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Abstract: The operational status of railway infrastructure determines the safety
of train passage. However, traditional research suffers from low efficiency and
difficulty in addressing fault states under variable operating conditions. To
address this, this paper first proposes a data balancing method based on
improved synthetic minority over-sampling technique and generative
adversarial network (GAN) to tackle the imbalance in railway infrastructure
signal data. The introduction of unsupervised clustering algorithms and
natural neighbour concepts enhances sample generation efficiency. Adding
category label information and optimising the training loss function
improves the stability of network training. Building upon this foundation, a
multi-scale residual network (ResNet) is constructed for feature extraction,
mitigating the impact of operational variations on diagnostic outcomes. A
subdomain-adaptive transfer learning strategy is employed to achieve fault
diagnosis. Experimental validation demonstrates that the proposed method
achieves a diagnostic accuracy of 93.86%, delivering highly precise diagnostic

results.
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1 Introduction

As the main arteries of national transportation, the safe and stable operation of railway
infrastructure directly relates to economic development and social progress. Key facilities
such as tracks, bridges, tunnels, catenary systems, and signalling equipment are highly
prone to fatigue damage, deformation, aging, and sudden failures. Traditional fault
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diagnosis primarily relies on manual inspections and periodic maintenance, which is not
only inefficient and costly but also significantly affected by subjective experience,
making it difficult to achieve precise perception and early warning throughout all
conditions and coverage areas (Hu et al., 2022). Deep learning can automatically learn
complex features and patterns from large amounts of data, offering new ideas and
approaches for solving railway infrastructure fault diagnosis problems (Han, 2024).
Intelligent fault diagnosis systems based on deep learning can collect operational data in
real-time, perform in-depth analysis and mining through deep learning algorithms,
enabling automatic detection, classification, and localisation of faults. This greatly
improves diagnostic accuracy and efficiency (Chen et al., 2021). Consequently, the
investigation of intelligent fault diagnosis systems for railway infrastructure utilising
deep learning holds both profound theoretical significance and substantial practical value
(Wang et al., 2024).

Early research mainly conducted railway infrastructure fault diagnosis based on
traditional signal analysis (Song et al., 2021). Ghosh et al. (2022) put forward a spectral
kurtosis approach in light of wavelet packet decomposition and manifold learning, which
realises the fault impact characteristics of enhanced signals by suppressing noise in
time-frequency space. Sun et al. (2022) first decomposed bearing signals using wavelet
transform, then used the spectral kurtosis method to find optimal frequency bands, and
validated. Huang et al. (2019) proposed a variational mode decomposition (VMD) based
on correlation analysis for adaptively extracting weak faults and composite fault
characteristics of railway infrastructure, achieving good diagnostic results. Wu et al.
(2023) proposed an adjustable factor-based wavelet transform method for high-speed
train fault diagnosis, utilising quality factors to screen sub-band components, thereby
enabling the separation of fault impact responses under strong interference. The operating
environment of railway infrastructure is complex, involving various interfering factors
such as electromagnetic interference, mechanical noise, and environmental vibrations.
These interfering signals can mix with normal operational signals, affecting the
diagnostic accuracy of traditional signal analysis methods.

Machine learning is a data-driven approach that realises data mining techniques,
serving as an alternative strategy for relevant scholars after the failure of rule-based
intelligent systems. It improves machine computing performance by extracting
knowledge from massive datasets through machines. Hu et al. (2017) designed a railway
infrastructure fault diagnosis approach based on the combination of genetic algorithms
(GA) and backpropagation neural network (BPNN) to enhance its classification
performance. Shao et al. (2020) developed an approach that employed multi-scale sample
entropy to capture the features of vibration signals corresponding to various health states
of railway assets. This method integrated a support vector machine (SVM) classifier,
optimised via particle swarm optimisation, for the diagnosis and classification of
infrastructure faults. Sun et al. (2023) extracted train bearing vibration signal features
through morphological pattern spectrum and applied least squares SVMs for fault
identification. The diagnosis accuracy was only 79.4%. Zhang et al. (2021) used principal
component analysis (PCA) to reduce the dimensionality of temperature data features
from train bearings, and proposed a method combining analytic hierarchy process with
random forest algorithms for facility fault recognition. The aforementioned methods have
gained good outcome in railway infrastructure fault diagnosis. However, machine
learning algorithms still require manual involvement in the feature extraction section.
They are overly reliant on signal analysis techniques and diagnostic experience. In
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particular, the labour-intensive feature extraction process makes the entire algorithm
excessively complex, and the extracted fault features are often unsatisfactory.

The rise of deep learning has provided a solution to this, as it leverages its end-to-end
learning capability to automatically extract features and build models from large amounts
of collected data, and can adapt to different network structures such as convolutional,
recurrent, or encoder-decoder mechanisms, demonstrating superior performance in device
status identification and significantly simplifying the fault diagnosis process. Simone et
al. (2023) suggested a convolutional long short-term memory network (LSTM) model for
fault diagnosis by analysing signals from railway infrastructure; however, insufficient
spatial feature extraction led to low diagnostic accuracy. Lv et al. (2024) combined deep
residual network (ResNet) with transformer and proposed an algorithm for railway
infrastructure fault diagnosis under variable working conditions, achieving a diagnostic
accuracy of 81.9%. Shao et al. (2018) proposed a railway facility fault diagnosis method
based on Hilbert-Huang transform deep feature representation and transfer learning to
accurately predict the lifespan of facilities. Since railway infrastructure operates under
normal working conditions, excessive diagnosis is not cost-effective. As initial fault
signals are often weak and cannot be extracted due to noise, obtaining high-quality
labelled
fault data is very difficult. Generative models can capture statistical features of
samples by fitting their underlying probability distribution, enabling the generation of
pseudo-samples that are similar to and follow the same distribution as the data. Raza
et al. (2025) expanded the fault dataset using conditional generative adversarial networks
(GANSs), achieving good results in multi-working condition diagnosis tasks, which
verified the robustness of GAN under complex working conditions. Men et al. (2025)
introduced deep convolutional GAN to enhance feature generation and effectively
improved the model’s recognition capability under extremely limited sample conditions,
achieving a diagnostic accuracy as high as 91%.

In summary, traditional railway infrastructure fault diagnosis systems suffer from low
efficiency, poor accuracy, and high costs, making it difficult to meet the standards of
modern intelligent maintenance for railway equipment. Additionally, the scarcity of
railway infrastructure fault data and imbalanced dataset categories often lead to low
diagnostic accuracy in existing research. To address these issues, this article suggests an
intelligent fault diagnosis system for railway infrastructure in light of deep learning. This
system can fully address the issue of low diagnostic efficiency in existing research. The
main contributions of this study can be summarised into four aspects.

1 To cope with the issue of data imbalance, a data balancing method is proposed based
on an improved Synthetic Minority Over-sampling Technique (SMOTE) algorithm
(ESMOTE) and an improved GAN (CSGAN). Initial railway infrastructure signal
data are input into the ESMOTE method to generate one-dimensional vibration data
across different states. Simultaneously, time-frequency image data of railway facility
signals are fed into the CSGAN model to generate time-frequency images for various
states, providing high-quality data support for this study.

2 ESMOTE achieves effective subdivision of intra-class data by introducing K-means
clustering to make an initial division based on the inherent characteristics of each
class. Simultaneously, it combines the concept of natural neighbours for linear
interpolation to generate new samples, significantly reducing reliance on expert
experience. CSGAN introduces category labels as additional information and uses
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their corresponding embeddings as inputs to both the generator and discriminator,
thereby constraining the data generation process to follow the form of target classes,
generating samples that conform to specific class distributions.

3 A transfer learning approach is presented, which transfers the knowledge acquired
from source domain data to the target domain, enabling effective identification of
railway infrastructure faults under complex operating conditions. By constructing a
feature extractor combining ResNet and multi-scale feature fusion technology, it
enhances the network’s ability to extract features, reduces the impact of working
condition variations on diagnostic results, and also addresses the problem of network
degradation caused by increasing depth. Furthermore, adopting a
sub-domain adaptation transfer learning strategy enables railway infrastructure fault
diagnosis.

4 A large number of simulation experiments were conducted on real datasets. The
outcome implies that the suggested approach enhances fault diagnosis accuracy by
1.27%-3.4%, effectively enabling failure identification and classification for railway
infrastructure under complex working conditions, providing a new approach to
railway infrastructure fault diagnosis in scenarios with scarce sample data.

2 Relevant theory

2.1 Residual networks

ResNet is a revolutionary convolutional neural network framework in the field of deep
learning. The central concept behind it lies in mitigating the issues of gradient vanishing
and network degradation through the introduction of residual connections, allowing the
network to be trained to unprecedented depths while maintaining excellent performance.
Residual units are the key component of ResNet, enabling direct information
transmission through added cross-layer pathways (Wu et al, 2019). It includes
convolutional operations and skip connections, which allow input to bypass certain layers
directly.

Assume that the learning target is f{x). Among them, x is the shallow output. The
stacked convolutional layers within the dashed box are newly added layers that learn
residual mapping f{x) — x. Their summation produces the ideal mapping f{x) at output. If
it is desired to train the newly added level as an identity mapping f{x) = x, then simply set
the weights and biases of the stacked convolutional layers in the residual block to zero.
Therefore, the training error rate of the new network will be no worse than that of
shallow networks, and using shortcut connections within the residual blocks can speed up
data forward propagation and gradient backward propagation in neural networks, thus
accelerating network training. In addition, this structural design requires the feature map
shapes on the main path and the branch path in the residual block to be identical so that
an addition operation can be performed at the output of the residual block (Fang et al.,
2021).
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2.2  Generative adversarial network

GAN includes a generator (G) and a discriminator (D), whose main idea is to
continuously improve the performance of each network during training, so that G’s
fabricated data can fool the discriminator, while D strives to distinguish the authenticity
of input data (Wang et al., 2025). In practice, G takes a random variable z conforming to
a certain prior distribution p.(z) as input and generates pseudo-samples G(z) based on it.
The discriminator receives real samples and generated samples and outputs a probability
value indicating that the sample is ‘real’. Usually, if the output is greater than 0.5, it is
judged as real; otherwise, it’s fake. Through continuous training, the discriminator
gradually improves its accuracy in identifying synthetic samples, while the generator
makes its output data distribution p.(z) approach the true data distribution pgu.(x), finally
reaching a Nash equilibrium where any data has a probability of being considered real as
1/2. The training and optimisation process of the discriminator and generator can be
viewed as a maximisation-minimisation problem, with specific functions shown in
equation (1).

minmax ¥ (D, G) = Ev-p,,,.., [log D@+ Exp. [log(1-D(G(2)))] (1)

where V(D, G) is the final optimisation result of GAN, E represents mathematical
expectation. When the structure of the discriminator is fixed, the training objective of the
generator is to minimise this function to generate more deceptive samples. When the
structure of the generator is fixed, the discriminator strives to maximise this target
function to enhance its ability to distinguish between real and fake samples.

2.3 SMOTE oversampling algorithm

Traditional random oversampling methods simply duplicate minority class samples
without adding new information. For example, in a dataset containing two classes, if the
minority class has few samples, random oversampling may repeatedly select existing
minority samples to add to the training set. This leads to a large number of duplicate
samples in the training data. During learning, the model may become overly reliant on
these duplicates, making it excessively sensitive to noise and specific patterns within the
training data. Ultimately, this causes overfitting, resulting in poor generalisation ability
when encountering new, unseen data. The SMOTE algorithm does not simply duplicate
minority class samples. Instead, it synthesises new samples by performing linear
interpolation of minority class samples in the feature space. This approach increases
sample diversity, providing the model with more varied information. It helps the model
learn more general features and patterns, thereby reducing the risk of overfitting and
improving the model’s generalisation ability. The SMOTE oversampling algorithm
generates synthetic sample sets that conform to the original data distribution by
performing oversampling interpolation operations on minority class samples in the
feature space, further alleviating the problem of class imbalance (Duan et al., 2022). This
mechanism effectively reduces training bias in classification models and significantly
improves model generalisation performance. The process of generating new samples
through SMOTE is based on the distances between a sample itself and its & nearest
neighbours. Common distance metrics include Euclidean distance, Manhattan distance,
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etc. (Elreedy et al., 2024). The SMOTE algorithm operates according to the following
procedure.

Firstly, take a certain sample x; from the minority class sample set as a benchmark,
calculate the distances between this sample and other samples using Euclidean distance,
and select k& nearest neighbours based on the calculation results. Secondly, randomly
select one of these k nearest neighbour samples x; as an auxiliary sample, and perform
linear interpolation with x; according to equation (2) to obtain a new generated sample
Xnew, Where ¢is a random number between [0, 1].

Xpew = Xj + ax(xnew — X ) (2)

Finally, set the sampling rate N based on the sample imbalance ratio, repeat the
aforementioned process N times to derive all new instances, and effectively enhance the
class distribution of the dataset.

3 Railway infrastructure signal data balancing based on improved
SMOTE oversampling and GAN

3.1 Design of the improved SMOTE algorithm

Due to the scarcity of railway infrastructure fault data and imbalanced dataset classes
leading to poor model training performance and low diagnostic accuracy, this paper
proposes an ESMOTE and CSGAN-based data balancing method based on data
characteristics. ESMOTE combines unsupervised clustering algorithms with natural
neighbour concepts, while CSGAN introduces class label information and optimises the
training loss function to enhance the quality of produced samples across different
datasets.

During the data balancing process, over-synthesis or noise introduction can affect the
quality of generated samples. Although SMOTE is a widely used classical oversampling
method, it has two main limitations. First, choosing the nearest neighbour parameter k
heavily relies on expert experience and lacks adaptive adjustment capability. Second, it
does not comprehensively consider the distribution characteristics of the data itself,
making it likely to generate samples inconsistent with actual data distributions, hence
influencing the performance of subsequent models. To tackle these problems, this paper
presents an enhanced ESMOTE algorithm, which operates according to the following
procedure.

First, introduce the K-means clustering algorithm (Ahmed et al., 2020) to preprocess
minority class data sequentially and divide it into ¢ sub-clusters with similar feature
distributions. This relationship is represented by Ds = {Dsi, Ds2, Ds3, ..., Dsc}, where Dy
denotes the minority class data, Dy; represents the j-th cluster, andj € [1, c].

Second, randomly select base samples x§) ~ from each sub-cluster and

randomly choose auxiliary samples x{)

arese. Within their neighbouring sample sets in light
of natural neighbour relations. Compared to the k-nearest neighbours method used by
traditional SMOTE algorithms, natural neighbour relationships offer stronger adaptability
(Zhu et al., 2016). The stable definition of natural neighbour relationships is as follows: if

sample p is a natural neighbour of sample ¢, then sample p is also one of the 1 nearest
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neighbours of sample q; similarly, sample ¢ is also one of the 1 nearest neighbours of
sample p, where 4 represents the characteristic value of natural neighbours.

pe€ NaN(q) & g€ NN, (p)pe NN,(q) 3)

Finally, set a sampling rate N based on the imbalance ratio of the dataset and generate
() (i)
Blase I\Z’earest

expression is as follows: x§)

new samples between x and x using linear interpolation. The calculation

(i)

Nearest

represents the i base sample in the cluster; x

represents the auxiliary sample of x{) , diff denotes the difference between x\\) .. and
X, x{) is the synthesised new sample, and & is a random factor with aze [0, 1].
dm = x;\l/e)zarest - x(B}LZSE (4)
o = X + X di ®)
X New X Base 21 lﬁr

ESMOTE divides each class into effective subgroups by introducing K-means clustering
according to intrinsic data characteristics. Meanwhile, it combines natural neighbour
concepts for linear interpolation to generate new samples, significantly reducing
dependence on expert experience. Compared to traditional SMOTE algorithms,
ESMOTE ensures a reasonable intra-class distribution and controls the quality of
generated samples during the sampling process, further demonstrating its advantages in
data balancing tasks.

3.2 GAN model improvement and railway infrastructure signal data balancing
process

During the training process of GANs, when cross-entropy is chosen as the loss function,
if there are significant differences between the real data distribution and the generated
distribution, the discriminator tends to make erroneous judgments, leading to an unstable
model training process and poor quality of the generated samples. Conditional GAN uses
least squares mean square error instead of traditional cross-entropy measures by
constructing adversarial regularisation terms based on decision boundaries, forcing the
generated samples in the feature space to align with the real data distribution judged by
the discriminator, thus improving the quality of the generated samples (Abu-Srhan et al.,
2022).

However, the generator of conditional GAN still has issues such as limited output
sample diversity and insufficient condition control sensitivity. To further optimise model
performance, this paper proposes a Conditional Least Squares GAN (CSGAN). First, it
introduces class labels as additional information and incorporates their corresponding
embeddings into the inputs for both the generator and discriminator to constrain the data
generation process to follow target classes, thus generating samples that conform to
specific class distributions. Second, an L2 regularisation term is added to the training loss
function of the discriminator to impose reasonable penalties on parameters, enhancing
parameter distribution uniformity, effectively improving the generalisation ability of the
discriminator, and preventing overfitting. The calculation of L2 regularisation is as
follows, where L,., represents the L2 regularisation term, A represents the weight decay
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factor used to control the strength of regularisation, and w; represents the weighting
parameters in the model.

L =230 ©)
i=1

Combining the aforementioned improved algorithms ESMOTE and CSGAN, this paper
proposes an efficient balanced process for railway infrastructure signal data. The initial
signal data is input into the ESMOTE method, where relevant parameters are set to
conduct experiments generating one-dimensional vibration data in different states.
Meanwhile, the time-frequency diagram data of railway facility signals is fed into the
CSGAN model through multiple rounds of training and the best model is saved.
Subsequently, the generator part is extracted from the optimal model, trained weights are
loaded, and used to generate time-frequency diagrams for different types of conditions,
providing rich and high-quality data support for railway infrastructure fault diagnosis
tasks.

4 Fault diagnosis system for railway infrastructure based on multi-scale
ResNet and transfer learning

4.1 Multi-scale residual convolution

To address the issue where traditional deep learning needs substantial data for model
training during early stages of railway infrastructure fault diagnosis, and some operating
condition data is difficult to obtain in large quantities, this paper proposes a transfer
learning model with multi-scale residual feature extraction. The model adopts an
improved ResNet as its core architecture. Three channels are constructed, utilising
different receptive field sizes so the model can extract railway infrastructure fault signal
features at various scales, then fuses these features through weighted integration to
enhance the network’s characteristic extraction capability. Ultimately, a subdomain
adaptation-based transfer learning strategy is applied, enabling railway infrastructure
fault diagnosis under complex operating conditions.

In railway infrastructure fault diagnosis under different operational conditions,
changes in the operational state of facilities present greater challenges for diagnosis. This
paper suggests a multi-scale residual convolutional neural network architecture that
addresses insufficient feature extraction capability and deep network degradation issues
in traditional networks under variable operational conditions through multi-scale feature
fusion and ResNet mechanisms. The network adopts a three-level multi-scale feature
extraction module, with each scale module containing three residual block structures
configured with 1 x 3, 1 X 5, and 1 x 7 convolution kernels of various scales to capture
fault signal characteristics from railway infrastructure components of various sizes,
producing 64, 128, and 256 channel outputs.

The original signal undergoes preliminary feature extraction using a 1 x 7
convolution kernel to avoid excessive parameters within the model input, followed by
data base features obtained through 2 x 2 max pooling. The base features are then
separately fed into three multi-scale processing modules where different scale ResNet
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deeply mine data features of various scales. Finally, each submodule outputs a 1 x 256
feature that undergoes average pooling to obtain a fused output feature of size 1 % 768.

4.2 Domain adaptation

In addressing data distribution shifts across different operational condition railway
infrastructure fault diagnosis, global domain adaptation maps source and target domain
data into a common characteristic space via feature space mapping to align marginal
distributions. Subdomain adaptation differs from global domain adaptation by precisely
aligning conditional probability distributions of each subdomain in the source and target
domains, thereby gradually bringing their marginal distributions closer during transfer
learning. This paper adopts the local maximum mean discrepancy (LMMD) (Huang et
al., 2023) as the measurement of subdomain distribution differences to construct an
optimisation objective for conditional distributions. The distribution difference between

source domain features X! = {x;}", and target domain features X/ = x5 < ¥y 1s shown

in equation (7).

d*(p, q)—_z

c=1

D owieo(x) = Y wiep(xt)

x5 € D xleD,

O]

H

where wj* and w/¢ are the weight values of x{ and x/ for fault category c, individually.
ng Ny

wa” =1 and wa" =1 are the weighted sums of samples in class ¢ after mapping.
i=1 i=1

The weight wy is shown in equation (8), where ¢ is the c™ element of feature y;.

C

wee_—_YVi (8)

i
C
Z(x/,yj )eDyj

In the source domain dataset, sample weights w¢ are directly calculated using

1
equation (8) based on the label vector y; of source domain data y;. However, since there

are no labelled vectors for target domain data, it is not possible to determine the weight
through this method. This paper proposes utilising the probability distribution output by
deep neural networks as a pseudo-label estimation approach for target domain samples.
Inputting the target domain sample x! into the trained diagnosis network, use the !

output from the softmax layer to represent the probability of the sample belonging to fault
types.

4.3 Railway infrastructure fault diagnosis system model

In actual fault diagnosis processes, the amount of railway infrastructure fault data under
certain operating conditions is tough to satisfy the needs for training models using
traditional deep learning methods. When introducing transfer learning algorithms,
changes in the operating conditions of railway infrastructure lead to distribution
differences in diagnostic data, and obtaining labels for samples to be diagnosed also
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presents some difficulties. To cope with these issues, this chapter puts forward a railway
infrastructure fault diagnosis system in light of multi-scale ResNet and transfer learning,
intended for railway infrastructure fault diagnosis under complex operating conditions.
The entire structure of the suggested railway infrastructure fault diagnosis system is
implied in Figure 1. By characteristic space mapping, labelled source domain data and
unlabelled target domain data are uniformly transferred to a subspace. This approach
effectively utilises the common characteristics exhibited by fault signals of railway
infrastructure under different operating conditions. LMMD is adopted as the subdomain
adaptation metric to perform subdomain adaptation on the extracted multi-condition
shared features, achieving multiple condition fault diagnosis for railway infrastructure.

Figure 1 The entire structure of the suggested railway infrastructure fault diagnosis system
(see online version for colours)

Flatten layer S-FC1

S-FC2

T-FC3

T-FC2
LJ Flatten layer | T-FC1
Target domain data Q
Feature extractor Gy

Classifier G,

The proposed model consists primarily of two parts: a data characteristic extractor and a
classifier. The above-mentioned multi-scale ResNet serves as the data feature extractor Gy
of this model, while the classifier is labelled G,. An adaptive layer selects the FC2 layer,
as shown in Figure 1, to reduce the linear maximum mean deviation between source field
and target field through the adaptive layer, thus reducing data distribution differences

caused by changes in operating conditions.

When the source field D ={(x/, y/)}}%, and target field D, = {(x})}", data are input
into the feature extraction model, multi-scale features will be extracted. These features
capture detailed information at different levels of the data. After passing through a

flattening layer, these features result in features Z? = {z"°}" and Z = {z_j-’o}’j’.’zl, while
features Z? and Z? are adapted by the subdomain adaptation layer of classifier G,,

resulting in adaptive features Z? ={z/*}/*, and Z? ={z}’}",. Combined with label
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vector yf and predicted label vector 3!, the source field and target field subdomain
adaptation loss values L, are obtained.

Ly = LMMD? (Z2, Z?) ©)

The classification output of the source field data through the classifier is yf. The

classification loss value for the source domain L, is calculated using a normal source
domain label vector, as described below, where J (-,-) represents the cross-entropy loss
function.

1< A
L=—>J(5. ) (10)
i=1

ng =

In the backpropagation process of the proposed model, only the classification loss L, is
optimised with respect to a standard optimisation function. In this method, both the
classification loss L, and adaptation loss Ls must be simultaneously optimised. The
optimisation function formula is as follows, where 8 = {w, b} represents the bias and
weights of the model; 4 is the adaptive weight parameter, 0 <A < 1.

Hir{lvlg}(Ly +ALy) (11)
2
= I+ 10 (12)

where ¢ is the current iteration count during training, and 7 is the total number of
iterations.

The final railway infrastructure fault diagnosis model achieves minimum linear
LMMD values, enabling fault identification and classification under different operating
conditions, thereby improving diagnostic generalisation performance.

5 Analysis of experimental results

5.1 Railway infrastructure fault diagnosis results analysis

This paper adopts bearing data from the bearing test bench at Shijiazhuang Tiedao
University. The experiment uses double-row tapered roller bearings. There are eight
types of bearing health states: normal, outer ring minor fault, outer ring severe fault, inner
ring minor fault, inner ring severe fault, roller severe fault, roller minor fault, and
compound faults between the outer ring and rollers. These eight fault types are denoted as
T1, T2,..., T8. All these faults represent real faults occurring during railway infrastructure
operations.

To make the experimental test more accurate, after balancing the fault data using the
ESMOTE-CSGAN method proposed in this paper, 1,000 sets of signals are chosen for
each type of bearing fault, totalling 8,000 sets. Each signal contains 1,024 points. For
each type of faulty bearing, 750 samples are selected as the training set and 250 as the
test set. Training samples and validation samples in the training set are randomly divided
at a ratio of 4:1, and the model is trained for 50 rounds to obtain the optimal model. Then,
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the test set is input into the optimal model for testing. The computer hardware
configuration includes an AMD R7-3700X processor, 32G RAM, and an RTX3070 GPU.
The deep learning network framework was developed using PyTorch with Python 3.8 as
the programming language. The batch size is set to 64, the studying rate to 0.01, the
optimiser’s momentum value to 0.9, and the weight decay to 0.0004. The amount of
training iterations is set to 300.

Figure 2 Training results of the MSRN-TL model (see online version for colours)
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The time-frequency images generated by the ESMOTE-CSGAN data balancing method
for various fault states are input into the model. After 50 iterations, the proposed
MSRN-TL model obtains results as implied in Figure 2. The training accuracy of the
suggested model reaches 98.99%. After 30 iterations, the model loss stabilises and
becomes smooth. This verifies that the model achieves good performance in railway
infrastructure fault detection.

To more intuitively demonstrate the model’s performance in railway infrastructure
fault detection, a confusion matrix is introduced for visual analysis of the test results, as
shown in Figure 3. Out of 2,000 test samples, 22 are misclassified: 10 samples from T4
are classified into T3, with an accuracy rate of 96% for T4. In T5, 5 samples are
classified into T6 and another 5 into T2, achieving a recognition accuracy of 96%. For
T7, two samples are misclassified into TS5, resulting in an accuracy rate of 99.2%. The
model’s overall recognition accuracy is 98.9%, recall is 98.9%, precision is 98.93%, and
the F1 score is 98.89%. This verifies that the MSRN-TL model achieves excellent
performance in railway infrastructure fault detection.
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Figure 3 Visualisation of fault detection for the proposed MSRN-TL model (see online version
for colours)
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5.2 Diagnostic performance comparison

To further verify the fault diagnostic performance of the proposed model, this paper
selects RN-Trans [15], DFP-TL [16], and Conv-GAN [18] as baseline models. Evaluation
metrics include accuracy, precision, F1 score, and specificity. Figure 4 shows a
comparison of loss and accuracy during training for the four models. After 40 iterations,
MSRN-TL and Conv-GAN achieve diagnostic accuracies of 92.08% and 91.56%,
respectively. RN-Trans converges after 80 iterations with an accuracy of 90.07%.
DFP-TL converges after 55 iterations, achieving a precision of 91.55%. The MSRN-TL
model not only demonstrates high diagnostic accuracy but also achieves low loss,
performing well in railway infrastructure fault diagnosis tasks.

Figure 4 A comparison of loss and accuracy during training for the four models, (a) loss function
(b) diagnostic accuracy (see online version for colours)
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Table 1 Fault diagnosis performance comparison
Model Accuracy/% F1/% Specificity/%
RN-Trans 90.46 89.01 95.39
DFP-TL 91.51 91.97 96.05
Conv-GAN 92.59 92.81 97.05
MSRN-TL 93.86 94.28 98.47

Table 1 presents the comparison of various diagnostic performance metrics for each
model. The Accuracy of MSRN-TL is 93.86%, which represents an improvement of
3.4%, 2.35%, and 1.27% over RN-Trans, DFP-TL, and Conv-GAN, respectively.
Comparing F1 and Specificity further, the improvements for MSRN-TL are 5.27% and
3.08% against RN-Trans, 2.31% and 2.42% against DFP-TL, and 1.47% and 1.42%
against Conv-GAN.RN-Trans mainly combines deep ResNet with transformer for
railway infrastructure fault diagnosis; however, under limited data conditions, RN-Trans
tends to memorise noise and specific patterns in the training set rather than learning
generalised fault features, resulting in reduced generalisation ability in real-world
scenarios. DFP-TL utilises deep feature representation combined with transfer learning
methods for railway infrastructure fault diagnosis. However, the types of faults contained
in source domain data might not fully align with those actually occurring in target domain
railway infrastructure. The model may fail to recognise fault patterns it has never
encountered before. Conv-GAN addresses dataset imbalance through GAN and achieves
fault feature extraction and classification via CNN, thereby improving diagnostic
accuracy to some extent; however, the complexity of CNN-based feature extraction is
relatively high. MSRN-TL can effectively capture common features of fault patterns
under different working conditions of railway infrastructure and deeply mine the intrinsic
consistency of fault features through multi-scale ResNet, enhancing the model’s
capability for feature learning.

6 Conclusions

To address the issue of scarce railway infrastructure fault data and low diagnostic
accuracy caused by imbalanced datasets in existing research, this paper presents an
intelligent fault diagnosis system for railway infrastructure that leverages deep learning.
First, to tackle signal dataset imbalance issues specific to railway infrastructure, a data
balancing method combining ESMOTE with CSGAN is proposed, leveraging the
characteristics of the data itself. An unsupervised clustering algorithm and natural
neighbour concept are introduced to improve sample generation efficiency and enhance
the quality of generated samples. The improved data balancing approach increases
training stability by incorporating additional class label information and optimising the
training loss function, thereby generating higher-quality fault samples. Based on this,
transfer learning methods are introduced to migrate knowledge learned from source
domain data to the target domain, enabling fault identification under complex working
conditions. By constructing a feature extractor combining ResNet with multi-scale
feature fusion technology, the network’s feature extraction capability is enhanced while
weakening the impact of operating condition changes on diagnostic results, and
effectively addressing the issue of network degradation as network depth increases. Then,
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a subdomain adaptation transfer learning strategy is adopted to achieve fault diagnosis for
railway infrastructure. Experimental outcome implies that the suggested approach
achieves a diagnostic accuracy of 93.86%, which is at least 1.27% higher than baseline
models and can accurately realise fault diagnosis for railway infrastructure.
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