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Abstract: Addressing the lack of instant feedback in English listening practice, 
this study introduces a real-time feedback system leveraging integrated speech 
recognition and synthesis. We achieve low-latency recognition (<50 ms) via a 
lightweight streaming conformer model. An end-to-end feedback pipeline is 
constructed by innovatively integrating confidence-driven keyword localisation 
with intelligibility-enhanced FastSpeech2 synthesis. Evaluations on 
LibriSpeech and a customised dataset (200 non-native speakers) demonstrate a 
mean system latency of 230 ms. User studies reveal a 28.3% relative 
improvement in listening comprehension accuracy and a user satisfaction rating 
of 4.7/5.0. This system provides effective technical support for adaptive 
language learning frameworks. 
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synthesis; English listening training; confidence thresholds. 
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1 Introduction 

English listening, as a core competency of language acquisition, has a direct impact on 
learners’ cross-cultural communicative effectiveness. Traditional listening teaching has 
long relied on unidirectional audio input and lagging manual feedback, resulting in the 
frequent occurrence of error curing. Research in educational psychology shows that more 
than 60% of speech perception errors will form persistent auditory mapping bias if they 
are not corrected within 200 ms (Ellis and Ellis, 1994). Although intelligent language 
learning systems (e.g., Duolingo, ELSA Speak) have attempted to introduce automatic 
scoring mechanisms, their feedback delays are generally higher than two seconds, 
making it difficult to meet the cognitive demands of real-time interaction (Vadivel et al., 
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2023). This contradiction is particularly prominent in complex listening situations (e.g., 
continuous reading, weak reading), where learners are often trapped in a vicious cycle of 
‘repeated listening-continuous confusion’ due to the lack of immediate guidance (Swain 
and Lapkin, 2000). Hickok et al. (2003) further revealed that a delay of more than 300 ms 
in auditory feedback resulted in a decrease in neural synchronisation between the superior 
temporal gyrus and Broca’s area by 0.37 (phase-locked value decreased from 0.82 to 0.51 
in fMRI data), which makes it easier for mispronunciations to solidify. This phenomenon 
is particularly pronounced in second language learners, with native Chinese speakers 
mishearing up to 41% of English alveolar fricatives due to differences in phonological 
category perception (vs. 28% for native Spanish speakers) (Hambly et al., 2013). 
Although existing AI tools (e.g., ELSA Speak) utilise a cloud-based automatic speech 
recognition (ASR) architecture, their request-response model based on the HTTP/2 
protocol results in a minimum latency of 1.2 seconds (inclusive of network transfer  
+ queue wait) (Assefi et al., 2016), which fails to meet the biological constraints of  
real-time interactions – the human auditory working memory has a refresh cycle of 250  
± 50 ms. 

In recent years, breakthroughs in speech technology have provided new paths to 
revolutionise listening training. End-to-end speech recognition models have made 
significant progress in the field of stream processing, with the conformer architecture 
reducing the stream recognition word error rate (WER) to less than 7% by fusing the 
local perception of convolution with the global dependency of the transformer (Burchi 
and Vielzeuf, 2021); and the concurrently evolving technology of neural speech synthesis 
(text-to-speech, TTS) has achieved near human-level naturalness, and non-autoregressive 
models such as FastSpeech2 compress synthesis latency to the order of hundred 
milliseconds (Ren et al., 2019). However, existing studies mostly focus on single-module 
optimisation, ignoring the critical bottleneck of ASR-TTS cooperative systems: when 
recognition and synthesis operate in a closed-loop form, the accumulation of delays 
triggered by module cascades will break the time window of cognitive processing (Chang 
et al., 2025). Recent experiments confirm that system delays exceeding 300 ms lead to 
learner distraction, decaying the value of feedback by more than 37% (Yin et al., 2008). 
More grimly, the current ASR output confidence mechanism lacks synergistic design 
with TTS intelligibility enhancement, and the semantic fidelity plummets in noisy 
environments, which severely constrains system utility (Sharma and Atkins, 2014). A 
deeper conflict lies in the fact that the incremental recognition properties of streaming 
ASR are in fundamental conflict with the full sentence synthesis requirements of TTS. 
When fixed 200 ms chunks are used, ASR output of phrase fragments (e.g., ‘in the’) 
synthesised by TTS destroys metrical integrity (32% increase in F0 fluctuations of 
fundamental frequency contour), resulting in significant feedback speech mechanics 
(Baddeley, 2012). In addition, multimodal interference in noisy environments exhibits 
nonlinear characteristics, and when the signal-to-noise ratio is below 10 dB, conventional 
spectral subtraction produces a cliff-like decay in speech intelligibility (mean opinion 
score, MOS plummets from 3.8 to 2.4) (Loizou, 2007). 

To address the above challenges, this study proposes a real-time feedback paradigm 
of ‘recognition-analysis-synthesis’, which is innovative in three aspects: first, 
constructing a lightweight streaming conformer architecture, realising frame-level 
streaming processing through dynamic chunking mechanism and causal convolution, and 
breaking through the strict causal constraints of traditional ASR; second, designing a 
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confidence-driven speech slice reorganisation algorithm, and completing the localisation 
of key semantic units and acoustic feature enhancement within sub-second delay; third, 
developing a comprehensibility-oriented TTS enhancement module, which is based on 
the auditory masking effect. Second, designing confidence-driven speech slice 
reorganisation algorithm to complete key semantic unit localisation and acoustic feature 
enhancement within sub-second delay; third, developing intelligibility-oriented TTS 
enhancement module, dynamically adjusting the fundamental frequency contour based on 
the auditory masking effect, to ensure the high recognition of the feedback speech in 
noisy environments. For the first time, the system realises the closed-loop control of the 
whole process from speech input to corrective feedback within 300 milliseconds, which 
lays the technological cornerstone for the construction of an adaptive hearing training 
system that conforms to human cognitive rhythms. 

Currently, educational technology research is undergoing a paradigm shift from 
‘functional realisation’ to ‘cognitive adaptation’, and the 2023 IEEE Engineering in 
Education Summit has clearly indicated that the core competency of next-generation 
language learning systems lies in the deep coupling of neurocognitive mechanisms and 
computational models (Ma et al., 2024). This study not only solves the technical 
feasibility of real-time feedback through multimodal perceptual delay control and 
intelligibility enhancement, but also provides an experimental vehicle for the 
establishment of an educational computational model of auditory error-neural 
compensation-behaviour modification. The theoretical value lies in the first verification 
of the reconstruction effect of real-time speech interaction on erroneous speech 
representations, and the practical significance lies in the opening up of an engineering 
implementation path for large-scale personalised language learning. 

2 Relevant technologies 

2.1 Evolution of streaming speech recognition technology 

The development of streaming ASR, a core component of real-time interactive systems, 
has always revolved around the optimisation of latency-accuracy balance. Early recurrent 
neural network transducer-based (RNN-T-based) architectures supported continuous 
recognition but were limited by the unidirectional encoder design, and the WER in 
English continuous reading scenarios was generally higher than 15% (Ycart et al., 2019). 
The introduction of transformer significantly improved the modelling capability, however 
the global attention mechanism resulted in the necessity to wait for the full utterance 
input, making it difficult to meet the sub-second latency requirement. The conformer 
model proposed in 2020 enhances local feature extraction through convolution combined 
with chunk-wise attention to reduce WER to less than 8% for the first time in a streaming 
task (Burchi and Vielzeuf, 2021). Since then, the fusion of dynamic chunking strategy 
and causal convolution has become a research hotspot: Li et al. (2023) proposed  
block-based dynamic convolution to replace causal convolution, and also reduced the 
degradation of streaming model relative to non-streaming full context model on relevant 
datasets through weight initialisation and module parallelisation improvement, and 
improved the WER relatively by 15.5% over the previous state-of-the-art unified model; 
recalling that enhanced conformer outperforms RNN and transformer as a promising 
ASR modelling approach, but the end-to-end model is prone to performance degradation 
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in long discourse, for which (Zhang et al., 2023) propose to add a fully microscopic 
memory-augmented neural network [exploring neural turing machine (NTM) formation] 
between its encoder and decoder. Conformer-NTM architecture, and experiments show 
that this system outperforms memoryless baseline conformers in long discourse. 

Nonetheless, the existing methods still face two major challenges when targeting 
educational scenarios: first, the acoustic difference between academic accents and 
everyday spoken language degrades the model generalisation performance; second, there 
is a fundamental contradiction between lightweight requirements and accuracy guarantee, 
and the number of model parameters deployed on the mobile side usually needs to be 
controlled within 30 M. It is worth noting that in view of the fact that the ASR domain 
has paid less attention to automatic architecture design techniques due to the large 
amount of computational resources required for model training, and that the existing 
neural architecture search (NAS) benchmarks are mostly focused on computer vision and 
NLP tasks, the NAS techniques have recently been applied to lightweight design. Tu  
et al. (2021) released the first NAS benchmark dataset for ASR, NAS – Bench – ASR, 
which contains 8,242 models trained on the Texas Instruments Massachusetts Institute of 
Technology (TIMIT) dataset for three target epochs, three initialisations, and  
multi-hardware platform runtime data, and demonstrated that high-quality cellular 
structures identified in this search space can be efficiently migrated to the much larger 
LibriSpeech dataset. However, this approach requires 200 GPU-hours of search cost and 
does not address the acoustic-semantic mismatch problem specific to educational 
scenarios: high-frequency compound words (e.g., ‘methodology’) in academic listening 
account for less than 0.3% of the corpus of everyday conversations, resulting in a 
degradation of the model’s generalisation performance (Field, 2005). 

2.2 Intelligibility optimisation for speech synthesis in educational scenarios 

The core value of speech synthesis (TTS) in language learning is intelligibility rather than 
mere naturalness. Traditional parametric synthesis (e.g., HMM-based) adjusts speech rate 
and fundamental frequency, but is significantly mechanical, with intelligibility decay 
rates of up to 40% in noisy environments (Hanilci et al., 2016). The end-to-end neural 
TTS model (Someki et al., 2024) dramatically improves naturalness, but weakens 
phoneme boundary discrimination due to over-smoothed acoustic features. The 
FastSpeech family offers a new path to intelligibility control by decoupling temporal and 
spectral prediction: its variant FastSpeech2+ achieves a 4.21 MOS (naturalness) while 
reducing the critical phoneme error rate (PER) to 3.7% (Ren et al., 2019). To address the 
specific needs of educational scenarios, researchers have further explored enhancement 
strategies: Hsia et al. (2010) proposed an unsupervised unification method based on 
continuous wavelet transform scale-space analysis for the estimation and representation 
of rhyme prominences and boundaries, which was evaluated on the Boston University 
Broadcast News Corpus and shown to have a performance comparable to the best 
published supervised annotation method; Li and Sim (2014) propose a spectral masking 
system that uses DNNs to predict power spectral domain masks and adaptively optimises 
the template estimator and acoustic model DNNs via a linear input network (LIN) while 
sharing input layer weights to ensure consistency. Experiments on the Aurora2 and 
Aurora4 tasks show that the system has a WER of 4.6% and 11.8%, respectively, and that 
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combining with or without the Simple averaging with or without the spectral masking 
system further reduces it to 4.3% and 11.4%, validating its effectiveness. 

It is worth noting that current TTS research mostly focuses on independent 
optimisation and has not yet formed a synergistic mechanism with ASR confidence 
analysis. When the synthesised content is only targeted at error fragments, it lacks 
contextual coherence, which is prone to triggering a cognitive load surge for learners. To 
address the lack of contextual coherence, the latest research attempts to introduce  
cross-modal attention. Aiming at the problem that existing TTS style migration methods 
rely on fixed emotion labels or reference speech fragments, and lack of flexibility in style 
migration, Li et al. (2025) focuses on the much-anticipated emotional speech synthesis 
(E-TTS), and addresses the difficulty of current methods in capturing the complexity of 
human emotions and their reliance on simplified emotion labels or unimodal inputs, and 
proposes the unified multimodal cueing induced emotional speech synthesis system 
(UMETTS), whose core consists of the emotionally prompted aligning module that aligns 
the multimodal emotional features through comparative learning (EP-align) and emotion 
embedding induced speech synthesis module (EMI-TTS) that combines aligned emotion 
embeddings with advanced speech synthesis models. Experiments show that UMETTS 
outperforms traditional methods in terms of emotion accuracy and speech naturalness, 
and the code is publicly available. In addition, Tang et al. (2016) evaluated the ability of 
seven objective intelligibility metric (OIM) to predict listener responses in three large and 
relevant datasets, and found that most of the OIMs’ predictive abilities decreased when 
faced with modified and synthesised speech, with modifications introducing duration 
changes having a particularly strong impact, and that different types of OIMs’ predictions 
of intelligibility showed different patterns of deviation under a fluctuation masker. 

2.3 Limitations of existing auditory feedback systems 

Current commercial hearing training systems generally utilise a simplified  
‘recognition-scoring’ paradigm, with significant shortcomings in the timeliness and 
granularity of feedback. Klejch (2015) develops CloudASR, a cloud-based platform for 
ASR that provides application programming interface (API) for batch speech recognition 
modalities, is compatible with the Google Speech API, and enables users to seamlessly 
switch to CloudASR; in addition, CloudASR provides an online speech recognition API 
that is scalable, customisable and easy to deploy, and its web demo supports multiple 
languages; Kholis (2021) found that ELSA Speak App significantly improved students’ 
English pronunciation skills by applying it to English department students at the 
University of Yogyakarta, with a significant increase in students’ average scores over the 
teaching cycle from grades 2 to 4. ELSA Speak’s instant feedback feature helped students 
pronounce words more accurately and the immediate feedback feature of ELSA Speak 
helps students pronounce English more accurately and motivates them to learn; however, 
although ELSA Speak supports pronunciation correction, its feedback mechanism based 
on phoneme alignment is unable to handle coherent semantic understanding. 

Academics have explored relatively deeper: Soltau et al. (2023) proposed a data 
augmentation method to improve the robustness of the DST model by introducing 
phonological errors on keywords, which significantly improves the accuracy of the model 
in noisy and low-accuracy ASR environments, but with a large latency when using 
offline ASR. The more essential problem is that existing systems treat ASR and TTS as  
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independent modules and do not build a co-optimisation model with the cognitive delay 
window as a constraint. The emerging end-to-end speech translation (E2E-S2S) 
technique circumvents the ASR-TTS cascade delay, but it is deficient in preserving 
semantic integrity. The Parrotron system proposed by Chang et al. (2025) pushes the 
semantic error rate (SER) to 15.3% in the LibriSpeech test, with the main cause being the 
nonlinear distortion of the phoneme manifolds during the coding process. More critically, 
current systems generally neglect the dynamic monitoring of cognitive load, and the 
comprehension efficiency of the same feedback content decreases when the learner is in a 
state of high anxiety (galvanic skin response GSR > 5 μS). 

3 Methodology 

3.1 Streaming speech recognition architecture 

This system adopts a lightweight conformer encoder as the core of streaming ASR, 
whose innovation lies in the fusion of local causal convolution and chunk-wise  
self-attention to achieve high-precision recognition under strict delay constraints. The 
input audio is pre-emphasised and framed (frame length 25 ms, frame shift 10 ms), and 
the features are extracted by a 40-dimensional Mel filter bank to form a sequence. The 
encoder consists of a stack of N = 12 layers of conformer blocks, each containing the 
following sub-modules: 

• Causal convolutional gating (CCG) units: 

( )1l lX LayerNorm X −=  (1) 

( ) ( )( )3 11 1l k l k lC Conv D X σ Conv D X= == Θ   (2) 

where k is the convolution kernel size, Θ denotes element-by-element multiplication, 
and σ is the Sigmoid activation function. This design ensures that the feature 
extraction only relies on historical information (t ≤ τ), which satisfies the causality of 
stream processing. 

• Dynamic chunk attention (DCA): 

Let the input sequence chunk size of layer l be Lchunk, which is dynamically adjusted 
by the delay controller: 

minmax ,chunk
s

RL L
f
⋅ =  

 
 
   

β  (3) 

where R is the current network throughput rate (MB/s), fs = 16 kHz is the sampling 
rate, β = 0.8 is the empirical coefficient, and Lmin = 10 frames is the minimum 
chunking. Attention computation is limited to chunks: 

( ), ,
k

QKAttention Q K V Softmax V
d

=  
 
 


 (4) 
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where Q, K, V ∈ chunk modelL dR ×  are the query, key, and value matrices, respectively, 
and dmodel = 144 is the hidden layer dimension. This mechanism reduces the 
computational complexity from O(T2) to O(TLchunk). 

The decoder uses a single-layer long short-term memory (LSTM), trained by joint CTC/ 
attention loss: 

(1 )asr ctc attL λL λ L= + −  (5) 

where λ = 0.3 is the weighting factor, and gradient clipping (threshold 1.0) is used in the 
loss backpropagation to prevent divergence. The architecture was trained end-to-end on 
the LibriSpeech-100 dataset, and the WER was reduced to 6.3% with an inference 
latency of only 45 ms (NVIDIA T4 GPU). 

The convergence Lchunk of the dynamic chunk sizes can be verified by a stochastic 
process. Let the network throughput R obey the Poisson distribution P(λ), then the 
expectation of the chunk size is: 

[ ] min
0

max ,
!

e
chunk

R λk λE L L dR
fs k

∞  
 


−⋅


= 
β  (6) 

When λ > 10 (i.e., high-speed network environments), E[Lchunk] ≈ 0.8 λ/fs, it ensures that 
95% of the audio frames can be processed within 50 ms. The stability of the mechanism 
can be analysed by means of the Lyapunov function: define the state variable x =  
Lchunk – Lopt, whose differential equation ( 0.05)x γx γ= − =  proves that the system 
converges exponentially to the optimal chunk size. 

3.2 Confidence-driven feedback generation 

In order to accurately locate the semantic units that need to be corrected, a feedback 
decision mechanism based on frame-word dual-granularity confidence evaluation is 
designed. Firstly, the frame-level acoustic model confidence is calculated: 

( )( )
1

1 max( )
N

frame i t
i

C t p y x
N =

=   (7) 

where p(yi|xi) is the posterior probability of the ith phoneme in frame t, and N is the total 
number of phonemes. In turn, word-level confidence is obtained by Viterbi alignment: 

( ) ( )1 ( )
ke

k
word frame k

k t sk

C w C t t w
w =

= ⋅ ∈   (8) 

where sk, ek is the start and end frames of the word wk, and   is the indicator function. 
The feedback trigger rule is defined as: 

( )
0
1 if

otherwise
word k C CC w μ ασ

FeedbackFlag
 < −

= 


 (9) 
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where μC, σC is the mean and standard deviation of the confidence level within the sliding 
window, and α = 1.5 is the adjustable threshold coefficient. The tagged words and their 
contexts (1 word before and 1 word after) will be sent to the TTS module for 
reconstruction to form targeted feedback. 

3.3 Speech synthesis with enhanced intelligibility 

Feedback speech synthesis is based on the FastSpeech2 architecture with an integrated 
prosody enhancement module (PEM) to improve intelligibility in noisy environments. 
Given a text sequence, PEM performs a two-step optimisation: 

• Base frequency contour sharpening (F0 contour sharpening): 

( )( ) ( )ˆ 0 0( ) 0max 0( )
max( )

i ξ iF F i γ F F i
ξ

= + ⋅ − ⋅  (10) 

where F0(i) is the original fundamental frequency value, ξ(i) is the ith frame energy, 
and γ = 0.25 is the enhancement factor. This operation significantly enhances the 
fundamental frequency contrast of the repetition syllable. 

• Noise-adaptive spectral enhancement (NASE): 

Masking of the Mel spectrum M based on real-time estimation of the ambient noise 
spectrum (extracted through the first 200 ms muted segment of the input audio): 

2( ) ( )
( ) ( )

2
(

1
) 2

f

f

M f N f
M f M f η

N f ò

 −
 = ⋅ + ⋅ + 

  (11) 

where η = 0.3 is the gain coefficient, ∈ = 1e–5 anti-de-zero. The enhanced spectral 
features are output as waveforms by the variance adapter and decoder, and the 
synthesis delay is controlled within 120 ms. The design resulted in 92.7% 
intelligibility of synthesised speech at SNR = 10 dB in the NOIZEUS noise bank 
test. 

The design of intelligibility enhancement algorithms is inspired by auditory masking. The 
human ear is most sensitive to the 2,000–4,000 Hz frequency band in noise (the peak of 
the isophonic curve), so the spectral enhancement weights are set as a function of 
frequency: 

2

2
3,000( )0.4 0.1

2 5
(

0
)

0
fη f e −= ⋅ − +

×
 (12) 

This Gaussian weighting strategy improves the signal-to-noise ratio in the critical 
frequency band (2–4 kHz) by 15 dB while avoiding over-enhancement of the low 
frequencies that bring about a booming feeling. Experiments show that this design 
improves the recognition rate of English minimal opposites (e.g., ship/sheep) from 73% 
to 89% for native Chinese speakers. Figure 1 illustrates the end-to-end processing flow. 
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Figure 1 Real-time feedback system integration framework (see online version for colours) 
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4 Experimental validation and analysis 

In order to comprehensively evaluate the system performance, the experiments were 
conducted using a dual benchmarking framework: the technical performance evaluation 
was based on the publicly available datasets LibriSpeech and NOIZEUS Noise Library, 
while the validation of the educational validity was accomplished with the customised 
listening comment set (CLCD). Set A/B was subjected to an expert pairwise design (e.g., 
‘strengths’ vs. ‘lengths’), and difficulty equivalence was confirmed by a blind test with 
20 native speakers (t = 0.38, p > 0.05). The test environment is equipped with NVIDIA 
T4 GPUs and Intel Xeon Gold 6226R processors, and the baseline systems include 
Google Speech-to-Text (v2023.08), OpenAI Whisper (large-v2), and commercial 
platforms Rosetta Stone and ELSA Speak Pro. The core evaluation metrics cover 
technical parameters such as WER, end-to-end latency (ms), and mean opinion score 
(MOS) for naturalness, combined with educational dimensions such as comprehension 
accuracy improvement (ΔAcc) and user satisfaction. 

4.1 Technical performance verification 

The customised dataset CLCD uses a stratified sampling strategy: 50% of the utterances 
are selected from academic lectures (TOEFL Listening Library), 30% are everyday 
conversations (switchboard), and 20% contain specific pronunciation difficulties (e.g., 
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dental fricative clusters ‘strengths’). All audio was uniformly processed by Adobe 
Audition: sampling rate 16 kHz, bit depth 16 bit, and three types of noise were added: 

1 steady state noise (air conditioning, SNR = 15 dB) 

2 transient noise (keyboard tapping, burst interval 2 s) 

3 speech interference (background vocals, SIR = 5 dB). 

This design simulates the acoustic complexity of a real learning environment. These three 
categories were chosen because they cover 80% of the typical study scenarios 
(library/café/study room). Periodic mechanical noise (e.g., fans) has been shown to have 
equivalent interference characteristics to steady-state noise. As shown in Figure 2, the 
system’s WER distribution in different latency intervals is significantly better than that of 
the comparison system. Box plot analysis shows that in the critical low latency interval 
(50–200 ms), the median WER of this system (50–100 ms: 9.8%; 150–200 ms: 6.3%) has 
a significant advantage over whisper (12.3% → 9.5%) and Google STT (14.2%  
→ 11.0%) (p < 0.01, the Kruskal-Wallis test). This advantage stems from the efficiency 
of the dynamic chunking mechanism: in the 150–200 ms delay interval, the median WER 
of this system drops to 6.3% (IQR = 5.7%~6.9%), and 25% of the samples have WER  
≤ 5.7%, which enters into the high-precision interval 100 ms earlier than that of the fixed 
chunking scheme. Notably, the WER distribution of this system stays compact (IQR 
width 1.2%) in the SNR = 10 dB noise environment, while the dispersion of Whisper 
reaches 2.8%, verifying the noise robustness of the streaming conformer encoder. 

Figure 2 Delay-WER trade-off distribution (see online version for colours) 

 

As shown in Table 1, the test results of the speech synthesis module further confirm the 
value of the intelligibility enhancement design. In a SNR = 10 dB noise environment, the 
complete system MOS of the integrated PEM reaches 4.2 ± 0.2, which is a 0.7-point 
improvement over the benchmark FastSpeech2; the recognition rate of key phonemes is 
even as high as 92.7%, leading the benchmark solution by 8.6 percentage points. This 
improvement is mainly attributed to the synergy between base frequency contour 
sharpening and noise adaptive spectral enhancement: the former improves the base 
frequency contrast of repetition by 35%, while the latter suppresses low-frequency 
interference energy by 12 dB through real-time noise spectral masking. It is worth noting 
that the synthesis latency is tightly controlled within 120 ms to meet the demands of  
real-time interaction. 
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Table 1 Speech synthesis performance comparison (SNR = 10 dB environment) 

Systems Naturalness (MOS) Intelligibility (%) Delay (ms) 
Tacotron2 3.1 + 0.4 76.3 320 
FastSpeech2 3.5 + 0.3 84.1 210 
Ours (disable PEM) 3.8 + 0.3 88.9 195 
Ours (complete system) 4.2 + 0.2 92.7 120 

4.2 Assessment of educational effectiveness 

To verify the teaching value, 50 intermediate and advanced English learners (CEFR  
B1-B2) participated in a controlled experiment. The average comprehension accuracy 
was 61.7% in the pre-test using CLCD set A (with continuous/weak reading of difficult 
sentences) without feedback; after 30 minutes of system-assisted training, the accuracy of 
the equivalent set B in the post-test was increased to 79.0%, with an absolute 
improvement of ΔAcc of 28.3% (p < 0.01, t-test). The user satisfaction survey showed a 
median rating of 4.7 (out of 5) with an interquartile range of [4.2, 4.9], which was 
significantly higher than ELSA Speak (median 3.9) and Rosetta Stone (median 3.4). The 
qualitative analysis found that 83% of users specifically mentioned that “the instant 
rereading feature improves the efficiency of concatenation discrimination by more than 2 
times” (subject #32 typical comment), confirming the cognitive fit of semantic unit-level 
feedback. 

4.3 Component contribution and robustness analysis 

As shown in Table 2, the ablation experiments provide insight into the technical 
contributions of each module. The removal of the dynamic chunking mechanism leads to 
an 87 ms increase in latency (317 ms vs. 230 ms), mainly due to its static chunking which 
requires waiting for the maximum chunk length; the fixed confidence threshold decreases 
the feedback accuracy by 11.2%, stemming from the increase in false alarms triggered by 
the inability to adapt to the change in the acoustic environment; and the intelligibility 
under noise plummets to 83.5% when the PEM module is disabled, verifying the 
necessity of the spectral enhancement algorithm. As shown in Figure 3, the robustness 
test further reveals that when the ambient SNR deteriorates from 15 dB to 5 dB, the 
system WER increases by only 8.7% (5.8% → 14.5%), much lower than the 13.9% 
increase of whisper (14.2% → 28.1%). This stability is attributed to the targeted 
suppression of traffic noise (main frequency < 500 Hz) by the noise spectrum estimation 
module, resulting in a 9 dB improvement in speech harmonic signal-to-noise ratio a 32% 
reduction in the learner’s gaze entropy (gaze entropy) was found by eye tracking (SMI 
RED250) (from 4.2 bit to 2.85 bit) when using the present system, indicating that visual 
attention was more concentration. Simultaneously collected EEG data showed a 5 dB 
increase in α band power (8–13 Hz) during the feedback period, reflecting reduced 
cognitive load. This contrasts with the conventional system: when Rosetta Stone’s  

2.3-second delay caused a working memory refresh failure, the θ
γ

 band power ratio 

spiked 2.7-fold, triggering significant cognitive stress. 
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Table 2 Results of ablation experiments (CLCD test set) 

Deployment WER (%) Delay (ms) Feedback accuracy (%) 
Complete system 6.3 230 91.7 
Disable dynamic chunking 6.5 317 90.1 
Fixed confidence threshold 6.9 235 80.5 
Disable PEM module 6.4 225 83.5 

Figure 3 Comparison of robustness tests of systems with different signal-to-noise ratios  
(see online version for colours) 

 

4.4 Theoretical contributions and practical implications 

This study breaks through the traditional unidirectional processing paradigm and 
proposes an auditory-motor integration model with a confidence-driven mechanism that 
for the first time realises a closed-loop mapping between speech perception errors and 
articulation correction, providing computational empirical evidence for neuroplasticity 
theory (Berlucchi and Buchtel, 2009). Experiments show that semantic unit-level 
feedback enhances primary auditory cortex activation strength by 32%, confirming the 
facilitating effect of real-time correction on neural pathway remodelling. The  
delay-cognitive load quantitative relationship (18% increase in attentional distraction 
probability for every 100 ms increase in delay, R2 = 0.93) was also revealed as a key 
parameter for educational computational modelling. In terms of noise adaptation, the 
traditional intelligibility theory is modified by a spectral enhancement algorithm, which 
reduces the critical SNR threshold from 8 dB to 5 dB, significantly expanding the 
applicable scenarios of the system. 
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Based on the above findings, a layered implementation scheme is proposed: in the 
education application layer, it is recommended to develop a contextualised training 
module, combined with augmented reality (AR) glasses to realise ‘visual scene-voice 
feedback’ linkage (e.g., real-time guidance for airport check-in scenarios), and cite the 
contextual learning theory (Meier, 2016) to design a cognitive task chain, with ≤50 
concurrent users for initial deployment (GPU RAM < 8 GB/instance), the proposal 
addresses the university language lab scenario. If used for small group learning in 
primary and secondary schools (3–5 students/group), it can be scaled up to 200 
concurrency, due to a 40% reduction in the average length of children’s speech (CEFR 
level A1 data); in the technology optimisation layer, it is required to use adversarial 
training to enhance the robustness of dialects. Adversarial training is required to enhance 
dialect robustness, construct speech libraries containing Indian/British English variants, 
and compress the number of parameters to 28 M (currently 42 M) through model 
distillation to meet mobile requirements (Zhou et al., 2024); the ethical regulation layer 
requires a dynamic desensitisation mechanism to discard the original waveform 
immediately after ASR processing (in compliance with Article 25 of GDPR), and the 
feedback content should be reviewed by educational experts to avoid the risk of semantic 
ambiguity. The review is done by a licensed language teacher, focusing on marking 
ambiguous synthetic content (e.g., ‘dessert/desert’) and creating automatic filtering rules 
with a database of 200 sensitive words. From the perspective of technical ethics, it is 
recommended to establish dynamic informed consent (DIC): when the system detects 
highly sensitive content (e.g., medical and financial terms), it automatically triggers the 
secondary authorisation process. Homomorphic encryption is also used to process speech 
features to ensure that Mel spectral parameters in the cloud cannot be inverted to original 
speech (DTW distortion > 45%) (Pathak et al., 2013). These measures are in line with the 
IEEE Ethical Standard (Std. 7000-2021) for ‘reversibility’ in educational AI – any error 
feedback must be traceable and correctable (Morandín-Ahuerma, 2023). 

The adaptation of the current system to native language interference is still 
insufficient, especially the perception error rate (41%) of native Chinese speakers for 
dental fricatives /θ/ with a correction success rate of only 68%. The remaining 32% of 
failures stemmed primarily from L1 negative transfer. The follow-up work will introduce 
the auditory masking effect model, develop L1-specific acoustic feature enhancement 
algorithms, as well as explore multi-institutional collaboration under the federated 
learning framework to expand the training corpus size under the premise of safeguarding 
data privacy, so as to promote the evolution of adaptive language learning towards 
personalisation and generalisation. 

5 Conclusions 

In this study, a real-time feedback system for English listening based on speech 
recognition and synthesis is constructed, and the end-to-end feedback latency is stably 
controlled within 230 ms (SD = ±18 ms) for the first time through the  
synergistic optimisation of the lightweight streaming conformer architecture and  
intelligibility-enhanced TTS. Experiments show that the system has a low WER of 6.3% 
on the LibriSpeech test set, which is 21.1% lower than whisper; the user comprehension 
accuracy in the educational assessment is improved by 28.3% (p < 0.01), and the 
satisfaction rate reaches 4.7/5.0. These results validate the core assumption of the 300 ms 
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cognitive window theory: when the feedback delay is compressed to the short-term 
human auditory memory cycle, it can effectively block the curing of erroneous speech 
representations. While traditional manual feedback requires 6–8 repetitions to achieve 
equivalent corrective effects, the present system shortens the training cycle to a single 
exposure through real-time blocking. 
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