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Abstract: To address the limitations of existing methods in modelling dynamic 
and heterogeneous brand-user relationships, this study proposes a dynamic 
heterogeneous graph attention network (DHGAT). This framework integrates 
three core innovations: 1) a time-decay-based edge weighting mechanism that 
quantifies temporal dynamics of user-brand interactions; 2) a cross-relation 
attention layer that distinguishes semantic differences among diverse 
behaviours (e.g., purchases vs. complaints) through relation-specific gating;  
3) a reinforcement learning decision engine optimising marketing actions via  
Q-learning. Validated on a real-world e-commerce dataset (32,000 users, 142M 
interactions), DHGAT achieves an AUC of 0.892 in relationship prediction 
(5.7%–16.8% higher than baselines) and boosts marketing ROI by 41% in 
online A/B tests. The framework enables end-to-end optimisation of marketing 
strategies while balancing short-term conversions and long-term user value, 
offering a novel paradigm for data-driven marketing decision systems. 

Keywords: DHGAT; time-decay edge weighting; cross-relation attention; 
brand-user relationship modelling. 
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1 Introduction 

In the context of the rapid development of the digital economy, the precise modelling of 
brand-user relationships has become the core driving force behind corporate marketing 
decisions. According to IDC’s 2024 Global Data Report, over 78% of leading enterprises 
have listed ‘deep user relationship mining’ as their top strategic priority, yet the 
conversion rate of traditional marketing remains below 5% (Mardatillah et al., 2024). 
This contradiction stems from three key characteristics: first, current user behaviour is 
fragmented across multiple platforms, with each user engaging with an average of 3.2 
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interaction channels; second, user preferences evolve dynamically, with monthly changes 
in brand preference reaching 34%; and third, relationships are increasingly implicit, with 
only 12% of interaction behaviours directly translating into purchases. 

Current research on brand-user relationship modelling primarily focuses on two main 
directions: traditional collaborative filtering and matrix decomposition methods, and 
graph neural network (GNN) base models (Tang et al., 2024). Traditional methods such 
as SVD++ and neural matrix decomposition learn user preferences through latent factor 
decomposition, but they have fundamental limitations: they simplify user-brand 
interactions into a two-dimensional matrix, cannot model multi-type relationships, and 
are extremely sensitive to data sparsity, leading to ineffective predictions for long-tail 
brands (Saraei et al., 2025). GNN-based models like DeepWalk (Deep learning + 
Random walk) (Chen et al., 2020), graph convolutional network (GCN) (Ma et al., 2024), 
and Graph Sample and AggreGatE (GraphSAGE) (Yu et al., 2024) enhance feature 
representation capabilities through neighbourhood aggregation, but face three major 
challenges in brand marketing scenarios: lack of dynamic adaptability, insufficient 
integration of heterogeneous relationships, and disconnect between strategy optimisation. 

In this context, GNNs offer a new approach to deconstructing the complex  
‘user-brand-environment’ system due to their powerful representation capabilities for 
non-Euclidean data. This article proposes a simplified multi-view GNN that achieves 
multi-language knowledge graph completion through dual-view modelling of entities and 
relationships (Dong et al., 2024). Soft-GNN dynamically adjusts the weights of training 
samples through adaptive data utilisation strategies to improve the robustness of GNNs 
(Wu et al., 2024). GETAE generates enhanced features by integrating text content and 
user dissemination information through GNN, significantly improving the accuracy of 
fake news detection (Malik et al., 2024). This study proposes a few-shot fine-grained 
image classification method based on GNNs by integrating global and local structural 
information, introducing meta-learning to optimise feature extraction, and combining 
attention mechanisms to enhance discriminative power (Ganesan et al., 2024). 

The problem of information confusion in traditional isomorphous graph modelling is 
commonly solved by cross-relationship attention fusion. This paper proposes a  
cross-modal dual attention fusion network that improves multi-modal sentiment analysis 
performance through multi-loss learning. Experiments on multiple datasets show that it 
outperforms existing methods (Guo et al., 2024). This article combines cross-modal 
bidirectional attention and adaptive classification modules to significantly improve the 
performance of multimodal implicit sentiment analysis (Huo et al., 2024). This paper 
proposes to improve the performance of salient object detection in complex scenes 
through a cross-modal attention fusion module and a boundary feature extraction module 
(Wang et al., 2024). This paper proposes the PVT-MA framework, which combines a 
pyramid visual transformer with a multi-attention fusion mechanism. Through cascaded 
fusion modules, disguise recognition modules, and similarity aggregation modules, it 
effectively integrates multi-scale features to improve the robustness and accuracy of 
colorectal polyp segmentation (Shang et al., 2024). This study proposes a deep 
reinforcement learning method based on mixed state spaces and driving risks. By 
designing a state-action-reward mechanism and combining dynamic risk constraints to 
optimise autonomous driving decisions, the experiment shows that it significantly 
improves efficiency and safety in complex scenarios (Wang et al., 2025). This paper 
combines multi-level fuzzy coloured Petri nets with reinforcement learning to model and 
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simulate wireless body area network (WBAN) systems, thereby enhancing their dynamic 
decision-making and performance optimisation capabilities (Majma and Babamir, 2024). 

In response to the above challenges, this paper proposes the dynamic heterogeneous 
graph attention network (DHGAT) framework, which establishes a graph model that 
integrates temporal dynamics and relational heterogeneity to achieve end-to-end 
optimisation of marketing strategies. The main research content and innovative 
contributions are as follows: 

1 Dynamic sequence diagram construction mechanism: design a time-decay-based 
edge weight update algorithm to quantify the temporal changes in the strength of 
user-brand interactions. 

2 Cross-relationship attention fusion architecture: innovatively introduces  
relationship-aware multi-head attention layers into heterogeneous graph networks to 
learn the semantic differences between different types of interactions, such as 
purchases, shares, and complaints, thereby solving the problem of information 
confusion in traditional homogeneous graph modelling. 

3 Marketing reinforcement learning decision engine: combining user relationship 
representation with the Q-learning algorithm, we construct a ‘state-action-reward’ 
decision model. The system generates personalised marketing actions, such as 
discount levels and push timing, based on real-time user states, such as price 
sensitivity and brand loyalty, to maximise ROI. 

2 Related theories and technical foundations 

2.1 Basic concepts of GNNs 

GNNs are deep learning frameworks for processing non-Euclidean graph structure data. 
Their core idea is to learn node representations through a message passing mechanism. 
Unlike traditional neural networks, GNNs explicitly model the topological relationships 
between entities, making them particularly suitable for representation learning in  
user-brand interaction networks. 

2.1.1 Graph convolutional network 

GCN extend convolutional operations to the graph domain, addressing the limitation of 
traditional CNNs in handling topological structures. Their key innovation lies in 
neighbourhood feature aggregation: each node updates its own representation by 
aggregating the features of its neighbouring nodes. To quantify the varying contributions 
of neighbours during the aggregation process, normalised weights must be defined. Kipf 
and Welling proposed a symmetric normalisation method based on node degree: 

 1 1
( +1) ( ) ( )2 2ˆˆ ˆl l lH σ D AD H W

 
  (1) 

where ˆ +A A I  is the adjacency matrix with self-loops added, A is the original 

adjacency matrix, and I is the identity matrix, D̂  is the degree matrix of ˆ,A  H(l) is the 

node feature matrix of layer l, ( )l
iH  represents the feature vector of node i in layer l, W(l) 
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is the learnable parameter matrix of layer l, σ is the activation function, typically ReLU, 
1 1

2 2ˆˆ ˆD AD
 

 implements degree normalisation of neighbour weights to avoid high-degree 
nodes dominating the aggregation process. 

This design enables the model to capture the transmission effect of users’ social 
influence, providing a theoretical basis for brand communication modelling. Through 
neighbourhood feature aggregation and parameter matrix transformation, GCN can 
effectively learn complex relationships and patterns in graph structure data. 

2.1.2 Graph attention network (GAT) 

The GAT is a GNN model that incorporates an attention mechanism, designed to address 
the issue of fixed neighbour node weights in traditional GCNs. In brand marketing 
scenarios, users exhibit significant differences in their attention toward different brands 
or different behaviours within the same brand. Therefore, the attention mechanism can 
adaptively learn the weights between nodes, thereby more accurately capturing 
information within the graph structure. Attention coefficient calculation: 

 LeakyReLU T
ij i je a Wh Wh     (2) 

where eij is the attention coefficient, hi and hj represent the feature vectors of node i and 
node j, W is a learnable weight matrix used to perform linear transformations on node 
features, a is a learnable attention vector used to calculate the attention coefficient, 
LeakyReLU is an activation function used to introduce nonlinear characteristics. 

The calculated attention coefficients eij need to be normalised to obtain the final 
attention weights. The specific formula is as follows: 

 
 

( )

exp

exp

ij
ij

ik

k i

e

e









 (3) 

where ij represents the attention weight of node i to node j, eij represents the exponential 

form of the attention coefficient between node i and node j,  
( )

exp ik

k i

e




 represents the 

sum of the attention coefficients of all neighbour nodes k of node I, ( )i  represents the 

set of neighbour nodes of node i. 
The parameters a and W are automatically adjusted during the training process to 

adapt to different graph structures and task requirements. As asymmetric weights, they 
can model differences in the intensity of user attention to different brands or behaviours. 
For example, users may have different levels of attention toward luxury brands and 
affordable brands. 

By introducing an attention mechanism, GAT can adaptively learn the weights 
between nodes, thereby more accurately capturing information in the graph structure. In 
brand marketing scenarios, this capability enables GAT to better model differences in the 
intensity of user attention to different brands or behaviours, thereby improving the 
model’s prediction accuracy. 
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2.1.3 Unified framework for message passing 

GNNs can be defined by the message passing paradigm, which propagates information 
and updates node features on graph structured data. The message function defines the 
message passing process between node i and node j in layer l, specifically represented as: 

 ( ) ( ) ( ), ,l l l
ijij i jm h h e   (4) 

where ( )l
ijm  represents the message vector received by node i from its neighbour node j in 

layer l,  represents the message function, ( )l
ih  represents the hidden state vector of node 

i in layer l, ( )l
jh  represents the hidden state vector of node j in layer l, eij represents the 

edge feature vector between node i and node j. 
In addition, the update function defines the feature update process of node i at layer  

l + 1, specifically represented as: 

 ( +1) ( ) ( )
( ),l l l

j ii i ijh ψ h m    (5) 

where ( +1)l
ih  represents the hidden state vector of node i in layer l + 1, ψ represents the 

update function used to update the hidden state of node i, ( )
( )

l
j i ijm   represents the 

aggregation operation on the messages from all neighbouring nodes j of node i. 
Through multi-layer iterative calculations, GNNs can capture complex dependencies 

in graph structures and are widely applied in fields such as social network analysis, 
molecular structure prediction, and recommendation systems. 

2.2 Brand-user relationship modelling method 

2.2.1 Unified framework for message passing 

Traditional isomorphic graphs ignore differences in relationship types, resulting in the 
equal treatment of ‘purchases’ and ‘complaints’. This paper designs a relationship 
perception aggregation mechanism to model the diverse relationships between users and 
brands as a heterogeneous graph: 

( , , )     (6) 

where ( ser nodes + brand nodesu ),u b     the set   contains multiple relationships: 

purchasing, social sharing, and negative feedback. 

2.2.2 Heterogeneous GNN 

Different types of relationships need to be learned independently to avoid information 
confusion. To handle multiple types of relationships, relationship-specific 
parameterisation is introduced: 

( +1) ( ) ( )

,( )

1

r

l l l
ri j

i rr j i

h σ W h
c 

   
 
 
 

 (7) 
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where ( 1)l
ih   represents the embedding vector of node i at layer l, σ represents the 

activation function,   represents the relation set, r represents a specific relation type, 
( )r i  represents the set of neighbours of node i under relation r, ci,r represents the 

normalisation factor, ( )l
rW  represents the dedicated parameter matrix for relation r at 

layer l, ( )l
jh  represents the embedding vector of node j at layer l. 

This formula updates the node embedding vector by aggregating the embedding 
vectors of neighbouring nodes and considering the weights of different types of 
relationships, thereby achieving a relationship-aware aggregation mechanism. 

2.2.3 Dynamic graph modelling challenge 

The essence of user-brand interaction is a time-sensitive non-stationary process, whose 
dynamic nature manifests in two dimensions. The first is short-term volatility, 
characterised by a sudden surge in interaction density triggered by marketing events. For 
example, anonymised log data from a leading e-commerce platform (2023) shows that 
during the ‘Double 11’ period, the density of user-brand edges increased by 4.8 times; 
Second, long-term evolution, where brand loyalty forms slowly as user experience 
accumulates. Therefore, existing static graph models cannot capture such features, 
necessitating the design of a time-sensitive edge weighting mechanism. 

2.3 Applications of reinforcement learning in marketing optimisation 

2.3.1 The sequential decision-making nature of marketing decisions 

User marketing can be modelled as a Markov Decision Process (MDP), where the state 
represents the user’s current embedding vector and brand context features. The user 
embedding vector represents the user’s multidimensional features at the current time 
point, while brand context features include the brand’s historical performance and the 
user’s interaction history with the brand. Actions refer to marketing strategies, such as 
discount rates, push channels, and timing. These actions constitute the set of strategies 
that marketers can choose from at each time point. Rewards include immediate and  
long-term benefits. Immediate benefits refer to the user’s direct feedback at the current 
time point, such as click-through rates (CTR) or purchase conversion rates; long-term 
benefits refer to the improvement in user lifetime value (LTV), reflecting the user’s 
potential value over a future period of time. 

2.3.2 Q-learning algorithm framework 

To learn the optimal strategy, introduce the Q-value function, which needs to evaluate the 
long-term value of executing action a in state s, and define the Bellman equation: 

 ( , ) ( , ) + max ,π π
aQ s a r s a γ Q s a       (8) 

where Qπ(s, a) is a state-action value function, r(s, a) is the immediate reward function, 
which represents the immediate reward obtained after executing action a from state s, γ is 
the discount factor, maxaʹ Q

π(sʹ, aʹ) represents the maximum Q-value that can be obtained 
by selecting the optimal action according to strategy in the next state, sʹ is the next state 
transitioned to after executing action a, aʹ is the action that can be executed in state sʹ. 



   

 

   

   
 

   

   

 

   

   80 A. Yao    
 

    
 
 

   

   
 

   

   

 

   

       
 

Update the Q-values through temporal difference learning: 

 ( , ) ( , ) + + max , ( , )aQ s a Q s a r γ Q s a Q s a       (9) 

where Q(s, a) represents the Q-value of taking action a in state s,  is the learning rate, γ 
is typically set to 0.9. When γ approaches 1, the model focuses more on long-term gains; 
when γ approaches 0, the model focuses more on immediate gains. When  approaches 1, 
the model prioritises new information; when  approaches 0, the model prioritises old 
information. This framework enables the model to reject actions with short-term high 
CTR but detrimental to brand image (such as excessive push notifications), thereby 
maximising long-term benefits. Through continuous iteration and learning, the model can 
gradually converge toward the optimal strategy, achieving sustained optimisation of 
marketing performance. 

2.3.3 Practical breakthroughs in deep reinforcement learning 

Traditional Q-learning algorithms have limitations when dealing with high-dimensional 
state spaces. Therefore, deep Q-networks (DQN) were proposed by combining deep 
learning. DQN uses deep neural networks to approximate the Q-function, enabling it to 
handle complex high-dimensional state spaces. However, DQN still faces issues of 
training instability and slow convergence in practical applications. To address these 
issues, this paper proposes an innovative design scheme. 

First, GNNs can capture complex relationships and structural information between 
users. By using the user embeddings output by GNNs as state representations, we can 
more accurately describe users’ states, thereby improving the performance of 
reinforcement learning algorithms. To further enhance training stability, we propose the 
following loss function to quantify the loss during training: 

 2( ) ( + max ( , ; ) ( , ; ))aθ r γ Q s a θ Q s a θ
      (10) 

where θ representing the main network, θ– representing the target network, s represents 
the current state, a represents the current action, r represents the immediate reward 
brought by the current action, γ represents the discount factor, sʹ represents the next state 
reached after executing the current action, aʹ represents the actions that can be taken in 
the next state. 

The objective of this formula is to minimise the mean squared error between the 
predicted Q-value and the target Q-value. By doing so, the parameters of the main 
network gradually converge toward the optimal policy, thereby enhancing the 
performance of the reinforcement learning algorithm. Experiments deployed by JD in 
2023 demonstrated that this approach can significantly improve marketing ROI, with a 
specific improvement of 41%. This indicates that by introducing GNNs and target 
networks, the limitations of traditional Q-learning in high-dimensional state spaces can be 
effectively addressed, thereby enhancing the stability and convergence speed of 
reinforcement learning algorithms and achieving better results in practical applications. 
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3 Dynamic heterogeneous graph attention network 

3.1 Overall architecture design 

To address the above shortcomings, the DGHAT model was established, which mainly 
consists of four core modules, as shown in Figure 1. The multi-source data input layer 
standardises heterogeneous data: behaviour logs are normalised into frequency/duration 
metrics, brand attributes are encoded into category vectors, and environmental context is 
quantified into time/event flags. 

Figure 1 DHGAT overall architecture diagram (see online version for colours) 

 

The first part is the multi-source data input layer, which is responsible for processing 
heterogeneous data from different sources, including user behaviour logs, brand 
attributes, and environmental context. After pre-processing and feature extraction, these 
data are converted into standardised feature vectors, where n denotes the number of 
samples and d denotes the feature dimension. This process ensures data consistency and 
comparability. A lightweight RESTful API is used for interaction: the graph encoder 
outputs user embedding vectors and brand state vectors, encapsulated in JSON  
format; the decision engine returns action instructions. The online system achieves  
millisecond-level response times via gRPC. 

The second part is the dynamic heterogeneous graph construction module, whose core 
task is to construct a dynamic user-brand-product triadic heterogeneous graph, with the 
formula as follows: 

 , ,t t     (11) 

where   is a set of nodes, t  is a set of edges at time t,   is a set of relationship types. 
The key innovation lies in the fact that each edge in the edge set has a time-varying 
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weight, enabling the graph to dynamically reflect changes in user interest over time and 
solving the problem of static graphs being unable to capture the decline in user interest. 

The third component is the DHGAT encoder, an innovative GNN architecture that 
generates node embeddings through a dynamic attention mechanism. This mechanism 
dynamically adjusts attention weights based on the relationships between nodes, thereby 
more accurately capturing the feature representations of nodes. The generated node 
embeddings are represented as ,n kZ  where n denotes the number of nodes and k 
denotes the embedding dimension. The core innovation of this design lies in its ability to 
flexibly adapt to different types of graph structures and perform exceptionally well when 
processing large-scale graph data. 

The fourth component is a reinforcement learning decision maker, which maps node 
embedding vectors to specific marketing actions and achieves end-to-end optimisation 
through reward signals. In this process, the decision maker continuously experiments and 
learns to gradually optimise its strategy and maximise long-term rewards. This  
end-to-end optimisation method effectively improves the accuracy and efficiency of 
decision-making and is suitable for complex marketing scenario. 

3.2 Core innovation points 

This section primarily focuses on the dynamic time-weighted mechanism, which 
quantifies user interest drift based on time-decay functions. In the cross-relationship 
attention fusion layer, relationship-specific projections and gated aggregation are used to 
distinguish heterogeneous behavioural semantics. Finally, in the marketing reinforcement 
learning module, embedded vectors are integrated to design state-action-reward 
functions, balancing short-term conversions and long-term value to achieve end-to-end 
decision optimisation. The schematic diagrams of each module are shown in Figure 2. 

3.2.1 Dynamic temporal edge weighting mechanism 

When processing user behaviour data, GNNs typically use a fixed adjacency matrix to 
represent the connection relationships between nodes, ignoring the dynamic 
characteristics of user interests over time. For example, users’ interest in a brand often 
diminishes over time, particularly after promotional activities conclude, with a notable 
decline in user interest. To more accurately capture the dynamic changes in user 
behaviour, a mechanism capable of quantifying the temporal value of interaction events 
is required. 

To address the aforementioned issues, this paper proposes a dynamic edge weight 
adjustment mechanism based on a time decay function. The formula for calculating edge 
weights is as follows: 

0( ) λ t t
ij ijw t e I    (12) 

where wij(t) represents the edge weight between node i and node j at time t, λ represents 
the decay rate parameter, |t – t0| represents the absolute time difference between the 
current time t and the time of the interaction, Iij represents the interaction intensity base. 

The value of λ is based on a pre-experimental grid search. Table 1 has been 
differentiated: the base weight for purchase behaviour is 1.0, and for browsing behaviour 
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is 0.3, consistent with the consumer behaviour characteristic of ‘high-value interactions 
decaying slowly’. 

Figure 2 DHGAT model algorithm schematic (see online version for colours) 

 

The marginal weight changes in purchasing behaviour and browsing behaviour at 
different time intervals are shown in the table. 

Table 1 Edge weights change over time 

Time interval (days) Purchase weighting Browsing weight 

0 1 0.3 

3 0.56 0.17 

7 0.25 0.07 

30 0 0 

Among them, the parameter λ is set to 0.5. As can be seen from the table, as the time 
interval increases, the edge weights of both purchase behaviour and browsing behaviour 
exhibit an exponential decline, which aligns with the characteristic of user interest 
diminishing over time. 

3.2.2 Cross-relational attention fusion layer 

In user behaviour analysis, different types of user behaviour require differentiated 
modelling, such as purchasing luxury goods and complaining about fast-moving 
consumer goods. However, traditional methods are prone to semantic confusion during 
weight aggregation, making it difficult to accurately capture the differences between 



   

 

   

   
 

   

   

 

   

   84 A. Yao    
 

    
 
 

   

   
 

   

   

 

   

       
 

different relationships. Therefore, it is necessary to design an attention mechanism that 
can perceive relationship differences to enhance the model’s expressive capability and 
accuracy. A relation-aware multi-head attention mechanism is proposed. This mechanism 
is implemented through the following three steps: 

The first step is relation-specific projection, where an independent linear 
transformation is learned for each type of relationship to map the original features into a 
relation-specific space: 

r
r jjh W h  (13) 

where r
jh  denotes the feature representation of node J in relation r, hj denotes the original 

feature vector of node j, Wr denotes the linear transformation matrix of relation r. 
The necessity of transformation lies in eliminating differences in the distribution of 

different relationship features. For example, the magnitude of purchase frequency and 
complaint frequency may differ by a factor of 10, and direct aggregation would lead to 
confusion of information. Through relationship-specific projection, it is possible to 
ensure that features of different relationships are compared and aggregated on the same 
scale. Traditional methods simplify interactions into a two-dimensional matrix, which 
cannot model multi-type relationships (purchase/complaint). DHGAT associates long-tail 
brands with semantically similar nodes through relationship-aware aggregation. 

The second step is multi-head attention calculation. In the relationship-specific 
feature space, multi-head attention is further calculated to capture the differentiated 
importance of neighbouring nodes under the same relationship. For node i and its 
neighbouring node j, their force weights are calculated: 

   
softmax

Tr r
j jr

ij
k

Qh Kh

d

 
   
 

  (14) 

where r
ij  represents the attention weight of the relationship r between node i and node j, 

dk is the dimension of the key vector, Q and K represent matrix numbers. 
The features of neighbouring nodes are aggregated into node i representation by 

weighted summation. Specifically, for the mth attention head: 

 ,

( )
1

r

r mr M m
ji ijij

z m σ V h


   


 (15) 

where r
iz  represents the feature vector of node i after the rth iteration, ||m = 1M represents 

operations on M feature dimensions, σ is the activation function, ( )r i  represents the set 

of neighbours of node i in the rth iteration, ,r m
ij  is the attention coefficient between node 

i and its neighbour node j in the rth iteration and the mth feature dimension, Vm 
representing the value vector matrix of the mth attention head, jh  represents the feature 

vector of neighbour node j. 
Through the multi-head attention mechanism, the importance of neighbouring nodes 

can be captured from multiple angles, thereby providing a more comprehensive 
understanding of user behaviour. 

The third step is inter-relationship aggregation. After completing the attention 
calculation within a relationship, different relationship semantics are further  
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fused through a gating mechanism to achieve inter-relationship aggregation. The  
inter-relationship gating weights are calculated as follows: 

  sigmoid T r
r iig z h  (16) 

where r represents the gating weight of relation r, sigmoid is the activation function, g 
represents the learnable parameter vector, hi represents the original feature vector of node 
i. 

Through the sigmoid function, the gating weight r of relationship   can be 
obtained, which is used to suppress noise relationships. For example, the weight of the 
‘complaint’ relationship for luxury goods users is close to 0. 

The final aggregation feature vector is calculated using the above equation: 

r
i r i

r

z z


 


 (17) 

where zi represents the final aggregated feature vector of node i, r represents the gating 
weight of relationship r, r

iz  represents the multi-head attention output of node i under 

relation r. Through relationship aggregation, semantic information from different 
relationships can be comprehensively considered, thereby more accurately characterising 
user behaviour. 

As shown in Figure 3, the F1 score improved by 22.3% through this design, 
intuitively verifying the core advantage of the DHGAT model: accurately distinguishing 
the attention distribution of different user groups in multi-dimensional relationships, 
solving the semantic confusion problem in traditional isomorphic graph modelling. 

Figure 3 Attention visualisation heat map (see online version for colours) 

 

Note: **p < 0.01 (two-tailed t-test). 
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3.2.3 Marketing strategy reinforcement learning module 

Traditional recommendation systems primarily focus on optimising immediate  
CTRs, but brand marketing requires balancing short-term conversions with long-term 
user value. For example, frequent promotional activities may undermine brand premium 
and lead to a decline in user loyalty toward the brand. To find a balance between  
short-term conversions and long-term user value, a decision engine based on DQN is 
constructed, aiming to optimise marketing strategies through reinforcement learning 
methods. State representation is a critical component in reinforcement learning: 

( ) ( )t t
t u tbs z z c     (18) 

where st is the state vector at time t, ( )t
uz  is the user embedding vector output by DGHAT 

(assumed to be a specific graph attention network) at time t, ( )t
bz  is the brand embedding 

vector at time t, ct is the context feature vector at time t. 
Space defines the available combinations of marketing strategies, including 

dimensions such as discount rates, channels, and timing. Specifically, it is represented as: 

{Action Combinations} Discount Rate Channel Timing     (19) 

where   represents all possible combinations of marketing strategies, Discount Rate is 
the discount percentage offered in marketing activities, Channel is the communication 
channel for marketing activities, Timing is the execution time of marketing activities. 

Functions are key factors in guiding intelligent agents to learn in reinforcement 
learning. They comprehensively consider short-term conversion, immediate gains,  
long-term value, and cost penalties. The specific formula is as follows: 

Δ

Short-term Conversion  Immediate Revenue Cost PenaltyLong-term Value

10 CTR + 5 CVR + LTV 0.3 Costtr γ         (20) 

where rt is the reward value at time t, CTR and CVR measure short-term conversion 
effectiveness and immediate returns, γ is the discount factor, LTV∆ is the incremental 
lifetime value, Cost is the cost of marketing activities. The weights are dynamically 
adjusted based on business objectives: during major promotional periods, 1 (CTR) = 0.7 
and 2 (LTV) = 0.3; during regular operational periods, 1 = 0.3 and 2 = 0.7. This design 
balances short-term conversions with long-term value. 

Complaint behaviour is transmitted through state vectors. When complaint feature 
values exceed thresholds, the RL policy automatically disables promotional actions and 
switches to delivering soothing content (e.g., dedicated customer service). This design 
increased complaint user retention by 27%. 

Through the above technical solutions, a marketing decision-making engine that 
balances short-term conversion and long-term user value has been constructed, providing 
more scientific and effective support for brand marketing. 
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4 Experimental design and data analysis 

4.1 Experimental setup 

This study utilised a de-identified dataset from an e-commerce platform in 2023, 
covering 32,000 users. The following are the key statistical details of the dataset: the 
dataset includes 32,000 users, 18,500 brands, 142 million interaction records, spanning 
from January 2023 to December 2023, and encompasses various types of user behaviour 
relationships such as purchases, browsing, sharing, and complaints. 

To comprehensively evaluate the model’s performance, we employed metrics for 
relationship prediction and marketing effectiveness. Relationship prediction was assessed 
using area under the curve (AUC) and F1-score to evaluate the model’s accuracy in 
predicting user-to-product relationships. Marketing effectiveness was measured using 
CTR and return on investment (ROI) to evaluate the model’s performance in real-world 
marketing scenarios. 

To validate the effectiveness of the proposed model, this study selected the following 
three types of models as comparison benchmarks. The first traditional method includes 
SVD++ (Xi et al., 2024) and NCF (Para, 2024). The second category of graph models 
includes GCN (Liu et al., 2024), GraphSAGE (Mirthika et al., 2024), and RGCN 
(Yueyue et al., 2023). The third category of temporal models includes TGAT. 

The hidden layer dimension of DHGAT is set to 256 to balance the model’s 
expressive power and computational complexity; the number of attention heads is set to 4 
to enhance the model’s ability to focus on different features; the reinforcement learning 
discount factor is set to 0.9 to balance immediate rewards and long-term benefits; the 
training set/test set division adopts an 8:2 time series split to simulate the data distribution 
in actual recommendation scenarios. 

4.2 Key experimental results 

In experiment 1, the performance of relationship prediction was compared, with the 
specific results shown in Figure 4. 

Illustrating the AUC comparison of multiple models in brand-user relationship 
prediction. The experimental results indicate that the AUC value of the DHGAT model 
reached 0.892, significantly outperforming other baseline models, with performance 
improvements ranging from 5.7% to 16.8%, thereby fully validating the effectiveness of 
heterogeneous graph modelling. Compared with the best temporal model TGAT, the 
AUC value of DHGAT improved by 5.7%, and this difference is statistically significant 
(p < 0.001), further proving the key role of the dynamic edge weight mechanism in 
capturing interest drift. In addition, traditional collaborative filtering methods such as 
SVD++ and NCF performed relatively poorly, highlighting the necessity of graph 
structures in constructing complex relationship models. Based on the above analysis, the 
DHGAT model demonstrates outstanding performance in relationship prediction tasks, 
providing robust theoretical support and practical guidance for future research. 
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Figure 4 Multi-model AUC comparison (see online version for colours) 

 

Figure 5 The effect of DHGAT module ablation on ROI (see online version for colours) 

 

Source: JD Marketing Platform (2023) 

 



   

 

   

   
 

   

   

 

   

    Dynamic modelling of brand-user relationships via graph neural networks 89    
 

    
 
 

   

   
 

   

   

 

   

       
 

As shown in Figure 5, in the marketing effectiveness ablation experiment of experiment 
2, the impact of each component in the DHGAT module on ROI and CTR was evaluated. 
The results showed that the dynamic edge weight module was the largest contributing 
module. After removal, ROI decreased from 2.38 to 1.97, a drop of 17.2%, demonstrating 
the critical value of timeliness modelling in marketing decisions. The cross-relationship 
attention mechanism significantly improved the model’s accuracy. After removal, CTR 
decreased from 8.7% to 7.5%, a 13.8% decline, highlighting the importance of 
distinguishing behavioural semantics in marketing strategies. The reinforcement learning 
decision-making mechanism ensured long-term benefits. Using only the predictive model 
without decision optimisation resulted in a 23.5% decrease in ROI, validating the 
necessity of closed-loop strategy optimisation. The ROI and CTR of the base GCN model 
were 1.52 and 4.2%, respectively, further indicating that the synergistic effects of the 
components within the DHGAT module significantly influence marketing performance. 

DHGAT’s AUC is 8.2% higher than GraphSAGE. The GCN benchmark in Figure 5 
refers to the simplest implementation without introducing time decay and relationship 
attention, which is used to verify the module synergy effect. 

5 Conclusions 

This paper proposes the DHGAT, which addresses three core challenges in brand-user 
relationship modelling: 

1 Dynamic adaptability: by quantifying interest decay through a temporal edge 
weighting mechanism, DHGAT improves the AUC of temporal prediction by 14.8% 
on the JD dataset. By introducing a temporal edge weighting mechanism, DHGAT 
can quantify the decay of user interest over time, thereby more accurately capturing 
the dynamic changes in user behaviour. Experimental results on the JD dataset 
demonstrate that this mechanism significantly improves the AUC value for temporal 
prediction, achieving a 14.8% increase, which aids in developing more personalised 
marketing strategies. 

2 Heterogeneous relationship fusion: by designing a cross-relationship attention layer, 
the model can distinguish the semantic differences between opposing behaviours 
such as purchases and complaints, enabling more effective information integration in 
sparse data scenarios. Experimental results show that this mechanism improves the 
F1-score by 22.3%, significantly enhancing the model’s performance in complex 
relationship networks. This improvement not only enhances the model’s robustness 
but also provides brands with a more comprehensive perspective on user relationship 
analysis, aiding in the discovery of potential user needs and behavioural patterns. 

3 Strategy optimisation loop: by integrating a reinforcement learning decision-making 
module, the model can identify the optimal strategy between CTR and LTV. Online 
A/B testing results indicate that this strategy achieves a 2.38 ROI, outperforming 
manual strategies. This improvement not only enhances the model’s decision-making 
capabilities but also provides brands with smarter marketing decision support, aiding 
in the long-term maximisation of user value. 
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Future directions include multimodal graph learning that integrates visual and textual 
comments, federated GNNs for cross-platform user modelling, and causal decision 
optimisation to distinguish the effects of marketing interventions. 
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