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Abstract: Cross-border trade export forecasting is important for enterprises to 
optimise resource allocation. However, existing prediction methods have the 
problem of insufficient single modal feature extraction, for this reason, this 
paper first optimises the reinforcement learning (RL) algorithm based on 
multilevel strategy and multilevel reward (MSRL). Then CNN, Doc2Vec 
model, and improved ResNet152 model were used to extract static variable 
features, comment text features, and image features of cross-border trade export 
sales volume, respectively, and a hierarchical attention mechanism was 
designed to fuse multimodal features. The hyperparameters of the BiGRU 
model are optimised using MSRL (MSRL-BiGRU), and the fusion features are 
input into MSRL-BiGRU, which efficiently and automatically searches for the 
optimal strategy and reduces the prediction error. The experimental results 
show that the proposed method improves the coefficient of determination R2 by 
4.84–18.67%, which can realise the accurate prediction of cross-border trade 
export sales. 

Keywords: cross-border trade export forecasting; reinforcement learning; 
multimodal fusion; hierarchical attention mechanism; BiGRU model. 

Reference to this paper should be made as follows: Yu, Y., Sun, Z. and Li, J. 
(2025) ‘Cross-border trade export prediction based on reinforcement learning 
and multimodal data’, Int. J. Information and Communication Technology,  
Vol. 26, No. 36, pp.1–16. 



   

 

   

   
 

   

   

 

   

   2 Y. Yu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Biographical notes: Yang Yu received his PhD in Fudan University in July 
2017. He is now working at Jiaxing Nanhu University. His research interests 
include machine learning, digital economy, and green financial trade export. 

Ziwen Sun received his PhD in Shikoku University of Japan in 2021. He is 
currently a minister of National University Science Park in Hangzhou Normal 
University. His research interests include digital economy and industrial 
intelligence. 

Jiachen Li s currently a PhD candidate in the School of Economics at Fudan 
University. His research interests include digital trade and financial technology. 

 

1 Introduction 

Cross-border e-commerce refers to a commercial activity in which transaction subjects 
between different countries use e-commerce platforms to facilitate cooperative 
transactions, then pay for the amount of the purchase, and finally transport the goods 
through cross-border logistics, which is an inseparable part of the current cross-border 
trade field and occupies a considerable proportion (Wang et al., 2020). Cross-border  
e-commerce sales data directly reflect the characteristics of the flow of goods, and thus 
these sales data can be collected and used to make predictions about the future exports of 
cross-border trade (Wang et al., 2017). Because of the lag in the supply of goods, firms 
need to plan their trade exports as accurately as possible in the light of market demand 
over a period of time in the future, but future market demand is uncertain. If firms 
overestimate international market demand, they will incur inventory build-ups, which in 
turn will incur inventory expenses and capital costs (Saydam and Civelek, 2022). 
Therefore, accurate and efficient cross-border trade export forecasting is key for firms to 
reduce uncertainty and minimise inventory build-up and opportunity costs (Elia et al., 
2021). 

The cross-border trade export forecasting problem belongs to the field of time series 
forecasting. Classical statistical methods such as linear regression (LR) (Lourenço et al., 
2011) and moving average autoregressive model (Pham and Yang, 2010) are widely used 
in this field. Kalaoglu et al. (2015) introduced traditional festivals as dummy variables 
into LR to predict future sales of foreign trade clothing based on the long-term and 
seasonal characteristics of the time series. Jiang et al. (2021) selected macro indicators 
such as total retail sales of consumer goods, GDP and primary industry output as 
variables and input them into a multiple regression model to predict logistics demand 
relatively accurately. Menculini et al. (2021) used a Prophet-ARIMA model to forecast 
wholesale food prices, resulting in poor predictive accuracy of the model. 

Traditional statistical methods perform poorly in the prediction problem due to their 
poor predictive fitting ability and high requirement for completeness of historical data. 
However, as the artificial intelligence growing, deep learning models have a strong 
learning ability and are significantly more effective in prediction problems. Ouyang et al. 
(2019) used LSTM to extract impact indicator features to better enable the prediction of 
online agricultural prices, and the model was significantly better than a shallow classifier 
without feature learning. Massaro et al. (2021) proposed an e-commerce sales prediction 
model based on XGBoost, and compared the prediction accuracy and real-time 
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performance with LSTM model to verify the effectiveness of the model. E-commerce 
data often presents a long-tail distribution, with very little data on some products or user 
behaviours, making it difficult for models to capture patterns and resulting in poor 
prediction effects. Pan and Zhou (2020) utilised CNN to extract features from review 
texts of e-commerce platforms and output the prediction results through a fully connected 
network, but the prediction accuracy was not high. 

Deep learning-based forecasting methods focus on immediate outputs, making it 
difficult to directly optimise long-term goals. Reinforcement learning-based prediction 
methods learn the optimal strategy through the continuous interaction between the agent 
and the environment. In e-commerce sales prediction, the environment can be regarded as 
market dynamics, and the agent adjusts the parameters of the prediction model through 
trial and error. Through this adaptive interaction strategy, the prediction performance can 
be greatly enhanced. Lee et al. (2022) introduced a reward and punishment mechanism to 
optimise the prediction indicators, and constructed a ‘strategy network’ and a ‘value 
network’ to optimise the prediction results in the decoding stage to improve the 
prediction performance. An et al. (2023) used a BERT-CNN model to extract textual 
features of user comments on e-commerce platforms and predicted cross-border trade 
exports with a prediction accuracy of 78.2% through an RL-optimised LSTM model. The 
above prediction methods based on a single modality only consider source data features 
or text features, while cross-border e-commerce platforms have multimodal data, and 
how to better integrate these multimodal data has become a research hotspot. Li (2024) 
integrated image features in a multilayer perceptron (MLP) while utilising an RNN to 
capture the context and location relationships of commodity attributes to improve the 
performance of multimodal prediction models. Cai et al. (2021) used a cross-modal 
recurrent neural network based on the bimodal attention mechanism (CA-RNN) to 
predict merchandise sales from multimodal data. Xu et al. (2024) significantly improved 
the prediction accuracy by using CNN and BiLSTM for text and image data feature 
extraction, respectively, and multimodal feature fusion through the attention mechanism. 

According to the comprehensive analysis of the above research status, it can be seen 
that the current cross-border trade export prediction method of single modal feature 
extraction is insufficient, resulting in large prediction errors, for this reason, this paper 
proposes a cross-border trade export prediction method based on the fusion of RL and 
multimodal data. The main work of the method is summarised in the following aspects: 

1 Optimisation of RL algorithm based on the idea of multilevel strategy and multilevel 
reward (MSRL). The multilevel strategy module provides maximised confidence by 
jointly updating semantic strategies, and the multilevel reward network jointly 
evaluates visual-linguistic relevance through visual rewards to obtain RL-specific 
goals and improve global decision optimisation. 

2 Static variable features, comment text features and image features of cross-border 
trade export sales were extracted using CNN, Doc2Vec model, and improved 
ResNet152 model, respectively. Designing hierarchical attention mechanisms to 
meticulously capture and fuse features from different modal data improves the 
alignment between different modal features and learns better quality feature 
representations. 
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3 The MSRL is used to optimise three hyperparameters, namely the amount of 
neurons, the amount of epochs, and the BiGRU model’s studying rate, and the three 
parameters to be optimised are established as three states, each with a range of 
actions, and intelligent agents incessantly engage with the BiGRU in search of the 
best policy, so that the optimal cross-border trade export sales prediction results are 
obtained upon reaching the maximum allowed iterations. 

4 The experimental results show that the MAE and MAPE of the proposed method are 
reduced by 12.68–50.1% compared with the other three models, which greatly 
reduces the prediction error and improves the prediction performance, and has high 
practical value. 

2 Relevant theoretical foundations 

2.1 Theory of multimodal data fusion 

The core problem of multimodal data fusion is to combine the information of various 
different modal data, which fuses multimodal data into a single feature in order to 
achieve comprehensive judgement and decision making on the same phenomenon (Gao  
et al., 2020). The purpose of multimodal representation fusion is to study joint 
representations that model the interactions of individual elements between various 
modalities, integrating information from two or more modalities and effectively reducing 
the amount of separate representations. Multi-modal fusion can be categorised into two 
main types: fusion of abstract modes (FAM) and fusion of primitive modes (FRM) 
(Zhang et al., 2020), as shown in Figure 1. 

Figure 1 Multimodal fusion method, (a) fusion with abstract modalities (b) fusion with raw 
modalities (see online version for colours) 

Heterogeneous dataIsomorphic data Fuse

Encoder

Decoder

Fuse

 
(a)     (b) 

In FAM, an appropriate unimodal encoder is first used to obtain an overall representation 
of each element, and then the information from the two data streams is flexibly fused 
together using addable and multiplicable interactive operations that act as differentiable 
building blocks, as shown in Figure 1(a). These operations can be represented into almost 
any unimodal machine learning process. 

In contrast, FRM occurs at a very early stage and may even involve the raw modal 
data itself, as shown in Figure 1(b). These methods are often similar to early fusion, 
where the input data are manipulated in series before the predictive model is applied. 
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2.2 Reinforcement learning algorithm 

RL refers to learning by trial-and-error of continuous interaction between an intelligent 
(A) and its environment (E), which enables A to perform actions that receive maximum 
reward (Matsuo et al., 2022). In RL, E scores the actions performed by the intelligences, 
A learns the actions with the highest scores in each state, and finally A composes an 
optimal policy from the best actions in each state. At each time step t, A observes the 
current state st of the environment, makes an action at according to the established 
strategy, E feeds a reward message rt to A based on the action made by A, and A chooses 
the next action based on rt and st while E moves from st to the next state st+1. 

Figure 2 The structure of deep RL (see online version for colours) 
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In reinforcement learning, denote all rewards from the initial to the end as r1, …, rt, …, 
rn. Define the discount rate γ ∈ [0, 1], then the discounted reward is expressed as follows. 

2
1 2

n t
t t t t nU r γ r γ r γ r−

+ += + ⋅ + ⋅ + + ⋅  (1) 

At time t, Ut is an unknown random variable whose randomness comes from all the states 
and actions after time t. The action value function is expressed as follows. The action 
value function is expressed as follows: 

( ) [ ], ,π t t t t t t tQ s a E U S s A a= = =  (2) 

The expectation in the above formula eliminates all states after time t for all actions. The 
optimal action value function is expressed by maximising elimination strategy π as 
below: 

( ) ( ), max ,t t π t t
π

Q s a Q s a∗ =  (3) 

RL has significant advantages in dynamic decision making, long-term optimisation, 
autonomous exploration, etc., and is suitable for scenarios that require interaction 
between agents and the environment. Deep learning is better at pattern recognition and 
processing static data. Combining the two into deep RL can leverage their respective 
strengths to solve more complex problems, as shown in Figure 2. 
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3 Optimisation of reinforcement learning algorithms with joint multilevel 
policy and reward networks 

Traditional RL algorithms that consider only a single policy may prematurely converge to 
a locally optimal solution instead of a globally optimal solution. To this end, the joint 
multilevel policy and multilevel reward ideas are optimised for reinforcement learning 
algorithms (MSRL), where the multilevel policy module provides maximised confidence 
by jointly updating the semantic policies, and the multilevel reward network jointly 
evaluates the visual linguistic relevance by visual rewards to obtain RL-specific goals and 
improve the global optimisation searching ability. Visual-level strategies, as the 
perception core in multi-level strategies, form a collaborative optimisation relationship 
with multi-level strategies through hierarchical abstraction, shared state representation 
and joint training. Its design details, such as feature extraction, action space, and reward 
design, not only follow the general logic of multi-level strategies but also adapt to the 
particularity of visual tasks. This balance between similarity and difference enables the 
multi-level strategy framework to handle complex tasks efficiently while maintaining 
focus and interpretability at each level. 

The multilevel policy network consists of semantic-level policies and visual-level 
policies. The semantic level policy embeds the features I by extracting them from the text 
using a linear mapping. The visual-level strategy c(I, St) belongs to the visual embedding 
network. The multilevel reward network consists of a visual reward θr and a semantic 
reward St. θr is from the visual features while St is the semantic features. ϖ = {θπ, θa} 
denotes the parameters of the multilevel strategy network, θπ and θa are the strategy 
network and reward network respectively and rtotal is rewarded by minimising the 
negative expectation combinations. The sample approximation of MSRL is obtained by 
training ϖ together with θπ and θr as shown below: 

( )
1

log ,π π

T

θ θ π t t
t

ξ p w I S
=

∇ ∇≈  (4) 

where wt is the word distribution. Considering this gradient scaling as an estimate at of 
the action advantage at state st, the value function of MSRL is defined as its expected 
future return, as shown below: 

( ) ( ), ,t
n n n n

θ t g tV g x y E R g x y =    (5) 

where gt is the reward function at a given moment, xn and yn are different modal data, the 
expectation is gt ~ πθ(·|gt, xn), and πθ is a multilevel strategy. The goal is to maximise the 
average reward from the initial state s0 defined as follows: 

( )0
1

1( ) ,
N

n n
θ

n

J θ V s x y
N =

=   (6) 

where N is the number of samples in the training set, and only one example n is 
considered, omitting the numbers xn and yn. The gradient of J(θ) is computed. In the 
special case of deterministic transition functions, the gradient of J(θ) is as follows, where 
the Q-function is ( ) [ ( )].tθ t g tQ g E R g=  
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( ) ( ) ( )0
1

t

T

θ θ g θ θ t θ t
t

V s E π g Q g
=

 
=  

 
∇


∇  (7) 

The goal of MSRL is to estimate the Q-function using Monte Carlo by first sampling all 
K samples of st and gt, then computing the mean. Based on all the complete sequences 
sampled by the current multilevel strategy network, the optimal Q-function estimation is 
performed based on the multilevel reward function conditional on some of the sequences 
sampled in the current strategy to obtain the global optimisation result. 

4 Cross-border trade export prediction based on reinforcement learning 
and multimodal data fusion 

4.1 Multimodal cross-border trade export impact data feature extraction 

To address the issue that the current cross-border trade export prediction methods have 
insufficient single-modal feature extraction, which leads to low prediction accuracy, the 
static variable features, comment text features and image features of cross-border trade 
export sales are first extracted respectively. Then a hierarchical attention mechanism is 
designed to fuse the features of the above modalities, and the hyperparameters of the 
BiGRU model are optimised by using MSRL (MSRL-BiGRU), and the fused features are 
inputted into MSRL-BiGRU, which efficiently and automatically searches for the optimal 
strategy, improves the efficiency of hyperparameter searching, and thus reduces the 
prediction error of BiGRU. The entire flow of the offered prediction method is shown in 
Figure 3. 

Figure 3 The entire flow of the offered prediction method (see online version for colours) 
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Cross-border trade export sales in addition to domestic and foreign policies, product 
quality, market demand, marketing strategy and other intrinsic variables, but also by the 
online sales platform user’s multimodal comment information, these comments are 
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mostly text and image data, for this paper will use different algorithms for static variable 
features, comment text features and image features are extracted separately, the specific 
steps are as follows: 

• Static variable feature extraction: firstly, the static variable field is converted into a 
numeric list and mapped into vector mi using the embedding matrix, and finally mi is 
inputted into the CNN, and the feature vector im′  is obtained by utilising the fully 
connected layer with the ReLU activation function, as shown below, where w1 is the 
weight and bi is the bias. 

( )T
i i iim ReLU w m b′ = +  (8) 

After obtaining the features of all static variables, stitching is performed to finally 
obtain the static feature vector im∗  of cross-border trade export sales. 

• Product review text feature extraction: in order to accurately characterise the text, 
this paper adopts the Doc2Vec model (Kim et al., 2019), which generates a unique 
paragraph ID for each text, and maps sentences and paragraphs directly into a vector 
space of fixed dimensions. The Doc2Vec model consists of a distributed memory 
model (PV-DM) and a distributed bag-of-words model (PV-DBOW). Since PV-DM 
performs better than PV-DBOW, this paper adopts PV-DM to extract text features of 
product reviews. 

First, each text paragraph ID and context words are initialised into paragraph vector 
matrix D = [d1, d2, …, dM] and word vector matrix W = [o1, o2, …, oN], where each 
column represents a paragraph or a word, where d, o ∈ Rq×1, q is the dimension, M is 
the number of paragraphs, and N is the number of words. A window of radius x is 
slid over the sentences of a paragraph, and every time it is slid, di and the context 
word (oj–x, …, oj+x) in the window are spliced together to obtain an aggregation 
vector, and finally the probability of the target word is obtained by softmax. The goal 
of model training is to maximise the average log-likelihood function, where the 
conditional probabilities are calculated as follows: 

( ), , ,
o j

g

z

j

g

i j x j x z

ep o d o o
e

− + =


  (9) 

( ), , , ; ,i j x j xz Uh d o o W D b− += +  (10) 

where oj is the current word vector; zg is the non-normalised logarithmic probability 
of the gth word, W is the sentence vector matrix, D is the word vector matrix, U and b 
are softmax parameters. The training is performed by W and U, b, and the passage 
vector of the new passage, i.e., the text feature vector ,if ∗  is obtained by using the 
gradient descent method. 

• Image feature extraction based on improved ResNet152, VGG-16, etc. are the more 
popular image feature extraction methods (Zhang et al., 2022), among which 
ResNet152 is widely used due to its excellent performance. For this reason in this 
paper, ResNet152 is improved (EResNet152) using the residual block mapping 
method, as shown in Figure 4. 
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The output x of layer F(x) is added to the input H(x) = F(x) + x of layer n to obtain 
the desired output D using the ReLU activation function. In the process of reverse 
gradient propagation, ensure that each expected value is added to the output value, 
thereby reducing the phenomenon of gradient dispersion. The feature extraction 
formula of EResNet152 is as follows: 

( )EResNe (( )t )T
i ih f W x b= +  (11) 

where hi is the image feature vector, vector size of 512 dimensions, W is a matrix of 
2,048 × 512 dimensions, x is the image data input. 

Figure 4 The residual block mapping method (see online version for colours) 
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4.2 Hierarchical attention-based feature fusion for multimodal data 

Adopting a hierarchical feature fusion approach can help the model to obtain a richer 
semantic representation. Considering that the static variable features and textual features 
contain more abstract information, priority is given to the joint feature encoding of the 

im∗  and if ∗  pairs. They are subsequently fused with low-level semantic modal image 
features to complement each other. In the field of cross-border trade and export, both 
high-level and low-level semantic information have a significant impact on the model’s 
prediction results. 

The multimodal attention (MMA) designed in this paper takes the joint feature 
representations Fa&b and hi of im∗  and if ∗  as inputs, which facilitates the model to focus 
directly on information with strong correlations between different modalities, thus 
improving the alignment between cross-modal data. In the multimodal fusion process, 
two MMAs share attentional weights to help model modal interdependencies, which are 
calculated for each MMA as shown below: 
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( )

&
&                        

, ,

( )

T
q k

MMA q k v softmax v

T
h q a b k

softma vx a b

F F
f F F F f F

d
F W F W

f F W
d

 
 
 

 
=  

 

=
 (12) 

( )& ,a b concat i iF f m f∗ ∗=  (13) 

where fMMA, fsoftmax and fconcat are the MMA, softmax and concatenate functions, 
respectively; Fq, Fk, Fv is the query, key and value of MMA, respectively; Fa&b is the joint 
feature representation of ,im∗  -connectionsif ∗  and Fh is the feature representation of the 
image; S and D are the sequence length and feature dimensions, respectively, Wq, Wk and 
Wv are the learnable parameter matrices of the query, key and value, respectively. 

The attention weights of Fq and Fk map the two vectors to scalars through the 
attention scoring function α to obtain the final multimodal feature fusion result F*. 

( )

( )

( )

&

&

exp
,

exp

T
h q a b k

T
q k

q k softmax T
h q a b k

F W F W
F F dF F f

d F W F W
d

 
 


 
  
 = ==
 
 







α  (14) 

4.3 Cross-border trade export prediction based on improved reinforcement 
learning and BiGRU 

After obtaining the multimodal data features affecting the sales volume of cross-border 
trade exports, this paper optimises the hyperparameters of the BiGRU model by using the 
MSRL proposed in Section 3, which efficiently searches for the optimal strategy 
automatically, improves the efficiency of hyperparameter searching, and then reduces the 
prediction error of BiGRU. The structure of MSRL-BiGRU is shown in Figure 5. 

Firstly, the states S = [s1, s2, s3], s1 indicates the total count of neurons in the BiGRU, 
s2 represents the current count of BiGRU iterations, and s3 represents the current studying 
rate of the BiGRU, and each state is defined as shown in equation (15). 

1 2
1 1 1 1

1 2
2 2 2 2

1 2
3 3 3 3

, , ,

, , ,

, , ,

n

n

n

s a a a

s a a a

s a a a

 = 

  
  

  =


=







 (15) 

Each state action is denoted as A = [s1(A1), s2(A2), s3(A3)], Ai = [a1, a2, …, an], and each 
state has n executable actions. The update of the Q value of the MSRL algorithm 
proposed in this paper is shown in equation (16). 

( )( , ) ( , ) , ( , )Q s a Q s a Q s a Q s a′ = − − ′α  (16) 

where Q(s, a) is the Q-value of the current state and Q(s′, a′) is the Q-value of the next 
state, the minimum Q-value is expected. The calculation of Q(s′, a′) is as follows: 
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( ) ( ) Not in the terminated state
Reach termination s

( , ) max , ,
,

( , ), tate
R s a γ Q s a

Q s a
R s a

 −
=

′ ′
′ ′ 


 (17) 

where γ ∈ [0, 1] is the discount factor, R(s, a) A signifies the reward value resulting from 
performing action a in state s to transfer to s′, a′ is the next action a selected by taking a 
greedy policy, and the reward operation is as below: 

( , ) ( , )R s a RMSE s a=  (18) 

where the value of R(s, a) is the RMSE gained by performing a in s. RMSE(s, a) is 
calculated as follows: 

( , ) ( , )RMSE s a BiGRU s a=  (19) 

Figure 5 The structure of MSRL-BiGRU (see online version for colours) 
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A BiGRU model is a GRU that consists of unidirectional, oppositely oriented GRUs 
whose network output is jointly determined by these two GRUs. In this section, a  
three-layer BiGRU network is constructed, and the expression of BiGRU is as follows, 
taking the Lth layer network calculation as an example. 

( )t t

L L L L L L
t t t th hh f W h W bh= + + 

 
 (20) 

where L
th  is the state of the obscured level at time t, L

tb  is the bias, and L
th


 and L
th


 
represent the conditions of the forward and backward obscured levels, respectively, 
respectively, as follows: 

( )1GRU ,L L L L
t t th x h −=
 

 (21) 

( )1GRU ,L L L L
t t th x h −=
 

 (22) 
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where 1
L

th −


 and 1

L
th −


 are the forward and backward hidden layer states of the L layer at the 

time t – 1, and L
tx  serves as the input for the L level. 

The input of MSRL-BiGRU is F* and the output is the predicted value of export sales 
from cross-border trade for the BiGRU model. Initialise the Q-table by initialising the 
parameters of the MSRL, establishing each of the three optimisation parameters as three 
different states. Then, starting from state s1, action a1 is selected and executed, and the 
intelligent agent engages with the BiGRU’s context to determine the RMSE value. 

Monitor the reward function value alongside s′, revise the Q table accordingly, and 
transition to the subsequent state s2. When the final state s3 is attained, the approach 
refreshes the state, and starts the cyclic search through s1. The approach terminates the 
operation when the maximum amount of epochs is attained, so as to obtain the prediction 
value with the smallest RMSE, and to improve the prediction efficiency. 

5 Experimental results and analyses 

This section of experiments was conducted on a personal laptop using an 11th-generation 
Intel Core i7-11800H@2.30 GHz, 32 GB of RAM, an NVIDIA GeForce RTX 3060 GPU 
with 16 GB of video memory, and algorithms implemented in PyTorch. In model 
training, the discount factor was set to 0.1, the learning rate to 0.007, the batch size to 
256, and the loss function to RMSE. The data used in this paper are from Alibaba 
AliExpress platform and Ministry of Foreign Trade and Economic Cooperation  
‘Internet Plus Foreign’ from January 2015 to July 2016 Trade platform, China  
cross-border e-commerce integrated service platform, National Bureau of Statistics fixed 
product sales index statistics platform on leather shoes, machinery, electrical appliances 
and other manufacturing export products 7,294 sales detail data and 102,596 graphic 
comment data. 

Figure 6 The results of predicting the export sales of cross-border trade (see online version  
for colours) 
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To verify the prediction performance of the proposed prediction method  
MSRL-BiGRU, three typical prediction methods BERT-CNN (An et al., 2023), CA-RNN 
(Cai et al., 2021), and MEMF (Xu et al., 2024) are selected for the comparison 
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experiments in this paper. The results of the different methods for predicting the export 
sales of cross-border trade from 1 March to 24 March 2015 (denoted as 1, 2, …, 24) are 
shown in Figure 6. On 6 March, the real cross-border trade export sales were  
612,000 units, and the predicted sales of BERT-CNN, CA-RNN, MEMF and  
MSRL-BiGRU were 469,000, 462,000, 547,000 and 589,000 units, respectively, and the 
predicted sales of MSRL-BiGRU were the closest to the real sales, while it can be seen 
from the overall trend that the MSRL-BiGRU’s forecast results are more accurate. 

In addition to analysing the results of the cross-border trade export sales forecasts of 
different methods, this paper also adopts MAE, MSE, RMSE, MAPE, and R2, which are 
commonly used indicators to measure the forecasting performance, to assess the 
performance of each forecasting method, and the comparisons of MAE, MSE, RMSE, 
and MAPE of the four forecasting methods are shown in Table 1. The MAE and MAPE 
of MSRL-BiGRU were 0.1564 and 0.2306, which were reduced by 50.1% and 34.41% 
compared to BERT-CNN, 33.08% and 30.06% compared to CA-RNN, and 16.05% and 
12.68% compared to MEMF, respectively. All the MSRL-BiGRU indicators were better 
than those of other comparative models. MSRL-BiGRU not only makes use of multilevel 
strategy to optimise the RL algorithm, but also extracts and fuses the features of static 
variables affecting export sales, text features of commodity reviews, and image features, 
which greatly enriches the multimodal feature representation and improves the prediction 
accuracy. 

To visually verify the convergence performance of the different methods, training 
tests were conducted to compare the different models, and the optimal parameter values 
were uniformly adjusted to remain unchanged. The results of the comparison of the 
performance of the coefficient of determination R2 of each method are shown in Figure 7. 
R2 is an important index for assessing the prediction accuracy, and its value ranges from 
0 to 1. The larger the value of R2, the higher the prediction accuracy. 
Table 1 Comparison of forecasting indicators for different forecasting methods 

Method MAE MSE RMSE MAPE 
BERT-CNN 0.3134 0.3896 0.5814 0.3516 
CA-RNN 0.2337 0.3259 0.5085 0.3297 
MEMF 0.1863 0.3061 0.4539 0.2641 
MSRL-BiGRU 0.1564 0.2689 0.4168 0.2306 

As the number of iterations increases, the convergence of the different methods increases 
and stabilises, with BERT-CNN performing relatively poorly and MSRL-BiGRU 
performing best. The converged R2 of BERT-CNN, CA-RNN, MEMF and  
MSRL-BiGRU are 0.8028, 0.8716, 0.9043, 0.9527, respectively, and the R2 of  
MSRL-BiGRU is the closest to 1, which indicates that it has the best prediction.  
BERT-CNN only considers a single textual modality, and the prediction results are worse 
than those of CA-RNN, MEMF and MSRL-BiGRU, which are multimodal prediction 
methods. Although CA-RNN considers image and text modalities, the RNN suffers from 
long-term dependency problems and overfitting, and does not optimise the prediction 
results, so the prediction performance is worse than that of MEMF and MSRL-BiGRU. 
MEMF also considers the multimodal influence characteristics of cross-border  
e-commerce export sales, but does not optimise the final prediction results, so the 
prediction accuracy is not as good as that of MSRL-BiGRU. Therefore, according to the 
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experimental results, it is concluded that the learning ability of MSRL-BiGRU is 
stronger, and it can obtain a relatively high prediction accuracy within a limited number 
of iterations, and the amount of computation decreases with the number of iterations. 

Figure 7 Determination R2 of each forecasting method (see online version for colours) 
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6 Conclusions 

With the acceleration of the process of global economic integration, cross-border trade 
occupies an increasingly important position in international trade. Accurate prediction of 
cross-border trade export sales is of key significance for enterprises to cope with market 
changes. This paper proposes a cross-border trade export forecasting method based on the 
fusion of RL and multimodal data to address the problem of insufficient single-modal 
feature extraction in existing studies, which leads to low forecasting accuracy. Firstly, the 
MSRL algorithm is designed, where the multilevel policy provides maximum confidence 
by jointly updating the semantic policy, and the multilevel reward jointly evaluates the 
visual-linguistic relevance by the visual reward to obtain the RL-specific target and 
improve the global decision optimisation capability. Then, CNN, Doc2Vec model, and 
improved ResNet152 model are used to extract static variable features, text features, and 
image features of cross-border trade export sales volume, respectively, and MMA is 
designed to meticulously capture and fuse the features of different modal data, and to 
distinguish between data of different semantic levels. Secondly, the fusion features are 
used as inputs to the MSRL-BiGRU model, and the three hyperparameters of the amount 
of neurons, epochs and studying rate of the BiGRU model are improved using MSRL, 
and each parameter to be optimised is established as a state, with a set of actions in each 
state, and the intelligences and the BiGRU continuously interact with each other in search 
of the optimal strategy, to obtain the optimal cross-border trade export sales prediction 
results. The proposed method significantly reduces the prediction error and shows 
excellent prediction results. 
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Although MSRL-BiGRU has been upgraded in the problem of cross-border trade 
export sales forecasting, the methodology of this paper is still deficient, and the 
subsequent research can be centred on the following points. 

1 For the neural network hyper-parameter optimisation problem: after a  
hyper-parameter reaches the optimum, the MSRL algorithm updates the Q-function 
with the hyper-parameter that corresponds to the optimum at the next moment, and 
the parameters that are not sampled will not be selected as the optimum, so there is a 
situation that the optimum value will be missed. We will continue to refine the 
proposed methodology in future studies to obtain better learning strategies. 

2 The work in this paper only considers three hyperparameters, namely, the amount of 
neurons, the amount of epochs of the model, and the studying rate, and subsequent 
work can expand more hyperparameters to find the optimal, such as: loss function, 
activation function, and the number of batch samples. 
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