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Abstract: A chain fault risk assessment method based on  
transformer-federation migration learning algorithm is proposed. Firstly, this 
paper describes the chain fault evolution path of AC-DC hybrid grid, constructs 
fault simulation model, and clarifies the selection principle of the initial fault 
set of the accident chain. Secondly, the chain fault probability assessment 
model based on the accident chain is established according to the key indicators 
of the accident chain. Then, the weighted fuzzy C-mean clustering algorithm is 
used to cluster and analyse the correlation indicator values, and the fault set 
feature extraction module is obtained according to the transformer model. 
Finally, a multimodal transformer architecture based on federated learning 
cooperative work is designed to realise the accurate estimation. The 
experimental results show that the proposed method for AC-DC hybrid grids 
has a good generalisation capability and can quickly and accurately determine 
the fault set feature extraction module. 
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1 Introduction 

AC-DC hybrid grids are more advanced than traditional grids in connecting regions, 
especially in the area of long-distance transmission. To meet the demand of power 
consumption of various users in various regions and further solve the problem of load and 
energy balance, the expansion of AC-DC hybrid grids has become an inevitable trend 
(Wu et al., 2023; Biglarahmadi et al., 2021; Liu et al., 2021). AC-DC hybrid grids are 
more complex than traditional grids, and when a fault occurs, it affects a wider area and 
causes greater losses (Feng et al., 2024b). It is particularly important to develop more 
sensitive, accurate and reliable fault diagnosis techniques for power grids. 

AC-DC hybrid grid has its unique structural and operational characteristics, to meet 
the demand for long-distance and large-capacity power transmission, but also to the safe 
and stable operation of the grid has brought a serious challenge, the chain reaction of 
local faults in the grid evolves into the possibility of global security risk is increasing 
(Galvez and Abur, 2023; Mirsaeidi et al., 2024; Zhu et al., 2023; Li and Chi, 2024). It is 
undoubtedly great realistic significance and theoretical value to study the chain fault 
evolution characteristics of large-scale grids and carry out chain fault risk assessment. 

Grid fault diagnosis is to evaluate the correctness of the protection action by 
analysing various electrical and switching information in the system to identify the 
position of the faulty equipment, the time of failure, the fault type and the cause of the 
fault. In Panahi et al. (2021), mathematical models of overhead line and DC network 
configuration are built to realise the precise positioning of DC network faults. In Feng  
et al. (2024a), a distance topology matrix is introduced to fit the topology of the LV 
distribution network, and a random fractal search is used to find an optimised model 
based on stochastic fractal search to support fault identification in distribution networks. 
In Xie et al. (2025), taking into account the diverse information perturbation elements 
and based on the cast function of interphase short-circuit fault current characteristics, an 
information-physical system module for a power distribution network is constructed for 
serving the grid state detection. In Shetwan et al. (2025), targeting gas turbine systems in 
the system, the failure mode and effects analysis (FMEA) is combined with the decision 
testing and evaluation laboratory (DEMATEL) model to determine the priority of critical 
faults. In Sonawane et al. (2023), establish reliability modelling based on fault tree 
analysis (FTA) method to analyse the probability of component failures in large-scale 
photovoltaic systems. 

Establish reliability modelling based on FTA method to analyse the probability of 
component failures in large-scale photovoltaic systems. 

However, it is necessary to see that the traditional fault analysis methods mostly use 
physical modelling to construct grid state models and fault libraries, and much data 
models need to be introduced into the research process. The hybrid AC-DC grid is more 
complex than the traditional grid network architecture, and the operating conditions are 
more diverse, so it is difficult to achieve accurate fitting of the traditional physical model, 
and there is the problem of low generalisation ability. 

In 2003, after three 345 kV transmission lines in Ohio, USA, tripped due to short 
circuits caused by contact with trees, the system failed to clear the fault in a timely 
manner, leading to load transfer and triggering a chain reaction. Subsequently, a number 
of power plants were taken out of operation due to mis-operation of protection systems or 
human misjudgement, eventually resulting in a large-scale collapse of the North 
American power grid. This was because traditional assessment methods are based on a 
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single fault mode. The causal chain – trees coming into contact with the lines, causing 
protection mis-operation, which in turn led to load transfer and eventually voltage 
collapse – was not incorporated into the assessment system. In 2012, after the northern 
power grid in India collapsed due to equipment overload and mis-operation of protection 
systems, the eastern and northern power grids collapsed again during the recovery 
process because various states consumed electricity beyond the planned amount and 
failed to effectively implement dispatching instructions, resulting in power outages in 
nearly half of the country. This was because traditional risk assessment systems did not 
fully consider the coupling relationships between cross-regional power grids. However, 
the method proposed in this paper has strong generalisation ability and takes into account 
the impact of many factors on the probability of risk occurrence. 

In nearly years, the new generation of artificial intelligence technology has been fast 
developing, through the method named as offline training and online recognition, it can 
quickly finish the tasks such as prediction, classification, etc., especially the deep 
learning technology shows more application potential by virtue of its powerful learning 
ability (Zhang et al., 2024). In Wang et al. (2024), a deep learning-based smart grid fault 
diagnosis and recovery strategy is proposed, which reduces the disturbing factors in the 
study of fault diagnosis and recovery strategies and improves the accuracy of fault 
diagnosis and recovery. However, too much emphasis is placed on the examination of 
fault diagnosis and recovery strategies, which leads to the selection of its indexes being 
prone to irrationality. In Wu (2023), real-time diagnosis of grid faults was achieved by 
constructing a visualisation technique based on a deep classification model, which 
improved the feature extraction efficiency, fault recognition rate, and visualisation 
efficiency, and shortened the prediction time, but the interpretability of the modified 
algorithm was weak. In Jiang et al. (2022), an adaptive grid feature extraction method for 
insufficient labelling data is proposed, and the designed grid fault diagnosis method has 
good pattern portability and robustness. However, the case of protection faults such as 
grid protection system refusal and mis-operation is ignored. Utilising deep learning 
techniques to mine the intrinsic connection of grid model state data and establish 
mapping can improve the speed of online identification of critical lines, which is crucial 
in practical applications. In Alhanaf et al. (2023), a fault analysis model is constructed 
based on one-dimensional convolutional neural networks (1D-CNN), taking into account 
the voltage and current data in the network. In Alhanaf et al. (2024), the 1D-CNN model 
is optimised based on long short-term memory networks (LSTM) to achieve the state 
estimation of the power grid and improve the reliability of power grid operation. In 
(Gokulraj and Venkatramanan, 2024), the LSTM model and convolutional neural 
networks (CNN) are fused and introducing gradient boosting machines (GBM) to solve 
the network structure heterogeneity problem in microgrid fault analysis. 

However, the above data-driven methods have limitations in practical power system 
applications. Chain faults in the power system have obvious before and after causal 
correlations, and it is necessary to systematically analyse the cause and effect of faults 
and construct a chain fault analysis model. At the same time, there is noise interference 
during physical quantity acquisition, transmission, and interaction in AC and DC 
networks, which is seldom mentioned in previous work, limiting the application of the 
model in real-world scenarios. 

In the face of complex AC-DC grid architecture, many existing methods have 
insufficient generalisation ability to effectively detect line faults. For this reason, this 
paper fuses the accident chain model and deep network model to propose an 
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optimisation-enhanced risk assessment method for power system chain faults. The 
innovative points are as follows: 

1 According to the accident chain model to fit the fault chain effect of AC and DC 
system, and using the weighted fuzzy C-mean clustering algorithm on the network 
structure index and grid operation index collection, to construct a complete and 
reliable fault state analysis model. 

2 Based on the fault analysis model, the federal learning mechanism is used to 
optimise the design of the Transformer model to strengthen the global analysis 
capability of the fault diagnosis model data, enhance the model generalisation 
capability, and meet the needs of grid state analysis of actual complex AC-DC 
hybrid grids. 

2 Analysis of interlocking faults in AC-DC hybrid grids 

2.1 Chain fault analysis 

An accident chain refers to a process in which a series of events or factors interact, 
leading to the development of an accident. Once a major accident occurs in an AC/DC 
hybrid power grid, it may result in large-scale power outages, affecting the economy, 
social order, and security. Therefore, preventing the formation of accident chains is 
crucial for improving system reliability, reducing economic losses, and ensuring public 
safety. 

The AC-DC hybrid grid chain fault evolution path consists of three parts, which are 
the primary state, the developmental state, and the deterioration state. The evolution 
pattern and dominant factors between each stage are shown in Figure 1. A sudden fault in 
a DC line is the initiating event, and its absolute probability of occurrence is based on 
historical data or expert evaluation. Power flow fluctuations, overloads, and overvoltages 
are the propagation processes, and their probabilities of occurrence after the occurrence 
of a preceding event are determined by system parameters. Protection actions, line 
disconnections, generator and DC blocking, system splitting, and instability are 
intermediate events, while large-scale power outages are the final result. The propagation 
processes and intermediate events interact with each other, and in severe cases of faults, 
they will lead to the final result. 

Faults under the initial phase are mainly caused by a chance event, such as accidental 
line breakage or short circuit faults due to environmental and other factors. Most of them 
are general line faults, so the impact of faults under this phase is usually within the 
controllable range (Gokulraj and Venkatramanan, 2024; Huang and Xia, 2022; Zhang  
et al., 2022; Ma et al., 2022). 

After an initial fault occurs, it may lead to a shift in the current, further causing 
problems such as overloading and voltage fluctuations in the neighbouring lines. In the 
case of low line current margins, forced outages may occur due to sudden increases in 
current pressure. Furthermore, the development stage of AC-DC hybrid grid chain faults 
generally shows medium- to long-term characteristics and is mainly affected by grid 
current and voltage. Effective control measures can in principle inhibit the rapid spread of 
interlocking faults (Dai et al., 2023; Sun et al., 2020). 
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Figure 1 Evolution pats of interlocking faults (see online version for colours) 
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When the chain fault evolves to the deterioration stage, it will involve the core equipment 
such as DC converter station, and its impact on it is serious. For example, the voltage 
reduction in the near-area of the fault causes phase change troubles at the converter 
station, and further successive phase change failures may lead to DC blocking. 
Additionally, transient overvoltage will occur in the near-area due to the reactive power 
surplus problem, which will cause a huge impact on the voltage-sensitive equipment. 
After a large number of AC line outages and DC blocking problems occur one  
after another, there is a serious power imbalance, which further triggers the grid  
voltage-frequency collapse (Zheng et al., 2021; Deng et al., 2021). 

2.2 Fault simulation model 

Based on the actual situation project and working condition of new energy  
grid-connected operation, the grid fault simulation model shown in Figure 2 is built in 
PSCAD/EMTDC, where WT is the wind turbine, FG is the thermal generator, and L is 
the line. 

Figure 2 Fault simulation model 
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In the AC-DC hybrid grid topology diagram, G1 is a doubly-fed wind turbine, and G2, 
G3, G4, and G5 are thermal generating units, respectively. And, a 12-pulsation thyristor 
converter is used as the DC line converter. The parameters of lines and gensets are shown 
in Table 1. 
Table 1 Parameters of grids 

 Parameter Value 
Line Feeder AC system voltage rating/kV 345 
 Rated AC system voltage at the receiving end/kV 230 
 AC line positive sequence negative sequence impedance/(Ω•m–1) 6.21 × 10–5 
 AC line positive sequence negative sequence reactor/ (Ω•m–1) 4.0019 × 10–4 
 AC line positive sequence negative sequence 

capacitance/(kV•(MΩ•m)–1) 
391.56 

 AC line zero sequence resistance/(Ω•m–1) 3.19 × 10–4 
 AC line zero sequence reactance/(Ω•m–1) 1.1085 × 10–3 
 AC line zero sequence reactance/(kV•(MΩ•m)–1) 535.17 
Generator 
sets 

G2, G3 generator capacity/MVA 2,000 
G4, G5 generator capacity/MVA 500 

 Rated DC voltage/kV 500 
 Rated DC current/kA 2 

3 Evaluation model based on the probability of interlocking faults in the 
accident chain 

3.1 Selection of initial fault set 

The initial faulty branch is selected based on the principle that no serious faults are 
omitted and as much as possible the less serious faults are screened out. The initial risk 
value of a defined branch is composed of the branch failure probability, the original load 
factor, the original trend proportion of the branch, and the trend change in other branches 
after the branch opens and closes in the system. Among them, the branch failure 
probability PLi,0 is mainly affected by factors such as the operating life of the branch and 
the natural environment. It is worth stating that, in order to simplify the chain fault 
analysis model, the default grid is in the same geographic and meteorological 
environment and has the same number of years of operation. Therefore, it can be 
considered that the fault probability PLi,0 is proportional to the length of the branch. 

The value normalised to the length of all branches in the whole network as the 
probability of failure of a branch can be expressed as: 

,0

Ω

i

j

L
Li

L
j

LP
L

∈

=


 (1) 

where LLi is the branch Li length and Ω is the set of all branches of the grid. 
The initial load factor can be expressed as: 
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where FLi,0 and FLi,max are the initial tidal current value and thermal stability limit value of 
the branch circuit Li, respectively. 

This indicator can be expressed as: 

,0

,0
,0

Ω
i

Li
Li

L
j

FW
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∈

=


 (3) 

Indicators of changes in tidal currents in other branches caused by branch openings: 

,0
,0Ω,

Δ

j

Lj
Lj

LjL j i

F
E

F∈ ≠

=   (4) 

where ΔFLj is the amount of current change of branch Lj, and FLj,0 is the initial current of 
branch Lj. The larger the value of this index indicates that the larger the amount of 
network-wide current transfer caused by the opening of the branch Li, the greater the 
impact on the power grid. 

Therefore, the initial risk value of the branch is defined as: 

,0 ,0 ,0 ,0 ,0Li Li Li Li LjR P D W E= ⋅ ⋅ ⋅  (5) 

3.2 Analysis of indicators 

By analysing the structural metrics and operational metrics, it is possible to screen and 
identify the important branches in the system. The structural metrics mainly include the 
tidal median and the electrical structure importance (Huang et al., 2022). 

The tidal median is usually used to measure the importance of nodes or branches in a 
complex network. It is difficult to measure the importance of grid branches by ordinary 
topology metrics, therefore the importance of lines is weighed by the line tidal median 
metric αij,mn. The higher the tidal median, the more important the line is in the system. 
The index can be expressed as: 

 

( ),
( , )

min , ij
ij mn m n

mn

P m n
S S

P
=α  (6) 

where Pmn is the active power from Gm to load node Ln, Pij(m, n) is the active power from 
generator Gm on branch ij to load node Ln, and min(Sm, Sn) is the smaller value of the 
actual output of generator Gm and load Ln. 

The electrical connectivity is defined as the sum of the equivalent impedance of each 
branch and the electrical structure importance is shown in equation (7). The higher the 
electrical structure importance, the lower the amount of acceptable current transfer of the 
branch in the grid structure, and the higher the impact on the power system when the 
branch l is disconnected. Then the higher the importance of the branch l (Ruan et al., 
2025). 
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where Zii, Zij, Zjj are the entries of row i, column i, row i, column j, and row j, column j of 
the node impedance matrix, respectively, ( )Δ G

lZ  is the electrical structural importance of 
branch l, and ZG–l is the degree of electrical connectivity of branch l after it is 
disconnected. 

Operational indicators mainly include hazard indicators, voltage fluctuation Terre 
entropy. The danger index λd can be constructed as shown in equation (8). It can reflect 
the safety level of each branch after the initial line disconnection, and the large λd. 
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
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

 (8) 

where Zd is the measured impedance and Z1 and Z2 are the positive and negative direction 
rectified impedances of the offset characteristic impedance relay, respectively. 

The voltage fluctuation Terre entropy EUf index is used to indicate the influence of the 
branch on the system voltage after the initial line disconnection, and the bigger the EUf is, 
the bigger the influence of the voltage fluctuation on the system after the branch is 
disconnected. 
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 (9) 

where Vi(0) and Vi(1) are the initial voltage of node i and the voltage of node i after line l 
is disconnected, respectively, N is the number of nodes in the power system, and K is the 
number of node voltage levels; within voltage level k, Nk is the number of nodes, μk is the 
sum of voltage volatility, μkj is the voltage volatility of node j, and EU is the voltage 
volatility variability; E1U is the voltage volatility variability within the voltage level, E2U 
is the voltage fluctuation rate variability between voltage levels, μ is the sum of voltage 
fluctuation rates of the system, EUf is the total voltage fluctuation rate variability of the 
system. 
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Since chained faults have a clear before-and-after causal correlation, faults can be 
categorised after calculating the correlation index value in each round. It is worth stating 
that the subject of this paper is chain faults, i.e., the focus is on the class of branches with 
the highest correlation. 

The weighted fuzzy C-means clustering algorithm (WFCM) is employed to cluster 
relevance indicators values in this paper. The algorithm is simple in design and assigns 
different weights to the sample points to emphasise their different effects on the 
classification, which provides strong robustness facing noise and outlier interference and 
good classification results (Wang et al., 2023). The WFCM objective function can be 
written as: 

2

1 1

min
a b

c
iij ij

j i

λ d
= =

  =  
  
α β  (10) 

where a is the number of samples, b is the number of clustering centres, αij is the degree 
of affiliation of sample j belonging to the ith clustering centre, dij is the distance between 
sample j and the ith clustering centre; c is the fuzzy weighted index, βi is the sample 
weight, which in this paper is taken as the ratio between the inverse of the distances 
between the sample point and the other samples and the inverse of the distances between 
all sample points and the sum of the distances. 

Based on the Lagrange multiplier method the WFCM affiliation matrix and clustering 
centre iteration formula can be derived as: 
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cij im
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α  (11) 
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1
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=

=




β α

β α
 (12) 

where γj is the clustering centre and xi is the data to be classified. 

4 Evaluation of fault methods based on transformer-federation migration 
learning 

4.1 Feature extraction module for transformer 

The original fault data is defined as L = {L1, L2, L3, …, LN}, and the dimensionality 
reduction of the data L is realised by principal component analysis, which downgrades 
the three-phase current data and the zero-sequence current data to one dimension to 
extract the LP features associated with the fault data as a whole, and the downgraded data 
is defined as LP = {LP1, LP2, LP3, …, LPN}, which is the input layer data of the transformer 
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mode. In addition, the labels of the fault data are defined as i = {i1, i2, i3, …, iN}, where 
1 2 3[ ],j j jij i i i=  and the identified labels can be processed by one-hot coding. 

Figure 3 Encoder model structure (see online version for colours) 
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The Transformer model consists of two parts, encoder and decoder (Shu et al., 2025). The 
TTHNN-SA model uses the Encoder part of the Transformer model for feature extraction 
of fault data (Xu et al., 2023; Han et al., 2021). In Figure 3, the structure of encoder 
model is given. The dimensionality reduced data is represented as vectors by positional 
encoding. The first layer of the Encoder is a multi-head attention mechanism (multi-head) 
and the second layer is a feedforward neural network (FNN). Both layers have a residual 
connection followed by layer normalisation. The input to the self-attention mechanism is 
the output encoded by positional encoding packed into a matrix. This matrix is then 
linearly transformed three times using three pre-trained matrices WX, WY, WZ. Further, the 
query matrix X, the key matrix Y, and the value matrix Z are determined. The formula for 
the self-attention mechanism can be expressed as: 

( , , ) max
T

y

XYH A W Y Z soft Z
l

 
 = =
 
 

 (13) 
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where ly is the dimension of Y. The multi-head attention mechanism is able to define 
multiple sets of WX, WY, WZ, and calculate different X, Y, Z by different WX, WY, WZ. The 
n results of the self-attention mechanism are then spliced together to get the final result  
H = {H1, H2, H3, …, HN}, which is input into the second layer of the feedforward network 
after residual concatenation and layer normalisation. The FNN consists of two linear 
transformations and Relu activation function and the computational formula can be 
expressed as: 

( )2 1 1 2ReQ W LU W x b b= + +  (14) 

where W1 and W2 are the weight matrices of the linear transformation, b1 and b2 are the 
bias parameters. The post output of the feed forward network is normalised by residual 
linking and layer normalisation to get the final output. 

4.2 Federated migration learning mechanisms 

In order to strengthen the generalisation ability of fault identification model, enrich the 
fault data samples, introduce the federal migration learning mechanism to expand the 
training volume of working condition data, fully explore the potential features of 
operation data, improve the feature extraction ability of transformer model, and 
effectively support the safe operation of complex AC-DC marriage power grid. 

The design of a transformer-based multimodal federated migration learning 
framework enables the integration of migration methods to enhance the model’s 
performance in global personalisation tasks. When designing a multimodal transformer 
architecture based on federated learning collaborative work, the complexity of various 
data modalities needs to be considered and the specific needs of each participant need to 
be met (Oh and Lee, 2024; Wu et al., 2024). 

In this paper, in order to determine the multimodal transformer architecture, the data 
of various modalities need to be segmented and mapped linearly. The segmented data is 
converted into a uniform vector representation. In addition, the linear mapping results 
containing the modal information vectors are utilised and arranged in the original 
sequence to form a sequence of processed data fragments (Li et al., 2024). It should be 
noted that in order to cope with the inconsistency of data fragment sizes among different 
modalities, the architecture designs specific mapping matrix sizes for different modalities 
to ensure the length consistency of the resultant vectors after linear mapping. The linear 
mapping matrices for different modalities have different numbers of rows and the same 
length as their modal data fragments. In addition, these linear matrices have the same 
number of columns, which ensures that data fragments of different data modalities have 
the same length after linear mapping, which is conducive to the unified processing of the 
transformer model. 

The parameter optimisation in the framework is mainly divided into: 

1 Optimisation for linear mapping and modal embedding parameters. It covers linear 
transformation matrices customised for various data modalities and may also include 
modal information vectors. These parameters no longer rely on predefined 
encodings, but can be further trained by automatic learning algorithms. 

2 Transformer-based optimisation of task model parameters. 
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After one round of global training, the participants upload their local parameters of each 
modal linear mapping matrix, modal embedding vector and Transformer task model to a 
central server for summary aggregation. The server applies the federated averaging 
method to compute the global modal linear mapping matrices, modal embedding vectors, 
and global parameters of the transformer model (Mu et al., 2022). Each participant trains 
the initial model parameters on local data, thus incorporating features and preferences 
into the model. Once the global model is trained, each participant can fine-tune the global 
model for their specific task requirements to obtain a local model. The personalised tuned 
local models are more accurately adapted to the local task than the global model. 

The federated migration learning framework is given as an example with three 
participants A, B, and C, as shown in Figure 4, where each participant has data with 
different modalities, which are represented by different graphs (∆, □, ○). 

Figure 4 Federal transfer learning framework (see online version for colours) 
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Each participant uses its own data to generate local parameters in the local training 
model, which contains the linear mapping matrix of data modalities it has as well as the 
local task model parameters. These parameters obtained from training based on their 
respective data represent the knowledge learned independently from the local data by the 
local models of the three participants. After the aggregation process is completed, the 
central server obtains a global model parameter P and a global linear mapping matrix 
corresponding to each modality, which combine the local knowledge of all participants. 
The global model parameter P and the global linear mapping matrix Q∆/□/○ for each 
modality are sent to each participant for updating the local model and the linear mapping 
matrices for different modalities of each participant, so that each model can obtain global 
knowledge from other participants and enhance the performance of the respective model. 
It is often required to find a balance between global consistency and local performance. 
After obtaining the global model, each participant can fine-tune the global model to 
obtain a personalised multimodal model that is better suited to its task based on its own 
modal data and specific task (Dong and Wang, 2023). 

4.3 Steps for faulty line identification based on transformer-federation 
migration learning 

The faulty line recognition process based on Transformer and federated migration 
learning is shown in Figure 5. Its specific realisation process is: 

1 Voltages and currents at both ends of the DC line are collected at a frequency of  
10 kHz for 10 ms before and 20 ms after the fault. Based on current and voltage 
signals, the fault sample matrix is formed as (14), and the dimension of each fault 
sample matrix is 300 × 68. 

[
]

1 1 1 1 2 2 2 2 3 3 3 3

3 3 12 12 12 12 12 12

, , , , , , , , , , , ,
, , ..., , , , , ,

c c r r c c r r a a b b

c c a a b b c c

G I U I U I U I U I U I U

I U I U I U I U

=
 (14) 

 where I1c, U1c and I2c, U2c for DC line L1 and L2, respectively, the sender current, 
voltage. I1r, U1r and I2r, U2r, respectively, for DC line L1 and L2, the receiving end of 
the current, voltage. I3a, U3a, I3b, ∙∙∙, U12b, I12c, U12c, respectively, for the AC line 
between the L3 and L12, the current and the voltage. 

2 Use the wavelet threshold filtering algorithm to denoise the data in each column to 
obtain the denoised fault sample matrix. 

3 The transformer is used to extract each column of the denoised fault matrix to obtain 
a 1×68 feature extraction module for each fault sample matrix. 

4 Max-Min normalise each feature extraction module and input it into the federated 
migration learning fault line identification model for fault line identification. 

5 Output the classification results. 
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Figure 5 Transformer-federation migration learning process for faulty line identification 
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5 Experimental results and analysis 

The simulation experiments are run on a high-performance computer, in which the 
simulation experiments are run on a hardware operating environment of CPU Core 
processor, GPU Intel Ruiju X, a software operating environment of Python language, and 
a deep learning framework of Pytorch, and the detailed parameters are shown in Table 2. 
(Qudaih et al., 2013) 
Table 2 Experimental parameters for failure risk assessment 

Item Parameter 
CPU Intel Core i7-1360P 
GPU Intel Ruiju X 
System Windows 10 
Development language Python 3.9 
Deep learning framework Pytorch 2.0 
Development tool Pycharm-2024 
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5.1 Experimental parameter design 

Considering that the faults occurring in AC-DC hybrid grid lines are mainly single-pole 
ground faults, therefore, for two DC lines with a length of 500 km, five fault distances of 
single-pole ground fault simulation are set up in this paper, which are 100, 200, 250, 300, 
and 400, respectively, and the simulation is carried out for 10 transition resistances of 0.1, 
0.5, 1, 2, 5, 10, 20, 50, 100, and 200Ω for each kind of fault distance. Ω for a total of 10 
transition resistances are simulated for a total of 100 sets of DC side fault samples. For 
the 10 AC lines, a total of 10 fault types are considered. A total of 10 transition resistor 
cases under each fault distance are simulated, totalling 1,000 groups of fault samples on 
the AC side. A total of 1,100 groups of fault samples are obtained from 12 lines to form 
the dataset, as shown in Table 3. 
Table 3 Fault sample dataset 

 Fault line Sample size 
DC line DC line L1 fault 50 
 DC line L2 fault 50 
AC line AC line L3 fault 100 
 AC line L4 fault 100 
 AC line L5 fault 100 
 AC line L6 fault 100 
 AC line L7 fault 100 
 AC line L8 fault 100 
 AC line L9 fault 100 
 AC line L10 fault 100 
 AC line L11 fault 100 
 AC line L12 fault 100 

5.2 Model convergence analysis 

The model is trained according to the designed framework and parameters, and the 
training loss and accuracy curves are given in Figures 6 and 7, respectively. Within the 
initial ten global training rounds, a significant and rapid decrease in the training and 
validation loss metrics can be seen. This significant decrease demonstrates the 
accelerated adaptation of the model to the complexity of the training dataset. After the 
20th global training communication round, the curve describing the loss is found to 
flatten out, which indicates that the model has matured in terms of learning and is 
approaching its optimal performance state, and the performance of the multimodal global 
model begins to converge. 

The waveforms before and after adding 10 dB noise filtering to the A-phase voltage 
signal collected under the fault of L12 are given in Figure 8. After the filtering process, 
the 10 dB noise signal is more similar to the pure signal waveform. The parameter is 
0.99737, which shows that the filtering algorithm has a strong filtering ability for noise-
containing signals, and at the same time, it can effectively retain the fault information and 
reduce the interference of noise on the fault signal. 
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Figure 6 Training process loss values (see online version for colours) 
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Figure 7 Precision values during training (see online version for colours) 
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5.3 Fault analysis under different models 

The FMEA and FTA methods are classical mathematical model theories for faults. 
Taking L2 line faults as the simulation scenario for power grid operation, this paper uses 
FMEA and FTA methods for fault diagnosis and analysis. The identification of L2 faults 
in AC/DC power grids using different methods is shown in Table 4. 
Table 4 Diagnosis of L2 line faults 

Method Convergence time (s) Recognition accuracy (%) 
FMEA 11.09 97.25 
FTA 9.83 96.25 
Transformer-federation 
migration learning model 

5.25 99.10 
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Figure 8 Voltage signals collected under a fault in L12, (a) original signal (b) original signal 
(with noise) (c) post-processed signals (see online version for colours) 
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As shown in Table 4, all experimental methods can achieve relatively accurate diagnosis 
of L2 line faults, but there are significant differences in identification time. The reason 
for this phenomenon is that the essence of FMEA and FTA methods is to adjust model 
parameters to achieve model optimisation design. For complex AC/DC systems, FMEA 
and FTA methods require precise parameter tuning of the grid operation in the early stage 
of diagnostic analysis. However, the deep learning model proposed in this paper can 
quickly and adaptively adjust based on the operation of the power grid, achieving fast 
state estimation and fault diagnosis. 

To demonstrate the excellence of the performance of the transformer-federated 
migration learning fault assessment model, this paper uses (Alhanaf et al., 2023) and 
(Gokulraj and Venkatramanan, 2024) as comparative methods for simulation verification. 
All the fault assessment methods are run in the same environment. In Alhanaf et al. 
(2023), 1D-CNN method is used to realise the grid operation state detection. In Gokulraj 
and Venkatramanan (2024), fault detection is realised for microgrid based on  
CNN-LSTM-GBM network model. 

The 1D-CNN model and CNN-LSTM-GBM network model are tested for fault line 
identification. The convergence performance and recognition accuracy using different 
fault assessment models are compared in Table 5. The proposed transformer-federation 
migration learning-based fault assessment model converges faster, and can realise the 
effective calculation and analysis of AC-DC hybrid grid fault data within 7.28 s,  
with an accuracy rate of up to and 0.95 s shorter than the analysis and calculation time of 
the 1D-CNN method. Meanwhile, the data analysis time of the CNN-LSTM-GBM 
method in (Gokulraj and Venkatramanan, 2024) is 7.92 s, although the performance  
of the transformer-federation migration learning model is similar to that of the 
transformer-federation migration learning model in terms of time, the accuracy rate of the 
CNN-LSTM-GBM method in identifying faults is 92.2%, which is not able to  
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realise the high-precision identification of the actual engineering. Therefore, the 
transformer-federation migration learning model proposed in this paper not only 
improves the fault line recognition accuracy, but also improves the convergence speed 
with higher accuracy and stability. 
Table 5 Convergence performance and recognition accuracy of different models 

Method Convergence time (s) Recognition accuracy (%) 
1D-CNN model 8.51 92.7 
CNN-LSTM-GBM model 9.82 92.2 
Transformer-federation 
migration learning model 

7.28 99.5 

Figure 9 Recognition rate of different models for each fault line (see online version for colours) 
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The recognition accuracies of different models for different fault lines are shown in 
Figure 9, which shows that the CNN-LSTM-GBM model is difficult to learn effective 
information when dealing with the AC-DC hybrid grid fault feature module, resulting in a 
lower recognition accuracy. Especially, it is unable to make effective judgment when 
dealing with symmetrical line fault information, and the 1D-CNN model and  
CNN-LSTM-GBM model have poor recognition accuracy for lines L6 and L12, while the 
1D-CNN model and CNN-LSTM-GBM model are unable to recognise lines L9 and L6. 

According to Table 4 and Figure 9, it can be seen that the Transformer-federation 
migration learning model has advantages such as fast convergence and recognition speed, 
high recognition accuracy, and full-channel recognition. This indicates that the 
application of this model can basically identify faults in the initial stage of link faults and 
make strategic adjustments as soon as possible to improve the power supply reliability of 
the AC/DC hybrid power grid. Therefore, faults can be curbed in the initial stage, 
preventing link faults from spreading and causing more serious harm. 
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6 Conclusions 

This paper proposes a chain fault risk assessment method based on the  
transformer-federation migration learning mechanism for AC-DC hybrid grids, and 
verifies the validity and reasonableness of the proposed assessment method by combining 
theoretical modelling, simulation analysis, and performance comparison, with the main 
conclusions as follows: 

1 The chain fault risk assessment method based on transformer-federation migration 
learning mechanism can quickly assess the chain fault risk of AC-DC hybrid grids 
and accurately recognise the chain fault sequences with higher risk based on 
different initial faults, and compared with the traditional method, the convergence 
speed of this paper’s method for chain fault risk assessment can be shortened by  
2.54 s, and the fault recognition accuracy is up to 99%. The accuracy rate is as high 
as 99.5%. 

2 Compared with other traditional methods, the chained fault risk assessment method 
based on the Transformer-Federation migration learning mechanism is more 
effective in the identification of faulted lines in AC-DC hybrid grids, and it  
can cover all AC-DC faulted lines. 

In future research, we will consider the scenario where multiple lines and multiple types 
of lines fail simultaneously, expand the number of fault samples, and improve the 
generalisation ability and practicality of the proposed method. We will conduct in-depth 
exploration on the collaborative optimisation method of control and protection for 
inhibiting the spread of cascading faults, comprehensively verify the applicability of the 
proposed risk assessment method in AC/DC hybrid grids, and lay a solid theoretical 
foundation for further promoting its application. In addition, we will integrate and 
explore operational data and develop tools for automatically identifying link faults. 
Furthermore, we will expand the research process to form a dynamic safety assessment 
system. 
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