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Abstract: This study addresses the challenges of sentiment analysis for  
low-resource languages by proposing a cross-lingual transfer augmentation 
method (CTAM) that integrates semantic alignment and adversarial training. 
Leveraging a fusion module (VXLM) combining VecMap and XLM-R, the 
framework dynamically aligns static and contextualised embeddings across 
English and Burmese languages. A dual-path attention supervision mechanism 
transfers sentiment knowledge from high-resource English to low-resource 
Burmese while mitigating cultural and structural disparities. Experiments on 
Myanmar social media data demonstrate state-of-the-art F1-scores, 
outperforming baseline models. Ablation studies validate the efficacy of the 
VXLM module and attention-based knowledge distillation. This work advances 
multilingual NLP by providing a scalable solution for low-resource language 
processing. 

Keywords: sentiment analysis; multilingual NLP; VecMap and XLM-R;  
cross-lingual transfer augmentation. 

Reference to this paper should be made as follows: Zhou, P. and Zhao, L. 
(2025) ‘Cross-lingual sentiment analysis for low-resource languages via 
semantic alignment and transfer learning’, Int. J. Information and 
Communication Technology, Vol. 26, No. 33, pp.1–17. 

Biographical notes: Pan Zhou graduated from South China Normal University 
in June 2012. She worked in Guangzhou Huashang College. Her research 
interests include linguistics and educational teaching. 

Li Zhao is an Associate Professor, postgraduate, and graduated from National 
University of Defense Technology in 2003. He worked in Shanxi University. 
His research interests include information processing, image processing, and 
network security. 

 



   

 

   

   
 

   

   

 

   

   2 P. Zhou and L. Zhao    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 Introduction 

The quality of natural language processing tasks (Court and Elsner, 2024; Jadhav et al., 
2024; Zhang et al., 2024) is strongly correlated with the scale of language-specific 
annotated resources. For low-resource languages like Myanmar, the scarcity of labelled 
data severely constrains the development of applications such as sentiment analysis. 
Currently, the vast majority of languages remain constrained by the high cost of corpus 
annotation – the entire workflow from data collection to manual labelling requires 
substantial professional resources. In contrast, high-resource languages like English 
benefit from massive sentiment-annotated databases that establish a solid foundation for 
building models with strong generalisation capabilities. In this context, transferring 
mature sentiment analysis capabilities from English to low-resource languages can 
alleviate data scarcity issues. Although large-scale annotated corpora (e.g., Yelp reviews) 
have been constructed for English and similar languages, directly transferring these 
resources faces two major challenges: 

1 the morphological differences between Myanmar and Indo-European languages 
create significant lexical-semantic mapping gaps 

2 culture-specific emotional expressions (e.g., implicit sentiment tendencies conveyed 
through Myanmar’s honorific system) are difficult to capture through simple 
translation. 

Existing cross-lingual methods (Kot et al., 2025; Ma et al., 2025; Ngo and Nguyen, 2024; 
Qin et al., 2023; Wang, 2025; Wu et al., 2020) partially mitigate data scarcity but still 
encounter critical bottlenecks in low-resource scenarios. 

To address lexical-semantic mapping challenges, Conneau et al. (2020) proposed 
VecMap for monolingual word vector space alignment through Procrustes analysis, while 
Wu et al. (2020) developed cross-lingual embeddings using adversarial training. 
Although these methods establish basic lexical mappings, they suffer from two critical 
limitations: 

1 dependence on high-quality bilingual dictionaries for initialisation (typically 
requiring 5 k to 10 k word pairs), whereas available Myanmar-English dictionaries 
often contain fewer than 1k pairs 

2 static word vectors fail to capture context-sensitive semantics, leading to 
misjudgement of sentiment polarity for Myanmar polysemous words like ‘ြမင’် 

(see/consider). 

Conneau et al. (2020) introduced dynamic vocabulary expansion in EMNLP 2023 
experiments to better handle Myanmar rare characters, achieving a 12.7% F1-score 
improvement over the XLM-R baseline in sentiment tasks. However, the model still 
struggles with recognising Myanmar honorific particles (e.g., ပါ vs. ပါǹǺင)်, frequently 

misclassifying polite markers as positive sentiment. XLM-R was proposed for implicit 
semantic alignment through multilingual masked language modelling (MLM), 
demonstrating effectiveness for medium-resource languages. However, Bringmann and 
Zhukova (2024) identified that this model exhibits insufficient semantic coverage for 
morphologically complex languages like Myanmar and suffers from domain shift 
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vulnerability in zero-shot transfer scenarios. Myanmar exhibits complex morphological 
variations, resulting in insufficient cross-lingual sentiment consistency. The same content 
in Myanmar and English may generate conflicting sentiment polarities due to semantic 
structural differences. 

Although cross-lingual transfer learning has demonstrated potential in knowledge 
acquisition systems, recent studies (Daou et al., 2024; Kot et al., 2025; Matan and 
Velvizhy, 2024; Taspinar et al., 2023) have revealed significant limitations in existing 
methods. To address sentiment inconsistency caused by semantic disparities, Liu et al. 
(2017) introduced language discriminators in CNN-LSTM architectures but failed to 
handle deep structural differences. Sannigrahi and Read (2022) improved VecMap’s 
unsupervised initialisation through isomorphic regularisation, reducing the required 
bilingual lexicon from 5,000 to 500 word pairs. CultureBERT (Koch and Pasch, 2023) 
proposed culture-aware adversarial training (CAT), injecting Hofstede’s cultural 
dimensions into BERT (Devlin et al., 2019) models, but this method’s reliance on manual 
cultural feature engineering limits scalability. However, VecMap (Xu et al., 2018) based 
on static word vector alignment is constrained by bilingual lexicon scale and contextual 
modelling capabilities, while XLM-R (Conneau et al., 2020) relying on implicit semantic 
alignment struggles to capture Myanmar’s morphological features and cultural emotional 
expressions. 

To address the limitations of previous methods in lexical-semantic mapping gaps and 
insufficient cross-lingual sentiment consistency, this paper proposes the cross-lingual 
transfer augmentation method (CTAM), which breaks through these bottlenecks through 
innovative architectural design. Its core lies in constructing an explicit-implicit 
collaborative alignment mechanism and a cross-lingual knowledge distillation system. 
Specifically, differing from traditional single-path transfer paradigms, this study adopts 
the dual-path Teacher-Student Attention Supervision to migrate English sentiment 
knowledge to the Myanmar student network through an inter-layer attention distribution 
alignment loss function, thereby resolving cross-lingual sentiment inconsistency issues. 
Additionally, this research designs a VecMap-XLM-R Fusion Enhancement Module 
(VXLM), which achieves Myanmar-English word vector space mapping via dynamic 
mapping matrices to reduce reliance on bilingual dictionary scale, adaptively fuses 
source-language contextual representations with target-language static vectors, and 
realises hierarchical interaction of cross-lingual semantic features through gated weight 
learning. 

The contributions of the proposed CTAM are as follows: 

1 designing the teacher-student dual-path attention supervision to achieve the transfer 
of English sentiment knowledge to the Myanmar network 

2 constructing the VecMap-XLM-R fusion enhancement module (VXLM) to realise 
adaptive fusion of source-language contextual representations and target-language 
static vectors. 

This paper proposes a CTAM that constructs the VXLM module by integrating a 
dynamic mapping matrix with a gated fusion mechanism. Leveraging Procrustes analysis 
and an iterative seed lexicon expansion strategy, the method significantly enhances 
applicability in low-resource language scenarios. Furthermore, CTAM innovatively 
designs a dual-path attention supervision framework within a teacher-student network 
architecture, incorporating a cross-layer attention alignment loss function and an 
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adversarial domain discriminator. The proposed approach not only captures the 
agglutinative characteristics of Burmese through bidirectional GRU hidden state 
interactions but also effectively identifies implicit sentiment orientations embedded in 
Burmese cultural contexts. This work provides an innovative solution for cross-lingual 
sentiment analysis of Southeast Asian low-resource languages, addressing both linguistic 
specificity and socio-cultural nuance. 

2 Related work 

2.1 Word embeddings 

Modern word embedding techniques are based on the distributional hypothesis proposed 
by Zellig Harris (1954), which asserts that “the meaning of a linguistic unit is determined 
by its contextual distribution,” implying that words with similar co-occurrence patterns 
possess inherent semantic relatedness. This laid the theoretical foundation for distributed 
semantic representation and drove a paradigm shift in the field of natural language 
processing. With advancements in computational power and the proliferation of  
large-scale corpora, Rayala and Seshadri (2021), Sivakumar and Rajalakshmi (2021) 
have successively proposed various innovative implementations: the Word2Vec 
(Mikolov et al., 2013) developed by Mikolov’s team introduced a predictive training 
paradigm based on contextual windows through shallow neural network architecture; the 
GloVe model proposed by Pennington et al. (2014) innovatively integrated global word 
co-occurrence statistics with local contextual information to optimise semantic feature 
extraction; Bojanowski’s fastText (Bojanowski et al., 2017) broke through traditional 
word-level limitations by incorporating subword modelling strategies, significantly 
enhancing the representation capabilities for out-of-vocabulary words and 
morphologically rich languages. These groundbreaking advancements mapped lexical 
representations from discrete symbolic spaces to continuous high-dimensional vector 
spaces, enabling mathematical modelling of semantic relationships. 

A significant milestone in this field can be traced back to the neural network language 
model proposed by Bengio et al. (2003). This work systematically represented words as 
low-dimensional dense vectors for the first time and captured non-linear semantic 
relationships between words through neural network architectures, paving the way for 
semantic modelling in the deep learning era. In response to the multilingual processing 
demands of globalisation, researchers have further transcended monolingual constraints 
to construct a cross-lingual unified semantic space. By designing innovative vector space 
alignment algorithms to achieve geometric structure mapping of lexical representations 
across different languages, this breakthrough not only enables cross-lingual semantic 
similarity computation but also provides effective channels for knowledge transfer. 

2.2 Vecmap 

VecMap is a widely used method for cross-lingual word vector alignment, with its core 
objective being to achieve alignment of word vector spaces across different languages 
through unsupervised or semi-supervised learning, thereby supporting cross-lingual 
natural language processing tasks. This method is based on a key hypothesis: word vector 
spaces of different languages share similar geometric structures, and linear 
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transformations (e.g., orthogonal matrices) can map word vectors from one language to 
the vector space of another, ensuring that semantically similar words remain close in the 
mapped space. This idea was first proposed by Mikolov et al. (2013), who minimised the 
Euclidean distance between word pairs in bilingual dictionaries and used singular value 
decomposition (SVD) to solve the optimal orthogonal transformation matrix, achieving 
preliminary alignment of cross-lingual word vectors. 

However, traditional methods heavily rely on high-quality bilingual dictionaries, 
which limits their application in low-resource language scenarios. To address this, 
Artetxe et al. (2016, 2018) proposed an unsupervised cross-lingual alignment framework 
that gradually optimises the mapping matrix through an iterative self-learning strategy. 
This method first generates an initial mapping matrix via adversarial training, followed 
by refinement through iterative Procrustes analysis (an orthogonal transformation method 
based on SVD) and bidirectional dictionary induction (BDI). 

Smith et al. (2017) introduced a cross-lingual self-learning mechanism into VecMap, 
dynamically adjusting the mapping matrix by jointly optimising word vector mapping 
and cross-lingual word similarity computation. Ruder et al. (2019) further enhanced the 
model’s ability to capture complex cross-lingual semantic relationships by jointly 
embedding source-language and target-language contextual vectors into a shared 
semantic space. 

2.3 XLM-R 

XLM-R (Conneau et al., 2020), proposed by the Facebook AI team, is a large-scale  
cross-lingual pre-trained model designed to unify multilingual semantic representations 
through unsupervised learning. By combining the strengths of XLM (Lample and 
Conneau, 2019) and RoBERTa (Sannigrahi and Read, 2022), the model significantly 
enhances performance on cross-lingual tasks through training on large-scale multilingual 
corpora. XLM-R abandons the explicit language embeddings used in traditional XLM, 
instead adopting a dynamic vocabulary sampling strategy that enables more flexible 
handling of lexical differences between languages. Furthermore, its transformer 
architecture-based design optimises the MLM (Devlin et al., 2019) objective, providing 
an effective transfer learning foundation for low-resource language tasks and allowing 
under-resourced languages to obtain more balanced representation learning opportunities. 

3 Cross-lingual transfer augmentation method 

The CTAM proposed in this paper adopts dual-path attention supervision and designs a 
novel module (VXLM) that dynamically fuses XLM-R with VecMap. As shown in 
Figure 1, VXLM integrates the contextual encoding capabilities of XLM-R with the 
cross-lingual word vector alignment advantages of VecMap, adaptively fusing deep 
contextual representations with explicitly aligned vectors through a dynamic gating 
mechanism to effectively enhance the transfer foundation for low-resource languages. 
The dual-path attention supervision constructs a bidirectional dynamic interaction 
mechanism between the English teacher path and the Burmese student path, addressing 
cross-lingual structural differences and cultural specificity challenges in emotional 
expression through a dual-path teacher-student attention framework. CTAM achieves 
cross-lingual sentiment knowledge transfer under zero-resource conditions, effectively 
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resolving the representation alignment challenges faced by low-resource languages in 
sentiment analysis domains. 

3.1 XLM-R and VecMap enhancement module (VXLM) 

XLM-R, as a multilingual pre-trained model, achieves cross-lingual alignment through 
MLM pre-training with large-scale multilingual corpora, but may exhibit insufficient 
alignment in low-resource languages or domain-sensitive scenarios, with its design 
objectives encompassing implicit cross-lingual representation alignment. The core 
objective of VecMap lies in cross-lingual word vector alignment and can explicitly 
supplement XLM-R through mapping. Therefore, as shown in Figure 1, the XLM-R and 
VecMap enhancement module (VXLM) proposed in this paper leverages XLM-R’s 
contextual encoding capabilities, extracts static word vectors through the VecMap 
module, optimises the mapping matrix, and designs a dynamic gating mechanism to 
adaptively fuse deep contextual representations with cross-lingually aligned vectors, 
effectively enhancing the transfer foundation for low-resource languages. First,  
word-level static representations are extracted from XLM-R’s deep encoder, where 
dynamic contextual vectors are converted into stable word embeddings through average 
pooling or specific token augmentation strategies. For the lth layer hidden state Hl ∈ Rn×d 
of XLM-R, static representation computation of word w: 

( )1 ( )
( )

lstatic
w ph p p w H

P w
= ∈  (1) 

where ( )l
pH  denotes the hidden state output at sequence position p of the lth layer in 

VXLM. p(w) represents the set of all position indices where word w appears in the input 
sequence. |P(w)| indicates the total number of occurrences of word w in the sequence. 

static
wh  is the static word vector representation of word w. 

The Burmese word vector set is denoted as X = {xi}, the English word vector set as Y 
= {yi}, and the initial bilingual dictionary set as 1{ .( ), }k

i i iD x y ==  For the Burmese word 
vector set X and the English word vector set Y, perform L2 normalisation and PCA 
decorrelation processing. Construct a cross-lingual linear transformation matrix W 
through Procrustes analysis to estimate the linear transformation, and adopt a ‘seed 
dictionary iterative expansion’ strategy to gradually optimise alignment accuracy and 
iteratively refine W. The optimisation objective is: 

2

1
min

k
xi ii

W y
=

−  (2) 

where yi is the word vector of the English word, and W is the cross-lingual linear 
transformation matrix. 

Finally, the mapping knowledge is incorporated into the transformer (Vaswani et al., 
2023) architecture through three approaches: dynamic gated fusion, auxiliary loss 
constraints, or parameter initialisation, establishing a synergistic mechanism between 
explicit word alignment and implicit semantic learning. For the dynamic representation 
hxlm from XLM-R and the VecMap-mapped result hvec = Whstatic, the gated fusion is 
computed as: 
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[ ]( );xlm vec
g gg σ W h h b= +  (3) 

where hxlm is the dynamic contextual representation from the XLM-R model, hvec denotes 
the aligned static word vector result obtained via VecMap mapping, [ ; ] represents the 
vector concatenation operation, Wg[ ] is the gated weight matrix, bg is the gated bias term, 
and \sigma is the Sigmoid activation function. 

The VXLM fully leverages the context-aware advantages of XLM-R and the 
geometric mapping characteristics of VecMap. In low-resource language scenarios  
(e.g., Burmese-English), it effectively mitigates semantic drift issues caused by pure 
black-box models in specialised domains through interpretable explicit mapping matrices. 
The mechanism specifically addresses inefficient cross-lingual knowledge transfer 
resulting from modal discrepancies in multilingual models, enabling XLM-R to establish 
high-quality cross-lingual projections. This provides a novel technical pathway for 
intelligent processing of resource-scarce low-resource languages. 

Figure 1 The overall architecture diagram of CTAM (see online version for colours) 

  

3.2 Dual-path attention supervised 

Due to cross-lingual structural differences (with Burmese as an agglutinative language 
where verbs like ‘စိတ်မေကာငး်’ can modify emotional intensity by adding particles such 

as ‘ပါ’), the dual-path attention mechanism outperforms traditional attention mechanisms 

in capturing such morphological variations. To address the challenge of cross-lingual 
representation alignment, the model employs a dual-path teacher-student attention 
framework. As shown in Figure 1, the teacher path processes English text through 
VXLM encoding, with its top-layer output connected to a fully-connected layer serving 
as a sentiment classifier supervised by cross-entropy loss LT. Simultaneously, all 
intermediate-layer hidden states {T1, T2, …, TM} are preserved as knowledge transfer 
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mediators, which are then fed into a bidirectional gated recurrent unit (GRU) (Cho et al., 
2014) to obtain hidden states 1 2{ , , ..., }.t t t

Mh h h  
As shown in Figure 1, the student path processes Burmese text through an encoder 

with the same structure, generating corresponding layer-wise representations {S1, S2, …, 
SM}, which are then fed into a bidirectional GRU to obtain hidden states {h1, h2, …, hN}. 
To address cultural-specific differences in emotional expression between English and 
Burmese (e.g., the English term ‘excited’ typically maps to ‘စိတ်လ˪ပ်ǹǺား’ in Burmese 

culture rather than a literal translation). First, calculate the semantic correlation strength 
between the hidden state hj of the student path and the hidden state t

ih  of the teacher path. 
This involves modelling the dynamic interaction relationships between cross-lingual 
representations of English and Burmese through nonlinear transformations (tanh) and 
learnable parameters (Wn and bn). The formula is as follows: 

( ) ( ), tanht T t
j n ni j if h h h W h b= +  (4) 

where the tanh function compresses the result of the linear transformation T t
n nj ih W h b+  

into the range [–1, 1], introducing non-linear expressive power, which enables the model 
to capture complex, non-linear semantic correlation patterns between the two languages. 
Where Wn denotes the weight matrix, tanh indicates the nonlinear activation function, and 
bn signifies the bias term. Then, the inter-layer alignment module facilitates interaction 
between corresponding teacher and student layers (e.g., T3 and S3) via a dual-path 
attention mechanism, computing the teacher-to-student attention matrix as follows: 

( )( )
( )( )

1

exp ,

exp ,

t
j i

ij N t
k ik

f h h
w

f h h
=

=


 (5) 

where wij represents the attention weight. By performing a weighted summation of all 
student hidden states {hj} through the weights wij, a context vector Si is generated as 
follows: 

1

N
i ij jj

S w h
=

=  (6) 

The student-to-teacher attention matrix is then computed. First, perform average pooling 
on all hidden states {hi} of the student model to generate a global context vector :h  

1

1 N
ii

h h
N =

=   (7) 

where hi denotes the hidden state of the student model. 
Then, measure the semantic similarity between the global context vector h  of the 

student model and the hidden states t
ih  of the teacher model, calculated as follows: 

( ) ( ), tanht T t
n ni if h h h W h b= +   (8) 

where Wn denotes the weight matrix, tanh indicates the nonlinear activation function, and 
bn signifies the bias term. 
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Next, perform softmax normalisation to convert them into attention weights Xi, 
calculated as follows: 

( )( )
( )( )

1

exp ,

exp ,

t
i

i N t
kk

f h h
X

f h h
=

=





 (9) 

where h  is obtained by applying average pooling to the hidden states 1 2{ , , ..., ),t t t
Mh h h  

and Xi denotes the attention weights. 
Finally, use the loss function LR to measure the difference between the  

attention-weighted representation of the student model and the teacher target states Si, 
formulated as follows: 

2
21

M
R i j ii

L X h S
=

= −  (10) 

where Xihj is the aligned representation formed by weighting the student’s hidden state hj 
with the attention weights Xi, and Si denotes the teacher’s target state that the student 
model needs to mimic. 

This bidirectional constraint ensures dual consistency in the semantic space, avoiding 
potential semantic distortion caused by unidirectional attention. At the student path’s 
terminal, a domain discriminator LS is introduced. This discriminator receives the 
student’s top-layer features through a gradient reversal layer, attempting to distinguish 
whether samples originate from the source language (English) or target language 
(Burmese). Meanwhile, the student encoder learns to generate language-agnostic feature 
representations via adversarial training. The formula is expressed as: 

( ) ( )
1

1 log 1 log 1
N

S i i i ii
L d q d q

N =
 = − + − −   (11) 

where N represents number of training samples, di represents domain label, qi denotes 
domain discriminator’s predicted probability of the ith sample belonging to the source 
domain. 

The theoretical basis of the sentiment classification loss LT primarily stems from the 
cross-entropy loss in supervised learning. Its core objective is to ensure that the model 
accurately captures the sentiment semantic information in the text by minimising the 
discrepancy between the model’s predicted outputs and the ground truth labels. The 
formula is expressed as: 

, ,1 1

1 log
N C

T i c i ci c
L y p

N = =
= −    (12) 

where N represents number of training samples. C represents number of sentiment 
classes. yi,c denotes ground-truth label for the ith sample. pi,c denotes predicted probability 
of the ith sample belonging to class c. 

During training, the sentiment classification loss LT, inter-layer alignment loss LR, and 
domain adversarial loss LS are jointly optimised through weighted summation. This 
enables the model to preserve sentiment discriminative capabilities while eliminating 
domain shifts caused by linguistic and cultural differences. The formula is expressed as: 

1 2 3total T R SL λ L λ L λ L= + +  (13) 
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where LT represents the sentiment classification loss, LR denotes the inter-layer alignment 
loss, and LS signifies the domain adversarial loss. λ1 controls the dominance of the 
sentiment classification task, typically set to 1.0 as the baseline; λ2 regulates the intensity 
of inter-layer feature alignment, set to 0.4; λ3 governs the weight of domain-invariant 
learning, often set to 0.1 for adversarial training. This dual-path attention supervision 
model enables the Burmese encoder to assimilate sentiment knowledge from the English 
teacher while maintaining adaptability to target language characteristics. This architecture 
achieves cross-lingual sentiment transfer under zero-resource conditions while addressing 
the representation alignment challenges of low-resource languages through dynamic 
gating and bidirectional attention mechanisms. 

4 Experiments 

4.1 Datasets 

Gklmip Sentiment dataset (Jiang et al., 2021): The GKLMIP Product Sentiment Dataset 
is a Burmese-language dataset for sentiment analysis tasks, created by crawling reviews 
from e-commerce websites, with sentiment labels ranging from 1 to 5, where 1 and 2 
indicate negative, 3 and 4 indicate neutral, and 5 indicates positive. 

Yelp Review dataset (Liu et al., 2020): The English source data used in this study is 
derived from the publicly available Yelp review dataset, which contains over 4.7 million 
user evaluations of various commercial services. To ensure experimental validity, we 
randomly extracted 50,000 balanced samples from this dataset, with positive and negative 
reviews accounting for 49.7% and 50.3% respectively. These reviews primarily cover the 
food and beverage (68%), retail (22%), and service (10%) sectors, with an average of  
112 characters per review. 

4.2 Evaluation metrics 

Precision measures the proportion of samples predicted as a specific sentiment category 
(e.g., positive) that truly belong to that class, reflecting the model’s reliability in 
accurately identifying Burmese sentiment categories, particularly when handling 
culturally specific expressions and syntactic structures unique to the Myanmar language 
context. 

Precision i

i i

TP
TP FP

=
+

 (14) 

where i represents the sentiment category (positive, neutral, negative), TPi denotes the 
number of samples correctly predicted by the model as category i, and FPi (false 
positives) indicates the number of samples erroneously predicted by the model as 
category i (which actually belong to other categories). 

Recall quantifies the proportion of truly positive sentiment samples correctly 
identified by the model, assessing its coverage of genuine emotional expressions in the 
target language. In low-resource scenarios like Burmese sentiment analysis, sparse 
annotated data frequently leads to a sharp increase in false negatives due to unaccounted 
dialectal variations and culturally nuanced expressions. 
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Recall i

i i

TP
TP FN

=
+

 (15) 

where i represents the sentiment category (positive, neutral, negative), TPi (true positives) 
denotes the number of samples correctly predicted by the model as category i, and FNi 
(false negatives) indicates the number of samples that actually belong to category i but 
were incorrectly predicted by the model as other categories. 

The F1-Score, as the harmonic mean of precision and recall, holistically evaluates a 
classifier’s balanced performance in target languages, demonstrating heightened 
sensitivity to annotation imbalances in low-resource scenarios where sparse labelled data 
amplifies the impact of skewed class distributions on model robustness. 

1
Precision Recall2
Precision Recall

F ×= ×
+

 (16) 

4.3 Cosine distance 

Cosine distance quantifies semantic alignment by measuring the distance between 
corresponding word vectors in cross-lingual embedding space (1 minus cosine 
similarity), reflecting the degree of semantic equivalence across languages in  
low-resource NLP contexts. 

Distance 1 uv
u v

= −  (17) 

where u and v represent vector representations of two texts, uv represents dot product of 
vectors u and v. ||u|| and ||v|| represent L2 norms (magnitudes) of vectors u and v. 

4.4 Ablation study 

Table 1 presents the ablation experimental results of the CTAM, revealing the technical 
contributions of each module component by comparing the performance metrics of three 
models: XLM-R Base, VXLM, and CTAM. The baseline model XLM-R Base achieves 
an F1-score of 82.56% without alignment techniques, demonstrating the generalisation 
potential of pre-trained models for low-resource languages through its powerful 
multilingual contextual encoding capabilities. When the VecMap module is incorporated, 
the model achieves lexical-level spatial alignment by extracting static word vectors and 
optimising cross-lingual mapping matrices, slightly increasing the F1-score to 82.63%. 
This indicates that explicit word vector alignment effectively mitigates the semantic gap 
between Burmese and English, though the limited improvement reflects insufficient 
integration of dynamic contextual information. The CTAM method innovatively 
introduces a dynamic gating mechanism, which adaptively fuses XLM-R’s deep 
contextual representations with VecMap’s cross-lingual aligned vectors through learnable 
weight parameters. This approach preserves the semantic comprehension advantages of 
the pre-trained model while enhancing consistency mapping in cross-lingual spaces, 
significantly elevating the F1-score to 83.14%. This dual-path fusion architecture 
successfully resolves the disconnection between static alignment and dynamic context in 
traditional methods. By dynamically adjusting the contribution ratios of both 
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representations through the gating mechanism, it strengthens the transfer robustness of 
low-resource languages while maintaining semantic coherence, thereby achieving 
performance breakthroughs in cross-lingual sentiment analysis tasks. 
Table 1 On the ablation experiments of the CTAM module 

Model Precision Recall F1-score 
XLM-R Base 85.91 79.56 82.56 
VXLM 86.10 80.12 82.63 
CTAM 87.20 80.54 83.14 

Table 2 Fine-grained ablation experiments of our module 

Model Class Precision Recall F1-score 
XLM-R Base Positive 86.10 81.82 83.90 
 Negative 88.43 79.91 82.13 
VXLM Positive 88.11 80.30 82.71 
 Negative 86.94 80.12 83.31 
CTAM Positive 92.63 89.23 88.52 
 Negative 93.12 86.71 89.22 

Table 2 presents the fine-grained ablation experimental results of the CTAM method, 
revealing the optimisation effect of VXLM on cross-lingual sentiment analysis. In the 
XLM-R base method, the F1-score for the positive sentiment category reaches 83.90%, 
significantly higher than the 82.13% for negative sentiment. This performance disparity 
stems from the stronger capture capability of static word vector alignment for 
semantically explicit positive expressions, whereas negative sentiment often involves 
more complex contextual dependencies and cross-lingual ambiguities. When Vecmap is 
introduced to construct VXLM, the F1-score for negative sentiment improves to 83.31%, 
benefiting from the adaptive fusion mechanism of VXLM that integrates cross-lingual 
aligned vectors with deep contextual representations. By dynamically adjusting the 
weight ratios of these two information sources, the model can more accurately capture 
complex linguistic structures such as negative terms, double negatives, and other 
expressions in low-resource languages. The VXLM effectively alleviates the category 
bias issue caused by semantic complexity differences in traditional cross-lingual transfer. 
This balanced improvement verifies that CTAM, through context-aware feature fusion, 
dynamically adapts to the expressive characteristics of different sentiment polarities, 
thereby maintaining positive sentiment parsing capabilities while significantly enhancing 
the capture accuracy of cross-lingual negative sentiment signals. 

Our proposed model CTAM, when incorporating the VXLM module with dual-path 
attention supervision, demonstrated improvements in F1-scores for both positive and 
negative sentiment categories. This indicates that the dual-path attention supervised 
combined with the VXLM module plays a pivotal role in sentiment analysis tasks. 

Figure 2 illustrates the confusion matrices for the VXLM module and CTAM, 
demonstrating the effectiveness of the VXLM module and the high efficiency of the  
dual-path attention supervision approach based on the VXLM module in sentiment 
review classification. 
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Figure 2 The confusion matrix of (a) VXLM compared to (b) our proposed method CTAM 
combining dual-path attention supervision and VXLM (see online version for colours) 

 
(a)     (b) 

Figure 3 The F1-score performance comparison of different comparative methods on positive 
and negative sentiment categories (see online version for colours) 

  

Figure 3 demonstrates the F1-score performance comparison of different comparative 
methods on positive and negative sentiment categories. It can be observed that the CTAM 
proposed in this paper achieves superior F1-scores in both positive and negative 
sentiment categories. This further visually proves the effectiveness of our designed 
VXLM, while the integration of VXLM with the dual-path attention supervision 
framework has achieved significant improvement in F1-score performance. 

As demonstrated in Table 3, our cross-linguistic analysis reveals a stratified 
alignment pattern across lexical categories: core vocabulary items exhibit minimal 
semantic distance (average cosine similarity of 0.82) in the embedding space, reflecting 
their stable cross-cultural conceptualisation – fundamental concepts like ‘family’ 
(မိသားစǽ) and ‘market’ (ေစျးကွက်) show near-perfect alignment due to their universal 

usage patterns. Political terminology demonstrates moderate alignment (average 
similarity 0.65), a phenomenon attributable to lexical borrowing mechanisms where 
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Burmese has assimilated English-derived terms like ‘democracy’ (ဒမိီǽကေရစီ) while 

adapting them to local political discourse contexts. The most significant divergence 
emerges in culture-specific concepts such as ‘Revolution’ (ေတာလ်Ǻနေ်ရး), which 

manifests a substantial semantic distance (similarity 0.38) – this gap stems from 
fundamentally divergent contextual interpretations, where the Western conceptualisation 
of revolutionary change contrasts sharply with Myanmar’s historical experiences of 
political upheavals and their sociolinguistic representations. These stratified alignment 
patterns underscore the critical importance of context-aware adaptation mechanisms in 
cross-lingual models, particularly when handling culturally embedded terminology that 
resists straightforward lexical translation. 
Table 3 Cross-lingual lexical similarity analysis (English-Burmese) 

English word Burmese transliteration Burmese script Cosine distance 

Democracy deimokyeisi ဒမီိǽကေရစ ီ 0.18 

Technology tekkalojee နညး်ပညာ 0.32 

Market zei ေဈး 0.12 

Education pyinnya ပညာေရး 0.15 

Revolution aphyin အြပငး် 0.41 

In the experimental setup, the average results from three experiments with different 
random seeds were adopted to ensure stability, with culture-specific labels specifically 
excluded to focus on evaluating cross-lingual generalisation capabilities. Key findings 
reveal that explicit word vector alignment provides performance gain, while the attention 
distillation mechanism effectively captures deep semantic relationships between 
languages. The synergistic interaction of these two approaches enhances cross-lingual 
transfer efficiency in low-resource language scenarios. These discoveries establish new 
technical approaches for NLP tasks involving Southeast Asian languages. 

5 Conclusions and future research 

This study presents a novel CTAM to address the challenges of sentiment analysis in 
low-resource languages, specifically Myanmar. By integrating VecMap and XLM-R 
within the VXLM framework, the proposed approach enhances cross-lingual semantic 
alignment, overcoming limitations in feature generalisation and data scarcity. The  
dual-path attention supervision further strengthens cross-lingual transfer by leveraging 
pre-trained English sentiment classifiers, achieving state-of-the-art performance on 
Myanmar datasets. These findings contribute to the broader field of multilingual NLP and 
knowledge management, offering a scalable solution for low-resource languages. Future 
research could explore extending this framework to other language pairs with significant 
structural differences (Devlin et al., 2019; Ruder et al., 2019). 

Future research will extend the CTAM proposed in this study by deepening its 
theoretical foundations and broadening its practical applications. The following directions 
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will be prioritised: firstly, systematic investigations will evaluate the transfer efficacy of 
CTAM in low-resource languages with complex morphosyntactic features, such as 
Khmer and Lao, to validate its generalisability across diverse linguistic systems. 
Secondly, the integration of multimodal learning mechanisms incorporating visual, 
auditory, and textual inputs will be explored to enhance the model’s capacity to capture 
nuanced emotional cues and adapt to diverse contextual scenarios. Lastly, real-time 
adaptation strategies leveraging few-shot learning will be developed to improve  
model robustness in evolving linguistic environments, facilitating the deployment of 
sentiment-driven applications such as real-time customer feedback analytics and social 
media sentiment surveillance. These advancements aim to bridge the gap between 
theoretical innovation and practical implementation in low-resource multilingual NLP. 
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