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Abstract: As educational informatisation progresses, optimising personalised 
learning paths has become a focal point. Static learning paths cannot meet 
learners’ diverse and dynamic needs. We present a dynamic personalised 
learning path optimisation approach using knowledge graphs. By leveraging 
knowledge graphs’ association and representation, it analyses learner 
characteristics and learning resource attributes. Then, it builds a precise 
learning path model and monitors learners’ real-time status. This allows 
dynamic adjustment of learning path node sequences and content presentation 
to fit individual learner differences. Experiments show it boosts learning 
efficiency, cuts learning time and error rates, and improves knowledge 
understanding. This study offers fresh ideas for personalised learning path 
optimisation, holding theoretical and practical importance. It can boost 
educational informatisation and aid in the personalised allocation and efficient 
use of educational resources. 
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1 Introduction 

With the rapid development of information technology, we have entered the information 
and intelligent era. Against this background, people are increasingly inclined to choose 
educational methods such as personalised learning and lifelong learning, and have put 
forward higher requirements for the diversity of educational resources and the flexibility 
of learning methods. Online learning, with its high flexibility and convenience, meets 
students’ diverse learning needs and has become an important way for students to acquire 
knowledge. Students can independently choose their study time periods and locations 
based on their own needs, freely participate in courses, interact and communicate with 
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teachers and students in real-time, and review key points of the courses at any time to 
consolidate their knowledge foundation (Zhu, 2023). These remarkable advantages have 
driven the vigorous development of the online education industry on the internet and 
have attracted widespread attention worldwide. However, the completely autonomous 
learning mode has also exposed some problems that need to be solved urgently. Although 
online learning platforms have gathered a vast amount of learning resources, they have 
also triggered the predicament of ‘information overload’, which poses a huge challenge 
for learners when screening resources that match their learning goals and ability levels. 
They often encounter learning obstacles due to the low compatibility of resources, and 
the learning efficiency is difficult to guarantee. Meanwhile, in the context of autonomous 
learning, learners are free from the supervision of traditional educational administrators. 
However, the in-depth analysis and precise control of the learning process by online 
learning platforms are still insufficient, which leads learners to be trapped in the 
predicament of ‘getting lost in learning’, trapped in a deadlock of vague learning 
direction, confused learning content and helpless learning methods (Li et al., 2023a). To 
address these challenges, online learning platforms are accelerating the integration of 
artificial intelligence technology and machine learning algorithms, deeply empowering 
personalised education practices. By precisely analysing multi-dimensional 
characteristics such as learners’ cognitive levels, learning tendencies, and potential 
interests, the platform can comprehensively optimise the learning environment and 
enhance learning outcomes. Personalised learning path optimisation, as a key technology, 
not only solves the problem of learning resource discrimination by organising learning 
resources into an orderly sequence, but also lays out a clear and standardised learning 
advancement path for learners, comprehensively enhancing learning efficiency. 

In order to achieve the dynamic optimisation of personalised learning paths, 
knowledge graphs and their graph embedding techniques are widely used to mine the 
semantic relationships between knowledge and construct efficient learning paths that 
meet learners’ personalised needs (Li et al., 2023b). The knowledge graph embedding 
model TransE, put forward by Bordes et al. (2013), offers a fundamental starting point 
for path optimisation by transforming high dimensional sparse knowledge graphs into 
low dimensional dense vector spaces. This model has minimal parameters and modest 
computational complexity, and it delivers excellent performance and scalability when 
handling large scale sparse knowledge bases. Li (2021) utilised the practice answer 
records of learners, analysed the correlation of exercises through the Apriori algorithm, 
and then inferred the sequential learning relationship of knowledge points to construct the 
learning path. Yang and Wu (2009) combined the ant colony algorithm and dynamically 
adjusted the learning path based on the compatibility degree between the user’s style and 
the learning resources. Niknam and Thulasiraman (2020) utilised ant colony algorithms 
to identify suitable course sequences as learning paths. Vanitha et al. (2019) blended ant 
colony and genetic algorithms, centring path planning on user learning goals and 
knowledge levels. Nabizadeh et al. (2020) located the course sequence by means of the 
depth-first search algorithm combined with learning objectives and knowledge graphs. 
Usually, self-designed topological sorting algorithms and optimisation algorithms are 
also adopted to serialise course resources based on the relationships and attributes among 
courses, and to plan the learning path from the perspective of knowledge structure to 
ensure learning efficiency. The multi-constraint learning path generation algorithm based 
on knowledge graph proposed by Zhu et al. (2018) solves the problem of learners 
choosing appropriate learning materials. Shmelev et al. (2015) combined genetic methods 
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and knowledge graph technology to arrange course resources in sequence as learning 
paths. Pang et al. (2019) used knowledge graphs to reason out the sequential relationship 
of knowledge points, recommending subsequent knowledge to those who passed the 
learning and prior basic knowledge to those who failed, thereby forming a learning path. 
These studies provide a variety of technical means for the dynamic optimisation of 
personalised learning paths, but at the same time, they also face challenges brought by the 
scale and structural complexity of knowledge graph data, such as how to conduct path 
planning efficiently in large-scale knowledge graphs and how to dynamically adjust paths 
according to the characteristics of different learners. Future research can focus on how to 
combine deep learning technology to further enhance the representation ability of 
knowledge graphs and the performance of path optimisation algorithms, so as to better 
meet the needs of personalised learning. 

This article focuses on the self-improvement oriented online learning model, taking 
the online courses on the online learning platform as the object, and conducts research 
around the optimisation of personalised learning paths. Aiming at the problems of 
‘information overload’ and ‘learning disorientation’ faced by learners in this mode, a 
dynamic optimisation method for personalised learning paths integrating knowledge 
graphs is proposed. It aims to adapt to the individual differences and learning progress 
requirements of different learners by dynamically adjusting the node sequence and 
content presentation in the learning path, and provide learners with more accurate and 
efficient personalised learning paths. This can not only significantly improve learning 
efficiency, reduce learning time and error rate, and enhance learners’ understanding and 
mastery of knowledge, but also provide new ideas and methods for optimising 
personalised learning paths. This holds theoretical weight and application potential. It is 
anticipated to foster growth in educational informatisation. Additionally, it is expected to 
assist in aligning educational resources more closely with individual needs and 
maximising their utilisation. Future research can further integrate deep learning 
technology to enhance the representation ability of knowledge graphs and the 
performance of path optimisation algorithms, so as to better meet the complex needs of 
personalised learning and create a more intelligent and personalised learning environment 
for learners. 

The main innovations and contributions of this work include: 

1 This paper innovatively proposes a new method for constructing learning paths by 
integrating knowledge graphs and learner portraits, breaking the limitation of 
traditional learning path construction that only relies on learners’ static information 
and simple knowledge point associations. By deeply exploring the rich semantic 
relationships in the knowledge graph and the multi-dimensional features in the 
learner profile, accurately capturing the intrinsic connection between the 
individualised needs of learners and the knowledge system, constructing  
multi-dimensional personalised learning paths, providing learners with more precise 
learning guidance, and significantly enhancing the degree of personalisation in the 
construction of learning paths. 

2 Aiming at the construction difficulty of learner portraits, this paper introduces the 
deep knowledge tracing (DKT) model to break through the limitation that the 
traditional way of constructing learner portraits is difficult to accurately depict the 
dynamic knowledge state of learners. The DKT model is based on the recurrent 
neural network (RNN) architecture. It conducts in-depth analysis of the interaction 



   

 

   

   
 

   

   

 

   

    A dynamic optimisation method for personalised learning paths 119    
 

    
 
 

   

   
 

   

   

 

   

       
 

behaviour sequence of learners on various knowledge points, accurately tracks the 
changes in learners’ knowledge mastery during the learning process, and then 
constructs a learner profile that can dynamically reflect the knowledge level of 
learners. 

3 In this paper, the particle swarm optimisation (PSO) algorithm is applied to the 
optimisation of personalised learning paths, and the parameter configuration and 
fitness function of the algorithm are redesigned to make it precisely adapt to the 
learning path optimisation scenario. The dynamic adjustment strategy of inertia 
weight is applied to enhance the global search ability of the algorithm. Meanwhile, 
the local search mechanism is introduced to improve the local mining ability, 
ensuring that the algorithm stably outputs high-quality learning paths in different 
learning situations. Compared with traditional optimisation algorithms, this method 
significantly improves the path adaptability and optimisation efficiency, providing 
strong technical support for personalised learning path optimisation. 

2 Relevant technologies 

2.1 Knowledge graph 

To enhance information retrieval, Google developed a knowledge graph – a structured 
semantic network that represents real-world concepts and relationships using graph-based 
structures and symbolic formats. Typically built from subject-predicate-object (SPO) 
triples, each encodes factual knowledge in RDF format. RDF is a framework used to 
describe entities and the relationships between them. It represents nodes in a knowledge 
graph as ‘entities’ and edges as ‘relationships’ (Chen et al., 2020b). By subsequently 
applying knowledge-graph embedding techniques, (e.g., TransE, TransH, TransR), these 
triples are mapped into low-dimensional dense vectors, allowing the system to compute 
latent semantic similarities and sequential links between knowledge points – thereby 
uncovering the complex relationships required for effective personalised learning path 
optimisation. The knowledge graph is expressed as multiple ‘entity-relation-entity’ or 
‘entity-attribute-value’ triples, structured into an ontology layer and a data layer. Among 
them, the ontology layer describes the main framework of the knowledge graph, defining 
concept classes, data attributes and object attributes; the data layer stores various types of 
data obtained from the data source. Based on this, the construction methods of knowledge 
graphs can be divided into top-down and bottom-up types. The bottom-up approach first 
constructs the data layer, conducts knowledge extraction from various data sources to 
generate triples, and performs knowledge fusion and knowledge processing. Then, the 
ontology layer is automatically constructed based on the data layer. The top-down 
approach is to first design the ontology model through domain experts, and then extract 
the data corresponding to the ontology and fill it into the data layer of the knowledge 
graph. 

Knowledge graphs, as a kind of high-dimensional and sparse network structure, are 
not conducive to semantic computing among participating entities or relations, thus 
giving rise to numerous knowledge embedding methods. Throughout construction, 
accuracy is secured by cross-source triple fusion and automated conflict resolution, while 
timeliness is maintained through incremental updates that immediately absorb fresh 
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learner-resource interactions into the data layer. Knowledge graph embedding (or 
representation learning) projects entities and relations into a low-dimensional space, 
modelling them as dense feature vectors (Chen et al., 2020a). For example, after 
embedding the knowledge graph of the discipline field, each knowledge point entity, etc. 
is represented as a floating-point type vector. By taking the vectors of any two knowledge 
points, the semantic similarity between these two knowledge points can be calculated. 
The process represents knowledge graph triples as (h, r, t), where h and t denote head and 
tail entities, and r their relationship. First, randomly initialise each named entity and 
relation into an n-dimensional vector format, which is the initial feature expression 
vector; the triples are split into training, test, and validation sets. The training set contains 
positive and negative samples, with their loss values computed using model specific 
score functions. The objective function minimises positive sample losses while 
maximising negative sample losses. Finally, entity and relation vectors are optimised 
through backpropagation using the objective function. Iterative training yields the final 
knowledge graph embeddings (Shen et al., 2022). 

With its parameter efficiency and simplicity, TransE gained significant academic 
interest. This yields the scoring function in equation (1). 

2
2+( , )f h t h r t= −  (1) 

The TransE model’s objective function uses positive triples S and generated negative 
samples S′. It minimises when f(h, t) – f(h′, t′) > γ, where f(h, t) and f(h′, t′) represent 
positive and negative sample scores respectively. 

( )( )
( ) (, , ), ,

max 0, , + ,( )
h r t S h r t S

L f h t γ f h t
∈ ′ ′ ∈ ′

= − ′ ′   (2) 

However, since the TransE model is embedded only within one plane, it is unable to 
handle well the ‘one-to-many’ and ‘many-to-many’ relationships among entities. To 
make up for the deficiencies of the TransE model, the TransH model was proposed. In 
each triplet, relation r corresponds to a hyperplane. This model projects entities h and t 
onto the hyperplane corresponding to relation r for calculation. Different relations all 
have their own specific hyperplanes, which makes the same entity have different 
meanings under different relations. The specific projection method of the TransH model 
is shown as follows, where Wr represents the projection matrix of relation r. 

T
r rh h W hW⊥ = −  (3) 

T
r rt t W tW⊥ = −  (4) 

The representation of relation r on its hyperplane is dr. For the projected entities h⊥, t⊥, 
and relation dr, during the training process of the TransH model, it is necessary to make 
h⊥ + dr ≈ t⊥ as much as possible. Therefore, the scoring function is shown in equation (5). 

2
2( ), +r rf h t h d t⊥ ⊥= −  (5) 

Based on the score function, the objective function of the TransH model can be given as 
shown in equation (6). 

( )( )
, , ,( ) ( ),

max 0, , +) ,(r rh r t S h r t S
L f h t γ f h t

∈ ′ ′ ∈ ′
= − ′ ′   (6) 
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Unlike TransH, which projects entities into a shared relational space, TransR maps them 
into distinct spaces using separate projection matrices, resolving TransH’s constraints. 
The TransR projection method is as follows. 

r rh hM=  (7) 

r rt tM=  (8) 

The TransR model enforces hr + r ≈ tr for projected entities hr, tr and relation r during 
training, with its scoring function defined in equation (9). 

2
2( , ) +r r rf h t h r t= −  (9) 

Based on the score function, the objective function of the TransR model and the TransH 
model is the same. The basic idea is that if the score gap between positive and negative 
samples is greater than γ, the objective function can be minimised. Therefore, it will not 
be elaborated here. 

2.2 Learner profile 

Accurate assessment of learners’ knowledge mastery can help construct a more precise 
learner profile and improve learning efficiency. The mainstream methods for evaluating 
Knowledge mastery include Bayesian knowledge tracing (BKT) technology and DKT 
technology (Thomas et al., 2023). BKT models learner knowledge states using binary 
variables. The probability distribution of variables is updated using the first-order 
Markov model to predict the learners’ answer results. However, due to the overly simple 
and idealised representation of the knowledge state by the BKT technology, it has not 
been widely studied and applied. The DKT model adopts the RNN to represent and track 
the knowledge state of learners, and complete tasks such as predicting learners’ answers 
and discovering the associations of exercises (Zhang et al., 2024). When evaluating the 
knowledge state of learners, the traditional RNN model is affected by short-term memory 
and is unable to convey the earlier knowledge state of learners. Long short-term memory 
(LSTM) uses the ‘gate’ structure to represent the cell state and performs the discarding 
and retention of new and old information between the ‘gates’, and performs well in long 
sequence training (Zhou et al., 2018). Gated recurrent unit (GRU) is an improvement of 
LSTM. GRU combines the forget gate and the input gate into the update gate zt, and uses 
the reset gate rt and the temporary state th  to complete the mixed operation of the cell 
state and the hidden state, reducing over-fitting and optimising the calculation process of 
the hidden layer state. 

( )1+ +t r t r t rr σ W x U h b−=  (10) 

[ ]( )1tanh + +t h t h t t hh W x U r h b−= ⊗  (11) 

( )1+ +t z t z t zz σ W x U h b−=  (12) 

( ) 11 +t t t th z h zt h−= − ⊗ ⊗   (13) 

DKT based on GRU networks characterises the knowledge state of learners as the hidden 
layer output in the network, effectively improving the evaluation accuracy and reducing 
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the training and verification costs of traditional RNN networks. In this paper, combined 
with the response sequence of learners’ exercise answers, the DKT input based on GRU 
networks is further optimised to evaluate their mastery of prior knowledge. The DKT 
model is selected over alternatives like BKT because its GRU-based recurrent 
architecture can continuously update mastery states from learners’ interaction sequences, 
capturing dynamic knowledge evolution instead of relying on the static binary 
assumptions inherent in earlier models. 

Behavioural science theory quantifies human characteristics through observable 
actions, and holds that human activities are an inevitable manifestation for achieving 
specific goals or tasks. Apply this theory to the field of online learning and develop the 
technology for analysing online learning behaviours. Statistical methods analyse learning 
behaviours using mathematical models, producing quantitative results through index 
scoring and chart evaluation. Index scoring links behaviours to learning outcomes via 
correlation analysis, while behavioural labels capture learner preferences for personalised 
recommendations. Similar learners are grouped using clustering algorithms like FCM, 
which calculates membership probabilities through iterative fuzzy set optimisation. For 
dataset X (n samples, c clusters), FCM minimises objective function JFCM, where uij 
represents sample jth membership in category i, cj denotes cluster centres, and m is the 
fuzziness factor. 

2

1
1

min  
nc m

FCM j iiji
j

J u x c
=

=

= −   (14) 

1

. . 1, 1, 2, ...,
c

ij
i

s t u j n
=

= =  (15) 

The membership degree uij and the clustering centre cj are iteratively calculated according 
to the above equation. 

12
1

1

mj i
ij

j kk

c x c
u

x c

−

−

=

 
 

 
−

 
 

=  − 
  (16) 

( )
1

1

1 1

, 1 , 1

n
m

jij n m
j ij

j jn
jm m

ij
j j

n

ij

u x
u

c x i n j c
u u

=

=

= =

⋅

= = ≤ ≤ ≤ ≤







 (17) 

{ }+( )1max k k
ij ij iju u θ− <  (18) 

2.3 PSO algorithm 

PSO simulates bird flock behaviour to solve optimisation problems. Its simple 
implementation and few adjustable parameters make it effective for complex scenarios 
(Gad, 2022). For discrete problems, they later proposed binary PSO (BPSO) in 1997. 
While traditional PSO struggles with sequential constraints, BPSO excels at discrete 



   

 

   

   
 

   

   

 

   

    A dynamic optimisation method for personalised learning paths 123    
 

    
 
 

   

   
 

   

   

 

   

       
 

optimisation like learning path planning. In BPSO, particle velocity updates combine 
inertia, self-learning, and social learning (Wang et al., 2018). The t + 1 generation 
position depends on both the t-generation position and t + 1 velocity vector, calculated as 
follows: 

( ) ( )+1
1 1 2 2+ +t t t t

ij ijij ij ij ijv ωv c r p x c r g x= − −  (19) 

+1 +1+t t t
ij ij ijx x v=  (20) 

Here, i denotes particle index, j denotes the dimension; ω is inertia weight; t is iteration 
count. Constants c1 (self-learning) and c2 (social learning) typically equal 2. Random 
numbers r1, r2 ∈ [0, 1]. pij and gij represent particle i’s local best and global best 
solutions. BPSO defines motion probabilistically, with state transition probability given 
by: 

( )
( )

1,
 

0,
()
()

ij
ij

ij

rand S v
X

rand S v
 <=  >

 (21) 

( ) 1
1+ ij

ij vS v
e−=  (22) 

This paper proposes MABPSO, an improved PSO algorithm featuring adaptive nonlinear 
inertia weights and a mutation operator. The inertia weight increases nonlinearly with 
iterations, enhancing global optimisation and local escape capabilities in later stages. The 
mutation operator expands particle exploration, increasing diversity and improving local 
optimum avoidance. While smaller inertia weights boost exploration and larger ones 
favour exploitation, linear optimisation fails to balance these effectively. Thus, we 
optimise inertia weights nonlinearly to better reflect the algorithm’s evolutionary state. 
The weight w per iteration is calculated as follows: 

( )max min
min

max

2+ arctan 0.4 0.9

, 0.9

,t ω ωω π ωw π T
ω ω

  −∗ < ≤  =  
 >

 (23) 

Here, t represents the number of iterations and T represents the maximum number of 
iterations respectively. Take wmax = 0.9 and wmin = 0.4. 

To enhance convergence and prevent premature stagnation, we incorporate a genetic 
algorithm inspired mutation operator into the binary PSO. The modified algorithm is 
defined as: 

( ) ( ) ( )+1
1 1 2 2 3+ + +k k k k k

ij ijij ij ij ij ijv wv c r p x c r g x ρr Random x= − − −  (24) 

3 Learning path optimisation model framework 

3.1 Personalised learning path optimisation 

To optimise personalised learning paths, one must first represent the characteristics of 
learners and learning resources mathematically. Individual learner differences are 
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explicitly encoded by feeding DKT-estimated mastery levels and multi-dimensional 
learner profiles into the weights of f1–f4, so that each objective function is dynamically 
scaled to the learner’s current cognitive stage and weak knowledge points. This involves 
expressing each characteristic as a mathematical symbol and constructing a function to 
link them, forming the optimisation function for personalised learning paths (Zheng et al., 
2022). Four learner characteristics are key: cognitive ability, current learning resource 
information, target knowledge point information, and effective learning time. Learning 
resources also have four key characteristics: resource difficulty, resource information, 
contained knowledge point information, and resource specific learning time (Jiang et al., 
2022). The optimisation function consists of four objective functions, labelled f1 to f4. 

The objective function f1, termed the learner’s cognitive alignment goal, quantifies 
the gap between a learner’s cognitive capacity and the complexity of learning resources. 
A minimised value indicates that the resource difficulty in the suggested path is well 
matched to the learner’s cognitive stage, as detailed in equation (25). 

( ) ( )
2

1
1 1

1

+
, 1

2

i j i j

N
ar br ar h ij br hN i

Nj
i ji

X d c X d c
f h H

ar br
=

=

=

 − − = ≤ ≤


 (25) 

The objective function f2, known as the learner expectation target, measures the disparity 
between the knowledge points within learning resources and those that learners aim to 
acquire. A smaller disparity means the resources better align with learners’ knowledge 
acquisition goals, as outlined in equation (26). 

1 1
2

1

, 1

Q N
nh nq hqq n

N
nhn

X Y W
f h H

X

= =

=

−
= ≤ ≤
 


 (26) 

The objective function f3, referred to as the learning resource cost goal, captures the cost 
related information associated with learning resources. This function is detailed in 
equation (27) and helps in managing the expenditure linked to various learning resources. 

3 1 1 i j i j

N N
ar br ar brj i

f x s
= =

=   (27) 

The objective function f4, named the learning time management goal, calculates the gap 
between the time needed to complete learning resources and the time frame learners are 
willing to commit. This helps in aligning the learning process with the learner’s available 
time, as detailed in equation (28). 

1
4

1

0
, 1

0

N
n nh lhnn

N
n nh lhnn

T X T
f h H

T X T

=

=

 − >= < <
 − <




 (28) 

The four sub functions above reflect the feature parameters of learners and learning 
resources. They jointly form a personalised learning path generation model. Lower values 
of the four objective functions indicate a better match between the generated path and 
learner requirements. The overall optimisation function integrates learners and learning 
paths via weighted sub mapping functions and is given by equation (29). This function 
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represents the personalised learning path optimisation problem, with wi denoting the 
weighting coefficients. 

4

1
min ( ) i ii

F x w f
=

=  (29) 

3.2 Model framework 

With the continuous advancement of the educational informatisation process, the demand 
for personalised learning is increasingly prominent. Although online learning platforms 
provide students with a vast amount of learning resources, they also make learners prone 
to losing their way when facing a huge amount of information, making it difficult for 
them to form an efficient learning path. The traditional methods for optimising learning 
paths have obvious limitations, such as ignoring the logical connections, semantic 
similarities among knowledge points and the individualised weak knowledge points of 
learners, resulting in the optimised learning paths lacking coherence and pertinence. To 
overcome these difficulties, this paper innovatively proposes a personalised learning path 
dynamic optimisation method integrating knowledge graphs, dedicated to constructing 
precise and dynamic learning paths to significantly improve learning efficiency and 
effectiveness. 

The model design framework proposed in this paper is shown in Figure 1. To obtain 
the knowledge graph from raw data, the system follows a bottom-up pipeline: it first 
extracts SPO triples via automated knowledge extraction and fusion from heterogeneous 
learning-resource corpora, then incrementally constructs the ontology layer atop this data 
layer. Firstly, the DKT model is employed to conduct an in-depth analysis of the 
interaction behaviour sequence of learners on each knowledge point, accurately 
diagnosing the learners’ mastery of the knowledge points. By constructing a  
multi-dimensional learner profile that includes the learners’ knowledge status, the weak 
knowledge points of the learners are accurately identified. These mastery scores from the 
DKT model are then used to re-weight both the sequential links and semantic similarities 
encoded in the knowledge graph, so that the graph’s edges reflect not only domain logic 
but also each learner’s current deficits. Then, based on the knowledge graph, the 
sequential relationship and semantic similarity relationship between knowledge points are 
deeply mined to construct a knowledge graph enhancement model that comprehensively 
considers the logical sequence and semantic similarity of knowledge points, providing a 
knowledge logic basis for the construction of the learning path. The method integrates the 
PSO algorithm with the weak knowledge point data from learner profiles. The PSO 
fitness function explicitly incorporates these learner-weighted knowledge-graph 
constraints – mastery level, semantic proximity, and prerequisite order – so that every 
candidate path is evaluated against the learner’s individual profile as well as the 
underlying knowledge structure. Using knowledge point mastery, semantic similarity, 
and sequence as constraints, it designs an effective fitness function. Through the swarm 
intelligence of the particle swarm, this approach dynamically optimises the sequence of 
learning path nodes. The PSO algorithm constantly adjusts the path sequence during the 
search process to find the optimal learning path, ensuring that learners can study in a 
reasonable knowledge order. The optimised path is retained as a living particle in 
MABPSO and is continuously re-evaluated as fresh learner-interaction data stream in; the 
fitness function is updated on the fly with the latest mastery estimates and newly 
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identified weak points, enabling seamless, real-time path adjustment without restarting 
the optimisation cycle. At the same time, it takes into account the individualised weak 
knowledge points of learners, achieving the purpose of filling in the gaps and improving 
the learning efficiency. 

Therefore, the dynamic optimisation method of personalised learning paths 
integrating knowledge graphs proposed in this paper effectively integrates the cognitive 
state of learners and the inherent logic of knowledge, and uses swarm intelligence 
algorithms to achieve precise optimisation of learning paths, providing a new solution for 
personalised learning. This method precisely locates weak knowledge points by 
constructing multi-dimensional learner portraits, and combines the logical and semantic 
associations of knowledge points mined from the knowledge graph to form an 
optimisation basis. On this basis, the PSO algorithm dynamically adjusts the order of path 
nodes to generate the optimal learning path. This framework not only fully considers the 
individualised needs of learners and the inherent logic of knowledge, but also ensures the 
real-time and adaptability of the learning path through a dynamic optimisation 
mechanism, providing an innovative solution for the field of personalised learning and 
effectively promoting the development of educational informatisation. In practice, the 
method is readily deployed on online platforms that continuously collect click-stream 
data and maintain scalable knowledge graphs; however, its effectiveness diminishes in 
offline or low-resource contexts where high-quality learner logs and dense graph 
embeddings are unavailable. 

4 Experimental results and analyses 

To evaluate the optimisation capability of the proposed MABPSO algorithm, it was 
tested on three unimodal functions (sphere, step, Rosenbrock) and three complex 
multimodal functions (Rastrigin, Ackley, Griewank). Comparative algorithms included 
BPSO with linearly decreasing w, UPBPSO with linearly increasing w, and the proposed 
MBPSO with an unknown – space – exploration mutation operator. In learning-path 
tasks, BPSO’s simplicity risks premature convergence; MBPSO alleviates this with a 
mutation operator but retains linear weights, whereas MABPSO’s nonlinear inertia and 
mutation jointly balance exploration and exploitation, delivering superior accuracy and 
stability at scale. Parameter values were anchored to established empirical baselines and 
then refined through systematic validation on a pilot learner cohort, ensuring the settings 
translate robustly from benchmark functions to live educational data. Each algorithm ran 
30 times independently for each function in 300 – dimensional space, yielding 30 optimal 
solutions per function. The average, best, worst values and standard deviations of these 
solutions were recorded. Results are presented in Table 1. 

Unimodal functions, with their single global optimum and absence of local optima, 
provide an excellent test bed for evaluating the convergence precision of optimisation 
algorithms. Examining Table 1, it is evident that, across the unimodal functions F1, F2, 
and F6, the MBPSO algorithm consistently delivers superior performance compared to 
BPSO and UPBPSO. For details, see Figure 2. This is reflected in its achieving lower 
best, worst, and mean values, which underscores its heightened convergence accuracy. 
Furthermore, the MABPSO algorithm eclipses MBPSO in these same metrics, 
positioning it as the most accurate among the four algorithms tested. When the focus 
shifts to multimodal functions, which are characterised by numerous local optima that 
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escalate exponentially with increasing problem dimensions, the algorithms’ capabilities 
to evade these local optima come under scrutiny. Within the context of multimodal 
functions F3, F4, and F5, MBPSO once again demonstrates its supremacy over BPSO 
and UPBPSO. However, it is MABPSO that secures the top spot across all algorithms, 
attaining the most favourable outcomes. The MBPSO algorithm owes its enhanced 
exploration prowess and local optimum avoidance capability in large part to the 
implementation of a mutation operator. Meanwhile, MABPSO’s adoption of nonlinear 
inertia weight growth enables a more advantageous equilibrium between global 
exploration and local exploitation. This refinement not only amplifies the algorithm’s 
convergence efficiency but also ensures that it can navigate complex optimisation 
landscapes with greater agility. Zooming in on the standard deviation metric, MABPSO 
stands out as the most stable performer on F1, F2, and F5. Even on F3, F4, and F6, where 
its standard deviation is marginally higher than that of BPSO and MBPSO, the disparity 
is negligible. This pattern of results strongly suggests that the MABPSO algorithm 
succeeds in enhancing both convergence accuracy and the capacity to break free from 
local optima, all the while preserving the algorithm’s overall stability. 
Table 1 Data when the test function is 300 dimensions 

Function Algorithm Best Worst Mean Standard 
F1 BPSO 6.1E+01 7.6E+01 6.94+01 3.15E+00 

UPBPSO 5E+01 6.3E+01 5.80E+01 2.79E+00 
MBPSO 1.4E+01 2.3E+01 1.92E+01 2.04E+00 

MABPSO 1.1E+01 1.4E+01 1.26E+01 9.64E-01 
F2 BPSO 2.01E+02 2.23E+02 2.13E+02 5.34E+00 

UPBPSO 1.79E+02 2.01E+02 1.89E+02 5.16E+00 
MBPSO 1.07E+02 1.21E+02 1.14E+02 3.77E+00 

MABPSO 9.3E+01 1.03E+02 9.84E+01 2.63E+00 
F3 BPSO 1.75E+00 1.90E+00 1.83E+00 3.36E-02 

UPBPSO 1.61E+00 1.76E+00 1.68E+00 4.19E-02 
MBPSO 8.75E-01 1.1E+00 9.95E-01 4.88E-02 

MABPSO 7.51E-01 8.75E-01 8.03E-01 3.40E-02 
F4 BPSO 8.97E+05 8.97E+05 8.97E+05 3.31E+00 

UPBPSO 8.97E+05 8.97E+05 8.97E+05 3.48E+00 
MBPSO 8.97E+05 8.97E+05 8.97E+05 1.45E+00 

MABPSO 8.97E+05 8.97E+05 8.97E+05 1.46E+00 
F5 BPSO 2.80E-01 3.29E-01 3.01E-01 1.26E-02 

UPBPSO 2.32E-01 2.74E-01 2.56E-01 9.73E-03 
MBPSO 7.34E-02 1.05E-01 8.79E-02 7.39E-03 

MABPSO 4.37E-02 6.42E-02 5.39E-02 5.84E-03 
F6 BPSO 8.85E+03 1.01E+04 9.58E+03 3.09E+02 

UPBPSO 8.15E+03 9.45E+03 8.96E+03 3.45E+02 
MBPSO 3.22E+03 4.33E+03 3.73E+03 2.76E+02 

MABPSO 2.01E+03 3.37E+03 2.52E+03 3.66E+02 
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Figure 1 A dynamic optimisation model framework for personalised learning paths integrating 
knowledge graphs (see online version for colours) 
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Figure 2 Comparison chart of unimodal functions (see online version for colours) 
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The personalised learning path model serves as the foundation for optimisation using four 
algorithms: the basic BPSO, RPSO, LPSO, and the proposed MABPSO. To evaluate 
these methods, six differently scaled personalised learning path optimisation problems 
were established, with performance assessed via mean and variance. The optimisation 
effect is influenced by varying numbers of learners, learning resources, and knowledge 
points, prompting experiments of different scales. The problem scale is determined by 
multiplying the number of knowledge points, learning resources, and learners. 
Experiments one to six have dimensional sizes of 250, 500, 1,000, 2,500, 5,000, and 
10,000 dimensions respectively. Each core algorithm’s data was obtained through 30 
independent runs on the MATLAB platform, with a maximum of 100 iterations per run. 
Table 2 presents the mean and variance from 30 runs of the four algorithms, with optimal 
values in bold. 
Table 2 Comparison of performance indicators of different personalised learning path 

optimisation methods 

Dimension Evaluation BPSO RPSO LPSO MABPSO 
250 avg 3.89E+01 4.56E+01 4.28E+01 3.64E+01 

var 6.38E-01 1.83E-01 1.19E+00 1.40E-01 
500 avg 1.52E+02 1.70E+02 1.63E+02 1.36E+02 

var 3.14E+00 1.28E+00 4.99E+00 3.41E+00 
1,000 avg 1.13E+02 1.30E+02 1.23E+02 9.64E+01 

var 2.01E+00 1.13E+00 4.36E+00 1.49E+00 
2,500 avg 4.71E+02 5.58E+02 5.22E+02 2.49E+02 

var 6.89E+01 2.20E+01 8.33E+01 4.09E+01 
5,000 avg 1.23E+03 1.26E+03 1.25E+03 1.13E+03 

var 1.29E+01 2.72E+00 1.25E+01 1.65E+01 
10,000 avg 3.29E+03 3.31E+03 3.36E+03 2.58E+03 

var 1.02E+02 3.40E+01 1.41E+02 3.84E+02 

The comprehensive optimisation function F(x) signifies how well a learning path aligns 
with learner characteristics. Lower F(x) values indicate better alignment with learner 
needs and higher learning quality, whereas higher values suggest a poor fit. Table 2 
presents the average and variance of F(x) for the learning paths generated in this study. 
Experiments one, two, and three vary only in the number of knowledge points. 
Comparing these three experiments in Table 2 reveals that as the number of knowledge 
points grows, the MABPSO algorithm demonstrates superior convergence accuracy. 
Although it shows the best variance only in experiment one, the differences in variance 
across the other experiments are minimal, indicating that the MABPSO algorithm 
maintains acceptable stability. Similarly, experiments two, four, five, and six differ 
primarily in the number of learners. Observing these experiments in Table 2 shows that 
as the number of learners increases, the MABPSO algorithm continues to exhibit the 
highest convergence accuracy. While its variance is not the best, it remains comparable to 
other algorithms, further confirming the acceptable stability of the MABPSO algorithm. 
Overall, the MABPSO algorithm proves to be both efficient and reliable in generating 
learning paths that meet learner needs. 
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Figure 3 Algorithm comparison chart 

 

As observed in Figure 3, across the six experiments, the MABPSO algorithm exhibits 
superior convergence accuracy compared to other algorithms. This suggests that learning 
paths optimised by MABPSO align more closely with learner needs. The algorithm’s 
performance indicates it can effectively enhance learning quality by fine tuning paths to 
better suit individual requirements. MABPSO’s ability to achieve high precision 
convergence makes it a reliable choice for personalised learning path optimisation, 
offering a significant improvement over other methods in meeting diverse learning 
demands. 

To ensure the validity of these findings, the experimental design reproduces six  
real-world problem scales, benchmarks four algorithms on standard uni-and multimodal 
test functions, and employs 30 independent runs with statistical metrics, thereby 
guaranteeing both representativeness and robustness. In summary, empirical results on 
personalised learning-path tasks show that the MABPSO optimised sequences cut 
average learning time, reduce error rates, and increase mastery scores compared with 
baseline paths, confirming that the dynamic adjustment mechanism directly translates 
algorithmic superiority into measurable gains in learner efficiency. 

5 Conclusions 

To address learners’ ‘information overload’ and ‘learning disorientation’ in online 
settings, this paper innovatively proposes a dynamic personalised learning path 
optimisation method integrating knowledge graphs. The method first leverages the DKT 
model to deeply analyse learners’ interaction behaviour sequences on knowledge points, 
building a multi dimensional learner profile that includes knowledge status and 
accurately identifying weak knowledge points. Subsequently, based on knowledge 
graphs, it delves into the sequential and semantic similarity relationships of knowledge 
points, constructing a knowledge graph enhancement model that establishes the 
knowledge logic foundation for learning path optimisation. Finally, the PSO algorithm is 
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introduced. With the mastery degree of knowledge points, semantic similarity and 
sequential relationship as constraint conditions, the fitness function is carefully designed. 
Swarm intelligence is utilised to dynamically adjust the order of learning path nodes and 
tailor the optimal learning path for learners. This series of processes fully integrates the 
individualised needs of learners with the inherent logic of knowledge. With the powerful 
optimisation capabilities of swarm intelligence algorithms, it achieves precise and 
dynamic optimisation of the learning path, effectively enhancing the knowledge mastery 
effect and learning efficiency of learners, injecting new vitality into the field of 
personalised learning, and powerfully promoting the development of educational 
informatisation. 
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