville interpolation method and a smooth frame
discrimination module optimisation algorithm. Finally, a sports action analysis model
based on early fusion network structure and key points of the human body is constructed.

2.1 Sports action classification model based on EF-GCN

The classification of sports movements is the foundation and core prerequisite for sports
analysis. Due to differences in rules, techniques, and physical fitness requirements among
different sports, accurate classification is necessary for targeted and in-depth analysis. In
the field of sports action classification, existing methods have achieved superior results in
single target recognition and fixed angle action capture (Shakrani et al., 2022;
Di Domizio and Fabrizi, 2024). However, there are still shortcomings in distinguishing
and recognising target individuals and actions in multi-person scenes, as well as reducing
perspective dependence. EF-GCN can fuse multi-modal data in the early stages to
enhance the integrity of feature extraction and improve action classification accuracy (Su
et al., 2025; Sasikaladevi et al., 2024). Therefore, a sports action classification model
based on EF-GCN is proposed, which effectively integrates the node and edge
information of the human skeleton to enhance the accuracy of action classification. The
sports action classification model first fuses the position information (nodes) of human
key points and the direction and length information (edges) of bones in the early fusion
layer, as shown in equation (1).

Ve RN><C

F=F V,E 1
use( ){EE i M

In equation (1), ¥ represents the node information matrix. E represents the edge
information matrix. M indicates the number of edges. C represents the coordinate
dimension. N indicates the number of key points. Fuse indicates the method of
concatenation or weighted fusion. This formula model can fully consider the structural
information of the human skeleton, fuse the features of nodes and edges together, and
provide a richer data foundation for the action classification of the model. The study used
a time-space dual stream feature extraction network, as shown in Figure 1.

Figure 1 shows the feature extraction process, which mainly includes two branches:
spatial and temporal feature extraction. The input data is first divided into two parts,
which are used for spatial and temporal feature extraction (Luo et al., 2024; Yu et al.,
2024). The input data is processed through multiple layers and spatial features are
extracted through spatial convolution. In the temporal features, multiple layers of
processing are also applied to extract temporal features. Finally, the feature fusion
module combines the extracted spatial and temporal features to obtain fused features. The
graph convolutional layer updates node features through aggregation operations, which
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involves aggregating information from nodes and their neighbouring nodes to update
node feature representations, thereby capturing the spatial structural relationships of the
human skeleton (Bao et al., 2025). The graph convolution operation is shown in
equation (2).

h{=a( > W-hj+b] )
JENG)

In equation (2), N(i) represents the set of neighbouring nodes of node v;. W represents the
weight matrix. /; represents the eigenvectors of neighbouring node j. b indicates the bias
term. ¢ represents the activation function. /; represents the updated feature vector of
node i. Through graph convolution operations, the model can effectively learn the
interrelationships between key points in the human body, extract discriminative
spatiotemporal features, and provide key feature support for the classification of sports
movements (Mishina et al., 1995). The schematic representation of the early fusion
network is shown in Figure 2.

Figure 1 Schematic diagram of dual-stream network (see online version for colours)

Spatial feature extraction flow

( Spatial mode

Temporal feature extraction flow

Figure 2 Schematic representation of the early fusion network (see online version for colours)
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Figure 2 presents a schematic representation of an early-fusion network. Initially, the
input data is divided into temporal and spatial modality branches (such as RGB videos
and depth maps) for processing. Both modalities undergo convolution operations to
extract preliminary features. Subsequently, the processed data is concatenated and
subjected to channel compression. This step removes redundant information while
highlighting important features. Afterward, through a feature interaction structure,
features from different modalities complement and fuse with each other, enabling the
network to comprehensively utilise multi-modal information. The fused features then
undergo convolution operations again to further extract higher-level features. This
process demonstrates that the early-fusion network integrates data from different
modalities at an early stage, enabling the network to exhibit stronger capabilities in
subsequent feature extraction and task execution. The dynamic topology layer updates the
connection relationships between nodes in real-time based on action states to adapt to the
variations and requirements of different sports actions. Specifically, this is illustrated as
shown in equation (3).

Ae R0><0

Pe R0><() (3)

Adynamic =A+ P{

In equation (3), 4 € R9"© represents the basic adjacency matrix, which expresses the
static connection relationship of the human skeleton. P € RO represents a dynamic
weight matrix. O represents the total number of nodes in the human skeleton. Agmamic
represents a dynamic adjacency matrix. Based on this dynamic topology structure, the
model can adjust the connection relationship of the human skeleton in real-time
according to the actual motion pattern of sports movements, thereby more accurately
capturing the spatiotemporal characteristics of movements and improving the motion
classification performance of the model (Endo et al., 2023). To further highlight the
importance of key nodes in sports action classification, the model assigns different
weights to key points. The specific implementation is shown in equation (4).

agg(V)=VOP 4)

In equation (4), O represents element wise multiplication. In this way, the model can
enhance the attention of nodes that play a major role in sports, allowing these key nodes
to play a greater role in feature extraction and analysis, thereby improving the model’s
ability to recognise and classify sports movements. The propagation direction of features
is crucial for the effectiveness of feature extraction, with bidirectional propagation being
the most effective (Dornaika, 2023). It can more comprehensively capture the motion
characteristics of the human body in sports movements, thereby extracting richer
spatiotemporal information. The schematic diagram of one-way graph propagation and
two-way graph propagation pathways is shown in Figure 3.

Figure 3 shows the propagation paths of unidirectional graph and bidirectional graph.
Figure 3(a) is a unidirectional graph propagation pathway characterised by the one-way
transmission of information from one node to another. Figure 3(b) shows a bidirectional
propagation path, where information not only propagates in the forward direction, but
also has feedback or influence in the reverse direction. In most sports movements, the
support points, force points, and focus points of the human body will change, and the
bidirectional graph structure can provide each element in the graph with a global view.
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This approach can improve the accuracy of sports action classification. This enables
bidirectional communication to exhibit better feature extraction performance in sports
action analysis, enabling more accurate recognition and classification of various sports
actions. Using EF-GCN to extract spatiotemporal features of human keypoints, this
process transforms the complex motion patterns of human keypoints in sports movements
into representative feature representations. As shown in equation (5).

H = Extract(F) ®)

In equation (5), H represents the extracted feature representation. This process provides
key feature support for subsequent classification tasks, enabling classifiers to accurately
classify sports actions based on these features. Based on the extracted features, the
research designs an action classifier to classify sports actions, as shown in equation (6).

S= W/‘E -H+ b fe
H NxD (6)
eER
In equation (6), D represents the feature dimension. W represents the weight matrix of
the fully connected layer. b indicates the bias term. Function Wy is used to convert the
score into a probability distribution, as shown in equation (7).

P = Softmax(S) )

In equation (7), P represents the output probability distribution vector. In this way, the
classifier can calculate the probability of each action category based on the extracted
features, thereby achieving the classification of sports actions. To measure the difference
between the predicted probability distribution and the true labels and guide the training
process of the model, a cross entropy loss function (LF) is used, as shown in equation (8).

C
Liy ==Y yilogP @®)
i=1

In equation (8), y; represents the true label. P; represents the predicted probability. By
minimising the LF, the model can continuously optimise its own parameters, improve the
accuracy of sports action classification, and make the predicted results as close as
possible to the true labels (Xiao et al., 2023). In summary, the research has completed the
construction of a sports action classification model based on EF-GCN, and its overall
flowchart is shown in Figure 4.

In Figure 4, after RGB video input, data pre-processing is performed first, and a
sequence of key points is generated to construct the skeleton map. After integrating
multi-modal information in the early fusion layer, feature extraction is performed through
spatial feature branches (skeleton graph convolution) and temporal feature branches
(node graph convolution and temporal convolution). Next, the features are processed
using dynamic topology layers and keypoint weight distributions, and their representation
is enhanced through bidirectional graph propagation. Finally, the integrated features from
the feature fusion module are fed into the action classifier, which uses softmax
probability transformation and cross entropy loss for action classification and outputs the
final action classification result. Through this flowchart, it is possible to construct an
efficient and high-precision sports action classification model.
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Figure 3 Schematic diagram of unidirectional graph propagation and bidirectional graph
propagation paths, (a) the information dissemination channels of unidirectional graphs
(b) bidirectional graph information dissemination channels (see online version
for colours)

@ (b)

Figure 4 Overall flowchart of the sports action classification model based on EF-GCN
(see online version for colours)
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2.2 Sports movement analysis method combining EF-GCN and key points of the
human body

In the previous section, a sports action classification model based on EF-GCN was
studied and constructed, which achieved excellent results in integrating human skeleton
nodes and edge information, effectively improving the accuracy of sports action
classification. However, the model lacks adaptability to dynamic features and has limited
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ability in temporal localisation, making it difficult to accurately determine the starting
and ending time points of actions (Zhang et al., 2024). Therefore, the study introduces the
graph convolutional network-based boundary-matching network (GCN-BMN). By
introducing new data processing techniques and capturing and utilising the
spatiotemporal features of key points in the human body, the classification and temporal
localisation performance of sports technology movements can be improved, providing
more accurate solutions for sports training and movement analysis. The requirements for
human keypoint sequences in temporal localisation and action classification tasks are
different, and it is necessary to ensure that effective data covers the complete dimensions
of the input tensor. The comparison chart of action and timing positioning data is shown
in Figure 5.

Figure 5 A comparison chart of action classification and temporal positioning data, (a) action
classification sequence (b) temporal positioning sequence (see online version
for colours)

Spatial convolution
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Figure 5(a) shows the spatial feature extraction under the action classification sequence.
The input data undergoes spatial convolution operation, and the convolution kernel is
used to extract features. The output feature map is used for subsequent action
classification. Figure 5(b) displays spatial feature extraction under temporal localisation
sequence, where the input data is also processed through spatial convolution, and the
output feature map is used for temporal localisation. After extracting the spatial features
of the two sequences, further feature fusion can be performed to provide richer
information for subsequent action classification. In response to the problems of uneven
quality and missing keyframes in sports action data, the Neville interpolation method was
used to improve data augmentation, as shown in equation (9).

(k=1) (x—x,_j+|) (k=1) k1)
T +—(T;,j—l _7;(—1,1'—1

= )
k-1) e
];’(j ifi=

ifi>j
) mr>j (9)

Through this interpolation method, missing data can be effectively filled, enhancing the
integrity and availability of the data, and providing a more reliable data foundation for
subsequent analysis (de Camargo, 2022). The collected human keypoint data are
re-sampled to a fixed length that meets the model input requirements, as shown in
equation (10).
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Sou = Resample(S;,, L) (10)

In equation (10), S;, represents the input signal or data sequence. L represents re-sampling
parameters. Resample represents the re-sampling function. Data standardisation is a key
step in ensuring data consistency (Li et al., 2024). Re-sampling data to a fixed length
enables the model to stably receive and process input data, thereby ensuring the reliability
and consistency of analysis results. The process expands the data in the time dimension
and generates additional keypoint data using the Neville interpolation method to increase
data diversity, as shown in equation (11).

Sug = Augment (S,,, r) (11)

In equation (11),  represents the enhancement parameter, which controls the degree or
manner of enhancement. Augment represents the data augmentation function. Data
augmentation can enrich the training dataset, expose the model to more diverse motion
patterns, thereby improving the model’s generalisation ability and adaptability to various
sports movements (Mumuni and Mumuni, 2025). This is particularly important in sports
movement analysis, as different athletes may perform the same movement in different
ways. The key point data are smoothed using the sliding average method to reduce noise
interference, as shown in equation (12).

Ssmoon = Smooth( Sy, w) (12)

In equation (12), w represents the smoothing parameter. Smooth represents a smoothing
processing function. Smoothing processing helps to remove random noise from data,
making the motion trajectories of key points in the human body smoother and more
natural, and more in line with the characteristics of actual sports movements, thereby
improving the analysis performance of the model (Movassagh et al., 2023). Temporal
localisation is used in sports action localisation, and its temporal feature extraction is
shown in equation (13).

Femp = Conv1D(S,,, K, D) (13)

In equation (13), K represents the size of the convolution kernel. D represents the stride
of the convolution. ConvlD represents one-dimensional convolution operation.
Multi-scale feature extraction can fully capture the temporal variation patterns of sports
movements, providing rich feature information for temporal localisation (Xue et al.,
2023; Li et al., 2023). In this way, the model can more accurately identify the starting and
ending time points of sports actions, thereby achieving precise positioning of action
timing. Continuous actions can easily lead to sticking in time sequence. A smooth frame
discrimination module has been introduced in the study to assign membership values to
each moment, in order to more accurately determine the key time points of sports actions
(Ma et al., 2024). There are usually four methods for initialising membership degrees, as
shown in Figure 6.
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Figure 6 Comparison of four membership degree initialisation functions, (a) one-time function
initialisation (b) initialisation of the arctangent function (c) initialisation of the normal
distribution function (d) cosine function initialisation (see online version for colours)
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Figure 6(a) shows the initialisation of a linear function, which is too steep at the
extremum, making the transition process not smooth enough. Figure 6(b) shows the
initialisation of the normal distribution function. Although it can ensure smoothness, the
membership degree before and after the action is not significantly different, making
learning more difficult. Figure 6(c) shows the initialisation of the arctangent function,
which avoids the problems of the above two functions. However, there is no point where
the slope is 0, and there may be slight abrupt changes. Figure 6(d) shows the initialisation
of the cosine function, and its energy curve can meet the requirements. Therefore, the
study uses the cosine function to initialise the membership curve, as shown in
equation (14).

w(x—p) .
0.5 +0.50 if u—half <x<u+hal
F)= cos( half j if w—half <x < pu+half

(14)

0 otherwise

In equation (14), u represents the centre position parameter. half represents the half width
parameter. x represents input variables. The shape of the membership curve is adjusted
through optimisation algorithms to fit the true temporal structure of the action, as shown
in equation (15).

[ (x) = Optimise( f(x)) (15)
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In equation (15), Optimise represents the optimisation function. The LF of the temporal
localisation task comprehensively considers three aspects: boundary matching, boundary
regression, and frame discrimination, to ensure that the model can accurately locate the
position of sports actions in the time series. The formula is shown in equation (16).

L= /llLtemp + /12 Lreg + /13Lseq (16)

In equation (16), Lsmy represents the boundary matching loss. L., represents boundary
regression loss. L, represents frame discrimination loss. 41, 1>, and 13 represent the
weight coefficients. By integrating these three types of losses, the model can
comprehensively consider various aspects of temporal localisation tasks, thereby
achieving accurate localisation of sports action timing. Based on the above model
construction, the GCN-BMN structure is shown in Figure 7.

Figure 7 Full-scale deep supervision network architecture diagram (see online version
for colours)
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Figure 7 shows the GCN-BMN network structure diagram. Firstly, in the data
pre-processing stage, the sequence length is normalised to generate sequence information
with uniform length and rich data. Then, it is processed by a backbone network similar to
early fusion. Then the net work enters the dilated convolution for feature extraction. The
final extracted features are processed through boundary regression, boundary matching
network, and smooth frame discrimination to output recognition results. In summary, the
research has completed the construction of the early fusion and keypoint-based sports
action analysis (EFK-SAA) model. The flowchart is shown in Figure 8.

Figure 8 shows the flowchart of the EFK-SAA model. Firstly, there is the pre-
processing part of the video data, followed by the introduction of Neville interpolation
filling, re-sampling, data normalisation, time dimension expansion, and smoothing
processing. Afterwards, EF-GCN is used for feature extraction, followed by further
processing of features through modules such as extended convolutional feature
extraction, bounding box matching network, boundary regression network, and frame
discrimination network. Finally, by optimising the LF, the model outputs the temporal
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localisation result of the action. The entire process has achieved complete processing
from video input to action classification and time localisation.

Figure 8 Flowchart of the EFK-SAA model (see online version for colours)

RGB video input » EF-GCN

Data preprocessing
Expanded convolution

| Generation of key point sequence | feature elxtraction
| Neville interpolation filling | Bounding box Boundary TFrmni
matching regression discrimination
| Resampling to a fixed length | network network network

Y
Temporal

Data normalization Lo SS ﬁ}nct'lon positioning
optimization

network
v

Output action
timing positioning

| Temporal dimension data expansion |

| Sliding average smoothing treatment |

3 Results

The experiment first compared the performance indicators to verify the performance of
EF-GCN, and then verified and analysed the performance of GCN-BMN. Finally, the
performance loss and indicators of the overall model were compared and verified.

3.1 Verification of sports action classification method based on EF-GCN

The study first conducted experimental verification on the sports action classification
performance of EF-GCN. Before the experiment, the research needed to prepare the
required experimental environment and data. This included the hardware and software
configurations required for the experiment, as well as the dataset for the experiment.
Efficient hardware configuration and stable software version were sufficient to support
the smooth progress of the experiment, with specific parameters shown in Table 1.
According to the parameters shown in Table 1, two datasets, Sports-IM and
UCF-101, were introduced for experimental data preparation. The UCF-101 dataset has a
rich and diverse range of action categories, with videos sourced from BBC/ESPN radio
and television channels as well as video websites such as YouTube, demonstrating high
diversity and representativeness. The UCF-101 dataset has a huge amount of data,
including videos of various sports activities, which can provide rich data support for
sports action analysis. In action classification detection, accuracy is often an important
indicator for evaluating performance. For uneven sample distribution of data, accuracy
indicators can alleviate this deficiency. Long short-term memory (LSTM) has wide
applications in tasks such as sequence prediction and natural language processing. Spatio
temporal graph convolutional networks (ST-GCN) is a neural network used for
processing spatiotemporal sequences on graph structured data. Dynamic graph neural
networks (DGNN) are suitable for processing dynamic graph data. The study compared
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and validated the accuracy and precision of these different models on two datasets, as
shown in Figure 9.

Table 1 Hardware and software configuration parameters table
Category Item Model/version
Hardware Computer host Intel Core 17-10700K, 16 GB DDR4
3,200 MHz RAM, 256 GB SSD, 1 TB HDD
GPU accelerator card NVIDIA RTX 3080, 10 GB+ VRAM
Camera 1,920 x 1,080 resolution, 30fps frame rate,
autofocus
Image acquisition card Compatible with camera, supports multiple
resolutions and formats
Electronic component stage Adjustable angle and position, with lighting
equipment
Server Multi-GPU configuration, scalable based on
data and computation needs
Software Operating system Linux Ubuntu 20.04
Deep learning framework PyTorch 1.9. X
Data processing tools Python 3.8+, NumPy, Pandas, OpenCV
Image annotation tool labellmg
Model evaluation tools Scikit-learn, TensorBoard
Visualisation tools Matplotlib, Seaborn
Database management system MySQL
Experimental Optimiser Adam
configuration Base learning rate 0.001
Batch size 32
Learning rate scheduler StepLR (step_size = 30, gamma = 0.1)
Training epochs 100
Weight decay 0.0001
Loss function Cross-entropy (classification), combination of

boundary matching, regression, and frame
discrimination losses (localisation)

Figures 9(a) and 9(b) compare the classification accuracy and precision of different
models on the Sports-1M and UCF-101 datasets. In the Sports-1M dataset, the proposed
model improved accuracy by 18.5%, 1.5%, and 3.4% respectively compared to LSTM,
ST-GCN, and DGNN models, and improved accuracy by 18.0%, 1.4%, and 3.3%
respectively. On the UCF-101 dataset, the accuracy improved by 17.0%, 1.4%, and 2.6%
respectively, and the accuracy improved by 16.4%, 1.5%, and 2.5% respectively. This
indicated that the research model had a significant effect on improving the accuracy of
sports action classification tasks. Training loss is an important indicator for measuring the
fitting effect. The experiment further verified the training performance of the model by
comparing this indicator, as shown in Figure 10.
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Figure 9 Comparison of classification accuracy rates of different models on the Sports-1M and
UCF-101 datasets, (a) comparison of classification accuracy rates in the Sports-1M
dataset (b) comparison of classification accuracy rates in the UCF-101 dataset
(see online version for colours)
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Figure 10 The training loss of different models on two datasets, (a) the training loss of different
models on Sport-1M varying with the number of iterations (b) the training loss of
different models varying with the number of iterations on UCF-101 (see online version
for colours)
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Figures 10(a) and 10(b) show the variation of training loss with iteration times for
different models on two datasets. In the Sports-1M dataset, EF-GCN showed a 22.1%,
9.7%, and 5.7% improvement in training loss reduction with increasing iteration times
compared to LSTM, ST-GCN, and DGNN models, respectively. In the UCF-101 dataset,
EF-GCN gradually increased with the number of iterations z, and the degree of reduction
in training loss compared to LSTM, ST-GCN, and DGNN models improved by 12.9%,
7.8%, and 4.8%, respectively. This indicated that the research model had better training
effectiveness and convergence performance.
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3.2 Verification of sports movement localisation method combining key points
of the human body

In the above content, the sports action classification performance verification of the
relevant models was completed. Next, the performance of GCN-BMN was
experimentally verified. Due to the inconsistency of the objects targeted by the two
models, a new dataset needed to be established for action localisation. The THUMOS
dataset contained a large number of large-scale video datasets for action recognition and
behaviour localisation, which were used to evaluate the performance of video action
recognition and action detection algorithms. The VSRep dataset contained repetitive
movements and key points of the human body, which could better reflect the real
situation of sports movements. It is noteworthy that the datasets used for action
classification (Sports-1M, UCF-101) and temporal localisation (VSRep, THUMOS)
exhibit differences in action characteristics. Sports-1M and UCF-101 encompass a broad
range of discrete, general sports actions, whereas VSRep focuses on highly repetitive,
fine-grained movements. This domain discrepancy imposes stricter demands on the
model’s generalisation capability. We intentionally adopted this configuration to validate
the ability of the EF-GCN and GCN-BMN models in learning universal spatio-temporal
features. By measuring the performance differences under different IoU thresholds, the
experiment accurately measured the accuracy and precision of the model’s action
localisation in the spatiotemporal dimension. Boundary sensitive network (BSN) is a
model used in behaviour proposal networks to improve the accuracy of behaviour
detection. Anchor free saliency-based detector (AFSD) is commonly-used for temporal
action localisation tasks. Gaussian temporal awareness networks (GTAN) can accurately
locate and classify actions in videos. The comparison results are shown in Figure 11.

Figure 11 Comparison of the performance of various models in temporal action localisation,
(a) comparison of temporal action localisation performance of different models in the
VSRep dataset (b) comparison of timing action localisation performance of different
models on the THUMOS dataset (see online version for colours)
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Figures 11(a) and 11(b) show the comparison of temporal action localisation performance
of various models on the VSRep and THUMOS datasets, respectively. Specific analysis
showed that when the threshold was 0.9 on the VSRep dataset. The positioning accuracy
of GCN-BMN improved by 51.2% compared to BSN, 16.5% compared to GTAN, and
9.5% compared to AFSD. On the THUMOS dataset, GCN-BMN improved by 67.1%
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compared to BSN, 25.7% compared to GTAN, and 10.9% compared to AFSD. These
data indicated that the research model had stronger accuracy and robustness in handling
action localisation tasks in complex scenes. The ablation experiment was an effective
method for evaluating the importance of each component or module in a model. By
gradually removing or modifying certain components, the performance of the model was
observed to determine the contribution of each part to the overall performance. The
comparative study of ablation experiments is shown in Figure 12.

Figure 12 Ablation experiments on the VSRep and THUMOS datasets, (a) performance
comparison of ablation experiments on the THUMOS dataset (b) ablation experiment
analysis was conducted on the VSRep dataset (see online version for colours)
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Figures 12(a) and 12(b) presented the ablation experiments of the model, from which it
could be observed that performance gradually improved with the addition of modules. On
the THUMOS dataset, compared to the initial GCN model, after incorporating skeletal
vector features, the mAP and F1 scores increased by 3.6% and 3.3%, respectively, while
the starting error frames decreased by 13.6%. With the further inclusion of bidirectional
graph propagation, based on the previous improvements, the mAP and F1 scores
increased by an additional 2.8% and 3.6%, respectively, and the starting error frames
decreased by 27.1%. The final model achieved relative increases of 8.3% and 9.1% in
mAP and F1 scores, respectively, with a reduction of 35.6% in starting error frames. On
the VSRep dataset, after incorporating skeletal vector features, the mAP and F1 scores
increased by 4.8% and 5.4%, respectively, while the starting error frames decreased by
17.3%. With the further inclusion of bidirectional graph propagation, based on the
previous improvements, the mAP and F1 scores increased by an additional 8.3% and
8.3%, respectively, and the starting error frames decreased by 32.7%. The final model
achieved relative increases of 11.8% and 11.0% in mAP and F1 scores, respectively, with
a reduction of 55.8% in starting error frames. These results indicated that the research
method had a significant effect in improving the accuracy and robustness of action
localisation. To thoroughly analyse the performance differences among various models in
action classification tasks, the study visually demonstrated the classification effects of
each model through confusion matrices, as shown in Figure 13.
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Figure 13 Comparison chart of confusion matrices between, (a) GCN-BMN model (b) BSN
model (see online version for colours)
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Figures 13(a) and 13(b) displayed the confusion matrices of the GCN-BMN and BSN
models, respectively, for various sports action localisation and classification tasks.
Through comparative analysis, it was found that, in the basketball shooting category, the
accuracy of the research model improved by approximately 8.2% compared to the BSN
model. In the tennis serve category, the improvement was 11.3%; in the soccer kicking
category, it was 8.0%; in the swimming arm-stroke category, it was 9.3%; and in the
volleyball spiking category, it was 9.9%. Overall, the GCN-BMN model demonstrated an
average accuracy improvement of approximately 9.3% across all action categories
compared to the BSN model, showcasing stronger localisation and classification accuracy
as well as discriminative capability.

3.3 Verification of sports movement analysis method combining early fusion
network structure and key points of human body

Finally, the performance of the proposed EFK-SAA model was studied and validated.
The video inference for body pose and expression (VIBE) model combines Transformer
and LSTM to simultaneously perform pose estimation and action recognition on videos.
Therefore, the experiment compared various performance indicators and performance
consumption of the above models to verify the practicality and accuracy of the model, as
shown in Figure 14.

Figure 14(a) presented a comparison of the performance metrics between the
EFK-SAA and VIBE models. The EFK-SAA model outperformed the VIBE model
across all four metrics — accuracy, precision, recall, and F1-score — with improvements of
9.8%, 10.7%, 9.4%, and 10.1%, respectively. Figure 14(b) illustrated a comparison of
resource utilisation between the EFK-SAA and VIBE models, revealing that the
EFK-SAA model reduced GPU memory usage by 20.7% and system memory usage by
20.0%. In summary, the EFK-SAA model demonstrated superior performance metrics
compared to the VIBE model while also being more resource-efficient. This indicated
that the EFK-SAA model maintained high performance with lower resource
requirements, rendering it more appropriate for environments with limited resources. The
pursuit of high performance must be balanced with computational efficiency to achieve
practical deployment. For an objective evaluation of this trade-off, the study compared
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key hardware-independent metrics — parameter count, floating-point operations (FLOPs),
and throughput — with the results summarised in Table 2.

Figure 14 Comparison of performance requirements and indicators between the EFK-SAA and
VIBE models, (a) comparison of model performance indicators (b) comparison of
model performance requirements (see online version for colours)
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Table 2 Model efficiency and throughput comparison

Model Parameters (M) FLOPs (G) Throughput (FPS, BS = 8)
VIBE 45.7 12.5 37.1
ST-GCN 32.1 9.2 51.3
DGNN 35.2 9.9 48.5

The data in Table 2 provides quantifiable evidence for the superior efficiency of the
EFK-SAA model. When compared to existing graph convolutional networks, EFK-SAA
demonstrates clear advantages. It uses 12% fewer parameters than ST-GCN and requires
15% fewer FLOPs. Furthermore, it achieves approximately 20% reduction in both
parameters and FLOPs compared to the DGNN model. This indicates that the early
fusion strategy is more effective in constructing compact and computationally efficient
graph representations than the sequential or dual-stream approaches adopted by these
established GCNs. This architectural efficiency directly translates to the highest inference
throughput (69.4 FPS), surpassing ST-GCN by 35% and DGNN by 43%. These
hardware-agnostic metrics confirm that the model’s ‘high efficiency’ stems from its
fundamental architectural innovations, making it particularly suitable for real-time
applications. Finally, the experiment validated the analytical performance of the models
for sports action analysis tasks using confusion matrices, as shown in Figure 15.

Figures 15(a) and 15(b) respectively show the confusion matrices of EFK-SAA and
VIBE models in sports action analysis tasks. Through comparative analysis, it can be
concluded that EFK-SAA improved the accuracy of running category analysis by 4.6%
compared to VIBE, jumping category analysis by 10.0%, throwing category analysis by
3.66%, and hitting category analysis by 3.53%. This indicated that the EFK-SAA model
had high accuracy and strong discriminative ability in action classification tasks. To
evaluate the model’s tolerance to upstream keypoint detection errors, the study simulated
varying levels of detection inaccuracies by injecting Gaussian noise into the keypoint
coordinates and observed the corresponding changes in model performance. The results
are presented in Table 4.
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Figure 15 Comparison of confusion matrices for different models Dels, (a) EFK-SAA model
(b) VIBE model (see online version for colours)
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Table 3 Model performance under different keypoint noise levels

Noise level (o) Description EFK-SAA mAP (%) A mAP (percentage points)

0 Clean (original) 76.5 -

0.02 Low noise 75.1 -1.4

0.05 Moderate noise 73.8 -2.7

According to Table 4, under low to moderate noise levels (o < 0.05), the performance
degradation of the EFK-SAA model is minimal (<3.5%). This indicates that the model
does not overfit to ideal ‘clean’ data and demonstrates robust tolerance towards slight
jitter or minor inaccuracies in keypoint coordinates. This noise-insensitive robustness is
crucial for ensuring reliable performance in practical applications characterised by
complex real-world conditions, such as occlusions and motion blur. To ensure the motion
analysis model can adapt to motion capture data from different sources, its cross-device
generalisation capability was validated. The experiment involved training the model on
data from one type of device and conducting zero-shot testing on data from another
device, thereby evaluating the model’s robustness to systematic biases between devices.
The performance comparison is shown in Table 4.

Table 4 Model performance under different keypoint noise levels
Training device Test device ST-GCN DGNN EFK-SAA
Vicon (high-end) Kinect (consumer) 68.3 71.5 79.2
Kinect Vicon 65.1 68.9 76.8
Average cross-device accuracy - 66.7 70.2 78.0

The cross-device test results (Table 4) clearly demonstrate that the EFK-SAA model
exhibits the strongest generalisation capability and robustness when handling keypoint
data from different sources. Whether generalising from high-precision equipment to
consumer-grade devices or vice versa, the model’s performance degradation is
significantly smaller than that of ST-GCN and DGNN models. This advantage primarily
stems from the adopted early fusion strategy and data augmentation techniques like
Neville interpolation, which guide the model to learn more universal spatiotemporal
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feature representations rather than overfitting to device-specific noise or data
characteristics. This validation confirms that the EFK-SAA model can better adapt to
motion capture hardware of varying brands and specifications, substantially enhancing its
deployment value and application potential in heterogeneous real-world environments.

4 Discussion

In recent times, with the ongoing advancement of deep learning technology, sports
movement analysis has been widely studied as a key technology for improving athlete
movement scores and preventing injuries. To address the issue of insufficient
applicability in traditional analysis, a sports action analysis model combining early fusion
network structure and human key points was proposed. The experiment outcomes
indicated that on the Sports-1M dataset, the classification accuracy of the EF-GCN model
was improved by 18.5%, 1.5%, and 3.4% respectively compared to the LSTM, ST-GCN,
and DGNN models, and the accuracy was improved by 18.0%, 1.4%, and 3.3%
respectively. In contrast, the general supervised machine learning classification method
proposed by Worsey et al., although achieving lightweight deployment in athlete state
monitoring, relied on a single sensor data and static feature extraction strategy, making it
difficult to capture the spatiotemporal dynamic correlations and joint coordination
patterns of sports movements (Worsey et al., 2021). By integrating human skeleton nodes
and edge information through EF-GCN and introducing dynamic topology layers and
keypoint weight distributions, research could more accurately capture human motion
patterns, thereby achieving significant improvements in classification accuracy and
precision, providing more reliable and efficient technical support for sports action
classification. On VSRep, when the IoU threshold was 0.9, GCN-BMN improved
localisation accuracy by 51.2%, 16.5%, and 9.5% compared to BSN, GTAN, and AFSD
models, respectively. According to the ablation experiment on THUMOS, adding only
skeletal vector features increased mAP by 3.6%, while further introducing bidirectional
graph propagation increased mAP by 2.8%. The final mAP of the model relative to the
initial GCN increased by 8.3%. While the study did not separately report the absolute
number of false positive segments, the model’s significantly higher precision provides
direct and compelling evidence of its capability in false positive control. In action
localisation tasks, precision is defined as the proportion of true positives among all
positive samples predicted by the model (TP / (TP + FP)). Therefore, the substantial
improvement in precision achieved by the model on the VSRep and THUMOS datasets
compared to baseline models such as BSN and GTAN directly demonstrates a significant
reduction in the number of erroneous proposals generated. The systematic review by Pu
et al. pointed out that traditional trajectory analysis methods in football action localisation
had boundary recognition errors of over 15% for emergency stop/direction change
scenarios (Pu et al., 2024). By using a smooth frame discrimination module to adaptively
partition action intervals, the localisation accuracy of football kicking categories was
improved by 8.0%, which was significantly better than existing sports specific analysis
models.

For the EFK-SAA model, when compared to the VIBE model, its performance
improved by 9.8%, 10.7%, 9.4%, and 10.1% in terms of accuracy, precision, recall, and
F1-score, respectively. Meanwhile, the GPU memory and system memory usage of the
EFK-SAA model decreased by 20.7% and 20.0%, respectively. The VIBE model relied
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on LSTM and transformer to capture long-term temporal dependencies, whereas the
EFK-SAA model modelled structural changes in actions within the spatial dimension
through a dynamic topology layer and bidirectional graph propagation, supplemented by
temporal convolutions to extract local dynamics, thereby reducing the number of
parameters. The sports action recognition method proposed by Nadeem et al. which was
based on deep learning and clustering-based feature extraction algorithms, achieved
certain results in action recognition. However, its generalisation capability was limited
when dealing with action sequences of inconsistent lengths (Nadeem et al., 2021). This
approach primarily depended on clustering algorithms for feature extraction and
classification of actions, leading to a decline in accuracy and robustness when handling
complex and variable sports action sequences. In contrast, the EFK-SAA method,
through its early-fusion network architecture and Neville’s interpolation method, was
better able to adapt to action sequences of varying lengths, enhancing the model’s
generalisation capability and adaptability.

In summary, the EFK-SAA method proposed in the study achieved significant
improvements in the classification accuracy and temporal localisation accuracy of sports
movements compared to existing mainstream methods. This method not only performed
well in core indicators, but also was more efficient in utilising computing resources. This
provided a more powerful and practical analytical tool for refined sports training,
technical movement assessment, and sports injury prevention.

5 Conclusions

In today’s digital age, sports movement analysis, with the help of computer technology,
provides powerful support for athletes’ performance improvement, injury prevention, and
rehabilitation. A new sports action analysis method combining early fusion network
structure and human key points was proposed to address the problems of insufficient
target differentiation in multiple scenarios, strong perspective dependence, and
inconsistent action sequence length in existing technologies. By integrating human
skeleton nodes and edge information, and introducing the Neville interpolation method
and smooth frame discrimination module, the study aimed to improve the accuracy and
stability of sports analysis. The results indicated that EFK-SAA had higher accuracy and
efficiency in sports action classification and localisation tasks. However, the study still
has the following limitations: Firstly, the model’s performance relies on the accuracy of
upstream pose estimation and remains relatively sensitive to keypoint errors in occluded
scenarios. Secondly, the current method lacks biomechanical constraints, which may
affect the plausibility of complex movement analysis. Additionally, the model is designed
for fixed action categories and lacks the ability to adapt to emerging sports. Future
research will focus on: developing representation learning methods more robust to pose
estimation noise; integrating biomechanical principles into graph convolutional networks
to enhance the physical plausibility of analysis; and exploring incremental learning
frameworks to enable continuous model adaptation to new sports categories.
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