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Abstract: Cross-border trade export forecasting is important for enterprises to
optimise resource allocation. However, existing prediction methods have the
problem of insufficient single modal feature extraction, for this reason, this
paper first optimises the reinforcement learning (RL) algorithm based on
multilevel strategy and multilevel reward (MSRL). Then CNN, Doc2Vec
model, and improved ResNetl152 model were used to extract static variable
features, comment text features, and image features of cross-border trade export
sales volume, respectively, and a hierarchical attention mechanism was
designed to fuse multimodal features. The hyperparameters of the BiGRU
model are optimised using MSRL (MSRL-BiGRU), and the fusion features are
input into MSRL-BiGRU, which efficiently and automatically searches for the
optimal strategy and reduces the prediction error. The experimental results
show that the proposed method improves the coefficient of determination R? by
4.84-18.67%, which can realise the accurate prediction of cross-border trade
export sales.
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1 Introduction

Cross-border e-commerce refers to a commercial activity in which transaction subjects
between different countries use e-commerce platforms to facilitate cooperative
transactions, then pay for the amount of the purchase, and finally transport the goods
through cross-border logistics, which is an inseparable part of the current cross-border
trade field and occupies a considerable proportion (Wang et al., 2020). Cross-border
e-commerce sales data directly reflect the characteristics of the flow of goods, and thus
these sales data can be collected and used to make predictions about the future exports of
cross-border trade (Wang et al., 2017). Because of the lag in the supply of goods, firms
need to plan their trade exports as accurately as possible in the light of market demand
over a period of time in the future, but future market demand is uncertain. If firms
overestimate international market demand, they will incur inventory build-ups, which in
turn will incur inventory expenses and capital costs (Saydam and Civelek, 2022).
Therefore, accurate and efficient cross-border trade export forecasting is key for firms to
reduce uncertainty and minimise inventory build-up and opportunity costs (Elia et al.,
2021).

The cross-border trade export forecasting problem belongs to the field of time series
forecasting. Classical statistical methods such as linear regression (LR) (Lourenco et al.,
2011) and moving average autoregressive model (Pham and Yang, 2010) are widely used
in this field. Kalaoglu et al. (2015) introduced traditional festivals as dummy variables
into LR to predict future sales of foreign trade clothing based on the long-term and
seasonal characteristics of the time series. Jiang et al. (2021) selected macro indicators
such as total retail sales of consumer goods, GDP and primary industry output as
variables and input them into a multiple regression model to predict logistics demand
relatively accurately. Menculini et al. (2021) used a Prophet-ARIMA model to forecast
wholesale food prices, resulting in poor predictive accuracy of the model.

Traditional statistical methods perform poorly in the prediction problem due to their
poor predictive fitting ability and high requirement for completeness of historical data.
However, as the artificial intelligence growing, deep learning models have a strong
learning ability and are significantly more effective in prediction problems. Ouyang et al.
(2019) used LSTM to extract impact indicator features to better enable the prediction of
online agricultural prices, and the model was significantly better than a shallow classifier
without feature learning. Massaro et al. (2021) proposed an e-commerce sales prediction
model based on XGBoost, and compared the prediction accuracy and real-time
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performance with LSTM model to verify the effectiveness of the model. E-commerce
data often presents a long-tail distribution, with very little data on some products or user
behaviours, making it difficult for models to capture patterns and resulting in poor
prediction effects. Pan and Zhou (2020) utilised CNN to extract features from review
texts of e-commerce platforms and output the prediction results through a fully connected
network, but the prediction accuracy was not high.

Deep learning-based forecasting methods focus on immediate outputs, making it
difficult to directly optimise long-term goals. Reinforcement learning-based prediction
methods learn the optimal strategy through the continuous interaction between the agent
and the environment. In e-commerce sales prediction, the environment can be regarded as
market dynamics, and the agent adjusts the parameters of the prediction model through
trial and error. Through this adaptive interaction strategy, the prediction performance can
be greatly enhanced. Lee et al. (2022) introduced a reward and punishment mechanism to
optimise the prediction indicators, and constructed a ‘strategy network’ and a ‘value
network’ to optimise the prediction results in the decoding stage to improve the
prediction performance. An et al. (2023) used a BERT-CNN model to extract textual
features of user comments on e-commerce platforms and predicted cross-border trade
exports with a prediction accuracy of 78.2% through an RL-optimised LSTM model. The
above prediction methods based on a single modality only consider source data features
or text features, while cross-border e-commerce platforms have multimodal data, and
how to better integrate these multimodal data has become a research hotspot. Li (2024)
integrated image features in a multilayer perceptron (MLP) while utilising an RNN to
capture the context and location relationships of commodity attributes to improve the
performance of multimodal prediction models. Cai et al. (2021) used a cross-modal
recurrent neural network based on the bimodal attention mechanism (CA-RNN) to
predict merchandise sales from multimodal data. Xu et al. (2024) significantly improved
the prediction accuracy by using CNN and BiLSTM for text and image data feature
extraction, respectively, and multimodal feature fusion through the attention mechanism.

According to the comprehensive analysis of the above research status, it can be seen
that the current cross-border trade export prediction method of single modal feature
extraction is insufficient, resulting in large prediction errors, for this reason, this paper
proposes a cross-border trade export prediction method based on the fusion of RL and
multimodal data. The main work of the method is summarised in the following aspects:

1 Optimisation of RL algorithm based on the idea of multilevel strategy and multilevel
reward (MSRL). The multilevel strategy module provides maximised confidence by
jointly updating semantic strategies, and the multilevel reward network jointly
evaluates visual-linguistic relevance through visual rewards to obtain RL-specific
goals and improve global decision optimisation.

2 Static variable features, comment text features and image features of cross-border
trade export sales were extracted using CNN, Doc2Vec model, and improved
ResNet152 model, respectively. Designing hierarchical attention mechanisms to
meticulously capture and fuse features from different modal data improves the
alignment between different modal features and learns better quality feature
representations.
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3 The MSRL is used to optimise three hyperparameters, namely the amount of
neurons, the amount of epochs, and the BIGRU model’s studying rate, and the three
parameters to be optimised are established as three states, each with a range of
actions, and intelligent agents incessantly engage with the BiGRU in search of the
best policy, so that the optimal cross-border trade export sales prediction results are
obtained upon reaching the maximum allowed iterations.

4 The experimental results show that the MAE and MAPE of the proposed method are
reduced by 12.68-50.1% compared with the other three models, which greatly
reduces the prediction error and improves the prediction performance, and has high
practical value.

2 Relevant theoretical foundations

2.1 Theory of multimodal data fusion

The core problem of multimodal data fusion is to combine the information of various
different modal data, which fuses multimodal data into a single feature in order to
achieve comprehensive judgement and decision making on the same phenomenon (Gao
et al.,, 2020). The purpose of multimodal representation fusion is to study joint
representations that model the interactions of individual elements between various
modalities, integrating information from two or more modalities and effectively reducing
the amount of separate representations. Multi-modal fusion can be categorised into two
main types: fusion of abstract modes (FAM) and fusion of primitive modes (FRM)
(Zhang et al., 2020), as shown in Figure 1.

Figure 1 Multimodal fusion method, (a) fusion with abstract modalities (b) fusion with raw
modalities (see online version for colours)
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In FAM, an appropriate unimodal encoder is first used to obtain an overall representation
of each element, and then the information from the two data streams is flexibly fused
together using addable and multiplicable interactive operations that act as differentiable
building blocks, as shown in Figure 1(a). These operations can be represented into almost
any unimodal machine learning process.

In contrast, FRM occurs at a very early stage and may even involve the raw modal
data itself, as shown in Figure 1(b). These methods are often similar to early fusion,
where the input data are manipulated in series before the predictive model is applied.
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2.2 Reinforcement learning algorithm

RL refers to learning by trial-and-error of continuous interaction between an intelligent
(A) and its environment (E), which enables A to perform actions that receive maximum
reward (Matsuo et al., 2022). In RL, E scores the actions performed by the intelligences,
A learns the actions with the highest scores in each state, and finally A composes an
optimal policy from the best actions in each state. At each time step #, A observes the
current state s, of the environment, makes an action a; according to the established
strategy, E feeds a reward message 7, to A based on the action made by A, and A chooses
the next action based on r; and s, while E moves from s, to the next state s;+1.

Figure 2 The structure of deep RL (see online version for colours)
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In reinforcement learning, denote all rewards from the initial to the end as 7, ..., 74, ...,

ry. Define the discount rate y € [0, 1], then the discounted reward is expressed as follows.
U =t+yna+y nap+..+y7" (1)

At time ¢, U, is an unknown random variable whose randomness comes from all the states
and actions after time ¢. The action value function is expressed as follows. The action
value function is expressed as follows:

Qn'(stnat):E[Utlst:StnAt:at] 2)

The expectation in the above formula eliminates all states after time ¢ for all actions. The
optimal action value function is expressed by maximising elimination strategy z as
below:

O (s, a,)=max O, (s, a,) 3

RL has significant advantages in dynamic decision making, long-term optimisation,
autonomous exploration, etc., and is suitable for scenarios that require interaction
between agents and the environment. Deep learning is better at pattern recognition and
processing static data. Combining the two into deep RL can leverage their respective
strengths to solve more complex problems, as shown in Figure 2.
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3 Optimisation of reinforcement learning algorithms with joint multilevel
policy and reward networks

Traditional RL algorithms that consider only a single policy may prematurely converge to
a locally optimal solution instead of a globally optimal solution. To this end, the joint
multilevel policy and multilevel reward ideas are optimised for reinforcement learning
algorithms (MSRL), where the multilevel policy module provides maximised confidence
by jointly updating the semantic policies, and the multilevel reward network jointly
evaluates the visual linguistic relevance by visual rewards to obtain RL-specific goals and
improve the global optimisation searching ability. Visual-level strategies, as the
perception core in multi-level strategies, form a collaborative optimisation relationship
with multi-level strategies through hierarchical abstraction, shared state representation
and joint training. Its design details, such as feature extraction, action space, and reward
design, not only follow the general logic of multi-level strategies but also adapt to the
particularity of visual tasks. This balance between similarity and difference enables the
multi-level strategy framework to handle complex tasks efficiently while maintaining
focus and interpretability at each level.

The multilevel policy network consists of semantic-level policies and visual-level
policies. The semantic level policy embeds the features / by extracting them from the text
using a linear mapping. The visual-level strategy c(/, S;) belongs to the visual embedding
network. The multilevel reward network consists of a visual reward 6. and a semantic
reward S;. 6, is from the visual features while S; is the semantic features. @ = {6, 0.}
denotes the parameters of the multilevel strategy network, 6, and 6, are the strategy
network and reward network respectively and rim is rewarded by minimising the
negative expectation combinations. The sample approximation of MSRL is obtained by
training @ together with 6, and 6, as shown below:

T
Vo,& =D Vo, log pr (w1, 5,) 4)

t=1

where w; is the word distribution. Considering this gradient scaling as an estimate a; of
the action advantage at state s;, the value function of MSRL is defined as its expected
future return, as shown below:

Vé)(gl|xn:yn):Egt |:R(g1|xn’yn):' (5)

where g, is the reward function at a given moment, x” and y" are different modal data, the
expectation is g, ~ ms(*|gs, X"), and 7y is a multilevel strategy. The goal is to maximise the
average reward from the initial state sy defined as follows:

N
IO =~ Vsl 37) (©)
n=l1

where N is the number of samples in the training set, and only one example #n is
considered, omitting the numbers x" and y". The gradient of J(#) is computed. In the
special case of deterministic transition functions, the gradient of J(6) is as follows, where

the O-functionis Oy(g,) = E, [R(g/)].
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T
VoV (so) = Eg, zv(ﬂfﬁ (g:)0 (&) @)

t=1

The goal of MSRL is to estimate the Q-function using Monte Carlo by first sampling all
K samples of s; and g;, then computing the mean. Based on all the complete sequences
sampled by the current multilevel strategy network, the optimal Q-function estimation is
performed based on the multilevel reward function conditional on some of the sequences
sampled in the current strategy to obtain the global optimisation result.

4 Cross-border trade export prediction based on reinforcement learning
and multimodal data fusion

4.1 Multimodal cross-border trade export impact data feature extraction

To address the issue that the current cross-border trade export prediction methods have
insufficient single-modal feature extraction, which leads to low prediction accuracy, the
static variable features, comment text features and image features of cross-border trade
export sales are first extracted respectively. Then a hierarchical attention mechanism is
designed to fuse the features of the above modalities, and the hyperparameters of the
BiGRU model are optimised by using MSRL (MSRL-BiGRU), and the fused features are
inputted into MSRL-BiGRU, which efficiently and automatically searches for the optimal
strategy, improves the efficiency of hyperparameter searching, and thus reduces the
prediction error of BiGRU. The entire flow of the offered prediction method is shown in
Figure 3.

Figure 3 The entire flow of the offered prediction method (see online version for colours)
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mostly text and image data, for this paper will use different algorithms for static variable
features, comment text features and image features are extracted separately, the specific
steps are as follows:

Static variable feature extraction: firstly, the static variable field is converted into a
numeric list and mapped into vector m; using the embedding matrix, and finally m; is
inputted into the CNN, and the feature vector m; is obtained by utilising the fully

connected layer with the ReLU activation function, as shown below, where w; is the
weight and b; is the bias.

m] = ReLU (W'm; +b;) ®)

After obtaining the features of all static variables, stitching is performed to finally
obtain the static feature vector m; of cross-border trade export sales.

Product review text feature extraction: in order to accurately characterise the text,
this paper adopts the Doc2Vec model (Kim et al., 2019), which generates a unique
paragraph ID for each text, and maps sentences and paragraphs directly into a vector
space of fixed dimensions. The Doc2Vec model consists of a distributed memory
model (PV-DM) and a distributed bag-of-words model (PV-DBOW). Since PV-DM
performs better than PV-DBOW, this paper adopts PV-DM to extract text features of
product reviews.

First, each text paragraph ID and context words are initialised into paragraph vector
matrix D = [d}, da, ..., dy] and word vector matrix W= [o1, 02, ..., on], where each
column represents a paragraph or a word, where d, 0 € R7*1, q is the dimension, M is
the number of paragraphs, and N is the number of words. A window of radius x is
slid over the sentences of a paragraph, and every time it is slid, d; and the context
word (0j, ..., 0j+) in the window are spliced together to obtain an aggregation
vector, and finally the probability of the target word is obtained by softmax. The goal
of model training is to maximise the average log-likelihood function, where the
conditional probabilities are calculated as follows:

Zo

e

p(0j|di,0j—x,...,0j+x)=T (9)
g

e¢

Z:Uh(d,',Oj,x,...,Oj.H»;W, D)+b (10)

where o; is the current word vector; zg is the non-normalised logarithmic probability
of the g word, W is the sentence vector matrix, D is the word vector matrix, U and b
are softmax parameters. The training is performed by W and U, b, and the passage
vector of the new passage, i.c., the text feature vector f;*, is obtained by using the

gradient descent method.

Image feature extraction based on improved ResNet152, VGG-16, etc. are the more
popular image feature extraction methods (Zhang et al., 2022), among which
ResNet152 is widely used due to its excellent performance. For this reason in this
paper, ResNet152 is improved (EResNet152) using the residual block mapping
method, as shown in Figure 4.
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The output x of layer F(x) is added to the input H(x) = F(x) + x of layer n to obtain
the desired output D using the ReL U activation function. In the process of reverse
gradient propagation, ensure that each expected value is added to the output value,
thereby reducing the phenomenon of gradient dispersion. The feature extraction
formula of EResNet152 is as follows:

b = f (Wi (EResNet(x)) +b) (11)

where #4; is the image feature vector, vector size of 512 dimensions, ¥ is a matrix of
2,048 x 512 dimensions, x is the image data input.

Figure 4 The residual block mapping method (see online version for colours)

The nth layer of the network outputs x The nth layer of the network outputs x
: :
Weight layer Weight layer
Relu
Relu
A h 4
Output F(x) from the (n+1)th layer of the network | *—— Weight layer
Relu l
A
Weight layer Expected output H(x)
> +
Relu

Expected output H(x)=F(x)+x

4.2 Hierarchical attention-based feature fusion for multimodal data

Adopting a hierarchical feature fusion approach can help the model to obtain a richer
semantic representation. Considering that the static variable features and textual features
contain more abstract information, priority is given to the joint feature encoding of the
m; and f;* pairs. They are subsequently fused with low-level semantic modal image

features to complement each other. In the field of cross-border trade and export, both
high-level and low-level semantic information have a significant impact on the model’s
prediction results.

The multimodal attention (MMA) designed in this paper takes the joint feature
representations F,¢» and 4; of m; and f;* as inputs, which facilitates the model to focus

directly on information with strong correlations between different modalities, thus
improving the alignment between cross-modal data. In the multimodal fusion process,
two MMAs share attentional weights to help model modal interdependencies, which are
calculated for each MMA as shown below:
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EFET
fMMA (an st E))zf;oftmax (q—kJFv

Jd

FWy (FoasWi )"

= fiofimax (T] FoeaW,

Fa&b =f‘concat(mz"*s fz*) (13)

(12)

where fumu, foomar and feoncar are the MMA, softmax and concatenate functions,
respectively; Fy, Fi, F is the query, key and value of MMA, respectively; Fu«» is the joint
feature representation of m;, f;*-connections and F} is the feature representation of the
image; S and D are the sequence length and feature dimensions, respectively, W,, Wy and
W, are the learnable parameter matrices of the query, key and value, respectively.

The attention weights of F, and F; map the two vectors to scalars through the
attention scoring function ¢ to obtain the final multimodal feature fusion result F™.

T
xp(Fth (Fosol) ]

Nz
FW, (FussWi )"
e

4.3 Cross-border trade export prediction based on improved reinforcement
learning and BiGRU

anfj: (14)

Jd

a(an ka ) = fsoﬁmax[

After obtaining the multimodal data features affecting the sales volume of cross-border
trade exports, this paper optimises the hyperparameters of the BIGRU model by using the
MSRL proposed in Section 3, which efficiently searches for the optimal strategy
automatically, improves the efficiency of hyperparameter searching, and then reduces the
prediction error of BiGRU. The structure of MSRL-BiGRU is shown in Figure 5.

Firstly, the states S = [s1, 52, s3], 51 indicates the total count of neurons in the BiGRU,
s> represents the current count of BiGRU iterations, and s3 represents the current studying
rate of the BiIGRU, and each state is defined as shown in equation (15).

[ 2

K —[otl,a1 ,...,af]
[, 2

S —[az,az,...,aﬂ (15)
[ 2

83 —[03,613,...,613"]

Each state action is denoted as A4 = [s1(4)), s2(42), 53(43)], A: = [a1, aa, ..., a,], and each
state has n executable actions. The update of the O value of the MSRL algorithm
proposed in this paper is shown in equation (16).

O(s,a)=0(s, a)-a[ O(s",a’) - O(s, a) | (16)

where Q(s, a) is the O-value of the current state and O(s’, a’) is the O-value of the next
state, the minimum Q-value is expected. The calculation of O(s’, a’) is as follows:
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R(s,a)—ymax Q(s’,a’), Not in the terminated state

o(s.)=| )

R(s, a), Reach termination state

where y € [0, 1] is the discount factor, R(s, a) A signifies the reward value resulting from
performing action a in state s to transfer to s’, a' is the next action a selected by taking a
greedy policy, and the reward operation is as below:

R(s, a) = RMSE(s, a) (18)
where the value of R(s, @) is the RMSE gained by performing a in s. RMSE(s, a) is

calculated as follows:

RMSE(s, a) = BiGRU(s, a) (19)

Figure 5 The structure of MSRL-BiGRU (see online version for colours)
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A BiGRU model is a GRU that consists of unidirectional, oppositely oriented GRUs
whose network output is jointly determined by these two GRUs. In this section, a
three-layer BiGRU network is constructed, and the expression of BiGRU is as follows,
taking the L™ layer network calculation as an example.

b= f(WEht +WERE + bt ) (20)

where A} is the state of the obscured level at time #, b is the bias, and A* and it

represent the conditions of the forward and backward obscured levels, respectively,
respectively, as follows:

ht = GRU* (xt, /) @n

hi* = GRU* (x}, ht,) (22)
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where E{ , and l?,{ , are the forward and backward hidden layer states of the L layer at the

time ¢ — 1, and x/ serves as the input for the L level.

The input of MSRL-BiGRU is F* and the output is the predicted value of export sales
from cross-border trade for the BiGRU model. Initialise the Q-table by initialising the
parameters of the MSRL, establishing each of the three optimisation parameters as three
different states. Then, starting from state s, action a; is selected and executed, and the
intelligent agent engages with the BIGRU’s context to determine the RMSE value.

Monitor the reward function value alongside s’, revise the Q table accordingly, and
transition to the subsequent state s,. When the final state s3 is attained, the approach
refreshes the state, and starts the cyclic search through s;. The approach terminates the
operation when the maximum amount of epochs is attained, so as to obtain the prediction
value with the smallest RMSE, and to improve the prediction efficiency.

5 Experimental results and analyses

This section of experiments was conducted on a personal laptop using an 11th-generation
Intel Core i7-11800H@2.30 GHz, 32 GB of RAM, an NVIDIA GeForce RTX 3060 GPU
with 16 GB of video memory, and algorithms implemented in PyTorch. In model
training, the discount factor was set to 0.1, the learning rate to 0.007, the batch size to
256, and the loss function to RMSE. The data used in this paper are from Alibaba
AliExpress platform and Ministry of Foreign Trade and Economic Cooperation
‘Internet Plus Foreign’ from January 2015 to July 2016 Trade platform, China
cross-border e-commerce integrated service platform, National Bureau of Statistics fixed
product sales index statistics platform on leather shoes, machinery, electrical appliances
and other manufacturing export products 7,294 sales detail data and 102,596 graphic
comment data.

Figure 6 The results of predicting the export sales of cross-border trade (see online version
for colours)
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To wverify the prediction performance of the proposed prediction method
MSRL-BiGRU, three typical prediction methods BERT-CNN (An et al., 2023), CA-RNN
(Cai et al.,, 2021), and MEMF (Xu et al.,, 2024) are selected for the comparison
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experiments in this paper. The results of the different methods for predicting the export
sales of cross-border trade from 1 March to 24 March 2015 (denoted as 1, 2, ..., 24) are
shown in Figure 6. On 6 March, the real cross-border trade export sales were
612,000 wunits, and the predicted sales of BERT-CNN, CA-RNN, MEMF and
MSRL-BiGRU were 469,000, 462,000, 547,000 and 589,000 units, respectively, and the
predicted sales of MSRL-BiGRU were the closest to the real sales, while it can be seen
from the overall trend that the MSRL-BiGRU’s forecast results are more accurate.

In addition to analysing the results of the cross-border trade export sales forecasts of
different methods, this paper also adopts MAE, MSE, RMSE, MAPE, and R2, which are
commonly used indicators to measure the forecasting performance, to assess the
performance of each forecasting method, and the comparisons of MAE, MSE, RMSE,
and MAPE of the four forecasting methods are shown in Table 1. The MAE and MAPE
of MSRL-BiGRU were 0.1564 and 0.2306, which were reduced by 50.1% and 34.41%
compared to BERT-CNN, 33.08% and 30.06% compared to CA-RNN, and 16.05% and
12.68% compared to MEMF, respectively. All the MSRL-BiGRU indicators were better
than those of other comparative models. MSRL-BiGRU not only makes use of multilevel
strategy to optimise the RL algorithm, but also extracts and fuses the features of static
variables affecting export sales, text features of commodity reviews, and image features,
which greatly enriches the multimodal feature representation and improves the prediction
accuracy.

To visually verify the convergence performance of the different methods, training
tests were conducted to compare the different models, and the optimal parameter values
were uniformly adjusted to remain unchanged. The results of the comparison of the
performance of the coefficient of determination R? of each method are shown in Figure 7.
R? is an important index for assessing the prediction accuracy, and its value ranges from
0 to 1. The larger the value of R?, the higher the prediction accuracy.

Table 1 Comparison of forecasting indicators for different forecasting methods
Method MAE MSE RMSE MAPE
BERT-CNN 0.3134 0.3896 0.5814 0.3516
CA-RNN 0.2337 0.3259 0.5085 0.3297
MEMF 0.1863 0.3061 0.4539 0.2641
MSRL-BiGRU 0.1564 0.2689 0.4168 0.2306

As the number of iterations increases, the convergence of the different methods increases
and stabilises, with BERT-CNN performing relatively poorly and MSRL-BiGRU
performing best. The converged R? of BERT-CNN, CA-RNN, MEMF and
MSRL-BiGRU are 0.8028, 0.8716, 0.9043, 0.9527, respectively, and the R? of
MSRL-BiGRU is the closest to 1, which indicates that it has the best prediction.
BERT-CNN only considers a single textual modality, and the prediction results are worse
than those of CA-RNN, MEMF and MSRL-BiGRU, which are multimodal prediction
methods. Although CA-RNN considers image and text modalities, the RNN suffers from
long-term dependency problems and overfitting, and does not optimise the prediction
results, so the prediction performance is worse than that of MEMF and MSRL-BiGRU.
MEMF also considers the multimodal influence characteristics of cross-border
e-commerce export sales, but does not optimise the final prediction results, so the
prediction accuracy is not as good as that of MSRL-BiGRU. Therefore, according to the
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experimental results, it is concluded that the learning ability of MSRL-BiGRU is
stronger, and it can obtain a relatively high prediction accuracy within a limited number
of iterations, and the amount of computation decreases with the number of iterations.

Figure 7 Determination R? of each forecasting method (see online version for colours)
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6 Conclusions

With the acceleration of the process of global economic integration, cross-border trade
occupies an increasingly important position in international trade. Accurate prediction of
cross-border trade export sales is of key significance for enterprises to cope with market
changes. This paper proposes a cross-border trade export forecasting method based on the
fusion of RL and multimodal data to address the problem of insufficient single-modal
feature extraction in existing studies, which leads to low forecasting accuracy. Firstly, the
MSRL algorithm is designed, where the multilevel policy provides maximum confidence
by jointly updating the semantic policy, and the multilevel reward jointly evaluates the
visual-linguistic relevance by the visual reward to obtain the RL-specific target and
improve the global decision optimisation capability. Then, CNN, Doc2Vec model, and
improved ResNet152 model are used to extract static variable features, text features, and
image features of cross-border trade export sales volume, respectively, and MMA is
designed to meticulously capture and fuse the features of different modal data, and to
distinguish between data of different semantic levels. Secondly, the fusion features are
used as inputs to the MSRL-BiGRU model, and the three hyperparameters of the amount
of neurons, epochs and studying rate of the BIGRU model are improved using MSRL,
and each parameter to be optimised is established as a state, with a set of actions in each
state, and the intelligences and the BiGRU continuously interact with each other in search
of the optimal strategy, to obtain the optimal cross-border trade export sales prediction
results. The proposed method significantly reduces the prediction error and shows
excellent prediction results.
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Although MSRL-BiGRU has been upgraded in the problem of cross-border trade
export sales forecasting, the methodology of this paper is still deficient, and the
subsequent research can be centred on the following points.

1  For the neural network hyper-parameter optimisation problem: after a
hyper-parameter reaches the optimum, the MSRL algorithm updates the Q-function
with the hyper-parameter that corresponds to the optimum at the next moment, and
the parameters that are not sampled will not be selected as the optimum, so there is a
situation that the optimum value will be missed. We will continue to refine the
proposed methodology in future studies to obtain better learning strategies.

2 The work in this paper only considers three hyperparameters, namely, the amount of
neurons, the amount of epochs of the model, and the studying rate, and subsequent
work can expand more hyperparameters to find the optimal, such as: loss function,
activation function, and the number of batch samples.
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