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Abstract: This research presents a defect estimation framework employing a 
model predictive approach for switched nonlinear systems. The method 
integrates system states and failure signals into an augmented state-space 
model. The squared Euclidean norm of the estimation error over the prediction 
horizon serves as the performance metric, minimised through a set of linear 
matrix inequality constraints to ensure asymptotic stability. The estimator 
design enforces constrained estimation error to remain within a defined 
threshold, enhancing robustness. Recursive feasibility is analytically 
demonstrated at each time step. The approach is validated on a continuous 
stirred tank reactor, a key component in the petrochemical industry.  
In fault-free conditions, with estimation error maintained below 0.05. The 
estimator effectively detects and quantifies both constant and time-varying 
faults. The system’s energy function consistently decreases, confirming the 
asymptotic stability of the estimation error dynamics and supporting its 
application in fault-tolerant control. 
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1 Introduction 

In the past, various methods for modelling physical systems have been presented. Despite 

considering uncertainty terms in these methods, they are not able to describe the 

behaviour of the system in different situations. Therefore, it is better to extract a dynamic 

model compatible with each situation, and then by connecting these dynamic models, a 

comprehensive model is formed. This comprehensive model displays a switched system, 

and different situations represent the switching law Nodozi et al. (2017). Based on the 

concept of switching, many physical systems that have complex behaviour or are under 

faults and structural shifts can be represented by switched systems. Therefore, engineers 

in the field of control pay special attention to this type of modelling and try to develop 

the regulator and observer based on the concept of switching to increase the probability 

of the desired performance of the regulator and observer in real industrial conditions. 

Unlike non-switched systems, checking stability in switched systems is influenced by the 

specification of the switching signal. Before design, the frequency of the switching law 

can be considered unlimited or limited. The assumption that the frequency of the 

switching law is unlimited is too strict and not compatible with real-world conditions. 

One of the common methods for limiting the frequency is the time-dependent method, 

which establishes a time compromise between the duration of each dynamic. 

The time-dependent method is classified into different structures, which can be 

referred to as average dwell time (ADT) and persistent dwell time (PDT) (Shi et al., 

2019; Zheng et al., 2018). A key issue in practical systems is the issue of faults. The 

occurrence of a fault endangers the reliability of the system and can lead to system 

instability and serious damage to it. Therefore, a platform must be provided to calculate 

the time of fault occurrence and its exact amount at every moment so that the necessary 

measures can be taken to deal with it. A common solution for fault detection and 

estimation is the design of a state observer or fault estimator, which has been of interest 

since the past. In switching systems, this issue becomes more complicated because the 

switching signal has a great influence on the dynamic stability of the formed prediction 

error. Based on the Luenberger structure, Lyu et al. (2020) and Zheng et al. (2020) 

extended ADT-based Luenberger observers through multiple Lyapunov functions (MLF) 

for linear and nonlinear switched dynamics. Among the most important weaknesses of 

these research, we can mention the ignoring of the fault, the ignoring of the efficiency 

metric, and their resistance against a small class of switching rules. According to an 

adaptive concept, researchers in Li et al. (2017), Li and Tong (2017) and Liu et al. (2020) 

recommended ADT-based adaptive observers for strict and non-strict feedback dynamics. 

In this research, observers are created for a certain class of systems without 

considering faults, and they are not effective for the current research system. Based on 

unknown input structure, Chen et al. (2019) and Du et al. (2019) introduced ADT-based 

unknown input observers (UIOs) through MLF to eliminate the unknown input effects. 

Based on model predictive structure, Qi et al. (2021), Taghieh et al. (2021) and Zhang  

et al. (2024) recommended ADT and PDT-based model predictive observers through 

MLF for Lipschitz switched dynamics. In these studies, the issue of reducing an 

efficiency metric is raised, but no attempt is made to estimate the fault. The conducted 

research confirms that only in Zhang et al. (2024), the development of the observer 

through the model predictive approach to minimise the efficiency metric has been 

discussed. Since there is a possibility of failure in practical systems, the designed 

observers will not be able to estimate the system states, and the estimation accuracy will 
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decrease. Also, fault detection and estimation are the main steps for designing a fault-

tolerant regulator to increase reliability. Hence, this paper develops a fault estimator 

based on a model prediction approach for switched nonlinear dynamics. In this regard, 

system states and faults are considered as states of an augmented system. 

Then, the L2 norm of the estimation error signals over the predictive horizon is 

regarded as the efficiency metric, and further, with the help of the model predictive 

concept and the stability criterion over the predictive horizon, the issue of reducing the 

efficiency metric becomes the problem of reducing the ceiling of the efficiency metric. 

On the other hand, the stability criterion is added to the enhancement issue as a linear 

matrix inequality constraint to form an L2 problem with an asymptotic stability 

guarantee. Also, the assumption of estimation error saturation is considered an important 

concern for having a specific error bound. In addition, the challenge of the recursive 

feasibility of the issue is analysed, and its answer is proved in each time step. The key 

ideas of this paper are outlined below: 

 development of a fault estimator with the help of creating augmented states and the 

model predictive concept for Lipshitz switched dynamics 

 solving an L2 problem along with an asymptotic stability guarantee for estimation 

error dynamics through the model predictive concept 

 analysing the recursive feasibility to guarantee having an answer at each time step. 

2 Literature review 

Schwenzer et al. (2021) examined model-based predictive control (MPC) as a 

sophisticated method that employs process models to derive control actions via 

optimisation. They highlighted that MPC facilitated the management of intricate systems 

beyond the reach of conventional controllers, and that its model-centric architecture 

streamlined tuning and enhanced system comprehension. Their review encompassed 

recent theoretical advancements, practical implementations, and ways to tackle 

computing problems, thereby addressing a deficiency in the current literature on 

contemporary MPC progressions. Wang et al. (2024) introduced Memory Mamba, a 

memory-augmented state space model, to overcome the shortcomings of traditional 

defect detection techniques in managing complicated and imbalanced data. Through the 

integration of memory mechanisms, the model proficiently incorporated defect-specific 

characteristics and long-range interdependence. Memory Mamba was assessed using four 

industrial datasets and consistently surpassed existing methods, exhibiting remarkable 

adaptability and precision in various defect recognition tasks. Zuo et al. (2022) 

introduced SPADE, a hybrid model that integrates state space models with local attention 

to address the inefficiencies of Transformers in processing lengthy sequences. 

SPADE employs a state space layer to encapsulate global dependencies while 

utilising local attention in upper layers for enhanced efficiency. Experiments conducted 

on the Long-Range Arena and language challenges demonstrated SPADE’s exceptional 

performance and scalability in both comprehension and generation tasks. Duník et al.  
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(2024) suggested a methodology for detecting state noise in data-augmented physics-

based models of nonlinear stochastic systems. They enhanced the precision and reliability  

of state estimation through maximum likelihood and correlation-based methodologies. 

Simulations in a tracking context revealed the efficacy of the method in improving data-

driven dynamic models. Geromel (2023) analysed the characteristics of discrete-time 

linear matrix inequalities (DLMIs) and proposed a comprehensive numerical approach 

for their resolution. He illustrated the method’s practicality and efficiency through 

several instances, emphasising that, due to the non-uniqueness of DLMI solutions, the 

goal was to identify any feasible solution that met the boundary criteria. Zhang et al. 

(2024) suggested a Lyapunov-based model predictive control approach employing  

deep learning to stabilise continuous-time nonlinear systems. They utilised neural 

ordinary differential equations to model system dynamics and created a deep neural 

network-based Lyapunov function that does not rely on affine assumptions. 

The method, incorporated within a predictive control framework with tube-based 

safety limitations, guaranteed stability and safety. Simulations of a chemical process 

confirmed its efficacy. Liu et al. (2024) proposed a model predictive control methodology 

for limited output regulation in discrete-time linear systems. They tackled stability and 

feasibility concerns related to external signal estimates by reformulating the system and 

devising robust invariant sets. A hierarchical control mechanism guaranteed constraint 

compliance, and simulations validated the method’s efficacy, even with incomplete signal 

data. Granzotto et al. (2024) investigated policy iteration for nonlinear discrete-time 

systems with non-discounted costs. They formulated criteria for recursive robust stability 

and bounded suboptimality under the premise that policy iteration remained recursively 

viable. After demonstrating that feasibility might fail in specific instances, they 

introduced a revised algorithm, PI+, which guaranteed recursive feasibility while 

maintaining both stability and near-optimality under modest assumptions. Abbasi and 

Huang (2024) suggested a fault diagnosis and tolerant control methodology for nonlinear 

industrial systems characterised by various operating areas. They minimised online 

computation by integrating fuzzy-based realisation with a subspace-aided method, 

utilising offline parity vector creation. 

The technology, when applied to a continuous stirred tank reactor, attained elevated 

diagnostic accuracy and facilitated fault-tolerant, stable operation under diverse settings. 

Sarbaz (2024) tackled time-varying delays in state and input vectors by presenting a 

model predictive control method grounded in the Razumikhin approach. The interval 

type-2 fuzzy Takagi-Sugeno model enhanced delay management and system stability 

while decreasing complexity using linear matrix inequalities. An illustration showcased 

its efficacy and computational efficiency. 

2.1 Research gaps and novelties 

Despite the development of numerous fault diagnosis and observer design methodologies 

for nonlinear and switching systems, some significant issues persist unresolved. Current 

methodologies such as Luenberger observers, UIOs, and adaptive observers generally fail 

to precisely estimate fault signals, especially in dynamic switching scenarios. Numerous 

solutions either disregard fault modelling entirely or are restricted by assumptions  
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regarding system architecture or confined switching protocols. Moreover, current works 

on model predictive control in observer design have predominantly concentrated on 

minimising performance measures, neglecting the integration of fault estimating, error  

bounds, or stability within practical limits. A significant constraint in many of these  

methodologies is the lack of assurance for recursive feasibility, which is vital for 

maintaining ongoing functionality in real-time industrial systems. This paper presents a 

unique fault estimation approach utilising model predictive control specifically designed 

for switched nonlinear systems to address these deficiencies. The method dramatically 

enhances the state-space model to concurrently estimate both system states and failure 

signals. The performance measure is defined as the squared Euclidean norm of the 

estimate error across the prediction horizon, utilising a linear matrix inequality 

formulation to ensure asymptotic stability. 

This work’s principal novelty is the integration of estimating error saturation and a 

thorough examination of recursive feasibility, guaranteeing constrained error behaviour 

and dependable online performance. The efficacy of the suggested method is illustrated 

via simulation on a continuous stirred tank reactor system, underscoring its applicability 

in safety-critical and fault-sensitive industrial settings. 

2.2 Paper organisation 

The subsequent sections of this work are organised as follows: Section 2 delineates the 

numerical execution of the proposed fault estimation framework applied to a continuous 

stirred tank reactor system; a benchmark model emblematic of actual industrial processes. 

Two simulation scenarios are examined: one under nominal (fault-free) conditions and 

another with actuator malfunctions. These case studies are employed to assess the 

precision, resilience, and real-time application of the suggested estimator. Section 3 

presents a comprehensive examination of the simulation results, incorporating a 

comparative evaluation with current fault estimation methodologies. The discourse 

examines the estimator’s practical significance, underscores its existing limitations, and 

delineates potential directions for further inquiry. Section 4 closes the work by reviewing 

the principal contributions and delineating avenues for further research and experimental 

validation. 

3 Main outcomes 

Imagine the adaptive approach of the system is explained by the subsequent equations. 

( ) ( ) ( ) ( )( 1) ( ) ( ) ( ( )) ( )s k s k s k s kx k G x k H h k x k J e k     ( ) ( )y k Cx k  (1) 

𝑥(𝑘)  𝑛𝜂𝑥, 𝑕(𝑘)  𝑛𝑛𝑕, 𝑒(𝑘)  𝑛𝑛𝑒, and 𝑦(𝑘)  𝑛𝑛𝑦 denote the states, inputs, faults, and 

outputs, respectively. The switching signal is represented by 𝑠(𝑘). The state-space 

matrices are denoted by 𝐺𝑠(𝑘), 𝐻𝑠(𝑘), 𝐶, and 𝐽𝑠(𝑘), while 𝜂𝜎(𝑘)(𝑥(𝑘)) displays the nonlinear 

term. The faults are assumed to be time-varying. Accordingly, this work supposes that the 

second difference of 𝑒(𝑘) concerning the step is zero. To estimate faults, the system’s 

state variables are augmented as follows: 
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( ) ( ) ( )( 1) ( ) ( ) ( ( ))s k s k s kS k G S k H h k S k    ( ) ( )y k CS k  (2) 

When considering the augmented states mentioned above, the dynamic model expressed 

in equation (1) undergoes modifications as follows: 

( ) ( ) ( )( 1) ( ) ( ) ( ( ))s k s k s kS k G S k H h k S k    ( ) ( )y k CS k  (3) 

where 

 

   

 

 

    
    

 

0

0 0 , 0 , 0 ,

0 2 0 0

0 0

s k s k s k s k

s k s k s k

G J H x k

G I H S k

I I

C C





    
    

       
       

    



 (4) 

To design a fault estimator, the following initial actions are necessary: 

Lemma 1 (Petersen, 1987): The relationship between matrices V and W and scalars 𝑎 > 

0, can be expressed as follows: 

1T T T TV W W V aV V a W W    (5) 

Definition 1 (Zhang et al., 2015): The defined interval is split into multiple windows 

utilising the PDT approach. Each window encompasses two parts: the m -part and the  

T-part. Within the m -part, a specific subsystem is executed. In the m -part, a particular 

sub-system is operated for a minimum duration of 𝑘𝑚. In the T-part, the switches happen 

at a rate lower than 𝜔 and with an operation duration less than 𝑘𝑇. The overall count of 

switches in the m-part of each window is restricted to 𝑛(𝑘𝑠𝚐+1, 𝑘𝑠𝚐+1
) ≤ 𝑘𝑇𝜔. 

A potential solution for a Luenberger observer is presented below: 

             ,
ˆ ˆ ˆ  1  ( ( )) (  ( )  (  ))

s k s k k s k k
S k G S k H h k S k F y k y k


       (6) 

The state estimation, displayed as 𝑆  , and the output estimation, represented as 𝑦  , are 

utilised in conjunction with the estimator gain 𝐻𝜎(𝑘),𝑘. The state estimation error can be 

computed as: 

( ) ( ) ( )

( ) ( ) ( )

( ), ( )

( ) ( ) ( ),

( ) ( ),

( 1) ( 1) ( 1) ( ( ) ( ) ( ( )))

( ( ) ( ) ( ( ))

( ( ) ( ))) ( ( ) ( ))

( ( ( )) ( ( ))) ( ( ) ( )))

( ) (

ˆ

ˆ ˆ

ˆˆ

ˆ

)

ˆ

s k s k s k

s k s k s k

s k k s k

s k k s k k

s k s k k

d k S k S k G S k H h k S k

G S k H h k S k

F y k y k G S k S k

S k S k F C S k S k

G F C d k







 

       

  

   

   

   ( )s k

 (7) 

In this scenario, the model predictive approach is stated, and the expression of the state 

estimation error across the projection period is detailed as: 

( ) ( ), ( )( 1| ) ( ( | ) ) ( | ) , 0,1,...,s k s k k s kd k r k G F k r k C d k j k r          (8) 
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In equation (8), the variable 𝑑(𝑘 + 𝑟|𝑘) displays the predicted state estimation error in j 

steps ahead. It is assumed that the predicted state estimation error is constrained 

according to the following limits: 

,max( | ) , 1,..., , 0,1,...,m m dd k r k d m n r      (9) 

where 𝑑𝑚 is the mth component of 𝑑. 

The objective function is defined as follows: 

( ),

0

( | ) ( | )T

s k k

r

J d k r k d k r k




    (10) 

The Lyapunov stability conditions is considered: 

( 1| ), ( | ), ( | ),( 1| ) ( | ) ( | )

( | ) ( | ), 0,1,...,

s k r k k s k r k k s s k r k k

T

I k r k I k r k I k r k

d k r k d k r k r

        

    
 (11) 

, ( ), : ( ( )) ( ( )), ( ), ( 1)i s l s s si l s k i l I e k fI e k i s k l s k        (12) 

In the aforementioned equation, 𝑘𝑠 displays the switching time step, 𝑓 denotes the energy 

variation constant at time 𝑘𝑠, and 𝐼 corresponds to the energy function. Ultimately, the 

model predictive estimator (MPE) can be expressed as: 

The objective is to determine an estimator gain at any stage that satisfies the 

conditions specified in equations (11), (12), and the constraint presented in equation (9), 

and minimises the objective function defined in equation (10). Taking into account the 

𝑠(𝑘 + 𝑟 + 1|𝑘) = 𝑠(𝑘 + 𝑟|𝑘) = 𝑠(𝑘) = 𝑖, 𝑡 =  𝑘 + 𝑟|𝑘, and 𝑡 + 1 = 𝑘 + 𝑟 + 1|𝑘, the 

problem of the framework estimator can be formulated in the following manner: 

,min max  i kJ subject to:
, , ,( 1) ( ) ( ) ( ) ( )T

i k i k s i kI t I t I t d t d t   

         , ,   :     ,   , (  1  )i s l s s si l s k i l I e k fI e k i s k l s k       ,( )m m maxd t de
 

 (13) 

If it regards the maximum of the objective metric as 𝜌𝑖,𝑘, the formulation of the MPE 

issue is: 

,min i k subject to:
, , ,( 1) ( ) ( ) ( ) ( )T

i k i k s i kI t I t I t d t d t   

, ( ), : ( ( )) ( ( )), ( ), ( 1)i s l s s si l s k i l I d k fI d k i s k l s k       ( ), ,s k k i kJ 

,( )m m maxd t dd  (14) 

Theorem 1: Suppose the state estimation error dynamics are given by equation (7).  

Let 𝜏𝑠 < 0, 𝑓 > 1, and 𝑎𝑖 > 0 be known, and 𝑘𝑇 and 𝜔 be specified for the PDT concept 

requirements If there exist 𝑛𝑖,𝑘 > 0, 𝑂𝑖,𝑘, and 𝛹𝑖,𝑘 > 0, enabling the following problem 

to have a solution: 
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, , , ,
,

, , ,

1

, , , , ,

,

,

, ,

1

,

2

,max ,

,

, , 1

min

:

(1 ) 1 1 ( )

* 0 0
0

* * 0

* * *

0

0

1 ( )
0

0

0
*

i k i k i k i k
i k

V O

T T T T T

s i k i i i k i i k i i k i i k

i k

i k

i k i k

T

i k

m

m i k

i k

i k l k

subject to

V a V T V a V G O

I

I

V

V I

V f V

d k

V

e V V

V




 









    
 

 
 

 
 
 

 

 

 
   

 
  

 
, 1,..., dm n

 (15)

 

where 𝑉𝑚 is defined as 0, ,0,( 1 ,0, ,0, ,0)m

m th

V


 , then for a switched estimator in 

equation (6) with 𝐹𝑖,𝑘 =𝑂𝑖,𝑘 𝑇𝑖,𝑘 
–1𝐶† and any PDT structure with the following range: 

* ( 1) ln 1
max( , )

ln(1 )

T

m m

s

k f
k k



 


 

 
 (16) 

the state estimation error dynamic in equation (7) is an asymptotical stable. 

Proof. Assume the energy function according to the following equation: 

, , ,( ( )) ( ) ( ), 0T

i k i k i kI d t d t d t     (17) 

The first condition in equation (14) is expanded according to following equation: 

, , , , ,( ( 1)) ( ( )) ( 1) ( 1) ( ) ( ) (( )T T

i k i k i k i k i i kI d t I d t d t d t d t d t G F C         
 

, , ,( ) ) (( ) ( ) ) ( ) ( )T T

i i k i i k i i kd T G F C d t d t d t        (18) 

Using Lemma 1, it gets: 

, , , , ,( ( 1)) ( ( )) (1 ) ( ) ( ) ( ) ( )T T

i k i k i i i k i k i i kI d t I d t a d t G F C G F C d t      
 

1

, ,(1 ) ( ) ( )T T

i i i k i i ka d t d t       (19) 

Considering: 

, ,i k i k I   (20) 

Consider the following condition over the nonlinear term: 

( ) ( ) ( ) ( )|| ( ( )) ( ( )) || || ( ( ) ( ) |ˆ |ˆ )s k s k s k s kS k S k T S k S k      (21) 
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It obtains: 

, , , , ,( ( 1)) ( ( )) (1 ) ( ) ( ) ( ) ( )T T

i k i k i i i k i k i i kI d t I d t a d t G F C G F C d t      
 

1 2

, ,(1 ) ( ) ( ) ( ) ( )T T T

i i k i i i i ka d t T T d t d t d t      (22) 

Substituting equation (22) into the first condition of the enhancement issue in equation 

(14), it will have: 

1

, , ,(1 ) ( ) ( ) ( ) ( ) (1 )T T

i i i k i k i i k ia d t G F C G F C d t a      

2

, , ,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0T T T T T

i k i i i i k s i kd t T T d t d t d t d t d t d t d t       
 (23) 

Equation (23) is expanded according to the subsequent equation: 

, , , ,

1 2

,

( ) ((1 ) (1 )( ) ( )

(1 ) ) ( ) 0

T T

s i k i i i k i k i i k

T

i i k i i i

d t a G F C G F C

a T T I d t



 

      

   
 (24) 

Equation (25) confirms (24). 

1 2

, , , , ,(1 ) (1 )( ) ( ) (1 ) 0T T

s i k i i i k i k i i k i i k i i ia G F C G F C a T T I              (25) 

Equation (25) is transformed into equation (26) by using the Schur complement lemma: 

1 2

, , ,

1

,

(1 ) (1 ) 1 ( )
0

*

T T

s i k i i k i i i i i i k

i k

a T T I a G F C  



       
 

  

 (26) 

Using 𝛱𝑖,𝑘 =  𝜌𝑉𝑖,𝑘 
–1 

and 𝜃𝑖,𝑘 =  𝛹𝑖,𝑘
–1

, and multiplying inequality (26) by 

𝑏𝑑𝑖𝑎𝑔(𝑉𝑖,𝑘 
𝑇

, 𝐼) as well 𝑏𝑑𝑖𝑎𝑔(𝑉𝑖,𝑘, 𝐼), accordingly: 

1 1 2

, , , , , , , ,

,

(1 ) (1 ) 1 ( )
0

*

T T T T T

s i k i i k i i k i i i k i k i k i i k i i k

i k

V a V T TV V IV a V G F C

V

         
 

 
 

 (27) 

Using change of variable 𝑂𝑖,𝑘 =  𝐹𝑖,𝑘 𝐶𝑉𝑖,𝑘 and Schur complement lemma, it gets: 

1

, , , , ,

,

,

(1 ) 1 1 ( )

* 0 0
0

* * 0

* * *

T T T T T

s i k i i i k i i k i i k i i k

i k

i k

V a V T V a V G O

I

I

V

     
 

 
 

 
 
 

 (28) 

Equation (20) is expressed as follows: 

, , 0i k i kV I   (29) 
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Hence, equations (28) and (29) validate the first and second constraints stated in (15), 

correspondingly. Consequently, the second condition of the enhancement issue stated in 

(14) is expanded as: 

( ( )) ( ( )) ( ) ( ) ( ) ( ) 0T T

i s l s s l s s i sI e k fI e k fd k d k d t d t     
 

( ) ( ) ( ) 0T

s l i sd k f d k     (30) 

If equation (30) is true, then equation (29) is true. 

1 1 10 0 0l i l i i lf fV V V f V            (31) 

Therefore, equation (31) proves the third restriction in equation (15). In the subsequent, 

the third condition in equation (14) is extended as follows: 

Summing the first condition in equation (14) in equation (14) from r = 0 to r → ∞, it 

has: 

, ,

0

,

0 0

[ ( 1) ( 1) ( ) ( )]

( ) ( ) ( ) ( )

T T

i k i k

r

T T

s i k

r r

d t d t d t d t

d t d t d t d t





 

 

    

  



   (32)

 

By considering the objective function in equation (10), it obtains: 

, , , ,( | ) ( | ) ( | ) ( | ) ( ) ( )T T T

i k i k i k i kd k k d k k J J d k k d k k d k d k          

1

, ,1 ( ) ( ) 0T

i k i kd k d k      (33) 

Considering 𝛱𝑖,𝑘 =  𝜌𝑉𝑖,𝑘
–1

, equation (33) is formed as: 

,

1 ( )
0

0

T

i k

e k

V

 
   

 (34) 

So, equation (34) verifies the fourth constraint in equation (15). Then, the fourth 

condition in equation (14) is extended as follows: 

2 2
1 1 1

2 1 22 2 2
, , , , , , ,max

2 2 2

,max ,max ,max

1 1 1
,, , , ,

2

,max ,

, ,

( ) ( ( )) ( )

0
0 0

0* * *

0
0

0 *

m mT

m i k i k m i k i k m i k i k m

Tm m m

m m m

i ki k i k i k i k

m

m i k

i k i k

d t d t V V d

Id V d V d V

VV V

I d V V

V V

 



 


  

       

      
                      

 
  

 
0


  

 

 

 (35) 

Equation (35) confirms fifth constraint in equation (15). 

In the following, the recursive feasibility is ensured. Summing both sides of equation 

(16) from j = 0 to j = l, it has: 
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, ,

0

[ ( 1) ( 1) ( ) ( )]
l

T T

i k i k

r

d t d t d t d t


    
 

,

0 0

( ) ( ) ( ) ( )
l l

T T

s i k

r r

d t d t d t d t
 

   

, ,( 1| ) ( 1| ) ( | ) ( | ) 0T T

i k i kd k r k d k r k d k k d k k          (36)
 

, ,( 1| ) ( 1| ) ( | ) ( | )T T

i k i kd k l k d k l k d k k d k k       

, ,( 1| ) ( 1| )T

i k i kd k r k d k r k         

Setting l = 0, it has: 

, ,( 1| ) ( 1| )T

i k i kd k k d k k      (37) 

On the other hand, equation (33) at sample k + 1 is written as follows: 

, 1 , 1( 1| 1) ( 1| 1)T

i k i kd k k d k k         (38) 

By analysing equations (37) and (38), it is inferred that (𝜌𝑖,𝑘, 𝛱𝑖,𝑘) can serve as a 

feasible resolution at the k + 1 sample. Consequently, the recursive feasibility is 

guaranteed. Since (𝜌𝑖,𝑘+1, 𝛱𝑖,𝑘+1) displays an optimal solution at the k + 1 sample, it 

can express: 

, 1 , , 1 ,( 1| 1) ( 1| 1) ( 1| ) ( 1| )T T

i k i k i k i kd k k d k k d k k d k k            
 

, 1 , ,( 1) ( 1| ) (1 ) ( | ) ( | ) ( | )T

i k i k s i kI k I k k I k k d k k d k k        (39) 

, 1 ,( 1) (1 ) ( ) ( ) ( )T

i k s i kI k I k d k d k      

The switching rule is determined by the interplay between the PDT structure and the 

conditions specified in equations (11) and (12). Let 𝑘𝑠𝚐+1 represent the first switching 

time step that happens after 𝑘𝑠𝚐, and 𝑘𝑠𝚐+1 denote the first switching time step that 

happens in the (q + 1)-th window. The value of I in the qth window undergoes changes 

based on Definition 1 and is calculated utilising equations (30) and (39): 

 

 

1 1 11 11

11 1

1
11

1 11 1

1

1 1

( 1) ( 1)

1

( , )

( ) 1

( , )

(  (  )) ( ( )) (1 ) ( ( 1))

... (1 ) ( (  ))

... (1 ) ( ( ))

(1 )

q s q s qq qq

s sq q

q
sq

s s s sq q q q

s qq

s s sq q q

s s k s s k ss k

k k

s sk

T k k k k

s s k s

T k k k

s

I e k fI d k f I d k

f I d k

f I d k

f













   

 




  



 

 









   

  

  

 

1 1

11

( )

( , ) ln ( ) ln(1 )

( ) ( )

( 1) ln ln(1 )

( )

( ( ))

( ( )) ( ( ))

( ( ))

sq

s qq

s s s s sq q q q

s q s qq q

T m s

s qq

k

s k s

T k k f k k

s k s s k s

k f k

s k s

I d k

I d k e I d k

e I d k



 

 





  

  

 



 (40) 
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If 𝑘𝑠0 =  0 and 𝑘𝑠𝚐+1 = 𝑘, then, based on (36): 

(( 1) ln ln(1 ))

( ) (0)( ( )) ( (0))T m sq k f k

s k sI d k e I d
   

  (41) 

If (𝑘𝑇𝜔 + 1) 𝑙𝑛 𝑓 + 𝑘𝑚 𝑙𝑛(1 + 𝜏𝑠) < 0, then I approaches zero. Consequently, the 

system achieves asymptotic stability. 

Remark 1: The recommended design is constructed in three sequential stages as outlined 

below: 

Step 1: By considering (𝜏𝑠, 𝜀) and (𝑘𝑇,𝜔), a set of switching signals is created. These 

metrics are substituted into (16) to derive the permissible range of the PDT (𝑘𝜏). 

Step 2: The problem presented in equation (15), according to the current subsystem, is 

solved at any stage. This process involves determining the estimator gain (𝐹𝑖,𝑘) and the 

matrix (𝛱𝑖,𝑘) at any stage while considering the metrics outlined in Stages 1 and 2. 

The construction of the estimator is drawn in Figure 1. 

Figure 1 The implementation of the recommended estimator (see online version for colours) 

 

4 Numerical simulation 

The ongoing stirred tank reactor system is known as the beating heart of the 

petrochemical industry. In this system, different types of chemical processes are 

performed. In other words, raw materials with a certain concentration continuously enter 

the reactor, and these materials are combined and a chemical reaction is carried out at the 

same time. Finally, the produced product is removed from the reactor. This system is 

equipped with a thermal jacket that keeps the temperature of the process fixed. Figure 2 

shows a sample of a chemical reactor. Here, it is assumed that the following chemical 

reaction is taking place inside the reactor: 

1 2 3P P P  (42) 
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that the species P1 and P2 enter the reactor with the concentrations of 𝐶𝑃10 and 𝐶𝑃20 
respectively, and the desired product, which is a combination of the desired 

concentrations 𝐶𝑃1𝑑, 𝐶𝑃2𝑑 and 𝐶𝑃3𝑑, leaves the reactor to be If the states and inputs of this 

chemical reaction are selected as follows: 

3 201 2

1 2 3

10 20 10 10

, , ,P PP P

P P P V P

C NC C
s s s u

C C C R C
     (43) 

which 𝑅𝑉 displays the volumetric flow rate and 𝑁𝑃20 displays the molar flow rate of 𝑃2, 

then the chemical kinetic equations will be as follows: 

2

1 1 1 1 2 21s s Gb s Gb s   
 

2 2

2 1 1 2 2 2 3 2s Gb s s Gb s Gb s u    
 

2

3 3 2 3s Gb s s   (44) 

where 𝐺𝑏𝑖(𝑖 = 1,2,3) present the metrics of the chemical reaction. Let 𝑥1 =  𝑠1 – 𝑠1𝑑, 

𝑥2 =  𝑠2 – 𝑠
2𝑑, 𝑥3 =  𝑠3 – 𝑠3𝑑, and 𝑕 = 𝑢 – 𝑢𝑑. By inducing the actuator fault to the system 

dynamic and discretising the continuous dynamic using Euler strategy based on the 

metrics given in Table 1, the state-space representations of the modes is written as 

follows: 

Figure 2 Diagram of the continuous stirred tank reactor (CSTR) system (see online version for 
colours) 

 

Table 1 The metrics of the CSTR system 

Metrics Values 

Desired states 𝑥𝑑 =  [0.34670.87960.8796]𝑇, 𝑢𝑑 = 1 

metrics of chemical reaction 𝑚𝑜𝑑 𝑒 1: 𝐺𝑏1 =  3, 𝐺𝑏2 =  0.5, 𝐺𝑏3 = 1 

Sampling time 0.1 s 
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Mode 1: 

 

Mode 2: 

 

Considering that it is not possible to measure all chemical reaction concentrations, an 

observer should be used to solve this challenge. Also, due to the possibility of an actuator 

fault occurring in this system, the observer must be developed into a fault estimator that 

can both detect the fault occurrence time and measure its exact value. This is the first step 

to form a regulator based on the fault estimator, so that despite the existence of the fault, 

the concentrations can be brought to their desired value and a high-quality product can be 

produced in the shortest time. Based on this, the estimator designed in this paper is 

recommended. According to the process of changing the concentration of input raw 

materials, which leads to changing the dynamics of the chemical reaction, the 

characteristics of the switching signal are determined. These specifications are provided 

in Table 2. This specification refers to a set of switching signals that are allowed to be 

applied to the system. If the switching signal outside this set is applied to the system, the 

optimal performance of the estimator or even its stability will be jeopardised. Therefore, 

to determine these specifications, an expert familiar with the system should be consulted. 

In the following, the relation (16) is used to calculate 𝑘𝑚 According to this relationship, 

the value of 𝑘𝑚 will be equal to 4.5 step. 

Now, to simulate the estimator on the system, a switching signal is selected as a 

member of the set 𝑆𝑃𝐷𝑇(𝜔 = 0.1
1

step
, kT = 10 step, km = 4.5 step) as shown in Figure 3. It 

should be noted that the concept of PDT helps to make this class bigger so that it is easier 

to think about the possibility of the estimator becoming unstable. 

Table 2 Design metrics 

Metrics Values 

PDT specifications 
𝜏𝑠 = –0.1, 𝑓 = 1.1, 𝑘𝑇 = 10𝑠𝑡𝑒𝑝, 𝜔 = 0.4 

1

step
 

Nonlinear metrics 𝑎 = 𝑎2 = 1, 𝛽1 = 0.15, 𝛽2 = 0.1, 𝑇1 = 𝑇2 = 𝐼 

Estimation error saturation |𝑑𝑖| ≤ 1𝑖 = 1,2,3 
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In the following, the simulation is carried out through two scenarios, and the outcomes 

are analysed. 

Scenario 1: No actuator fault (𝑒(𝑘) = 0) 

By simulating the chemical system and the recommended estimator, the peak of the 

efficiency metric converges to zero, as shown in Figure 4. This figure confirms that the 

peak of the efficiency metric is strictly downward, and at each time step it guarantees that 

the answer exists for future time steps. Therefore, the recommended estimator continues 

to work without stopping and overcomes the feasibility challenges in the real world, and 

consequently, the reliability of the regulation network rises. The energy function of the 

network is also plotted in Figure 5. According to the Lyapunov criterion, if the changes in 

the energy function are negative, or in other words, the value of the energy function 

reaches zero, asymptotic stability is confirmed. Therefore, the recommended scheme 

shows a coordination between the estimator and the shifting signal, which leads to the 

asymptotic equilibrium of the system. Figure 6 also shows the obtained state estimation 

error, which has satisfactory behaviour and approaches zero at the right time. Also, the 

error rate does not exceed a specified saturation bound. 

Figure 3 Shifting signal (see online version for colours) 

 

Figure 4 Upper limit of the efficiency metric (see online version for colours) 
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Figure 5 Energy function (see online version for colours) 

 

Figure 6 State estimation error (see online version for colours) 

 
(a) 

 
(b) 
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Figure 6 State estimation error (see online version for colours) (continued) 

 
(c) 

Scenario 2: Here, the performance of the estimator is evaluated against different faults 

that occur at different times. In the design of the estimator, it was assumed that the fault 

changes are constant. Therefore, it is expected that the recommended estimator will 

perform satisfactorily against constant faults, exponential faults with small changes, and 

constant slope faults. This issue is depicted in Figures 7 and 8. It should be noted that for 

the estimator to be able to estimate a larger class of faults, the augmented system must be 

formed with higher derivatives of the faults so that it can follow the behaviour of these 

faults well. 

Figure 7 Fault estimation (𝑒(𝑘) = 

0𝑘𝑇_𝑠 < 3.1 

Fig. 7. Fault estimation (𝑒(𝑘) = { 
0.53.1 ≤ 𝑘𝑇_𝑠 < 7 

). 
0.77 ≤ 𝑘𝑇_𝑠 < 14.6 
−0.3𝑘𝑇_𝑠 ≥ 14.6  

(see online version for colours)
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Figure 8 Fault estimation (𝑒(𝑘) = 

0𝑘𝑇_𝑠 < 3.1 

0.53.1 ≤ 𝑘𝑇_𝑠 < 7 

0.5 + 𝑒−0.01(𝑘𝑇_𝑠−7)7 ≤ 𝑘𝑇_𝑠 < 14.6 

−0.5 + 𝑒−0.01(𝑘𝑇_𝑠−7)𝑘𝑇_𝑠 ≥ 14.6  

(see online version  

for colours)

 

 

5 Discussion 

The simulation findings from the continuous stirred tank reactor system confirm the 

efficacy and resilience of the proposed model predictive fault estimation methodology 

under both nominal and defective operating circumstances. In the absence of actuator 

defects, the performance metric defined as the squared Euclidean norm of the state 

estimation error throughout the prediction horizon demonstrated a tight monotonic 

decline, converging to zero within 20 sampling intervals. This behaviour validates the 

estimator’s stability and the legitimacy of the recursive feasibility and asymptotic 

stability assurances derived from the Lyapunov-based analysis and the linear matrix 

inequality framework. The state estimation error constantly stayed within the defined 

saturation limit, illustrating the method’s reliability and accuracy. In fault situations 

characterised by continuous, exponentially variable, and linearly increasing disturbances, 

the estimator precisely identified the initiation and amplitude of the faults. The stability 

of the estimation error dynamics was maintained, as demonstrated by the ongoing 

reduction in the Lyapunov-based energy function. These results underscore the 

estimator’s ability to adjust to various fault patterns while preserving resilience amid 

fluctuating system dynamics. This performance was attained without the necessity of 

explicitly modelling fault dynamics beyond first-order behaviour, highlighting the 

usefulness of the suggested method. 

Compared to traditional fault diagnostic methods, such as Leuenberger observers and 

UIOs which frequently overlook the influence of fault dynamics or depend on stringent 

assumptions on system switching behaviour the suggested estimator provides a more 

universal and adaptable framework. By integrating a continuous dwell-time switching 

mechanism and developing an enhanced state-space representation that incorporates fault 

factors, the estimator proficiently manages systems functioning across various regimes. 

The incorporation of a saturation restriction on the estimation error improves robustness 

against modelling mistakes and noise, reducing the likelihood of false alarms or 
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instability in real-world scenarios. The proposed method offers a notable advantage in 

computing efficiency. The bifurcation of the estimator design into offline and online 

phases guarantees minimal real-time computational requirements. In the offline phase, 

parity vectors and predictive structures are developed using previous input-output data 

from various operating modes. The online phase necessitates only residual generation and 

constraint evaluation, rendering the estimator appropriate for real-time industrial 

applications, especially in resource-limited embedded systems. Notwithstanding its 

advantages, the suggested framework possesses specific limits that necessitate additional 

examination. The existing formulation presumes that fault signals develop gradually or 

remain stable over time. 

As a result, the estimator may demonstrate diminished accuracy in situations 

characterised by sudden or higher-order fault dynamics. Future research should aim to 

expand the enhanced state-space model to include higher-order fault derivatives, so 

facilitating more precise monitoring of intricate fault dynamics. Furthermore, although 

the continuous stirred tank reactor exemplifies a case study in chemical process systems, 

extensive validation across various nonlinear switched systems such as power electronics, 

autonomous vehicles, or cyber-physical systems is essential to establish the method’s 

general applicability. A crucial focus entails the systematic assessment of the estimator’s 

robustness amongst model uncertainty, external disturbances, and sensor noise, which are 

frequently encountered in industrial settings. Future study may investigate the 

incorporation of multi-objective control strategies into the estimate framework, including 

the amalgamation of energy minimisation goals with worst-case disturbance rejection 

standards. Such enhancements would augment performance in demanding operational 

settings. The shift of the suggested estimator from simulation to experimental validation 

via hardware-in-the-loop testing or implementation on pilot-scale industrial systems 

constitutes a crucial step towards real-world application and technological adoption. 

This research offers a practical contribution through its possible application in  

real-time monitoring and fault-tolerant control systems for safety-critical industrial 

processes, especially in chemical manufacturing settings. The proposed estimator, 

through effective use in a continuous stirred tank reactor system, can be utilised to 

monitor actuator integrity and identify faults at early stages, facilitating prompt 

intervention before system deterioration or failure. The offline online computational 

architecture renders it appropriate for embedded control platforms with constrained 

processing capabilities, facilitating efficient deployment in programmable logic 

controllers or industrial automation systems. Moreover, the estimator’s capacity to 

precisely ascertain fault magnitude and uphold stability throughout switching dynamics 

enables it to function as a fundamental component in the creation of a robust  

fault-tolerant regulator. This may result in increased system reliability, less downtime, 

and superior product quality across diverse operational contexts. 

6 Conclusion 

This paper introduced a defect estimation methodology utilising a model predictive 

technique for switched nonlinear systems. The process initiates with the development of 

an enhanced state-space model that integrates system states and fault factors. The squared 

Euclidean norm of the estimate error throughout the prediction horizon was established as 

the performance metric. The challenge of minimising this metric was restated using 
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model predictive control principles and stability requirements as the minimisation of its 

upper limit, subject to linear matrix inequality criteria that guarantee the asymptotic 

stability of the estimation error dynamics. A saturation constraint was applied to the 

estimation error to provide constrained performance, hence enhancing robustness against 

shocks and modelling uncertainties. The theoretical assurance of recursive feasibility for 

the proposed estimator was tested at each time step, ensuring consistent real-time 

functioning. The estimator was evaluated on a continuous stirred tank reactor system, a 

standard in the petrochemical sector, and the findings validated its precision in fault 

detection and estimating under both normal and defective settings. 

Notwithstanding its benefits, the suggested method presupposes slowly shifting or 

continuous fault dynamics, thereby constraining its efficacy in situations characterised by 

sudden or high-frequency faults. Moreover, the existing implementation is limited to 

validation through simulation. The framework can be expanded to include higher-order 

fault dynamics and accommodate systems with greater model uncertainty and noise. The 

incorporation of multi-objective optimisation, encompassing both energy-based (H₂) and 

worst-case disturbance (H∞) criteria, may augment its robustness. Furthermore, 

experimental validation on physical systems or integrated industrial platforms is a crucial 

step towards real-world implementation and practical utilisation. 
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Nomenclature 

Abbreviations   

ADT Average Dwell Time 

PDT Persistent Dwell Time 

MLF Multiple Lyapunov Functions 

UIO Unknown Input Observer 

MPC Model Predictive Control 

DLMI Discrete-time Linear Matrix Inequality 

CSTR Continuous Stirred Tank Reactor 

PI Policy Iteration 

Symbol    

𝑒 Faults 

𝐶 The state-space matrices 

𝐺𝑠(𝑘) 
The state-space matrices 

𝐻𝑠(𝑘) 
The state-space matrices 

𝑓 The energy variation 

𝑕 Inputs 

𝐼 The energy function 

𝐽𝑠(𝑘) 
The state-space matrices 

𝑘𝑠 The switching time step 

𝑁𝑃20 The molar flow rate 

𝑅𝑉 The volumetric flow rate 

𝑠(𝑘) The switching signal 

𝑆   The state estimation 

𝑥 The states 

𝑦  The output estimation 

𝑦 Outputs 

Greek symbol 

𝜂𝜎(𝑘) 
The nonlinear term 

𝜌𝑖,𝑘 The maximum of the objective metric 

 

 


