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Abstract: The operational status of railway infrastructure determines the safety 
of train passage. However, traditional research suffers from low efficiency and 
difficulty in addressing fault states under variable operating conditions. To 
address this, this paper first proposes a data balancing method based on 
improved synthetic minority over-sampling technique and generative 
adversarial network (GAN) to tackle the imbalance in railway infrastructure 
signal data. The introduction of unsupervised clustering algorithms and  
natural neighbour concepts enhances sample generation efficiency. Adding 
category label information and optimising the training loss function  
improves the stability of network training. Building upon this foundation, a 
multi-scale residual network (ResNet) is constructed for feature extraction, 
mitigating the impact of operational variations on diagnostic outcomes. A 
subdomain-adaptive transfer learning strategy is employed to achieve fault 
diagnosis. Experimental validation demonstrates that the proposed method 
achieves a diagnostic accuracy of 93.86%, delivering highly precise diagnostic 
results. 

Keywords: railway infrastructure; fault diagnosis; synthetic minority  
over-sampling technique; generative adversarial network; GAN; transfer 
learning. 
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1 Introduction 

As the main arteries of national transportation, the safe and stable operation of railway 
infrastructure directly relates to economic development and social progress. Key facilities 
such as tracks, bridges, tunnels, catenary systems, and signalling equipment are highly 
prone to fatigue damage, deformation, aging, and sudden failures. Traditional fault  
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diagnosis primarily relies on manual inspections and periodic maintenance, which is not 
only inefficient and costly but also significantly affected by subjective experience, 
making it difficult to achieve precise perception and early warning throughout all 
conditions and coverage areas (Hu et al., 2022). Deep learning can automatically learn 
complex features and patterns from large amounts of data, offering new ideas and 
approaches for solving railway infrastructure fault diagnosis problems (Han, 2024). 
Intelligent fault diagnosis systems based on deep learning can collect operational data in 
real-time, perform in-depth analysis and mining through deep learning algorithms, 
enabling automatic detection, classification, and localisation of faults. This greatly 
improves diagnostic accuracy and efficiency (Chen et al., 2021). Consequently, the 
investigation of intelligent fault diagnosis systems for railway infrastructure utilising 
deep learning holds both profound theoretical significance and substantial practical value 
(Wang et al., 2024). 

Early research mainly conducted railway infrastructure fault diagnosis based on 
traditional signal analysis (Song et al., 2021). Ghosh et al. (2022) put forward a spectral 
kurtosis approach in light of wavelet packet decomposition and manifold learning, which 
realises the fault impact characteristics of enhanced signals by suppressing noise in  
time-frequency space. Sun et al. (2022) first decomposed bearing signals using wavelet 
transform, then used the spectral kurtosis method to find optimal frequency bands, and 
validated. Huang et al. (2019) proposed a variational mode decomposition (VMD) based 
on correlation analysis for adaptively extracting weak faults and composite fault 
characteristics of railway infrastructure, achieving good diagnostic results. Wu et al. 
(2023) proposed an adjustable factor-based wavelet transform method for high-speed 
train fault diagnosis, utilising quality factors to screen sub-band components, thereby 
enabling the separation of fault impact responses under strong interference. The operating 
environment of railway infrastructure is complex, involving various interfering factors 
such as electromagnetic interference, mechanical noise, and environmental vibrations. 
These interfering signals can mix with normal operational signals, affecting the 
diagnostic accuracy of traditional signal analysis methods. 

Machine learning is a data-driven approach that realises data mining techniques, 
serving as an alternative strategy for relevant scholars after the failure of rule-based 
intelligent systems. It improves machine computing performance by extracting 
knowledge from massive datasets through machines. Hu et al. (2017) designed a railway 
infrastructure fault diagnosis approach based on the combination of genetic algorithms 
(GA) and backpropagation neural network (BPNN) to enhance its classification 
performance. Shao et al. (2020) developed an approach that employed multi-scale sample 
entropy to capture the features of vibration signals corresponding to various health states 
of railway assets. This method integrated a support vector machine (SVM) classifier, 
optimised via particle swarm optimisation, for the diagnosis and classification of 
infrastructure faults. Sun et al. (2023) extracted train bearing vibration signal features 
through morphological pattern spectrum and applied least squares SVMs for fault 
identification. The diagnosis accuracy was only 79.4%. Zhang et al. (2021) used principal 
component analysis (PCA) to reduce the dimensionality of temperature data features 
from train bearings, and proposed a method combining analytic hierarchy process with 
random forest algorithms for facility fault recognition. The aforementioned methods have 
gained good outcome in railway infrastructure fault diagnosis. However, machine 
learning algorithms still require manual involvement in the feature extraction section. 
They are overly reliant on signal analysis techniques and diagnostic experience. In 
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particular, the labour-intensive feature extraction process makes the entire algorithm 
excessively complex, and the extracted fault features are often unsatisfactory. 

The rise of deep learning has provided a solution to this, as it leverages its end-to-end 
learning capability to automatically extract features and build models from large amounts 
of collected data, and can adapt to different network structures such as convolutional, 
recurrent, or encoder-decoder mechanisms, demonstrating superior performance in device 
status identification and significantly simplifying the fault diagnosis process.  Simone et 
al. (2023) suggested a convolutional long short-term memory network (LSTM) model for 
fault diagnosis by analysing signals from railway infrastructure; however, insufficient 
spatial feature extraction led to low diagnostic accuracy.  Lv et al. (2024) combined deep 
residual network (ResNet) with transformer and proposed an algorithm for railway 
infrastructure fault diagnosis under variable working conditions, achieving a diagnostic 
accuracy of 81.9%. Shao et al. (2018) proposed a railway facility fault diagnosis method 
based on Hilbert-Huang transform deep feature representation and transfer learning to 
accurately predict the lifespan of facilities. Since railway infrastructure operates under 
normal working conditions, excessive diagnosis is not cost-effective. As initial fault 
signals are often weak and cannot be extracted due to noise, obtaining high-quality 
labelled  
fault data is very difficult. Generative models can capture statistical features of  
samples by fitting their underlying probability distribution, enabling the generation of 
pseudo-samples that are similar to and follow the same distribution as the data. Raza  
et al. (2025) expanded the fault dataset using conditional generative adversarial networks 
(GANs), achieving good results in multi-working condition diagnosis tasks, which 
verified the robustness of GAN under complex working conditions. Men et al. (2025) 
introduced deep convolutional GAN to enhance feature generation and effectively 
improved the model’s recognition capability under extremely limited sample conditions, 
achieving a diagnostic accuracy as high as 91%. 

In summary, traditional railway infrastructure fault diagnosis systems suffer from low 
efficiency, poor accuracy, and high costs, making it difficult to meet the standards of 
modern intelligent maintenance for railway equipment. Additionally, the scarcity of 
railway infrastructure fault data and imbalanced dataset categories often lead to low 
diagnostic accuracy in existing research. To address these issues, this article suggests an 
intelligent fault diagnosis system for railway infrastructure in light of deep learning. This 
system can fully address the issue of low diagnostic efficiency in existing research. The 
main contributions of this study can be summarised into four aspects. 

1 To cope with the issue of data imbalance, a data balancing method is proposed based 
on an improved Synthetic Minority Over-sampling Technique (SMOTE) algorithm 
(ESMOTE) and an improved GAN (CSGAN). Initial railway infrastructure signal 
data are input into the ESMOTE method to generate one-dimensional vibration data 
across different states. Simultaneously, time-frequency image data of railway facility 
signals are fed into the CSGAN model to generate time-frequency images for various 
states, providing high-quality data support for this study. 

2 ESMOTE achieves effective subdivision of intra-class data by introducing K-means 
clustering to make an initial division based on the inherent characteristics of each 
class. Simultaneously, it combines the concept of natural neighbours for linear 
interpolation to generate new samples, significantly reducing reliance on expert 
experience. CSGAN introduces category labels as additional information and uses 
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their corresponding embeddings as inputs to both the generator and discriminator, 
thereby constraining the data generation process to follow the form of target classes, 
generating samples that conform to specific class distributions. 

3 A transfer learning approach is presented, which transfers the knowledge acquired 
from source domain data to the target domain, enabling effective identification of 
railway infrastructure faults under complex operating conditions. By constructing a 
feature extractor combining ResNet and multi-scale feature fusion technology, it 
enhances the network’s ability to extract features, reduces the impact of working 
condition variations on diagnostic results, and also addresses the problem of network 
degradation caused by increasing depth. Furthermore, adopting a  
sub-domain adaptation transfer learning strategy enables railway infrastructure fault 
diagnosis. 

4 A large number of simulation experiments were conducted on real datasets. The 
outcome implies that the suggested approach enhances fault diagnosis accuracy by 
1.27%–3.4%, effectively enabling failure identification and classification for railway 
infrastructure under complex working conditions, providing a new approach to 
railway infrastructure fault diagnosis in scenarios with scarce sample data. 

2 Relevant theory 

2.1 Residual networks 

ResNet is a revolutionary convolutional neural network framework in the field of deep 
learning. The central concept behind it lies in mitigating the issues of gradient vanishing 
and network degradation through the introduction of residual connections, allowing the 
network to be trained to unprecedented depths while maintaining excellent performance. 
Residual units are the key component of ResNet, enabling direct information 
transmission through added cross-layer pathways (Wu et al., 2019). It includes 
convolutional operations and skip connections, which allow input to bypass certain layers 
directly. 

Assume that the learning target is f(x). Among them, x is the shallow output. The 
stacked convolutional layers within the dashed box are newly added layers that learn 
residual mapping f(x) – x. Their summation produces the ideal mapping f(x) at output. If 
it is desired to train the newly added level as an identity mapping f(x) = x, then simply set 
the weights and biases of the stacked convolutional layers in the residual block to zero. 
Therefore, the training error rate of the new network will be no worse than that of 
shallow networks, and using shortcut connections within the residual blocks can speed up 
data forward propagation and gradient backward propagation in neural networks, thus 
accelerating network training. In addition, this structural design requires the feature map 
shapes on the main path and the branch path in the residual block to be identical so that 
an addition operation can be performed at the output of the residual block (Fang et al., 
2021). 
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2.2 Generative adversarial network 

GAN includes a generator (G) and a discriminator (D), whose main idea is to 
continuously improve the performance of each network during training, so that G’s 
fabricated data can fool the discriminator, while D strives to distinguish the authenticity 
of input data (Wang et al., 2025). In practice, G takes a random variable z conforming to 
a certain prior distribution pz(z) as input and generates pseudo-samples G(z) based on it. 
The discriminator receives real samples and generated samples and outputs a probability 
value indicating that the sample is ‘real’. Usually, if the output is greater than 0.5, it is 
judged as real; otherwise, it’s fake. Through continuous training, the discriminator 
gradually improves its accuracy in identifying synthetic samples, while the generator 
makes its output data distribution pz(z) approach the true data distribution pdata(x), finally 
reaching a Nash equilibrium where any data has a probability of being considered real as 
1/2. The training and optimisation process of the discriminator and generator can be 
viewed as a maximisation-minimisation problem, with specific functions shown in 
equation (1). 

[ ] ( )( )( ) ( )logmin max ( ) log 1 (, )( ) pata x z zx
D

p z p
G

E D x E D GV D zG ∼ ∼=  + −   (1) 

where V(D, G) is the final optimisation result of GAN, E represents mathematical 
expectation. When the structure of the discriminator is fixed, the training objective of the 
generator is to minimise this function to generate more deceptive samples. When the 
structure of the generator is fixed, the discriminator strives to maximise this target 
function to enhance its ability to distinguish between real and fake samples. 

2.3 SMOTE oversampling algorithm 

Traditional random oversampling methods simply duplicate minority class samples 
without adding new information. For example, in a dataset containing two classes, if the 
minority class has few samples, random oversampling may repeatedly select existing 
minority samples to add to the training set. This leads to a large number of duplicate 
samples in the training data. During learning, the model may become overly reliant on 
these duplicates, making it excessively sensitive to noise and specific patterns within the 
training data. Ultimately, this causes overfitting, resulting in poor generalisation ability 
when encountering new, unseen data. The SMOTE algorithm does not simply duplicate 
minority class samples. Instead, it synthesises new samples by performing linear 
interpolation of minority class samples in the feature space. This approach increases 
sample diversity, providing the model with more varied information. It helps the model 
learn more general features and patterns, thereby reducing the risk of overfitting and 
improving the model’s generalisation ability. The SMOTE oversampling algorithm 
generates synthetic sample sets that conform to the original data distribution by 
performing oversampling interpolation operations on minority class samples in the 
feature space, further alleviating the problem of class imbalance (Duan et al., 2022). This 
mechanism effectively reduces training bias in classification models and significantly 
improves model generalisation performance. The process of generating new samples 
through SMOTE is based on the distances between a sample itself and its k nearest 
neighbours. Common distance metrics include Euclidean distance, Manhattan distance, 
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etc. (Elreedy et al., 2024). The SMOTE algorithm operates according to the following 
procedure. 

Firstly, take a certain sample xi from the minority class sample set as a benchmark, 
calculate the distances between this sample and other samples using Euclidean distance, 
and select k nearest neighbours based on the calculation results. Secondly, randomly 
select one of these k nearest neighbour samples xij as an auxiliary sample, and perform 
linear interpolation with xi according to equation (2) to obtain a new generated sample 
xnew, where α is a random number between [0, 1]. 

( )new i inewx x x xα= + × −  (2) 

Finally, set the sampling rate N based on the sample imbalance ratio, repeat the 
aforementioned process N times to derive all new instances, and effectively enhance the 
class distribution of the dataset. 

3 Railway infrastructure signal data balancing based on improved 
SMOTE oversampling and GAN 

3.1 Design of the improved SMOTE algorithm 

Due to the scarcity of railway infrastructure fault data and imbalanced dataset classes 
leading to poor model training performance and low diagnostic accuracy, this paper 
proposes an ESMOTE and CSGAN-based data balancing method based on data 
characteristics. ESMOTE combines unsupervised clustering algorithms with natural 
neighbour concepts, while CSGAN introduces class label information and optimises the 
training loss function to enhance the quality of produced samples across different 
datasets. 

During the data balancing process, over-synthesis or noise introduction can affect the 
quality of generated samples. Although SMOTE is a widely used classical oversampling 
method, it has two main limitations. First, choosing the nearest neighbour parameter k 
heavily relies on expert experience and lacks adaptive adjustment capability. Second, it 
does not comprehensively consider the distribution characteristics of the data itself, 
making it likely to generate samples inconsistent with actual data distributions, hence 
influencing the performance of subsequent models. To tackle these problems, this paper 
presents an enhanced ESMOTE algorithm, which operates according to the following 
procedure. 

First, introduce the K-means clustering algorithm (Ahmed et al., 2020) to preprocess 
minority class data sequentially and divide it into c sub-clusters with similar feature 
distributions. This relationship is represented by Ds = {Ds1, Ds2, Ds3, …, Dsc}, where Ds 
denotes the minority class data, Dsj represents the j-th cluster, and j ∈ [1, c]. 

Second, randomly select base samples ( )i
Basex  from each sub-cluster and  

randomly choose auxiliary samples ( )i
Nearestx  within their neighbouring sample sets in light 

of natural neighbour relations. Compared to the k-nearest neighbours method used by 
traditional SMOTE algorithms, natural neighbour relationships offer stronger adaptability 
(Zhu et al., 2016). The stable definition of natural neighbour relationships is as follows: if 
sample p is a natural neighbour of sample q, then sample p is also one of the λ nearest 
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neighbours of sample q; similarly, sample q is also one of the λ nearest neighbours of 
sample p, where λ represents the characteristic value of natural neighbours. 

( ) (( ) )λ λp NaN q q NN p p NN q∈ ⇔ ∈ ∈  (3) 

Finally, set a sampling rate N based on the imbalance ratio of the dataset and generate 
new samples between ( )i

Basex  and ( )i
Nearestx  using linear interpolation. The calculation 

expression is as follows: ( )i
Basex  represents the ith base sample in the cluster; ( )i

Nearestx  

represents the auxiliary sample of ( ) ,i
Basex  diff denotes the difference between ( )i

Nearestx  and 
( ) ,i
Basex  ( )i

Newx  is the synthesised new sample, and α is a random factor with α ∈ [0, 1]. 

( ) ( )i i
Nearest Basediff x x= −  (4) 

( ) ( )i i
New Basex x diffα= + ×  (5) 

ESMOTE divides each class into effective subgroups by introducing K-means clustering 
according to intrinsic data characteristics. Meanwhile, it combines natural neighbour 
concepts for linear interpolation to generate new samples, significantly reducing 
dependence on expert experience. Compared to traditional SMOTE algorithms, 
ESMOTE ensures a reasonable intra-class distribution and controls the quality of 
generated samples during the sampling process, further demonstrating its advantages in 
data balancing tasks. 

3.2 GAN model improvement and railway infrastructure signal data balancing 
process 

During the training process of GANs, when cross-entropy is chosen as the loss function, 
if there are significant differences between the real data distribution and the generated 
distribution, the discriminator tends to make erroneous judgments, leading to an unstable 
model training process and poor quality of the generated samples. Conditional GAN uses 
least squares mean square error instead of traditional cross-entropy measures by 
constructing adversarial regularisation terms based on decision boundaries, forcing the 
generated samples in the feature space to align with the real data distribution judged by 
the discriminator, thus improving the quality of the generated samples (Abu-Srhan et al., 
2022). 

However, the generator of conditional GAN still has issues such as limited output 
sample diversity and insufficient condition control sensitivity. To further optimise model 
performance, this paper proposes a Conditional Least Squares GAN (CSGAN). First, it 
introduces class labels as additional information and incorporates their corresponding 
embeddings into the inputs for both the generator and discriminator to constrain the data 
generation process to follow target classes, thus generating samples that conform to 
specific class distributions. Second, an L2 regularisation term is added to the training loss 
function of the discriminator to impose reasonable penalties on parameters, enhancing 
parameter distribution uniformity, effectively improving the generalisation ability of the 
discriminator, and preventing overfitting. The calculation of L2 regularisation is as 
follows, where Lreg represents the L2 regularisation term, λ represents the weight decay 
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factor used to control the strength of regularisation, and wi represents the weighting 
parameters in the model. 

2

1

n

reg i
i

L λ w
=

=   (6) 

Combining the aforementioned improved algorithms ESMOTE and CSGAN, this paper 
proposes an efficient balanced process for railway infrastructure signal data. The initial 
signal data is input into the ESMOTE method, where relevant parameters are set to 
conduct experiments generating one-dimensional vibration data in different states. 
Meanwhile, the time-frequency diagram data of railway facility signals is fed into the 
CSGAN model through multiple rounds of training and the best model is saved. 
Subsequently, the generator part is extracted from the optimal model, trained weights are 
loaded, and used to generate time-frequency diagrams for different types of conditions, 
providing rich and high-quality data support for railway infrastructure fault diagnosis 
tasks. 

4 Fault diagnosis system for railway infrastructure based on multi-scale 
ResNet and transfer learning 

4.1 Multi-scale residual convolution 

To address the issue where traditional deep learning needs substantial data for model 
training during early stages of railway infrastructure fault diagnosis, and some operating 
condition data is difficult to obtain in large quantities, this paper proposes a transfer 
learning model with multi-scale residual feature extraction. The model adopts an 
improved ResNet as its core architecture. Three channels are constructed, utilising 
different receptive field sizes so the model can extract railway infrastructure fault signal 
features at various scales, then fuses these features through weighted integration to 
enhance the network’s characteristic extraction capability. Ultimately, a subdomain 
adaptation-based transfer learning strategy is applied, enabling railway infrastructure 
fault diagnosis under complex operating conditions. 

In railway infrastructure fault diagnosis under different operational conditions, 
changes in the operational state of facilities present greater challenges for diagnosis. This 
paper suggests a multi-scale residual convolutional neural network architecture that 
addresses insufficient feature extraction capability and deep network degradation issues 
in traditional networks under variable operational conditions through multi-scale feature 
fusion and ResNet mechanisms. The network adopts a three-level multi-scale feature 
extraction module, with each scale module containing three residual block structures 
configured with 1 × 3, 1 × 5, and 1 × 7 convolution kernels of various scales to capture 
fault signal characteristics from railway infrastructure components of various sizes, 
producing 64, 128, and 256 channel outputs. 

The original signal undergoes preliminary feature extraction using a 1 × 7 
convolution kernel to avoid excessive parameters within the model input, followed by 
data base features obtained through 2 × 2 max pooling. The base features are then 
separately fed into three multi-scale processing modules where different scale ResNet 
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deeply mine data features of various scales. Finally, each submodule outputs a 1 × 256 
feature that undergoes average pooling to obtain a fused output feature of size 1 × 768. 

4.2 Domain adaptation 

In addressing data distribution shifts across different operational condition railway 
infrastructure fault diagnosis, global domain adaptation maps source and target domain 
data into a common characteristic space via feature space mapping to align marginal 
distributions. Subdomain adaptation differs from global domain adaptation by precisely 
aligning conditional probability distributions of each subdomain in the source and target 
domains, thereby gradually bringing their marginal distributions closer during transfer 
learning. This paper adopts the local maximum mean discrepancy (LMMD) (Huang et 
al., 2023) as the measurement of subdomain distribution differences to construct an 
optimisation objective for conditional distributions. The distribution difference between 
source domain features ,

1{ } ss l nl
s i iX x ==  and target domain features ,

1{ } ts l nl
t j jX x ==  is shown 

in equation (7). 

( ) ( ) 2
2

1

1( , )
s ts ti i

C
sc s tc t
i i i j

c x D x D H

d p q w x w x
C

φ φ
= ∈ ∈

= −    (7) 

where sc
iw  and tc

iw  are the weight values of s
ix  and t

jx  for fault category c, individually. 

1

1
sn

sc
i

i

w
=

=  and 
1

1
sn

sc
i

i

w
=

=  are the weighted sums of samples in class c after mapping. 

The weight c
iw  is shown in equation (8), where c

jy  is the cth element of feature yi. 

( , )j j

c
ic

i c
jx y D

yw
y

∈

=


 (8) 

In the source domain dataset, sample weights sc
iw  are directly calculated using  

equation (8) based on the label vector s
iy  of source domain data yi. However, since there 

are no labelled vectors for target domain data, it is not possible to determine the weight 
through this method. This paper proposes utilising the probability distribution output by 
deep neural networks as a pseudo-label estimation approach for target domain samples. 
Inputting the target domain sample t

ix  into the trained diagnosis network, use the ˆ t
iy  

output from the softmax layer to represent the probability of the sample belonging to fault 
types. 

4.3 Railway infrastructure fault diagnosis system model 

In actual fault diagnosis processes, the amount of railway infrastructure fault data under 
certain operating conditions is tough to satisfy the needs for training models using 
traditional deep learning methods. When introducing transfer learning algorithms, 
changes in the operating conditions of railway infrastructure lead to distribution 
differences in diagnostic data, and obtaining labels for samples to be diagnosed also 
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presents some difficulties. To cope with these issues, this chapter puts forward a railway 
infrastructure fault diagnosis system in light of multi-scale ResNet and transfer learning, 
intended for railway infrastructure fault diagnosis under complex operating conditions. 
The entire structure of the suggested railway infrastructure fault diagnosis system is 
implied in Figure 1. By characteristic space mapping, labelled source domain data and 
unlabelled target domain data are uniformly transferred to a subspace. This approach 
effectively utilises the common characteristics exhibited by fault signals of railway 
infrastructure under different operating conditions. LMMD is adopted as the subdomain 
adaptation metric to perform subdomain adaptation on the extracted multi-condition 
shared features, achieving multiple condition fault diagnosis for railway infrastructure. 

Figure 1 The entire structure of the suggested railway infrastructure fault diagnosis system  
(see online version for colours) 
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The proposed model consists primarily of two parts: a data characteristic extractor and a 
classifier. The above-mentioned multi-scale ResNet serves as the data feature extractor Gf 
of this model, while the classifier is labelled Gy. An adaptive layer selects the FC2 layer, 
as shown in Figure 1, to reduce the linear maximum mean deviation between source field 
and target field through the adaptive layer, thus reducing data distribution differences 
caused by changes in operating conditions. 

When the source field 1{( , )} sns s
s i i iD x y ==  and target field 1{( )} tnt

t j jD x ==  data are input 
into the feature extraction model, multi-scale features will be extracted. These features 
capture detailed information at different levels of the data. After passing through a 
flattening layer, these features result in features ,00

1{ } ss n
s i iZ z ==  and ,00

1{ } ,t
t

t n
j jZ z ==  while 

features 0
sZ  and 0

tZ  are adapted by the subdomain adaptation layer of classifier Gy, 
resulting in adaptive features ,22

1{ } ss n
is iZ z ==  and ,22

1{ } .t
t

t n
j jZ z ==  Combined with label 
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vector s
iy  and predicted label vector ˆ ,t

iy  the source field and target field subdomain 
adaptation loss values Ld are obtained. 

2 2 2ˆ ( , )d s tHL LMMD Z Z=  (9) 

The classification output of the source field data through the classifier is ˆ .i
sy  The 

classification loss value for the source domain Ly is calculated using a normal source 
domain label vector, as described below, where J (⋅,⋅) represents the cross-entropy loss 
function. 

( )
1

,ˆ1 sn
s s

y i i
s i

L J y y
n =

=   (10) 

In the backpropagation process of the proposed model, only the classification loss Ly is 
optimised with respect to a standard optimisation function. In this method, both the 
classification loss Ly and adaptation loss Ld must be simultaneously optimised. The 
optimisation function formula is as follows, where θ = {w, b} represents the bias and 
weights of the model; λ is the adaptive weight parameter, 0 < λ < 1. 

( )
{ , }

min y d
θ w b

L λL
=

+  (11) 

10 /
2 1

1 Tt
λ

e−
= −

+
 (12) 

where t is the current iteration count during training, and T is the total number of 
iterations. 

The final railway infrastructure fault diagnosis model achieves minimum linear 
LMMD values, enabling fault identification and classification under different operating 
conditions, thereby improving diagnostic generalisation performance. 

5 Analysis of experimental results  

5.1 Railway infrastructure fault diagnosis results analysis 

This paper adopts bearing data from the bearing test bench at Shijiazhuang Tiedao 
University. The experiment uses double-row tapered roller bearings. There are eight 
types of bearing health states: normal, outer ring minor fault, outer ring severe fault, inner 
ring minor fault, inner ring severe fault, roller severe fault, roller minor fault, and 
compound faults between the outer ring and rollers. These eight fault types are denoted as 
T1, T2,..., T8. All these faults represent real faults occurring during railway infrastructure 
operations. 

To make the experimental test more accurate, after balancing the fault data using the 
ESMOTE-CSGAN method proposed in this paper, 1,000 sets of signals are chosen for 
each type of bearing fault, totalling 8,000 sets. Each signal contains 1,024 points. For 
each type of faulty bearing, 750 samples are selected as the training set and 250 as the 
test set. Training samples and validation samples in the training set are randomly divided 
at a ratio of 4:1, and the model is trained for 50 rounds to obtain the optimal model. Then, 
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the test set is input into the optimal model for testing. The computer hardware 
configuration includes an AMD R7-3700X processor, 32G RAM, and an RTX3070 GPU. 
The deep learning network framework was developed using PyTorch with Python 3.8 as 
the programming language. The batch size is set to 64, the studying rate to 0.01, the 
optimiser’s momentum value to 0.9, and the weight decay to 0.0004. The amount of 
training iterations is set to 300. 

Figure 2 Training results of the MSRN-TL model (see online version for colours) 
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The time-frequency images generated by the ESMOTE-CSGAN data balancing method 
for various fault states are input into the model. After 50 iterations, the proposed  
MSRN-TL model obtains results as implied in Figure 2. The training accuracy of the 
suggested model reaches 98.99%. After 30 iterations, the model loss stabilises and 
becomes smooth. This verifies that the model achieves good performance in railway 
infrastructure fault detection. 

To more intuitively demonstrate the model’s performance in railway infrastructure 
fault detection, a confusion matrix is introduced for visual analysis of the test results, as 
shown in Figure 3. Out of 2,000 test samples, 22 are misclassified: 10 samples from T4 
are classified into T3, with an accuracy rate of 96% for T4. In T5, 5 samples are 
classified into T6 and another 5 into T2, achieving a recognition accuracy of 96%. For 
T7, two samples are misclassified into T5, resulting in an accuracy rate of 99.2%. The 
model’s overall recognition accuracy is 98.9%, recall is 98.9%, precision is 98.93%, and 
the F1 score is 98.89%. This verifies that the MSRN-TL model achieves excellent 
performance in railway infrastructure fault detection. 
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Figure 3 Visualisation of fault detection for the proposed MSRN-TL model (see online version 
for colours) 
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5.2 Diagnostic performance comparison 

To further verify the fault diagnostic performance of the proposed model, this paper 
selects RN-Trans [15], DFP-TL [16], and Conv-GAN [18] as baseline models. Evaluation 
metrics include accuracy, precision, F1 score, and specificity. Figure 4 shows a 
comparison of loss and accuracy during training for the four models. After 40 iterations, 
MSRN-TL and Conv-GAN achieve diagnostic accuracies of 92.08% and 91.56%, 
respectively. RN-Trans converges after 80 iterations with an accuracy of 90.07%.  
DFP-TL converges after 55 iterations, achieving a precision of 91.55%. The MSRN-TL 
model not only demonstrates high diagnostic accuracy but also achieves low loss, 
performing well in railway infrastructure fault diagnosis tasks. 

Figure 4 A comparison of loss and accuracy during training for the four models, (a) loss function 
(b) diagnostic accuracy (see online version for colours) 
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Table 1 Fault diagnosis performance comparison 

Model Accuracy/% F1/% Specificity/% 
RN-Trans 90.46 89.01 95.39 
DFP-TL 91.51 91.97 96.05 
Conv-GAN 92.59 92.81 97.05 
MSRN-TL 93.86 94.28 98.47 

Table 1 presents the comparison of various diagnostic performance metrics for each 
model. The Accuracy of MSRN-TL is 93.86%, which represents an improvement of 
3.4%, 2.35%, and 1.27% over RN-Trans, DFP-TL, and Conv-GAN, respectively. 
Comparing F1 and Specificity further, the improvements for MSRN-TL are 5.27% and 
3.08% against RN-Trans, 2.31% and 2.42% against DFP-TL, and 1.47% and 1.42% 
against Conv-GAN.RN-Trans mainly combines deep ResNet with transformer for 
railway infrastructure fault diagnosis; however, under limited data conditions, RN-Trans 
tends to memorise noise and specific patterns in the training set rather than learning 
generalised fault features, resulting in reduced generalisation ability in real-world 
scenarios. DFP-TL utilises deep feature representation combined with transfer learning 
methods for railway infrastructure fault diagnosis. However, the types of faults contained 
in source domain data might not fully align with those actually occurring in target domain 
railway infrastructure. The model may fail to recognise fault patterns it has never 
encountered before. Conv-GAN addresses dataset imbalance through GAN and achieves 
fault feature extraction and classification via CNN, thereby improving diagnostic 
accuracy to some extent; however, the complexity of CNN-based feature extraction is 
relatively high. MSRN-TL can effectively capture common features of fault patterns 
under different working conditions of railway infrastructure and deeply mine the intrinsic 
consistency of fault features through multi-scale ResNet, enhancing the model’s 
capability for feature learning. 

6 Conclusions 

To address the issue of scarce railway infrastructure fault data and low diagnostic 
accuracy caused by imbalanced datasets in existing research, this paper presents an 
intelligent fault diagnosis system for railway infrastructure that leverages deep learning. 
First, to tackle signal dataset imbalance issues specific to railway infrastructure, a data 
balancing method combining ESMOTE with CSGAN is proposed, leveraging the 
characteristics of the data itself. An unsupervised clustering algorithm and natural 
neighbour concept are introduced to improve sample generation efficiency and enhance 
the quality of generated samples. The improved data balancing approach increases 
training stability by incorporating additional class label information and optimising the 
training loss function, thereby generating higher-quality fault samples. Based on this, 
transfer learning methods are introduced to migrate knowledge learned from source 
domain data to the target domain, enabling fault identification under complex working 
conditions. By constructing a feature extractor combining ResNet with multi-scale 
feature fusion technology, the network’s feature extraction capability is enhanced while 
weakening the impact of operating condition changes on diagnostic results, and 
effectively addressing the issue of network degradation as network depth increases. Then, 
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a subdomain adaptation transfer learning strategy is adopted to achieve fault diagnosis for 
railway infrastructure. Experimental outcome implies that the suggested approach 
achieves a diagnostic accuracy of 93.86%, which is at least 1.27% higher than baseline 
models and can accurately realise fault diagnosis for railway infrastructure.  
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