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Abstract: This study addresses the challenge of autonomous navigation for 
intelligent mobile robots (IMRs) operating in dynamic environments by 
proposing a navigation framework that integrates an improved Google 
cartographer algorithm with a hybrid path planning strategy. The enhanced 
cartographer algorithm incorporates a KD-tree-based keypoint extraction 
technique for point cloud data, effectively reducing the amount of data required 
for point cloud matching to 10%–20% of the original volume. Furthermore, an 
adaptive loop closure detection mechanism is introduced, leading to a reduction 
of approximately 20% in mapping error. For path planning, a hybrid algorithm 
combining A* global planning with timed elastic band (TEB) local 
optimisation is developed. This approach dynamically adjusts the robot’s pose 
sequence and time intervals, achieving a 98% success rate in obstacle 
avoidance while increasing path length by only 5%–10%. The planning cycle 
remains consistently within 100 ms. The proposed system demonstrates robust 
performance across practical scenarios, including warehouse logistics (with a 
40% increase in handling efficiency) and medical delivery (achieving an 80% 
task completion rate). This research presents an efficient and scalable solution 
for autonomous navigation in complex dynamic environments, contributing 
both algorithmic innovation and significant engineering applicability. 
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1 Introduction 

With the rapid advancement of autonomous driving technologies, intelligent mobile 
systems have attracted significant attention for their potential across a wide range of 
application scenarios. In particular, achieving efficient and accurate path planning and 
environmental perception in dynamic environments has emerged as a prominent research 
challenge. Traditional localisation and path planning methods face considerable 
difficulties under such conditions – especially in complex and uncertain environments – 
where ensuring system robustness and real-time performance remains a critical and 
unresolved issue. 

In recent years, cartographer and timed elastic band (TEB) have become two widely 
adopted approaches for simultaneous localisation and mapping (SLAM) and path 
planning. Cartographer, which leverages LiDAR and camera sensors, has demonstrated 
high mapping accuracy in static environments. However, when applied to dynamic 
settings, the traditional cartographer algorithm often struggles with increased 
computational demands and reduced stability, particularly in handling moving obstacles 
and real-time updates. On the other hand, the TEB algorithm offers a flexible path 
optimisation framework that allows for dynamic obstacle avoidance and smooth 
trajectory generation. Nevertheless, it suffers from relatively high computational 
complexity and is sensitive to parameter tuning, which may limit its performance in 
highly complex environments. 

This study aims to integrate the respective strengths of cartographer and TEB while 
addressing their limitations. We propose an intelligent navigation system that fuses an 
enhanced version of the cartographer algorithm with the TEB planner. The system 
enhances cartographer’s ability to identify and adapt to dynamic obstacles, while 
leveraging TEB’s trajectory optimisation to improve planning precision and 
responsiveness. A key innovation of our approach lies in the introduction of a novel 
dynamic obstacle processing mechanism, coupled with an adaptive parameter adjustment 
method tailored to varying environmental characteristics. These enhancements 
significantly improve both the real-time performance and robustness of the navigation 
system without compromising path planning accuracy. 

What fundamentally differentiates our approach from previous work that merely 
cascades SLAM and path planning modules is the deep, synergistic optimisation between 
the perception and planning layers. Instead of treating cartographer as a black-box  
map generator, we enhance its internal mechanisms – specifically by integrating a  
KD-tree-based keypoint extraction and an adaptive loop closure mechanism. This ensures 
that the map fed to the planner is not just a static output, but a more accurate,  
error-resilient, and computationally efficient representation of the dynamic environment. 
This principle of enhancing the upstream mapping quality to directly empower 
downstream planning performance forms a positive feedback loop, which is the core 
distinction from loosely-coupled integration strategies. 

The main contributions of this paper are as follows: 

1 we propose a hybrid path planning framework that combines an improved 
cartographer algorithm with the TEB planner, enhancing adaptability in dynamic 
environments 
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2 we develop an adaptive dynamic obstacle detection and update method, which 
effectively reduces computational overhead and improves real-time planning 
performance 

3 we validate the proposed system across multiple experimental scenarios, 
demonstrating its superior performance in complex and dynamic environments. 

2 Related work 

In recent years, with the continuous advancement of robotics technology, the autonomous 
navigation capabilities of intelligent mobile robots (IMRs) in complex and dynamic 
environments have emerged as a prominent research focus. To achieve high-precision 
localisation and efficient path planning, researchers have extensively explored SLAM 
technologies, path planning algorithms, and multi-sensor data fusion strategies. 

2.1 Advances in SLAM technology 

SLAM serves as the cornerstone of autonomous navigation for mobile robots, 
encompassing environmental perception, map construction, and self-localisation. Current 
mainstream SLAM systems primarily include filter-based approaches (e.g., EKF-SLAM) 
and graph optimisation-based approaches (e.g., GTSAM and cartographer). Among these, 
cartographer has gained widespread adoption in both 2D and 3D scenarios due to its  
real-time performance and high accuracy. However, studies have revealed that 
conventional cartographer suffers from sensitivity to dynamic objects, which 
compromises localisation precision. To address this limitation, various enhancement 
strategies have been proposed, such as dynamic object filtering and sub-map 
optimisation. 

2.2 Path planning algorithms 

In the domain of path planning, classical algorithms such as Dijkstra and A* are  
well-regarded for their stability but often fall short in meeting the real-time demands of 
dynamic environments. More recently, optimisation-based methods, particularly the TEB 
algorithm, have attracted significant attention. TEB excels at local obstacle avoidance 
and models robot kinematic constraints effectively, making it well-suited for complex 
scenarios. Nonetheless, TEB exhibits limitations in responding swiftly to abrupt changes 
in obstacle configurations. To mitigate these issues, researchers have proposed hybrid 
strategies that combine TEB with global path planners and incorporate dynamic obstacle 
prediction models. 

2.3 Multi-sensor fusion 

To enhance the robustness of SLAM systems in dynamic environments, integrating data 
from multiple sensors has become a prevalent approach. The fusion of LiDAR with 
inertial measurement units (IMUs) and RGB-D cameras, for instance, has proven 
effective in maintaining stable localisation and mapping under occlusions and varying 
lighting conditions. Literature reports indicate that improvements in point cloud 
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registration and filtering algorithms can significantly suppress the impact of 
environmental noise and dynamic interferences, thereby improving overall system 
performance. 

2.4 Dynamic object handling strategies 

Dynamic objects pose a major challenge to the stability and accuracy of SLAM systems. 
To mitigate their impact, a range of techniques have been proposed, including 
foreground-background separation, clustering-based motion detection, and motion 
consistency analysis, all aimed at isolating or removing dynamic elements to retain a 
static map representation. In addition, emerging approaches based on deep learning offer 
enhanced scene understanding by learning to detect and segment dynamic targets, further 
boosting the adaptability and intelligence of SLAM frameworks in real-world scenarios. 

In summary, while the literature presents numerous improvements to either SLAM or 
path planning individually, a common limitation in integrated systems is the treatment of 
these components as separate, sequential processes. This ‘black-box’ approach often 
overlooks the fact that errors and uncertainties from the SLAM process inevitably 
propagate to and degrade the performance of the path planner. 

Our work diverges from this conventional paradigm. The core of our contribution lies 
not in simply combining two algorithms, but in creating a co-optimised framework where 
the SLAM system is purposefully enhanced to serve the specific needs of the dynamic 
path planner. By actively reducing data volume and mapping errors at the source (within 
cartographer), we provide a higher-fidelity and more stable world model. This allows the 
downstream A* and TEB planners to operate more effectively, reducing their 
vulnerability to map noise and localisation inaccuracies, which is a key distinction from 
prior integration efforts. 

3 System design and methodology 

The application of robotics has moved from theory to reality, profoundly transforming 
key industries. In warehouse automation, giants like Amazon and Maersk operate highly 
automated fulfilment centres where autonomous mobile robots (AMRs) and intelligent 
sorting systems handle, retrieve, and sort goods 24/7, dramatically increasing logistical 
efficiency and order processing speed. 

Similarly, in the healthcare sector, service robots are playing an increasingly vital 
role. For example, robots like Moxi assist nurses by delivering medications and medical 
supplies, freeing them to focus on patient care, while the da Vinci surgical system enables 
surgeons to perform complex, minimally invasive procedures with high-precision robotic 
arms, significantly improving patient outcomes. These instances clearly illustrate that 
robotics is a core driver for boosting productivity, safety, and service quality. 

The autonomous mobility of IMRs fundamentally relies on the synergistic operation 
of multiple sensors and efficient system integration. As illustrated in Figure 1, the 
experimental platform in this study employs an Ackermann steering chassis, integrated 
with several core components: a host computer running the robot operating system 
(ROS), a LiDAR sensor (LeiShen LS01B), an IMU, and an NXP development board 
serving as the underlying driver module. 



   

 

   

   
 

   

   

 

   

   6 Q. Chen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 Intelligent mobile robot (see online version for colours) 
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The modular architecture of the system facilitates data exchange through ROS’s 
distributed communication framework. Figure 2 presents the comprehensive workflow of 
the mobile robot system, which encompasses four primary functional layers: 
environmental perception, map construction, path planning, and motion control. 

Figure 2 Mobile robot workflows 
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This multi-layered architecture ensures robust and efficient operation through the 
following mechanisms: 

1 the environmental perception layer utilises LiDAR and IMU data fusion to achieve 
precise environmental awareness 

2 the map construction layer implements SLAM algorithms to generate accurate 
environmental representations 

3 the path planning layer employs advanced algorithms to determine optimal 
navigation routes 

4 the motion control layer executes precise movement commands through the 
integrated control system. 

3.1 Primary sensors 

3.1.1 LiDAR 
Light detection and ranging (LiDAR) serves as the core sensor for environmental 
perception in robotic systems. It operates by emitting laser beams and capturing their 
reflections to generate high-precision three-dimensional point cloud data. For this 
experiment, the LeiShen LS01B LiDAR (technical specifications detailed in Table 1) was 
selected. This sensor employs the principle of triangulation-based ranging, offering a 
detection range of 0.1–12 meters, an angular resolution of 1°, and a scanning frequency 
of 10 Hz. The point cloud data is transmitted in real-time to the main control unit via the 
ROS /scan topic, facilitating SLAM as well as real-time navigation (Baratta et al., 2025). 
Table 1 Technical specifications of LeiShen LS01B LiDAR 

Parameter Specification 
Detection range 0.1–12 metres 
Angular resolution 1° 
Scanning frequency 10 Hz 
Operating principle Triangulation-based ranging 
Data transmission ROS/scan topic 

3.1.2 Low-level driver module 
The low-level driver module employs the NXP RT1064 development board, which is 
responsible for motor control, sensor data acquisition, and chassis motion control. The 
development board interfaces with motor drivers via the CAN bus and utilises a PID 
algorithm to achieve closed-loop motor speed control (with a control cycle of 1 ms), 
ensuring smooth and precise chassis movement. Additionally, the development board 
integrates an IMU (MPU6050) to collect real-time data on the robot’s pitch, roll, yaw 
angles, and acceleration. These data, along with encoder pulse counts, are transmitted to 
the host computer via a USB interface. To minimise communication latency, the  
low-level driver module employs a custom serial protocol. 
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3.2 Software architecture and algorithm implementation 

3.2.1 ROS distributed communication and modular design 
ROS adopts a peer-to-peer (P2P) loosely coupled network architecture, enabling 
distributed task scheduling and data exchange through communication mechanisms such 
as topics, services, and actions (Bolodurina et al., 2024). A key advantage of this 
architecture lies in its high code reusability: by leveraging open-source packages for 
SLAM, navigation, and control, redundant development efforts are significantly reduced, 
accelerating the research and development cycle. Furthermore, ROS supports distributed 
deployment of modules, allowing different functional components to run on independent 
hosts. This effectively distributes computational load, enhancing system real-time 
performance and stability. 

The modular design of ROS, coupled with standardised interfaces, enables functional 
decoupling, allowing individual modules to be flexibly extended, replaced, or ported 
across platforms. This design not only reduces system complexity but also provides a 
robust software foundation for autonomous navigation tasks in complex and dynamic 
environments. 

3.2.2 SLAM technology 
SLAM is a core technology for autonomous robot mobility. Its primary objective is to 
simultaneously estimate the robot’s pose and construct a high-precision map in an 
unknown environment using sensor data such as LiDAR point clouds or visual images. 
Current mainstream SLAM technologies can be categorised into two types: 

1 Laser SLAM: this approach relies on the high-precision ranging data from LiDAR 
and is well-suited for static, structured environments such as warehouses and 
laboratories. However, it is susceptible to interference in dynamic scenarios. 

2 Visual SLAM (VSLAM): based on image features captured by cameras, VSLAM 
offers lower hardware costs and supports semantic understanding. However, its 
performance degrades in low-light or texture-deficient environments (Bolodurina  
et al., 2024). 

In this study, a laser SLAM solution was adopted, leveraging the cartographer algorithm 
for real-time mapping. Cartographer’s strength lies in its multi-level optimisation 
strategy, which balances accuracy and computational efficiency, making it particularly 
suitable for indoor mobile robot applications. 

3.2.3 Introduction to the cartographer algorithm 
Cartographer, developed by Google, is a graph optimisation-based SLAM algorithm 
specifically designed for real-time indoor mapping. It generates high-resolution grid 
maps with a precision of 5 cm, making it suitable for autonomous navigation tasks in 
complex environments. In the front-end processing, cartographer achieves scan matching 
using LiDAR scan data on adjacent submaps. The submap construction process is an 
iterative optimisation procedure, where scan results are continuously aligned with the 
submap coordinate system to gradually generate an accurate map representation. This 
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hierarchical optimisation strategy based on submaps not only enhances mapping 
efficiency but also ensures high precision and consistency in the generated maps. 

3.2.4 Local optimisation 
Local optimisation refers to the process of constructing submaps. The initial scan point is 
set as the origin (0, 0), and the scan points are denoted as H = {hk}, where  
k = 1, 2, 3 … k. The transformation matrix Tξ represents the pose vector ξ that transforms 
a scan frame into the submap frame. Thus, the transformation of a scan point pξ into the 
submap frame can be expressed as: 

cos sin
sin cos

xθ θ
ξ ξ ξ

yθ θ

ξξ ξ
T p p

ξξ ξ
−   

= +   
   

 

Through several iterations, continuous scan frames are used to construct submaps, which 
are represented as probability grids with resolution r, as shown in Figure 3. 

Figure 3 Pixels and grid points 

× × × × × 

× × ×   

× × ×   

× × × × × 

 

Whenever a scan is inserted into the probability grid map, the sets of hit points (points 
with LiDAR data) and miss points (points without LiDAR data) are determined, as 
illustrated in Figure 4. 

Figure 4 Hit and miss-related scans and pixels 

             

             

             

             

             

             

             
 



   

 

   

   
 

   

   

 

   

   10 Q. Chen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

For each hit point (shaded and marked with ×), adjacent grid points are added to the hit 
set. For each miss point (shaded area), grid points along the line from the LiDAR origin 
to the scan point, excluding those in the hit set, are added to the miss set. For unobserved 
grids, a default probability value phit or pmiss is assigned (typically 0.5, indicating 
uncertainty about grid occupancy). For observed grids, the probability odds are updated 
as: 

( )
1

podds p
p

=
−

 

The update formula for the hit probability of each grid is: 

( ) ( )( )( )1( ) ( )new oldM x clamp odds odds M x odds phit−= ⋅  

Before inserting a scan frame into the submap, the pose of the scan frame is optimised 
using scan matching based on the Ceres library. The goal is to find an optimal pose that 
maximises the probability of scan points matching the submap. This problem can be 
formulated as a nonlinear least squares optimisation: 

( )( )2

1

arg min 1
K

smooth ξ k
ξ k

M T h
=

−  

Here, the function Msmooth:2 →  transforms points into a smoothed probability value 
in the submap, using a bicubic interpolation function. 

3.2.5 Global optimisation 
Global optimisation is achieved through loop closure detection, with the primary goal of 
reducing the accumulated errors during the mapping process. In the cartographer 
algorithm, each scan frame is matched with submaps, but over time, this matching 
process can lead to error accumulation. To address this issue, cartographer employs a 
sparse pose adjustment (SPA) strategy. This strategy optimises the global pose 
relationships, effectively minimising error accumulation and ensuring map consistency 
and accuracy. Through this approach, cartographer can generate high-precision maps in 
large-scale environments, providing a reliable foundation for subsequent path planning 
and navigation tasks. 

3.2.6 Introduction to the A* algorithm 
The A* algorithm is a widely used path planning method that builds upon the foundation 
of Dijkstra’s algorithm. In this study, A* was selected as the global path planning method 
for the robot. Compared to Dijkstra’s algorithm, A* introduces a heuristic function that 
combines the actual distance traveled with an estimated distance to the goal, significantly 
improving computational efficiency and goal-directedness. This characteristic enables A* 
to quickly find the optimal path from the start to the goal in complex environments while 
minimising unnecessary computations. 
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3.2.7 Introduction to the TEB algorithm 
The TEB algorithm is a local path planning method that optimises both the robot’s pose 
sequence Pi and the time intervals ∆Ti between adjacent poses (Cui et al., 2022). The core 
idea is to generate a smooth and dynamically feasible trajectory by simultaneously 
optimising the spatial and temporal components of the robot’s motion. 

• Mathematical formulation: 
1 Pose sequence: a sequence of kkk poses is represented as: 

{ } 0,1, , 1 ,i i kP P k= −= ∈   

2 Time interval sequence: the corresponding time intervals between poses are 
represented as: 

{ } 0,1,..., 1i i kτ T = −= Δ  

3 Trajectory representation: the combined pose and time interval sequence is 
denoted as: 

: ( , )B P τ=  

• Optimisation objective: 

The TEB algorithm aims to find the optimal trajectory B* by minimising a cost 
function f(B), which is a weighted sum of various constraint functions: 

*

( ) ( )

arg min ( )

k k
k

f B γ f B

f BB
B

 =


 =



 

where γk is the weight coefficient for the kth constraint function. fk(B) represents 
individual constraint functions, such as velocity, acceleration, and obstacle 
avoidance. 

• Trajectory generation: 

The optimisation process generates a trajectory that balances spatial smoothness and 
temporal efficiency. The resulting trajectory, represented as a sequence of poses and 
time intervals, is illustrated in Figure 5. 

Figure 5 Pose information trajectory generated by pose and time sequences 𝑦 
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3.2.8 Hybrid path planning with A* and TEB algorithm integration 
This study proposes a hierarchical path planning framework that combines the A* 
algorithm for global path planning with the TEB algorithm for local trajectory 
optimisation. This integrated approach enables dynamic obstacle avoidance while 
enhancing both navigation safety and path quality in robotic systems. 

The implementation consists of two main phases: First, a feasible global path is 
generated from the pre-built environmental map using the A* algorithm. Subsequently, 
key waypoints are extracted from this global path and converted into pose sequences with 
corresponding time intervals. These parameters serve as inputs for the TEB algorithm, 
which performs iterative optimisation to generate the optimal local trajectory. The final 
output includes velocity and steering angle commands, which are published via ROS 
topics for communication with the low-level controller. 

The complete workflow is illustrated in Figure 6. 

Figure 6 Hybrid algorithm flowchart 

 

4 Experiments and results analysis  

4.1 Motion distance error experiment 

The experiment was conducted with the robot’s frontal centre point as the reference 
position, which was marked as the measurement origin. The robot’s movement was 
controlled through a keyboard teleoperation node while simultaneously recording 
odometry data from the ROS /odom topic. The experimental procedure is illustrated in 
Figure 7. 

Figure 7 Motion distance error experiment procedure (see online version for colours) 
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Following each movement, the theoretical travel distance was calculated from the 
odometry data, while the actual distance was measured physically between marked 
points. To ensure statistical reliability, the experiment was repeated 10 times under 
identical conditions. The complete error data is presented in Table 2. 
Table 2 Summary of motion distance errors 

Trial X-error (cm) Y-error (cm) Trial X-error (cm) Y-error (cm) 
1 1.9 0.9 6 0.3 0.4 
2 1.6 1.7 7 0.2 0.9 
3 0.4 1.3 8 0.1 –0.3 
4 0.6 0.9 9 2.4 –1.3 
5 0.3 0.6 10 0.7 0.9 

4.2 Mapping test 

In this experiment, the cartographer algorithm was evaluated for its mapping performance 
using an Ackermann-steering mobile robot. The experimental procedure was as follows: 
First, the robot chassis was activated and the cartographer package was launched. The 
robot was then manually guided along the perimeter of the testing environment to collect 
sufficient LiDAR scan data. Upon completion of the mapping process, the generated map 
was saved by executing the terminal script bash save_map.sh. 

Figure 8 illustrates a comparison between the physical layout of the testing 
environment and the resulting map. The right panel of the figure clearly depicts the 
structural features of the environment, including walls, tables, chairs, and other obstacles. 
This outcome demonstrates the cartographer algorithm’s capability to accurately 
reconstruct complex spatial layouts, confirming its effectiveness in real-world mapping 
scenarios. 

Figure 8 Experimental mapping results (see online version for colours) 

  

Figure 9 presents the error estimation during the mapping process. By comparing the 
actual robot positions with their corresponding locations on the constructed map, it is 
evident that the majority of the mapping errors are localised in specific regions. These 
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discrepancies are likely attributable to LiDAR signal reflections or the presence of 
dynamic objects in the environment. Nonetheless, the overall mapping error remains 
within acceptable limits, underscoring the robustness and reliability of the cartographer 
algorithm in dynamic environments. 

Figure 9 Mapping error estimation (see online version for colours) 

 

4.3 Navigation test 

Following the successful construction of the environment map, the navigation package 
was launched and the previously saved map was loaded to enable path planning and 
autonomous navigation. The experimental results are shown in Figure 10. In the figure, 
the green rectangle represents the mobile robot, the large white square denotes the local 
perception area, the green line indicates the global path, and the brown line shows the 
local path. The close alignment of the local path with the global path suggests that the 
path planning algorithm effectively guides the robot toward the designated target. 

Figure 10 Navigation test results (see online version for colours) 
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The red arrow represents the predefined target point. Upon issuing the target command 
and activating the motor, the robot commenced its navigation task. The experimental 
outcomes demonstrate that the mobile robot is capable of autonomous navigation and 
dynamic obstacle avoidance, thereby validating the effectiveness and reliability of the 
proposed navigation system. 

4.4 Complex multi-scenario environments 
To comprehensively assess the performance of the IMR in diverse and complex 
environments, mapping and navigation tests were conducted in multiple scenarios, 
including an indoor warehouse, an office area, and an outdoor garden path, see Table 3. 

• Indoor warehouse: the warehouse environment is characterised by dense shelving 
units and stacked goods, resulting in a complex spatial layout with numerous narrow 
aisles. During the mapping process, the cartographer algorithm accurately identified 
the contours of the shelves and the orientation of the aisles, generating a map that 
clearly reflects the structural layout. However, during navigation, the reflective 
surfaces of the metallic shelves occasionally interfered with the LiDAR signals, 
causing temporary localisation errors in certain regions. To mitigate this issue, sensor 
data were filtered and fused with IMU data, significantly improving localisation 
accuracy and ensuring successful path planning for material handling tasks. 

• Office area: the office environment features irregularly arranged furniture, glass 
partitions, and frequent human movement. During mapping, the robot was able to 
clearly distinguish between tables, walls, and glass structures. However, dynamic 
human activity introduced fluctuations in the LiDAR data, particularly in crowded 
zones (De Guzman et al., 2024). To address this, a dynamic object detection and 
filtering mechanism was implemented to exclude interference from moving 
individuals during the data processing stage, thereby enhancing mapping stability. In 
navigation tests, a hybrid A* and TEB algorithm was used, allowing real-time path 
adjustments based on the detected positions of individuals. This enabled effective 
obstacle avoidance and precise arrival at target locations, demonstrating the system’s 
adaptability to dynamic environments. 

• Outdoor garden path: this scenario involved natural terrain variations and the 
presence of vegetation such as shrubs and trees, introducing additional mapping 
challenges. Low vegetation often obstructed or scattered LiDAR beams, reducing 
mapping accuracy. To address this, data from visual sensors were integrated with 
LiDAR input. Visual imagery was used to identify and segment the boundaries of 
vegetation, thereby supplementing the mapping process and enhancing 
environmental representation. During navigation, terrain undulations required the 
robot to dynamically adjust its posture for stable movement. Real-time analysis of 
IMU data was employed to modulate the chassis height and motor speed, ensuring 
safe and steady traversal across uneven garden paths (Fang, 2023). 
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Table 3 Challenges and countermeasures in multi-scenario mapping and navigation 

Scenario Key 
characteristics 

Mapping 
challenges 

Mapping 
solutions 

Navigation 
challenges 

Navigation 
solutions 

Indoor 
warehouse 

Numerous 
shelves and 

stacked goods, 
complex 

spatial layout, 
narrow aisles 

LiDAR signal 
interference 

due to 
reflective 

metal surfaces 
on shelves 

Filtering of 
sensor data 
and fusion 
with IMU 

measurements 

Localisation 
errors caused 

by LiDAR 
reflections 

from metallic 
surfaces 

Filtering of 
sensor data 
and fusion 
with IMU 

measurements 

Office area Irregular 
furniture 

arrangement, 
glass 

partitions, 
frequent 
human 

movement 

Fluctuating 
LiDAR scans 

due to 
dynamic 

human activity 

Implementatio
n of dynamic 

object 
detection and 

filtering 
mechanism 

Need for real-
time path 

adjustments to 
avoid moving 

individuals 

Hybrid A* and 
TEB algorithm 

enables  
real-time path 

adjustment 
based on 
human 

positions 
Outdoor 
garden path 

Natural terrain 
undulations, 
presence of 
plants and 

trees 

Occlusion and 
scattering of 
LiDAR data 
by low-lying 
vegetation 

Integration of 
visual sensor 

data to identify 
vegetation 

boundaries and 
assist mapping 

Terrain-
induced 

instability 
requiring real-
time posture 
adaptation 

Real-time 
IMU analysis 

to adjust 
chassis height 

and motor 
speed 

5 Discussion and application scenario analysis 

5.1 Optimisation of cartographer algorithm performance 

While the cartographer algorithm has demonstrated outstanding performance in map 
construction and is capable of generating highly accurate maps in standard environments, 
it still presents room for improvement when applied to more complex scenarios. These 
include environments with numerous irregular obstacles, frequent dynamic object 
interference, and large-scale settings such as expansive industrial facilities or multi-story 
commercial complexes. To meet the increasing demands of real-world applications for 
IMRs, we implemented a multi-dimensional optimisation of the cartographer algorithm to 
further enhance mapping efficiency and accuracy. 

One critical area of improvement lies in the scan matching phase. Traditional scan 
matching techniques require exhaustive point-to-point comparison across massive 
LiDAR point cloud datasets, resulting in significant computational overhead and 
prolonged mapping times (Guan and Li, 2025). To address this limitation, we introduced 
a feature-based keypoint extraction method that rapidly selects a subset of representative 
points for matching. For example, in scenarios involving tens to hundreds of thousands of 
point cloud data points, this approach can reduce the dataset to just 10–20% of its original 
size. 

Furthermore, by integrating a k-d tree (KD-tree) data structure – illustrated in  
Figure 11 – we reduced the time complexity of keypoint matching from O(n) to O(log n). 
This substantially accelerates the matching process while maintaining a high level of 
accuracy. The combined effect of these enhancements significantly shortens mapping 
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duration and improves responsiveness, making the algorithm more suitable for 
applications requiring real-time performance. 

Figure 11 Establishment of KD tree 

 

In the loop closure module, the original SPA strategy employed by cartographer presents 
certain limitations in large-scale map construction, particularly due to its fixed detection 
frequency and the accumulation of pose estimation errors. These issues often lead to map 
distortion and misalignment. To address this, we propose an adaptive loop closure 
detection mechanism that dynamically monitors the mapping extent and the degree of 
accumulated error (Herrero et al., 2024). 

This approach involves a comprehensive analysis of the robot’s pose variations and 
the continuity of scan data. Based on this analysis, an appropriate error threshold is 
defined. When the accumulated error exceeds the threshold, the system automatically 
increases the frequency of loop closure detection to promptly correct pose estimation drift 
and rectify map deviations. Figure 12 illustrates the pose optimisation process enabled by 
this mechanism. 

Experimental validation conducted in a large indoor parking facility demonstrates that 
the optimised cartographer algorithm reduces mapping errors by approximately 20%. The 
resulting improvements in map consistency and accuracy significantly enhance the 
reliability of downstream tasks such as navigation and path planning. 

Figure 12 Pose optimisation through adaptive loop closure 
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5.2 Performance analysis of the A and TEB hybrid path planning algorithm 

To comprehensively evaluate the performance of the hybrid A* and TEB algorithm in 
path planning, we conducted systematic assessments based on several key metrics, 
including path planning time, path length, and obstacle avoidance success rate. 

• Path planning time: extensive testing across environments of varying scales reveals 
that the global path planning time of the A* algorithm increases linearly with the size 
of the map. This is attributed to the algorithm’s inherent design, which involves 
exhaustive node traversal in the search for a globally optimal path. As the map 
expands, the number of searchable nodes grows, directly extending planning time. 
For instance, in compact indoor environments, the A* algorithm can generate a 
global path within tens of milliseconds. However, in large-scale environments such 
as commercial complexes – where node counts can increase by an order of 
magnitude – the planning time may extend to several hundred milliseconds or even 
seconds. In contrast, the TEB algorithm, responsible for local trajectory planning, 
exhibits comparatively stable performance. Since TEB focuses solely on the robot’s 
immediate surroundings, its computational load primarily depends on the complexity 
of local obstacles. In relatively simple settings, TEB can swiftly adjust the global 
path provided by A*, producing a feasible trajectory that satisfies real-time motion 
requirements (Inner Mongolia Mobile, 2023). Even in complex, cluttered 
environments where more computational resources are required for local 
adjustments, algorithmic optimisations and efficient resource allocation allow the 
hybrid system to maintain acceptable planning latencies, thereby ensuring real-time 
responsiveness essential for practical mobile robotics applications (Ni, 2023). 

• Path length: in terms of path length, the hybrid A* and TEB approach generally 
produces slightly longer paths compared to using the A* algorithm alone. This 
increase arises from TEB’s dynamic obstacle avoidance and its adherence to the 
robot’s kinematic constraints, such as turning radius and acceleration limits. For 
example, in the presence of unexpected obstacles, TEB may reroute the robot, 
resulting in additional travel distance. Nevertheless, statistical analysis across various 
scenarios shows that the path length increases by only 5–10%. Given the algorithm’s 
significantly improved obstacle avoidance and safety performance, this moderate 
increase in path length represents a reasonable trade-off between operational 
robustness and path efficiency. 

5.3 Applications in the logistics and warehousing sector 

In the logistics and warehousing industry, IMRs are emerging as a transformative force, 
driving automation and operational efficiency. By deploying robots powered by the ROS, 
modern warehouses can automate core processes including goods transport, storage, and 
sorting (Xia et al., 2019). These robots function as highly coordinated ‘logistics 
assistants’, capable of executing task commands from warehouse management systems 
with precision. Leveraging high-fidelity maps and advanced path planning algorithms, 
they efficiently determine optimal routes and navigate to target locations with high 
localisation accuracy. 

Whether retrieving goods from high storage racks or collecting scattered parcels from 
corners of the facility, these robots can execute tasks with speed and reliability. In  
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large-scale warehouse settings, multiple IMRs operate collaboratively through ROS’s 
distributed communication framework, forming an intelligent logistics fleet (Ni, 2023). 

For instance, in a mega-warehouse operated by a leading e-commerce enterprise, the 
adoption of IMRs led to significant performance improvements. As illustrated in  
Figure 13, compared to traditional manual handling, robotic operations eliminated 
efficiency fluctuations caused by human fatigue and increased transport speed by 
approximately 40%. Simultaneously, labour costs were reduced by around 30% (Shen, 
2023). Moreover, thanks to precise motion control, damage rates during handling 
decreased markedly, contributing to overall improvements in operational efficiency and 
economic performance. These advancements demonstrate the substantial commercial 
value that intelligent robotics bring to the logistics and warehousing industry. 

Figure 13 Operational efficiency comparison before and after robot deployment 

 

5.4 Applications in the service robotics domain 

In the service robotics sector, IMRs are increasingly being deployed in diverse scenarios 
such as hotel hospitality and medical care, offering customers and patients efficient and 
thoughtful service experiences. 

• Hotel applications: in hotel environments, IMRs perform a wide range of service 
tasks. These robots can warmly greet guests, assist with transporting heavy luggage, 
guide visitors to their rooms, and promptly deliver amenities to fulfil customer 
needs. Through deep integration with the hotel’s information management systems, 
robots are able to access real-time customer service requests. Equipped with 
advanced autonomous navigation and obstacle avoidance capabilities, they can 
navigate seamlessly through complex hotel lobbies and narrow corridors, providing 
guests with a smooth and convenient service experience. The deployment of such 
robots enhances the overall quality of hospitality services and strengthens the hotel’s 
brand image. 
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• Healthcare and nursing applications: in the field of healthcare, IMRs play an 
increasingly vital supporting role. They can assist medical staff by handling 
repetitive logistical tasks such as delivering medications and transporting medical 
equipment (Xia et al., 2019). Their value becomes particularly evident during public 
health emergencies such as pandemics, where minimising human contact is critical. 
Robots help reduce direct person-to-person interactions, significantly lowering the 
risk of cross-infection. 

For example, in a pilot program at a major hospital, the implementation of IMRs resulted 
in the successful execution of over 80% of medication delivery tasks. These robots 
adhered strictly to predefined routes and delivery schedules, ensuring both the timeliness 
and accuracy of medication administration. This not only improved the efficiency and 
reliability of medical services but also ensured that patients received medications 
promptly. Furthermore, by taking over routine logistical responsibilities, robots helped 
alleviate the workload of healthcare professionals, allowing them to focus more on 
essential clinical and patient care activities. 

6 Outlook 

As we have discussed, advancing robotics and automation to the next level requires 
overcoming a wide range of barriers, from technical integration to societal ethics. To 
visualise this complex landscape more effectively, Table 4 organises and maps the key 
future directions against their most significant challenges and proposed solutions. 
Table 4 The future of robotics and automation 

Future direction Key challenges Proposed solutions and strategies 
Enhanced 
autonomy and 
AI 

• Robots struggle with 
unpredictable, ‘edge 
case’ scenarios. 

• Ensuring safety and 
reliability of complex AI 
decisions. 

• High computational 
power requirements. 

• Reinforcement learning: training robots 
in simulation to handle millions of 
scenarios. 

• Explainable AI (XAI): making robot 
decision-making processes transparent 
and verifiable. 

• Edge computing: processing data directly 
on the robot to reduce latency and 
increase speed. 

Human-robot 
collaboration 

• Ensuring absolute safety 
in shared physical 
workspaces. 

• Creating intuitive 
interfaces for seamless 
communication. 

• Building human trust and 
acceptance. 

• Advanced sensors (proximity, force-
torque) that allow robots to react instantly 
to human presence. 

• **No-code/low-code interfaces: allowing 
non-expert workers to task robots using 
simple commands or graphical interfaces. 

• Designing robots with predictable 
behaviours and clear visual/auditory cues. 
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Table 4 The future of robotics and automation (continued) 

Future direction Key challenges Proposed solutions and strategies 
Advanced 
manipulation 
and dexterity 

• Replicating the sensitivity 
and adaptability of the 
human hand. 

• Grasping a wide variety 
of object shapes, sizes, 
and materials. 

• High cost of sophisticated 
grippers and sensors. 

• Soft robotics & biomimetic grippers: 
developing flexible, adaptive grippers 
inspired by nature. 

• AI-powered vision systems: using deep 
learning to instantly identify objects and 
calculate the optimal grasp strategy. 

• Advanced tactile sensing: equipping 
grippers with a ‘sense of touch’ to handle 
delicate items. 

Interoperability 
and 
connectivity 

• Lack of standardisation; 
robots from different 
vendors cannot 
communicate. 

• Cybersecurity threats to 
connected robotic fleets. 

• Managing massive data 
streams from thousands 
of sensors. 

• Universal communication standards: 
industry-wide adoption of protocols like 
VDA 5050 or OPC-UA. 

• ‘Defense-in-depth’ cybersecurity: 
implementing multi-layered security 
protocols for robot networks. 

• Fleet management software: using cloud-
based platforms to orchestrate, monitor, 
and analyse entire robot fleets. 

Democratisation 
and scalability 

• High upfront investment 
cost (CapEx) for small 
and medium-sized 
businesses (SMBs). 

• Shortage of skilled 
personnel for 
programming and 
maintenance. 

• Difficulty integrating 
robots into existing, non-
automated workflows. 

• Robotics-as-a-service (RaaS): a 
subscription-based model that lowers the 
initial cost barrier. 

• Modular and reconfigurable robots: 
creating flexible systems that can be 
easily adapted to new tasks. 

• Developing standardised integration 
modules for legacy systems. 

Ethical and 
societal 
integration 

• Public concern over job 
displacement. 

• Establishing clear legal 
and ethical guidelines for 
autonomous actions. 

• Data privacy concerns 
with robots operating in 
sensitive environments 
like hospitals. 

• Focus on reskilling and upskilling: 
creating training programs to transition 
the workforce to new roles (e.g., robot 
supervisor, maintenance technician). 

• Developing new legal frameworks: 
working with policymakers to define 
liability and responsibility. 

• Implementing strict data encryption and 
anonymisation protocols. 

With the increasing deployment of IMRs across diverse domains such as service, 
logistics, and inspection, there is a growing demand for enhanced autonomous navigation 
capabilities, particularly in dynamic environments. This study presents an improved 
hybrid SLAM system that integrates cartographer and the TEB-based path planning 
algorithm. The proposed enhancements demonstrate promising feasibility and 
effectiveness in real-world scenarios, particularly with respect to mapping accuracy, 
planning efficiency, and adaptive navigation. 
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Building on the current research findings, future investigations can further explore the 
following key directions: 

1 Robust perception in dynamic environments 

Although the proposed algorithm improves robustness to dynamic objects to a 
certain extent, challenges remain in highly dynamic or densely populated 
environments. Future work may integrate deep learning-based approaches for  
real-time semantic segmentation and tracking of dynamic entities. Such methods 
could enable more refined modelling of dynamic scenes and enhance the SLAM 
system’s ability to identify and adapt to non-static regions in the environment. 

2 Multimodal sensor fusion and redundancy mechanism 

Reliance on a single sensor modality increases vulnerability to occlusions, noise, and 
unexpected failures. Future SLAM systems should incorporate robust fusion of data 
from multiple sensors – including LiDAR, RGB-D cameras, IMUs, and ultrasonic 
sensors – through adaptive weighting mechanisms. This would significantly improve 
system resilience and fault tolerance in complex operational conditions. Moreover, 
leveraging edge computing technologies for real-time processing of multimodal data 
will be a key area of future focus. 

3 Algorithm lightweighting and edge deployment optimisation 

As mobile robots increasingly demand real-time responsiveness and computational 
efficiency, lightweight design of SLAM and path planning algorithms becomes 
imperative. Future work can explore sparse graph optimisation, incremental 
computation frameworks, and graph neural networks (GNNs). Additionally, 
optimisation for embedded platforms will be essential to enable high-performance 
SLAM and planning on edge devices with limited resources. 

4 Human-robot collaboration and interactive navigation 

As robots are expected to operate more frequently alongside humans in shared 
environments, the development of predictive and collaborative navigation 
mechanisms will become a critical research direction. Intelligent robots should be 
capable of anticipating human intentions and trajectories, dynamically adjusting their 
own paths to enable safer and more natural interaction. 

5 Long-term autonomy and environmental adaptability 

Conventional SLAM systems typically rely on short-term, high-quality data 
collection. To enable long-term autonomous operation, systems must evolve to adapt 
to environmental changes, such as interior modifications or furniture relocation. 
Techniques such as experience replay and change detection based on historical map 
data will be crucial to maintaining long-term stability and operational reliability. 
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