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Abstract: This paper proposes PianoTrans-Fusion, a piano performance beat 
assessment system that integrates the transformer architecture with multimodal 
feature learning. The system uses three modalities, including audio, video, and 
MIDI, to perform feature extraction and preprocessing, respectively, and 
captures fine-grained temporal dependencies in the performance rhythm 
through multimodal fusion strategies and transformer-based processing 
modules. Comparative experiments on the MAESTRO dataset show that 
PianoTrans-Fusion improves rhythm consistency to 0.032 and reduces beat 
error to 0.071 compared to five baseline methods. Ablation experiments further 
verify the key roles of transformer, multimodal fusion, and self-attention 
mechanisms. The results indicate that the system has advantages in terms of 
accuracy and robustness in beat evaluation, and has application value in 
intelligent piano accompaniment, music education, and automated performance 
feedback. 

Keywords: transformer; multimodal feature learning; piano performance; beat 
assessment. 
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1 Introduction 

In recent years, the development of artificial intelligence (AI) and deep learning (DL) has 
promoted the application of intelligent music analysis, which has attracted increasing 
attention, especially in music teaching, composition, and automatic performance  
(Han, 2025). Piano performance is not only a display of technique, but also rich artistic 
expression, and beat is the foundation of this, only when the rhythm is steady can the 
performance be smooth and expressive. But most traditional ways of measuring beats 
depend on manual observation or old signal processing technologies. These approaches 
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are not only slow and subjective, but they also don’t match the needs of real-time and 
intelligence. 

Many systems try to automatically assess rhythm with AI. Traditional audio analysis 
uses pitch and duration to establish rhythm, but it is susceptible to noise and cannot 
capture small performance changes. Later models like convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and long short-term memory networks 
(LSTMs) have improved this, but most focus solely on audio, ignoring visual and musical 
instrument digital interface (MIDI) information like hand movements and key presses 
during performance, limiting assessment accuracy (Qiu et al., 2021). 

To address this, this paper proposes a multimodal beat assessment method that 
combines audio, video, and MIDI data, based on the transformer model, allowing 
different signals to complement each other. The system automatically determines which 
type of information is more reliable through an attention mechanism and dynamically 
fuses them to capture the rhythm of the performance more precisely. The goal is to 
provide a more realistic and sensitive technical solution for intelligent practice and 
teaching feedback. 

We want to make the automation and intelligence of piano performance beat 
assessment better through this research. We also want to find new ways to combine 
multimodal features, transformer and give more accurate and reliable technical support 
for things like music education, intelligent practice, and automated performance. This 
field is predicted to have more applications for personalised music education and 
performance feedback systems in the future, thanks to the addition of more modal data 
and advances in technology. 

2 Relevant work 

2.1 Piano performance beat assessment method 

Piano performance beat assessment is an important research direction in the field of 
music information processing, especially in applications such as intelligent piano 
education, automated performance feedback systems, and intelligent accompaniment, 
where it has broad potential. Consequently, the effective evaluation of beat in piano 
playing has emerged as a prominent research focus in both academic and industrial 
spheres in recent years. There are two main types of methods for evaluating the beat of 
piano performances: signal processing-based methods and machine learning (ML)-based 
methods. As technology keeps becoming better, the latter has become the norm. 

In the beginning, beat assessment approaches that used signal processing were the 
most popular. Most traditional ways of processing signals use the time domain or 
frequency domain properties of audio signals to figure out where the beat is (Melo et al., 
2020). The amplitude envelope analysis method, for instance, figures out where the beat 
is by looking at how the amplitude of the audio input fluctuates. Although this method is 
relatively simple, it often fails to maintain good robustness and accuracy when faced with 
complex musical works and environmental noise. To overcome these problems, 
researchers have also tried using the autocorrelation function method, which detects 
rhythm cycles and infers beat positions by calculating the correlation between audio 
signals and their delayed versions. 
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Another conventional method is the beat detection method based on frequency 
domain analysis. This method commonly uses Fourier transformation to change the audio 
input into frequency domain information so that the rhythm features may be studied. This 
approach works well for separating distinct frequency components in an audio source and 
is good for picking up low-frequency rhythm information. But frequency domain analysis 
doesn’t work very well when there are complicated chords, quick notes, or auditory 
interference (de Cheveigné, 2021). While these methods laid the groundwork for initial 
beat assessment studies, they frequently encounter difficulties in managing intricate 
rhythm patterns and transitions, particularly in rapid, multi-note performances and  
multi-track contexts, when precision is markedly diminished. 

With the advent of ML technology, the evaluation of piano performance has 
progressively transitioned from conventional signal processing techniques to data-driven 
ML methodologies. ML approaches learn from a lot of performance data and can better 
pick out features from multimodal data including audio signals, MIDI data, and video 
signals to make predictions and evaluations of beats. Support vector machine (SVM) and 
decision tree (DT) are two traditional ML approaches that have been widely used for beat 
position categorisation and rhythm pattern detection (Subba and Chingtham, 2024). SVM 
finds the best hyperplane for classification by mapping input characteristics to a  
high-dimensional space. DT, on the other hand, builds a hierarchical framework to group 
distinct rhythm patterns. While these methods may yield efficient solutions in 
straightforward settings, they generally struggle with intricate rhythm patterns, 
particularly in the context of prolonged sequences and diverse, evolving playing styles, 
where their efficacy is markedly constrained. 

As DL has become more popular, beat assessment algorithms that use CNNs have 
slowly started to appear. CNNs can get high-level time-frequency features from raw 
audio data, and they work well for music information processing jobs because they have 
been used successfully for image recognition (Gupta et al., 2022). When it comes to beat 
assessment, CNNs can automatically pull out useful rhythm characteristics from the 
audio spectrogram without needing features that were made by hand. One way to use 
CNNs to find beats is to turn the audio input into a Mel spectrogram and use convolution 
and pooling layers to get features that can properly capture information like note 
duration, pitch, and intensity. But CNNs aren’t strong at processing long-term 
dependencies and have trouble capturing global rhythmic patterns, thus they aren’t good 
at handling rhythmic patterns that change all the time. 

Convolutional recurrent neural network (CRNN) combines the local feature 
extraction capabilities of CNN with the temporal modelling capabilities of RNN, giving it 
a natural advantage when processing multimodal data. CRNN can get time-frequency 
information from audio signals and temporal features through the RNN module. This 
makes it very good at finding beats. Although CRNN has achieved significant results in 
beat assessment, in practical applications, how to further improve its real-time 
performance and robustness, especially when multimodal data is missing or noisy, 
remains an urgent issue to be addressed. 

As DL architecture based on self-attention mechanisms, transformer models have 
gradually made significant progress in various time series tasks. The main benefit of the 
transformer is that it can effectively capture long-range temporal connections without 
running into the vanishing gradient problem that typical RNNs have when modelling 
long-term dependencies. The transformer also uses self-attention techniques to do parallel 
computing, which not only makes the computations more efficient but also looks at the 
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links between multiple input features at the same time (Wahid et al., 2023). The 
transformer model can better understand how different time steps in audio, MIDI, and 
video signals are related to each other when it comes to piano performance beat 
assessment. It does especially well at combining data from different sources and 
modelling long time sequences. As multimodal data processing technology advances, 
research that integrates diverse modal information for beat evaluation is poised to emerge 
as a significant trend in the future. 

2.2 Transformer model 

Vaswani et al. came up with the self-attention mechanism in 2017, which is the basis for 
the transformer model (Meel and Vishwakarma, 2023). Unlike traditional RNNs and 
CNNs, transformers rely entirely on self-attention mechanisms to capture temporal 
dependencies in sequences, without using traditional recursive or convolutional 
structures. 

The transformer uses self-attention to dynamically calculate position-relationships 
when processing input data. By capturing information from multiple points across the 
sequence, this technique avoids gradient vanishing or exploding difficulties that typical 
RNNs may have when processing long-term sequences. The transformer also uses a 
multi-head attention mechanism to parallelly compute alternative attention 
representations to capture multiple information patterns in input data. 

Encoder and decoder make up the transformer. Each encoder and decoder module has 
numerous identical sub-layers, mostly self-attention and feedforward neural network 
layers. The encoder extracts information from the input sequence, while the decoder 
creates the target sequence from its output. Each self-attention layer generates attention 
weights for each sequence position, determining the degree of linkage between elements 
(Wei et al., 2021). Layering improves the model’s grasp and abstraction of input data. 
The model uses query, key, and value to calculate the self-attention mechanism’s 
associations between input sequence elements. Fundamental formula of self-attention 
mechanism: 

Attention , , softmax( )
T

k

QKQ K V V
d

 =  
 

 (1) 

where Q, K, and V represent the query, key, and value sets, respectively, and dk is the 
dimension of the key. With this formula, the transformer figures out an attention weight 
set based on how the query and keys are related. It then uses that set on the value set to 
get the weighted output. 

In practical applications, the transformer further enhances its ability to understand 
information through a multi-head attention mechanism. The multi-head attention 
mechanism maps queries, keys, and values to multiple subspaces, independently 
calculates attention in each subspace, and finally concatenates the outputs of multiple 
attention heads to form a unified representation (Ren et al., 2022). This mechanism 
enables the transformer to simultaneously focus on different aspects of the input 
sequence, thereby better understanding and modelling the complex structure of the input 
data. 
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2.3 Multimodal feature learning 

Information in the real world is often diverse: it includes images, sounds, text, and sensor 
signals. A single source can be biased but combining them allows the model to see more 
clearly and make more stable judgements. In video analysis, for instance, the visual 
modality gives spatial information about the scene, the audio modality gives temporal 
information about sounds and voice, and the text modality adds semantic-level 
information. This is the core idea behind multimodal feature learning, instead of looking 
at just one type of data, the model learns to integrate different sensory inputs. 

Multimodal feature learning relies on fusing input from different modalities. Modality 
differences hinder feature fusion because text is a discrete sequence of symbols, images 
are high-dimensional pixel sets, and audio is a time-series signal. Researchers have 
developed many mainstream fusion solutions to address this issue. Feature-level fusion 
directly concatenates, or transfers feature variables from distinct modalities into a shared 
subspace for joint modelling (Zhao et al., 2024). This method is straightforward to apply 
and integrates information, although feature scale discrepancies between modalities may 
weaken or lose certain modal information. Thus, performance improvement generally 
requires modal feature preprocessing or weighted fusion. Decision-level fusion also uses 
weighted voting or probabilistic fusion to combine the outputs of each modality after 
training models for them independently. This technique optimises by selecting the best 
algorithm for each modality, but it often overlooks deep interactions and linkages 
between modalities, potentially missing latent connections. 

Multi-modal learning approaches using deep neural networks (DNNs) have become 
common as DL technology advances. By concurrently training deep networks, these 
approaches may automatically extract and integrate data from diverse modalities.  
Two-stream networks improve task performance by designing distinct neural network 
branches for each modality and fusing features at higher levels (Xiong et al., 2020). 
Attention processes allow models like transformers to dynamically assign weights to 
modalities, making fusion more flexible. Cross-modal generative networks are also used 
more. In lacking or noisy environments, these networks fuse features across modalities 
and produce data for missing modalities, improving system robustness. 

The main benefits of multimodal feature learning are information complementarity, 
model resilience, and semantic richness. Models can transfer information across 
modalities to improve the system’s task understanding by combining features. 
Multimodal sentiment analysis combines facial expressions in photos, voice in audio, and 
lexical information in text to better assess an individual’s mood. Despite noise or loss of 
features from one modality, other modalities can still contribute enough information to 
the model, boosting system robustness. 

As multimodal learning technology advances, forthcoming study will predominantly 
concentrate on many domains. On one hand, model lightweighting and efficiency are 
important, especially when resources are limited. Techniques like model compression and 
distillation can help with this by lowering the computational load and speeding up  
real-time performance. On the other hand, self-supervised and weakly supervised 
learning use unlabelled or weakly labelled data for cross-modal pre-training to reduce the 
need for labelled data (Ericsson et al., 2022). Also, research on cross-modal generation 
and inference is slowly becoming available. This research uses generative models to fill 
in the gaps in missing modalities, which makes the model more stable when multimodal 
input is incomplete or noisy. As technology gets better, cross-domain generalisation will 
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also get stronger, which will help multimodal learning work better in a wider range of 
tasks and settings. 

In short, multimodal feature learning can make model work better and be more stable 
by combining input from several sources. This is especially true for complicated tasks 
and contexts, where it greatly improves the model’s grasp of the target. As DL keeps 
becoming better, especially with new ideas in attention mechanisms and generative 
modelling, we’ll look into further ways that multimodal learning might be used in many 
industries. 

3 System design and methods 

The PianoTrans-Fusion piano performance beat assessment system suggested in this 
study is built on the transformer model and learning from many different types of 
features. Figure 1 shows that the goal is to use audio, video, and MIDI data together to 
help the performer improve by giving them correct beat assessments and real-time 
feedback. 

Figure 1 System framework for piano performance beat assessment (see online version  
for colours) 
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3.1 Data acquisition module 

The piano performance beat assessment system is built on the data acquisition module. It 
is in charge of making sure that data from diverse source is collected at the same time and 
that the data from different sources is always in the same time zone. The system uses a 
single set of technical tools to gather data from three different types of input: audio, 
video, and MIDI. This lets it fully and correctly records the rhythm and finger 
movements of piano playing. High-sampling-rate microphones collect audio data, 
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standard cameras record the performer’s movements, and MIDI data immediately gives 
us digitised performance data. 

To get enough frequency resolution to pick up the subtleties of piano notes, audio 
signals are digitised at a sampling frequency of 44.1 kHz. The system makes a 
spectrogram by using short-time Fourier transform (STFT) to look at the audio signal’s 
frequency and rhythm (Min et al., 2024). The following formula can be used to describe 
how the spectrogram is made: 

2( ) ( ), ( ) j πfn

n

S t f x n w n t e
∞

−

=∞

= −  (2) 

where S(t, f) stands for the spectrogram, x(n) stands for the discrete representation of the 
audio signal, w(n – t) is the window function, f is the frequency, and t is the time point. 
The STFT gives the audio stream a time-frequency representation that shows the spectral 
characteristics of piano notes. This helps find rhythmic patterns. 

A regular camera records the performer’s finger motions in video data. The system 
employs CNN to find hands and trace their paths in real time so it can get information 
about finger movement on the keyboard. Video data is mostly utilised to record the 
performer’s finger placements and activity sequences and look at how they relate to 
rhythm (Clayton et al., 2020). This step is very important for real-time feedback since it 
lets the system see variations in pace and exact finger motions during the performance. 

MIDI signals show how a piano is played in digital form. Each MIDI event has notes, 
pitch, velocity, and timestamps. The system reads the MIDI data to find out when each 
note starts and ends. These times are used to figure out the rhythm. The system uses the 
following formula to standardise the timestamps of MIDI events: 

m
m

tT
f

=  (3) 

where Tm is the time stamp for the MIDI event, t is the actual time the event happens, and 
fm is the MIDI signal’s sampling frequency. To make sure the tempo data is correct, the 
machine samples it 1,000 times per second. 

3.2 Feature extraction and preprocessing module 

The feature extraction and preprocessing module is responsible for extracting key 
features from audio, video, and MIDI data, and performing noise reduction, 
standardisation, and normalisation to improve data quality. Its core objective is to unify 
multimodal information into a single feature space for subsequent fusion. 

For audio signals, the system first converts them into a time-frequency representation 
using STFT to capture changes in note frequency. Based on this, Mel frequency cepstral 
coefficients (MFCC) are extracted to characterise timbre and rhythm features  
(Hawi et al., 2022). MFCC is sensitive to human auditory perception and is a commonly 
used metric in audio analysis. The calculation formula is as follows: 

1

( ) ( )g ( )lo
M

m m
m

MFCC n X n W n
=

= ⋅  (4) 



   

 

   

   
 

   

   

 

   

    Piano performance beat assessment 81    
 

    
 
 

   

   
 

   

   

 

   

       
 

where MFCC(n) stands for the nth Mel-frequency cepstral coefficient, Xm(n) stands for the 
amplitude spectrum of the mth frequency band in the spectrogram, and Wm(n) stands for 
the filter bank weights for the Mel frequencies. The system can get more compact and 
rhythm-related audio features using MFCC, which makes it easier to judge the beat later 
on. 

The system employs CNN to extract features from video data so it can figure out 
where the performer’s fingers are and what they are doing. The CNN network processes 
each video frame into a feature vector that shows the locations of important spots on the 
hand (Fadl et al., 2021). The method uses backdrop removal and high-pass filtering to 
pre-process video frames. This makes finger movement features stand out more and 
reduces noise. The system can effectively extract temporal information related to piano 
playing rhythm by analysing video frames in a time series. 

When it comes to MIDI data, the system gets input information including the 
timestamp, note, and velocity of each MIDI event. The system standardises the pitch, 
length, and velocity of each note during the preprocessing of MIDI data (Jeong et al., 
2020). It then changes these properties into time-series data so that they may be used with 
audio and visual data. The system takes the timestamp of each MIDI event and the note 
information and combines them using the following formula: 

min
max

( )
( in) ( )m

m
m

T TT
T T−
−′ =  (5) 

where mT ′  is the normalised MIDI timestamp, Tm is the original timestamp, min(T) and 
max(T) are the lowest and highest values in the MIDI timestamp sequence, respectively. 
By normalising the temporal information of all MIDI events, the system makes sure that 
it can be processed on a single scale. This stops biases that can come from disparities in 
temporal spans. 

During the preprocessing stage, all data is standardised and normalised so that 
information from different modalities can be compared and combined on the same scale. 
After preprocessing, audio, video, and MIDI features can all go into the multi-modal 
feature fusion module for more weighted feature fusion. 

3.3 Multimodal feature fusion module 

In rhythm assessment, relying solely on audio, video, or MIDI is insufficient. To address 
this, the system combines the features of all three signal types to complement one 
another. For example, audio may be affected by environmental noise, but video can 
provide clues through hand movements; MIDI signals are precise but occasionally 
missing and can be corrected using audio. 

The fusion process is not a simple averaging but rather allows the model to determine 
when to rely more on audio and when to focus on video. Specifically, given the features 
of audio (A), video (V), and MIDI (M), the model first calculates the degree of attention 
between them using the following formula: 

i Q iQ W x= ⋅  (6) 

i K iK W x= ⋅  (7) 

i V iV W x= ⋅  (8) 
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where xi represents the input feature of the ith modality, WQ, WK and WV are the weight 
sets of query, key, and value, respectively, Qi, Ki and Vi are the query, key, and value 
variables transformed by these weight sets through the modality features. 

Next, the system performs weighted fusion of the audio, video, and MIDI features 
through the calculated attention weights. The fused features are represented as: 

3

1
fused i i

i

F Fα
=

= ⋅  (9) 

where Fi is the feature of the ith mode, αi is the weight automatically assigned by the 
model, and Ffused is the final merged feature. Through weighted summation, each mode is 
dynamically combined according to its importance, allowing signals that are more helpful 
for judging the current beat to have a greater weight. 

3.4 Transformer processing module 

The purpose of this module is to use the transformer model to process the fused features 
even more in order to get useful rhythm information and, in the end, get rhythm 
evaluation findings. 

The self-attention mechanism is the most important part of the transformer model. It 
does a great job of finding relationships between incoming data. In this module, the 
transformer uses several self-attention layers to process the multimodal fused 
characteristics. The model initially gets the Query, Key, and Value variables by doing a 
linear transformation on the input feature representation Ffused: 

i Q fusedQ W F= ⋅  (10) 

i K fusedK W F= ⋅  (11) 

i V fusedV W F= ⋅  (12) 

where Ffused shows the features after multimodal fusion, WQ, WK and WV show the weight 
sets for the query, key, and value, in that order, Qi, Ki and Vi are the new versions of the 
query, key, and value variables. The transformer can find the relationships between 
features from multiple modalities and give each input feature an adaptive weight by 
figuring out these factors. 

Then, the transformer figures out the attention weights to get a weighted 
representation of each input feature. The system can figure out how important each 
feature is in the current context by figuring out how similar the query variable is to the 
key variable. It may then use this information to do a weighted summing to get the final 
representation of each modal feature. 

The transformer processing module sends the output weighted features to the FFN 
after they have been processed through several layers of self-attention processes.  
The FFN uses a series of nonlinear modifications to get more rhythm information  
(Nieto-del-Amor et al., 2021). This helps the system grasp how the beat is structured in 
the performance. Residual connections and layer normalisation are used to improve the 
output features so that information can flow smoothly across the network and avoid 
problems with gradient vanishing. 
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The transformer is great because it can represent things on a global scale and 
understand dependencies in a flexible way. Transformer can thoroughly comprehend the 
temporal links between notes in a performance and pick up on the small variations in 
rhythm. This lets it efficiently and reliably analyses the beat of the piano play. 
Transformer can also manage complicated relationships between multiple modal aspects, 
which gives a more complete view of how to judge a beat. 

3.5 Assessment and feedback module 

The assessment and feedback module first looks at the output of the transformer model’s 
features more closely, notably by looking at the rhythm’s consistency, precision, and 
stability. To accurately assess the performer’s beat performance throughout the 
performance, the system separates the evaluation process into two primary parts: rhythm 
consistency evaluation and rhythm accuracy evaluation. 

The system’s major focus for rhythm consistency assessment is the stability of the 
beat during the performance. This is how it decides if the artist has kept a steady rhythm. 
The system does this by calculating the standard deviation of the performance rhythm to 
find out how big the rhythm deviation is (Moon et al., 2023). To find the standard 
deviation σ, do the following: 

( )2

1

1 N

i
i

σ T μ
N =

= −  (13) 

where Ti is the playing time of the ith note, μ is the mean value of the note playing time, 
and N is the total number of notes. A smaller standard deviation means that the rhythm is 
more consistent, which means that the performer did a better job of keeping the rhythm. 

To check how accurate the rhythm is, the system figures out the beat error, which is 
the difference between the performer’s real performance and the ideal beat. To get the 
beat mistake, we compare the difference between the actual playing time of each note and 
the ideal beat time. The formula for doing this is as follows: 

1

1 N

beat i ideal
i

E T T
N =

= −  (14) 

where Ti is the real time for the ith note, Tideal is the best time for the beat, and N is the 
total number of notes. The performer has a better sense of rhythm if the beat mistake is 
reduced. 

The system uses weighted summation to combine the scores for rhythm consistency 
and accuracy to get the final complete rhythm score, which is then given to the performer 
as feedback. This is how we can write the total rhythm score Stotal: 

total consistency accuracyS S Sα β= ⋅ + ⋅  (15) 

where Sconsistency is the rhythm consistency score, Saccuracy is the rhythm accuracy score, α 
and β are the coefficients that show the weights of consistency and accuracy, 
respectively. The system may easily change the balance between consistency and 
accuracy by changing α and β to fit the needs of different application scenarios. 

Lastly, the evaluation findings are shown not just as numbers, but also as a graphical 
interface, audio feedback, or text feedback. This helps the performer find and fix rhythm 
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faults while they practice. For instance, the system can show the artist a chart showing 
the beat error for each note they play, or it can provide them with audio alerts in real time 
to let them know when they are off the ideal beat. 

4 Experimental results and analyses  

4.1 Experiment data and settings 

This study employed the MAESTRO dataset as the experimental dataset to validate the 
proposed PianoTrans-Fusion piano performance beat evaluation system. The MAESTRO 
dataset has a lot of audio, MIDI, and performer information on piano performances. It is 
good for jobs that involve combining several types of data and judging rhythm. The 
dataset contains high-quality audio and MIDI data that is correctly annotated, which 
makes sure that the assessment is accurate and reliable. 

We chose a section of the MAESTRO dataset to use for training and testing in this 
experiment. The dataset contains performance data from several piano players, each of 
whom played a different piece of music with a varied rhythm and style of playing. For 
multimodal feature extraction, the audio and MIDI data are processed at the same time so 
that the data stays the same. Each audio file of the performance is lined up with the MIDI 
file that goes with it. 

Table 1 shows the most important information of the MAESTRO dataset. 
Table 1 Information on the MAESTRO dataset 

Data item Description 
Number of audio files 1,000 piano pieces 
Audio duration Average duration of each piece is 3–4 minutes 
Number of MIDI files 1,000 corresponding MIDI files with detailed performance data 
Number of performers 16 pianists with varying skill levels 
Data annotations Each MIDI file contains detailed note timestamps, pitch, velocity, and 

other performance information 
Use case Audio analysis, rhythm evaluation, performance style analysis, etc. 

This experiment mainly employs audio (in WAV format) and MIDI data, together with 
video data, to do a multimodal analysis to see if the PianoTrans-Fusion system can 
accurately measure rhythm across different types of data. We used the MAESTRO 
dataset to test how well the PianoTrans-Fusion system worked in this experiment. The 
data files were carefully lined up so that data fusion would work well when extracting 
features from many sources. The dataset was split into three parts: a training set (70%), a 
validation set (15%), and a test set (15%) which was done so that the model could be 
trained and tested (Śmigiel et al., 2021). This split makes sure that the model has enough 
training data to learn from and that it can also be tested and validated to see how well it 
generalises. 
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4.2 Comparative experiments 

To validate the efficacy of the PianoTrans-Fusion system, this study devised a 
comparative experiment to evaluate the proposed system against current piano 
performance beat assessment methodologies. The comparative experiment showed how 
good the PianoTrans-Fusion system is by comparing the performance of different 
approaches based on how well they kept the rhythm and how accurate they were. To fully 
assess the system’s performance, we chose the following five baseline approaches for 
comparison: 

• Traditional audio-based beat estimation methods: this method uses time-domain or 
frequency-domain analysis to figure out the beat by taking features from audio 
signals. This method was commonly employed in initial rhythm evaluation; 
however, it primarily focuses on audio signals and fails to capture visual and MIDI 
data from the performer. 

• LSTM-based audio rhythm estimation method: this approach employs LSTM to 
guess beats based on sequences of audio features. LSTM can work with time-based 
data, but it only uses audio signals and can’t make full use of information from other 
types of data. 

• Single-modal transformer model: this technique relies on the transformer model and 
exclusively utilises audio signals as input. Even though transformer can accurately 
capture long-term dependencies, this method doesn’t include other types of data, 
which could lead to inaccurate rhythm evaluation. 

• Audio-MIDI based method: this approach employs both audio and MIDI data to 
check the rhythm. It combines MIDI note timestamps and pitch information with 
audio elements to make the rhythm check more accurate. The use of multi-modal 
information improves the accuracy of assessments; however, this method doesn’t 
include video data, which limits its effectiveness. 

We tested the five approaches on the same training, validation, and test sets, especially 
looking at two things: how consistent the rhythm was and how many beat errors there 
were (Torres-Soto and Ashley, 2020). To get the standard deviation between notes, we 
can measure rhythm consistency. To find the difference between the actual performance 
time and the ideal beat time, we can measure beat error. Figure 2 shows the outcomes of 
the experiment. 

The comparative experiment’s results demonstrate that the PianoTrans-Fusion system 
is better than all other approaches in two important areas: rhythm consistency and beat 
inaccuracy. 

The PianoTrans-Fusion system demonstrates outstanding performance in terms of 
rhythm stability, significantly outperforming other methods. Compared to traditional 
Audio-Based Method, it reduces rhythm fluctuations by approximately half, indicating 
that it restores performance rhythms in a more stable and natural manner. 

In terms of beat accuracy, PianoTrans-Fusion demonstrated stronger control 
capabilities, with a measured error of only 0.071. In contrast, the error of the traditional 
audio-based method reached 0.130, while the improved LSTM audio-based method only 
reduced it to 0.112, which is still significantly high. Although single-modal transformer 
or audio-based method have also made progress in rhythm restoration, such as reduced 
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fluctuations and more consistent beats, there is still a significant gap in overall accuracy 
between them and PianoTrans-Fusion. 

Figure 2 Results of comparative experiments (see online version for colours) 
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The conventional audio-based method and LSTM audio-based method were not very 
good compared to other approaches. This is mostly because they only use audio features 
and can’t completely use other types of data to fix and add to faults that could happen in 
the audio. The single-modal transformer brings the benefits of the transformer model, 
which is good at finding long-term relationships in audio data. However, it still doesn’t 
work as well as multi-modal systems because it only uses audio data. The audio-MIDI 
based method makes rhythm evaluation more accurate by merging audio and MIDI data. 
However, it still doesn’t take into account visual information, which makes it less reliable 
for rhythm consistency and beat precision. 

In conclusion, the PianoTrans-Fusion system surpasses current comparison 
approaches in rhythm consistency and accuracy by effectively integrating multi-modal 
feature fusion with the transformer model. This demonstrates the significance of  
multi-modal data fusion and self-attention mechanisms in evaluating piano performance 
beats, while also validating the efficacy and benefits of the PianoTrans-Fusion system 
introduced in this study for practical applications. 

4.3 Ablation experiments 

We did ablation tests to better understand how each part of the PianoTrans-Fusion system 
works and how different modules affect rhythm assessment performance. We could 
easily see how each module affected the overall performance by slowly taking out or 
replacing some essential modules in the system. The ablation studies aimed to validate 
the impacts of the transformer model, multimodal feature fusion, and self-attention 
mechanism on rhythm assessment efficacy. 
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• No transformer: for this experiment, we took out the transformer processing module 
from the PianoTrans-Fusion system and just used classic feature extraction methods 
to process the audio, MIDI, and video fusion information. The goal of this 
experiment was to see if the transformer model makes rhythm evaluation work better 
in a big way. We substituted transformer with alternative ML models and monitored 
the variations in rhythm consistency and beat inaccuracy subsequent to the removal 
of this module. 

• No multi-modal fusion: this means not using multi-modal feature fusion. We process 
audio, video, and MIDI data separately in this experiment, without combining 
features from other modes. We specifically leverage single-modal elements from 
audio, video, and MIDI to check the rhythm. This experiment enables the assessment 
of the enhancement provided by multi-modal feature fusion in rhythm evaluation, as 
well as the constraints of single-modal features in this context. 

• No attention mechanism: for this experiment, we took off the self-attention 
mechanism from the transformer and utilised a simple weighted average method to 
combine features from different modalities instead. The goal of this experiment is to 
find out how important the self-attention mechanism is for processing information 
from more than one source. The self-attention system changes the weighting ratios in 
real time based on how important different modalities are. Taking this mechanism 
out could make the system work worse. 

• No video modality: this experiment got rid of video data and only used audio and 
MIDI modalities to check the beat. This experiment looked at how the video 
modality helped with rhythm evaluation and whether the system’s ability to assess 
rhythm would drop considerably without visual information. 

We did a thorough examination of the effect of each module using the four experimental 
settings mentioned. Figure 3 shows the outcomes of the experiment. 

Figure 3 Results of ablation experiments (see online version for colours) 
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The ablation experiments clearly illustrate that taking off any module makes the system 
work worse, which shows how important each module is to the PianoTrans-Fusion 
system. 

Without the transformer module, the system’s rhythm consistency and beat error both 
go down, but the rhythm consistency goes down more (from 0.032 to 0.047). This 
illustrates that transformer is vital for capturing long-term dependencies and dealing with 
complicated rhythm shifts. The system’s capacity to simulate extended sequences goes 
down a lot if this module is taken out, which makes the evaluation less accurate. 

When multimodal feature fusion was taken away, the system’s rhythm consistency 
and beat error got a lot worse, notably beat error, which went from 0.071 to 0.107. This 
indicates that multimodal fusion is a crucial element in enhancing the precision of rhythm 
assessment. Single-modal data is inadequate for capturing nuanced rhythmic variations in 
performance, particularly in intricate performance contexts, where multimodal 
information might synergise to enhance the comprehensiveness and precision of the 
evaluation. 

When the self-attention mechanism was taken out, the system’s performance got 
worse, especially when it came to keeping the rhythm consistent (from 0.032 to 0.040). 
This demonstrates that during the processing of multimodal characteristics, the  
self-attention mechanism can dynamically modify the weights of various modalities to 
enhance the outcomes of rhythm evaluation. Without the self-attention mechanism, the 
system can’t completely weigh each modality based on how important it is, which makes 
the assessment less accurate. 

Taking away the video option, the system’s rhythm assessment performance stayed 
good when the video modality was taken away. However, both rhythm consistency and 
beat error went up compared to the system that had the video modality. This indicates 
that the video modality plays a complementary role in capturing the performer’s hand 
movements and visual features, particularly when assessing rhythm. Visual information 
helps the system better understand performance details and reduce errors in audio and 
MIDI data. 

In summary, the ablation experiment results indicate that each module of the 
PianoTrans-Fusion system plays an important role in overall performance, particularly 
the transformer model, multimodal feature fusion, and self-attention mechanism. The 
collaborative work of these modules enables the system to accurately capture rhythm 
changes in piano performance, enhancing the accuracy and robustness of rhythm 
assessment. 

5 Conclusions 

This study proposes a system called PianoTrans-Fusion that integrates transformer and 
multimodal feature learning. Through multimodal feature fusion mechanisms and the 
self-attention structure of the transformer model, the system effectively captures rhythm 
changes and detailed features during the performance process, achieving consistency and 
accuracy in the evaluation of piano performance rhythm. This paper constructs five core 
modules of the system and conducts experimental verification based on the MAESTRO 
dataset. In comparative experiments, PianoTrans-Fusion outperforms other baseline 
methods in terms of rhythm consistency and beat error, proving the effectiveness of 
multimodal feature fusion and the transformer structure. In ablation studies, the removal 
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of certain modules resulted in diminished performance, thereby substantiating the 
essentiality and contribution of each system component. In general, this study has made 
great strides in making piano performance beat assessment more accurate and reliable. It 
has also opened up new technical possibilities for intelligent piano accompaniment, 
music education, and automated performance feedback systems. 

This study has yielded specific results; yet it remains subject to some constraints. The 
MAESTRO dataset is the main source of experimental data. This dataset is big and good, 
but the performance scenarios are quite boring. They don’t include a lot of background 
noise or interference from other performance conditions, which could make it harder for 
the system to generalise to more complicated real-world situations. Second, the system 
still has a lot of processing power needed to handle multimodal data in real time, 
especially when the transformer structure works with long sequence data, which needs a 
lot of hardware power. This work also does not look closely at how errors in aligning 
different modalities over time affect beat evaluation outcomes, which could be a 
significant thing to think about in real-world situations. 

Subsequent research may be pursued in the following avenues. To improve the 
system’s ability to generalise and be strong, we can add more diverse datasets that cover 
different performance levels and situations. Second, we can look for lightweight 
transformer structures and effective multimodal feature fusion algorithms to speed up 
real-time rhythm assessment, which will make it easier to use the system on embedded 
devices. Finally, beat assessment could be combined with more advanced music 
understanding tasks like performance style analysis and emotion recognition. This would 
allow for a shift from basic rhythm assessment to a full analysis of music performance, 
and it would push the development of smart music analysis systems to new heights. 
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