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Abstract: Accurate instruction has become the main need with the 
development of smart classrooms. Although cognitive diagnostic tests can 
show students’ cognitive status, it is primarily applied for static assessment, 
which is challenging to satisfy the dynamic adaptation requirements of English 
learning activities. This work, therefore, concentrates on the smart classroom 
scenario and builds a cognitive diagnosis-based adaptive model for English 
learning activities (CD-ELAM). The model realises the exact identification of 
students’ cognitive state and the dynamic optimisation of task pushing by 
combining four modules: cognitive state modelling, task feature expression, 
task regulating mechanism and personalised learning strategies, so forming a 
closed-loop task adaptation mechanism. In terms of cognitive diagnosis 
accuracy and learning effect improvement, the experimental results reveal that 
CD-ELAM beats the current approaches; moreover, it has good adaptability 
and practicality. 
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1 Introduction 

1.1 Background and significance of the study 

From the conventional classroom to the smart classroom, the area of education has 
changed dramatically in recent years with the fast advancement of innovative 
technologies including artificial intelligence, the Internet of Things, and learning 
analytics. The smart classroom has changed teachers’ approaches and students’ learning 
paths by including data perception, real-time feedback and tailored services into a 
teaching environment (Meylani, 2024). In English teaching, how to construct and 
dynamically modify assignments depending on learners’ real ability and states has 
become a crucial focus of smart education research. 

The present English classroom usually suffers from lack of pertinence in task design, 
difficulty in effectively covering students’ ability differences, and unbalanced distribution 
of learning resources, which results in a disconnect between the teaching content and the 
actual cognitive level of the students, so influencing the optimisation of the teaching 
effect. The conventional integrated teaching approach limits the development of teaching 
accuracy to a certain degree by making it difficult to precisely identify students’ mastery 
of various knowledge points and to dynamically change the type and difficulty of tasks in 
real time depending on students’ individual differences (Ateş, 2025). 

Cognitive diagnostic offers theoretical and practical help for addressing the foregoing 
issues by means of a technique of mining students’ knowledge status and ability structure 
depending on their behavioural data. By means of fine-grained studies of the competency 
characteristics displayed by students in certain learning activities, it can determine their 
mastery status on several knowledge domains (Qi et al., 2024). Including cognitive 
diagnostics into the smart classroom not only helps to dynamically monitor students’ 
learning process but also offers a foundation for intelligent matching and pushing of 
teaching responsibilities. 

Aiming to build a cognitive diagnosis-driven task adaptive model, CD-ELAM, which 
dynamically adjusts the content, difficulty, and sequence of English tasks based on 
students’ cognitive characteristics and learning feedback, this paper focuses on the design 
of English learning tasks in a smart classroom environment, so improving learning 
efficiency and motivation. Simultaneously, CD-ELAM may also give teachers real-time 
data assistance on the changes in students’ cognitive structure, so helping them to create 
scientific teaching plans and promote the intelligent transformation of classroom 
management. This work has good practical relevance for enhancing the quality of English 
instruction and advancing the building of intelligent education system in addition to 
certain theoretical exploration value. 

1.2 Objectives and methodology of the study 

Examining how to reach dynamic matching of learning activities depending on students’ 
cognitive traits has become a focus of education informatisation research in the 
framework of the ongoing development of the intelligent education environment. 
Particularly in English instruction, the conventional set task path and uniform teaching 
rhythm cannot presently satisfy the learning needs of many students due to the great 
variations in learners’ language skills, knowledge mastery and thinking processes. To 
increase the accuracy and flexibility of teaching, an intelligent model that can recognise 
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students’ cognitive state and modify the learning activities in real time is thus desperately 
needed. 

In this work, we seek to build an adaptive model of English learning tasks,  
CD-ELAM, which integrates cognitive diagnostic mechanisms, and uses the smart 
classroom as an application scenario to achieve personalised recommendation and 
dynamic adjustment of English learning tasks by considering the matching relationship 
between students’ cognitive ability state and task characteristic. In order to support the 
fine-grained allocation, difficulty adaptation and path optimisation of learning tasks, so 
enhancing learning effectiveness and motivation, the model not only pays attention to 
students’ present knowledge mastery but also emphasises the detailed analysis of their 
potential cognitive structure. This helps to promote the general development of students’ 
language proficiency. 

This study will focus on the two following elements to reach these objectives: 

1 Theoretical level: The model framework of CD-ELAM is built to clarify the 
fundamental components and functional modules of the model based on the research 
results of cognitive diagnostic theory and adaptive learning system. Key subsystems 
including cognitive state modelling, task feature expression, task regulating 
mechanism, etc., will constitute a full closed-loop mechanism for task adaptation in 
the model (Azgomi et al., 2021). 

2 Experimental verification level: Experimental research is carried out to assess the 
efficacy of CD-ELAM in improving students’ learning outcomes, adaptive ability 
and cognitive matching using real English learning problem samples and student 
behaviour datasets. Apart from useful references for the promotion and 
implementation of the adaptive teaching system in the smart classroom, the trial 
findings will offer data support for the iteration of the model aimed at optimisation. 

This work integrates cognitive diagnosis and adaptive task mechanism to build an 
English learning model fit for smart classroom, so committed to promote the deepening 
development of education informatisation and provide new theoretical support and 
technological paths for realising accurate teaching and personalised learning. 

2 Theoretical foundations 

2.1 Cognitive diagnosis 

Based on the theoretical foundation of cognitive psychology and educational assessment, 
cognitive diagnostic is a class of modelling techniques that examine learners’ outer 
behavioural data to deduce their internal knowledge structure, ability level, and thinking 
patterns. Cognitive diagnosis stresses fine-grained, multi-dimensional modelling and 
reasoning about students’ mastery of many cognitive dimensions or knowledge qualities, 
unlike conventional assessment approaches that concentrate on providing an overall score 
(Shi et al., 2024). Its objectives are not only to ascertain whether pupils have acquired a 
particular ability but also more crucially to pinpoint what has been mastered, what has 
not, and to what degree, therefore offering a scientific basis for tailored instruction and 
exact intervention. 
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Cognitive diagnostics first emerged in the 1970s, with the foundations originally 
provided by knowledge of space theory and rule space models (Tilak et al., 2022). These 
models underlined the inversion of students’ knowledge status by means of the answer 
patterns of test items and suggested the idea of presenting the structure of knowledge 
mastery in the form of space or sets. Cognitive diagnosis has progressively changed in 
the 21st century as latent variable modelling approaches have developed into a class of 
methodologically consistent latent variable modelling approaches. These models combine 
statistical modelling techniques with psychometric, probabilistic reasoning to statistically 
show pupils’ mastery of several hidden cognitive traits, hence realising reverse modelling 
from data to cognition. 

Two main groups define cognitive diagnostic models: probability-based modelling 
and logic-gate-based modelling. More classical versions consist of deterministic inputs, 
noisy ‘and’ gate (DINA) model and deterministic inputs, noisy ‘or’ (DINO) model  
(Bu et al., 2022). Whereas the DINO model is more flexible and considers that partial 
mastery of some of the qualities is sufficient for a right answer, the DINA model holds 
that learners can only respond a question correctly if they have mastered all the 
knowledge attributes required by the question. These two models with their 
straightforward and unambiguous logical framework are suited for several learning 
environments. The researcher suggested the more generalised generalised DINA model, 
which may dynamically describe the relationship between characteristics and response 
outcomes without the need of a specified logical structure, to overcome the expressive 
constraints of the logic-gate model. Furthermore, extensively applied in certain jobs are 
the additive CDM model, reduced reparameterised unified model (RRUM), etc (Ravand 
et al., 2024). By means of flexible selection based on educational goals and evaluation 
requirements, these models can be formed as a more complete cognitive diagnostic model 
system. 

Cognitive diagnostic models’ efficient operation depends on the support of the  
Q-matrix, which defines the dependencies between topics and knowledge attributes, and 
acts as a link between the observable variables (students’ responses) and the possible 
variables (knowledge mastery status). The building of Q-matrix usually depends on the 
experience of lecturers or domain experts, which is somewhat arbitrary and challenging 
to measure (Pelánek, 2022). This has led to the emergence of a range of automated or 
semi-automated Q matrix generating and optimisation techniques including iterative 
adjustment based on expectation maximisation (EM), statistical inference based on 
students’ response patterns, and structural reconfiguration based on knowledge mapping, 
which have effectively improved the adaptability of the model and diagnostic accuracy. 

The application scenarios of cognitive diagnostics are growing even as research 
techniques change. From the stationary diagnostic model used for high-stakes tests and 
standardised assessments in the early days to the dynamic diagnostic model generally 
used in online education platforms and intelligent teaching systems nowadays, the scope 
of its application is fast widening to a wider range of intelligent education scenarios. 
Particularly in individualised learning paths recommendations, early academic warning, 
and learning behaviour prediction, cognitive diagnostic is indispensable. 

When confronted with vast-scale, multi-dimensional, continuous learning data, 
conventional cognitive diagnostic models still have some restrictions, nevertheless. For 
instance, most models are constructed on the presumption of topic-independence and 
response-independence, which makes it challenging to depict the dynamic change of 
students’ cognitive states during the learning process. Furthermore, lacking the capacity 
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to automatically extract underlying cognitive processes, the inference process of these 
models usually depends on manually created feature representations. Researchers have 
lately sought to combine deep learning with cognitive diagnosis and proposed several 
knowledge tracing models under neural network structures, such as deep knowledge 
tracing (DKT), dynamic key-value memory network (DKVMN) and attentive knowledge 
tracing (AKT) (He et al., 2023). In order to solve problems, these models improve the 
real-time and accuracy of diagnosis by modelling and predicting learners’ cognitive states 
at several time points, depending on structures with strong temporal modelling capacity 
such LSTM or attention mechanisms. 

Deep models have shown great ability in managing complex learning behaviour data, 
but they also suffer from issues including poor model interpretability, strong dependence 
on training samples, and difficult integration of priori knowledge. There is still research 
space for integration and balance with conventional cognitive diagnostic models. To 
improve the interpretability and diagnostic utility of the deep model, some researchers 
currently attempt to include attribute label structure, Q-matrix information, causal 
modelling, etc. into the model. 

From static to dynamic, from shallow to deep, and from explanatory to predictive in 
its theoretical growth and practical application, cognitive diagnostic, as a learner-centred 
modelling tool, has experienced a multidimensional developmental process overall. 
Cognitive diagnosis will be increasingly combined with developing technologies 
including artificial intelligence, big data, graph neural networks (GNN), cross-modal 
analysis, etc., to support its deeper application in settings including smart education, 
personalised learning, and virtual tutor systems. Simultaneously, depending on preserving 
the predictive capacity of the model, how to enhance its interpretability, migratability, 
and low-cost deployment capability will also become a major focus of research. 

2.2 Adaptive learning 

Aiming to accomplish personalised teaching in the genuine sense, adaptive learning is an 
educational paradigm based on the individual variations of learners and the use of 
modern information technology to dynamically alter learning content, learning paths and 
teaching tactics. Adaptive learning has been increasingly significant in intelligent 
education as information technology, especially big data, along with artificial intelligence 
and Internet technologies expand rapidly. Its fundamental idea is in completely exploring 
and using learners’ multi-dimensional characteristics, including knowledge level, 
cognitive ability, learning habits, emotional state and interest preferences, and 
dynamically adjusting the presentation of learning resources and teaching strategies using 
real-time monitoring and analysis of behavioural data in the learning process, in order to 
maximally meet the personalised needs of the learners, and so improve the learning effect 
and learning satisfaction. 

Adaptive learning’s theoretical beginnings can be found in the concept of 
individualised instruction and the in-depth research of cognitive psychology since the 
middle of the century. Multiple intelligences theory points out that individuals have 
differences in their performance of various intelligences, such as linguistic, logical, 
spatial, and musical intelligence, etc., which provides a solid theoretical support for the 
design of the adaptive learning system; cognitive load theory stresses that the design of 
learning materials should be in line with the cognitive processing ability of learners to 
avoid excessive cognitive load; constructivism theory advocates that learning These ideas 
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give the construction of adaptive learning systems strong theoretical justification. Early 
adaptive learning systems derived from artificially created teaching rules and routes and 
depended on rule engines and expert systems. Although first personalisation was attained, 
the system lacked the capacity to dynamically sense and flexibly modify the condition of 
the learner, which made it challenging to satisfy the complicated and evolving teaching 
needs. 

Entering the 21st century with the extensive use of artificial intelligence technologies, 
data mining, and machine learning, adaptive learning is progressively headed towards 
data-driven and intelligent direction. Modern adaptive learning systems construct a  
multi-dimensional learner model to reflect the cognitive state and learning needs of 
learners in real time by means of the collection and analysis of learning behaviour data, 
including question answering, study time, study frequency, browsing trajectory, 
interactive behaviour, etc., so reflecting the cognitive state and learning needs of learners 
(Li et al., 2021). The system uses statistical methods, probability models and deep 
learning technologies to dig out possible cognitive laws from the data, dynamically 
predict learners’ knowledge mastery and learning tendency, and change the difficulty, 
order and presentation of learning content accordingly to achieve personalised 
recommendation and precise teaching. 

Constructing a multi-dimensional representation of the learner’s comprehensive 
cognition, behaviour, and emotion by combining cognitive diagnosis, knowledge 
tracking, affective computing and other technical techniques, the learner model is the 
fundamental component of the adaptive learning system. Apart from reflecting the 
present degree of information mastery, an accurate learner model forecasts learning 
bottlenecks and possible issues, therefore offering a scientific basis for tailored 
intervention (Huang et al., 2023). The knowledge tracking model, for instance, 
dynamically estimates the learner’s probability of mastering each knowledge point using 
sequence data and time-series analysis technologies; the cognitive diagnosis technology 
is refined to the level of knowledge attributes to accurately locate the learner’s strengths 
and weaknesses; and the affective computing technology senses the learner’s emotional 
state in real time by recognising facial expressions, voice tones, and physiological 
indicators to support for adjusting teaching strategies. 

Furthermore, stressed by adaptive learning is the immediacy and responsiveness of 
input. By means of the intelligent feedback system, students can acquire tailored 
recommendations, error correction assistance, and strategy suggestions during instruction 
in a timely way, therefore enabling rapid adjustment of learning behaviours and cognitive 
strategies and support of deep learning. Feedback covers not only the assessment of 
correctness or incorrectness but also the direction of metacognitive level, which enables 
students to consider the learning process and build independent learning ability (Kolloff 
et al., 2025). At the same time, incentive mechanism is equally crucial in adaptive 
learning through customised rewards, performance display and other ways to inspire 
learning motivation and continuous involvement. 

With the fast expansion of smart classrooms and intelligent education systems in 
recent years, adaptive learning technologies and applications have kept developing. 
Combining cognitive diagnosis, knowledge mapping, and artificial intelligence 
algorithms to reach accurate pushing of learning resources and adaptive assignment of 
tasks, adaptive learning technology has been extensively adopted in online education, 
massive open online courses (MOOCs), intelligent tutoring systems, and other fields 
(Troussas et al., 2020). Particularly in language courses like English acquisition, adaptive 
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learning greatly enhances students’ language skill mastery efficiency and learning 
experience by means of fine-grained cognitive diagnosis supported by individualised task 
design. 

Still, adaptive learning has several difficulties. First, the secret to raising the 
intelligence of adaptive systems is how effectively heterogeneous data from many 
sources can be combined to create dynamic, thorough and accurate learners’ profiles. 
Second, the system design must provide fair and open teaching, eliminate data bias and 
over-labelling, and consider justice and personalism. Third, difficulties of cross-platform 
and cross-system data interoperability restrict the advancement and spread of adaptive 
systems. Particularly in the gathering of sensitive behavioural and physiological data, 
privacy protection is also a major issue that has to be given top attention on how to 
guarantee data security and user privacy. 

Future adaptive learning will concentrate more on including cognitive diagnostic 
technology to precisely capture and fine-grained adjust learners’ cognitive states and 
change instructional design from memorising a single knowledge point to developing 
sophisticated abilities. Context-awareness, virtual reality (VR), augmented reality  
(AR) technologies will enhance the learning environment and raise immersion and 
realism as intelligent hardware advances. GNN-based, multimodal fusion and 
reinforcement learning among other modern technologies would enhance the intelligent 
decision-making and real-time reaction of the adaptive learning system. 

All things considered, adaptive learning, which is a pillar of intelligent education 
promotes tailored instruction and exact intervention using multi-dimensional data-driven, 
intelligent algorithmic support, so improving the learning effect and experience. Adaptive 
learning will become more important in the domains of smart classroom, online 
education and lifelong learning as technology develops constantly, and the depth of 
theoretical study increases helps to encourage the ongoing improvement of educational 
fairness and quality. 

3 English learning tasks and adaptive model design in smart classroom 

3.1 Analysis of smart classroom and English learning tasks 

Aiming to create an intelligent, personalised and interactive learning environment by the 
application of modern information technology, smart classroom is a product of the deep 
integration of information technology and education teaching, so achieving the dynamic 
optimisation of the teaching process and the continuous enhancement of the learning 
effect. Using big data, cloud computing, artificial intelligence and other advanced 
technological means, teachers in the smart classroom not only can monitor the learning 
status and cognitive level of students in real time, but also instantly modify their teaching 
strategies depending on the diagnostic results and encourage students’ active participation 
and independent learning. Smart classroom stresses the digitisation and intelligence of 
teaching materials, the diversity and personalising of teaching activities, and the visibility 
and precision of the learning process, and is a significant means to promote the 
modernism of education and educational justice. 

Regarding English acquisition, the design of a smart classroom is particularly crucial. 
English learning activities, as a language topic, involve a broad spectrum of skills 
including listening, speaking, reading, writing, translating, and demand a high degree of 
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learners’ cognitive structure, language application ability and cultural knowledge. 
Traditional classroom instruction sometimes uses uniform progress and content, so 
neglecting the unique diversity of learners and making it impossible to suit the learning 
demands of diverse pupils, so producing unequal learning outcomes (Padilla-Carmona  
et al., 2020). Building a learner-centred teaching environment helps the smart classroom 
to create diversified learning activities based on the various linguistic competencies and 
cognitive traits of the pupils, thereby attaining custom-made teaching and personalised 
learning. 

English learning activities in smart classrooms are often separated into three levels: 
knowledge acquisition, skills development and application practice. Knowledge 
acquisition concentrates on the mastery of basic language knowledge such as vocabulary, 
grammar, scenarios, etc., requiring systematic and coherent; skills training covers the 
development of listening comprehension, oral expression, reading comprehension and 
writing ability, stressing on practicability and communicative function; application 
practice stresses the real-life use of the language scenarios, and enhances the students’ 
comprehensive use of language and cross-cultural The practical exercise stresses the 
actual application of the language in natural contexts. These three components interact to 
form the whole framework of English education. 

Furthermore, English learning activities in the smart classroom have to consider 
variations in learning strategies and cognitive development degree of the pupils. Task 
design should consider the cognitive load theory, reasonably control the difficulty of the 
task and the amount of information to avoid cognitive overload and stimulate the 
motivation of learning and the demand for independent investigation. Cognitive 
resources, information processing and knowledge transfer ability of learners at different 
levels should be significantly different considered (Hajian, 2019). Diverse tasks of 
different kinds also enable learners with various learning styles, visual, auditory,  
hands-on, etc., to suit their demands, therefore improving the learning efficiency and 
effectiveness. 

English learning activities in the smart classroom should also include adaptive 
adjusting tools and instantaneous feedback systems. The system can dynamically 
ascertain learners’ knowledge mastery status and cognitive needs by means of real-time 
analysis of learners’ response data, behavioural data, and emotional data; subsequently, it 
can modify the task content, difficulty level, and teaching strategies to attain exact 
tutoring and personalised support. This adaptive design of activities depending on 
cognitive diagnostic not only increases the relevance and efficacy of instruction but also 
supports the development of students’ metacognitive ability and helps them better plan 
and control their own learning process. 

All things considered, the smart classroom advances the change of the teaching mode 
from the conventional teacher-centered to learner-centred and offers technical and 
theoretical assistance for the design and execution of English learning activities. 

3.2 Adaptive modelling for English learning tasks 

Construction of a model that effectively and dynamically responds to students’ cognitive 
states is essential to achieve cognitive diagnosis-based English learning task adaption in a 
smart classroom setting, see Figure 1. The CD-ELAM suggested in this paper 
dynamically adjusts the difficulty and content of learning tasks and further generates 
personalised learning strategies by precisely grasping students’ cognitive level, combined 
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with a thorough representation of task features, so effectively enhancing students’ 
learning effectiveness and teaching quality. 

Figure 1 Design of the CD-ELAM model (see online version for colours) 

Cognitive state 
modelling Expression of mission 

characteristics

b

W1

W2

Mandate reconciliation 
mechanisms

Task A Task B Task C Task D

Mission Control CentrePersonalised 
learning strategies

Mission 
feedback

 

3.2.1 Cognitive state modelling module 
The main element of the CD-ELAM model and the cognitive basis of the whole adaptive 
mechanism is the module of cognitive state modelling. This module’s fundamental goal 
is to build a fine-grained and dynamic cognitive portrait by inferring students’ mastery of 
several English knowledge qualities from their episodic behavioural data. This module 
stresses diagnosis and modelling on several cognitive aspects to provide a precise and 
practical basis for the next task adaptation, unlike the conventional approach of 
evaluating learning levels based just on total scores. 

Knowledge qualities in English learning activities normally include several aspects, 
including vocabulary, grammar, reading comprehension and pragmatics. The collection 
of knowledge attributes for systematic modelling follows: 

{ }1 2, , ..., KA A A A=  (1) 

where Ak is the kth cognitive dimension and K is the overall count of English knowledge 
characteristics involved. Every student’s knowledge state at any one time can be 
expressed as an attribute mastery variable ai: 

( )1 2, , ..., {0, 1}i i i iK
Ka a a a ∈=  (2) 

where aiK = 1 is the learner has perfected the kth attribute; aiK = 0 is he or she has not yet 
done so. Models of the student’s state in the cognitive space are built on this fluctuation. 

The system must take more account of the knowledge structure underlying an English 
learning activity to ascertain if a student is qualified to complete the task. Every learning 
task j can be expressed as an attribute demand variable qjk, which indicates the knowledge 
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dimensions needed for the task. A writing assignment can, for instance, be quite 
dependent on grammar, logical structure, and lexical arrangement. The following 
matching function gauges students’ competency fit for job j: 

1

jk
K

q
ij ik

k

η α
=

= ∏  (3) 

where ηij is the student has mastered all the qualities needed for the job and has the 
potential to do the task; if there is a trait Ak the student does not yet possess, then ηij = 0, 
suggesting the student lacks the capacity to finish the mission. Task matching and 
diagnosis are built on this logic gate structure, which also faithfully replics the 
mechanism of minimum competence requirements for learning activities (Allchin and 
Zemplén, 2020). 

In actual learning environments, though, random events often compromise students’ 
performance. For instance, carelessness may cause somebody to get the answer wrong 
even if they have perfected all the required skills; conversely, guessing may lead to the 
correct response even if they may not have perfect knowledge. This module presents the 
classical DINA model in cognitive diagnosis to model student performance 
probabilistically using the following formula: 

( ) ( ) 11 , 1 ij ijη η
ij i j j jP R a q s g −= = − ⋅  (4) 

where Rij marks the completion result of task j by student i (1 is success, 0 is failure); sj is 
the slip rate, i.e., the likelihood of failing despite knowing knowledge; and gj is the guess 
rate, i.e., the probability of completing the work without mastering knowledge. By 
considering the logical structure of the competence requirements and allowing the 
contingencies in the learning activities, the model efficiently combines cognitive 
matching with behavioural probabilistic modelling, so improving the realism and 
robustness of the cognitive state modelling. 

The system uses EM algorithms to fit students’ attribute variables and bases on their 
history learning records, so building the cognitive state distribution of every learner in the 
process of model implementation. This method may dynamically monitor and diagnose 
by real-time updating the cognitive status unlike the stationary evaluation strategy. If a 
student performs well on several consecutive grammar assignments, the system can 
automatically upwardly modify his or her weight in the grammar mastery dimension; if 
he or her fails often under a certain attribute, it is noted as a learning bottleneck and 
recorded for use in the next task regulating mechanism. 

It is important to underline that students’ learning behaviour data in a smart 
classroom environment comprise multimodal information including classroom 
interactions, resource use, and task response time in addition to answer records  
(Zhan et al., 2021). To increase the operability and explanatory capacity of the model, the 
system therefore discretises some of the continuous aspects in cognitive state modelling 
and integrates them with attribute modelling mechanisms. 

By building cognitive attribute variables, matching functions and behavioural 
probability models, so providing basic support for the scientific operation of the task 
adaptation mechanism, the cognitive state modelling module faithfully reflects the 
structure of students’ English learning ability. 
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3.2.2 Task characterisation module 
Personalised matching in adaptive assignment of English learning tasks depends on 
precise and thorough description of problem properties. Usually showing great cognitive 
complexity, close knowledge relationships, and flexible semantic expressions, English 
learning activities span a broad spectrum of language abilities including listening, 
speaking, reading, and writing. Adaptive models limit the diagnostic accuracy and 
recommendation effect by means of traditional feature representations that depend just on 
labelling, classification, or single dimensions; however, it is often impossible to 
completely capture the fundamental structure and practical needs of the tasks. This work 
thus suggests a multidimensional task feature representation method combining cognitive 
diagnostic theory with contemporary natural language processing methods to more 
precisely depict the fundamental characteristics of English learning tasks. 

Drawing on the Q-matrix idea in cognitive diagnostic theory, first a K-dimensional 
Boolean variable is utilised to structurally encode the cognitive traits involved in every 
learning task (Lim, 2024). Assume the jth learning task to be Tj, its corresponding 
attribute variable is designated as: 

( )1 2, , ..., {0, 1}j j j jK
Kq q q q ∈=  (5) 

where the element qjk denotes 1 if task Tj incorporates the kth cognitive trait, 0 otherwise. 
This allows the task’s knowledge to be exactly mapped to the chosen cognitive attribute 
space. This organised presentation not only provides a strong basis for later tailored task 
recommendation but also helps with direct matching and similarity computation with the 
cognitive state variable of the student. 

Still, depending just on the discrete coding of cognitive qualities makes it challenging 
to capture the semantic information and language aspects of tasks. The model thus adds a 
deep learning-based text semantic embedding method to solve this shortfall. Specifically, 
the task description text Dj is encoded using the pre-trained BERT model and then its 
high-dimensional semantic variables are extracted: 

( )BERT d
j jv D= ∈  (6) 

This variable greatly increases the depth and accuracy of task representation since it not 
only reflects the surface information of the work but also catches its suggested deeper 
characteristics including linguistic skill needs, contextual context and difficulty degree. 

At last, the model combines the cognitive attribute variable qj with the semantic 
embedding variable vj to generate a unified task representation variable, therefore 
allowing full play of the complimentary advantages of cognitive structure and semantic 
features: 

1 2j j jt W q W v b= ⋅ + ⋅ +  (7) 

where tj is the multidimensional feature representation of the fused task and the parameter 
matrices W1, W2 and the bias term b are the learnt weights during model training. 
Realising the natural synthesis of structured and unstructured information, the fused 
representation not only preserves the cognitive attribute information of the task but also 
introduces the linguistic semantic aspects of the task. 

All things considered, the task feature representation module can faithfully and 
comprehensively depict the multilevel characteristics of English learning activities. 
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3.2.3 Task reconciliation mechanism module 
The core link to achieve adaptive assignment of English learning tasks is the task 
regulation mechanism, which mostly serves to dynamically adjust and recommend the 
tasks most suitable for the learners’ current ability and needs depending on their 
cognitive state and task characteristics, so promoting the optimisation of personalised 
learning paths. This mechanism guarantees accurate and effective control of the learning 
process by considering the knowledge coverage of the task, the balance of skill training, 
and the stimulation of learning motivation, so ensuring that the difficulty of the task 
matches the cognitive level of the student. 

Specifically, the task regulating mechanism generates a task matching scoring 
function depending on two main information inputs: the cognitive state variable of the 
learner ai, and the task characteristic variable tj. Task’s suitability for learner i is gauged 
using the scoring function S(i, j), which defines: 

( ) ( ), sim , 1 c( ) o) s ,( i j i jS i j a q v vα α= ⋅ + − ⋅  (8) 

Usually computed using metrics like the weighted inner product or the Hamming distance 
to reflect the cognitive attribute fit, the first term sim(ai, qj) denotes the match between 
the student’s cognitive state variables and the task’s cognitive attribute variables; and the 
second term cos(vi, vj) cosine similarity between the student’s current learning semantic 
state and the task’s semantic features, so capturing the semantic level correlation. The 
contribution ratio between cognitive and semantic matching is balanced with the 
weighting coefficient α. 

The algorithm chooses a suitable set of tasks T* depending on the matching score to 
maximise the total of the matching degrees of all chosen tasks: 

{ }
arg  m )ax ( ,

j
j

T T
T T

T S i j∗
⊆

∈

=   (9) 

where N represents the maximum quantity of single recommendation assignments. By 
means of this goal, the task adjustment system not only guarantees the relevancy of the 
suggested activities but also manages the learning load to improve the learning effect and 
student motivation. 

Furthermore, the task adjustment mechanism presents a dynamic feedback adjustment 
strategy that constantly optimises the matching parameters and task recommendations 
depending on the real-time performance and cognitive state changes of the learners, so 
attaining dynamic adaptation and optimisation of the learning path. This closed-loop 
system guarantees that the model is quite versatile and adaptable to fit individual 
variances and evolving learning surroundings. 

Ultimately, the task adjustment mechanism module dynamically changes the task 
allocation strategy by means of cognitive and semantic dual perspectives, builds the key 
support of the intelligent adaptive system based on the cognitive needs of the learners so 
offering a strong guarantee for the personalised teaching effect of the CD-ELAM model. 

3.2.4 Personalised learning strategies module 
To maximise learning outcomes and active student involvement, the personalised 
learning techniques module seeks to dynamically modify learning paths and techniques 
depending on cognitive level and task completion. The module integrates cognitive 
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diagnosis findings and examines student learning performance data to create tailored 
instructional interventions for varying degrees of instruction and refined management. 

First, using students’ cognitive state variable ai and task completion feedback fi, the 
system assesses learning efficacy. The function of the learning effect evaluation is stated 
as: 

1

1 M

i j ij
j

E w f
M =

=   (10) 

where M is the total number of tasks and wj is the weight of task Tj, therefore representing 
their significance in the general learning goals. 

The customised learning approach maximises the students’ learning path by changing 
the task difficulty and content order, according to the learning effect evaluation (Vanitha 
and Krishnan, 2019). Let θi be the present learning strategy parameter; the model uses the 
function of strategy update: 

( 1) ( )
i

t t
θ ii iθ θ η E+ = + ∇  (11) 

where η represents the learning rate; ∇θiEi indicates the gradient of the learning effect on 
the strategy parameters, therefore guiding the direction of dynamic adjustment of the 
strategy. 

Furthermore, by means of multi-dimensional data fusion, the personalised strategy 
module incorporates non-cognitive elements such students’ hobbies and learning 
preferences to improve the adaptability and flexibility of the strategy. Working in 
combination with cognitive state modelling and task control systems, the module creates 
a closed-loop feedback system that achieves exact reaction and support for student needs. 

Overall, by means of scientific learning effect assessment and dynamic strategy 
modification, the personalised learning strategy module offers intelligent support at the 
strategy level for the self-adaptive model of English learning tasks in the smart classroom 
and motivates learners to achieve independent exploration and continuous optimisation of 
the best learning path. 

4 Experimental results and analyses  

4.1 Data collection 

This work used the ASSISTments dataset as the experimental data source. Widely 
utilised in both elementary and secondary schools, the ASSISTments platform is an 
online tutoring system offering real-time feedback and individualised learning support. 
Suitable for cognitive diagnosis-based learning status analysis and adaptive modelling, 
the dataset includes students’ answer records, time stamps, student ID, topic ID, and 
relevant knowledge qualities (Q-matrix) in English and other topics. 

The selection of this dataset has multiple aptitudes: first, the ASSISTments platform 
contains a large amount of student behavioural data in real teaching environments, with 
high data quality and coverage of diversified learning tasks; second, the dataset provides 
a rich set of elements required for cognitive diagnosis, such as the correspondence 
between questions and knowledge points, which is conducive to the construction and 
validation of the cognitive state modelling module; third, the source of the data is the 
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Smart education platform, which is highly compatible with the technological background 
of the smart classroom and facilitates the promotion and validation of the model in 
practical applications; finally, the data is of moderate size, which can support the training 
and evaluation of the complex model and at the same time guarantee the repeatability and 
scientificity of the experiment. 

Table 1 enumerates the fundamental details of the ASSISTments dataset applied in 
this research. 
Table 1 Information on the ASSISTments dataset 

Data item Description Value / details 
Data version / year Public release circa 2017 Most commonly used public 

version 
Subject coverage Primarily Mathematics, includes 

some English items 
English-related items filtered and 

selected 
Number of response 
records 

Over 200,000 entries Includes correctness, response 
times, etc. 

Data format CSV files Fields include student ID, item 
ID, responses, timestamp 

This research extracts the answer records and related knowledge attributes covering the 
English learning tasks by means of the screening and pre-processing of this dataset, 
therefore ensuring the validity and representateness of the data. To guarantee the 
correctness and stability of the model input, the data preparation process comprises of 
missing value processing, aberrant data removal, and the building and calibration of the 
Q matrix. 

4.2 Diagnostic accuracy experiments with cognitive state modelling 

The objective of this experiment is to assess how well the proposed cognitive  
diagnosis-driven English learning task adaptive model (CD-ELAM) detects cognitive 
states of students. Personalised teaching and task adaptation are based on accurate 
diagnosis of cognitive states, which directly influences the matching and adjusting effects 
of next learning activities. Thus, the main goal of this investigation becomes to confirm 
the performance variations of CD-ELAM among several models by means of a 
comparison with several conventional and advanced cognitive diagnostic models. Widely 
used and validated in the field of cognitive diagnosis, the chosen benchmark models are 
the DINA model, the DINO model, the GDINA model, the additive cognitive diagnostic 
model (ACDM), and the reduced reparameterised unified model (RRUM) (De La Torre, 
2019). 

The trials used two criteria, accuracy and F1-score, to fully assess the diagnostic 
performance of the models. The most natural success indicator is accuracy, which shows 
the whole percentage of students’ cognitive states the model correctly detected. 
Particularly crucial in preventing too high misclassification and deletion, F1-score 
aggregates the precision and recall of the model, therefore measuring its competence in 
handling imbalanced categories. The two metrics used together enable a thorough 
evaluation of the model’s diagnostic performance from several angles. Figure 2 shows 
the experimental findings. 
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Figure 2 Accuracy results of cognitive diagnosis (see online version for colours) 
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With an accuracy of 81.5%, GDINA is the top-performing benchmark model; CD-ELAM 
has improved by 4.1%. This development suggests that CD-ELAM can more successfully 
capture students’ cognitive qualities and knowledge mastery, hence lowering 
misjudgments and omissions. 

Regarding the F1-score measure, CD-ELAM also does rather well (83.9%). By 
contrast, the F1-score of the ACDM is 78.0%; that of the GDINA model is 79.8%. The 
increase in F1-score suggests that CD-ELAM achieves a better balance between precision 
and recall, so effectively recognising both cognitive traits that have not been mastered 
and mastered knowledge as well as supporting more focused instructional interventions. 

Though with 79.0% and 79.7%, 76.7% and 77.3%, respectively, the DINO and 
RRUM models are still lower than the CD-ELAM even if they consistently show in terms 
of accuracy and F1-score. This shows that improving cognitive diagnosis performance 
depends much on the multidimensional task feature representation and customised 
learning strategy modules presented by the CD-ELAM. 

All things considered, the CD-ELAM model has achieved notable improvement in the 
cognitive state modelling diagnostic accuracy. This not only confirms the efficiency of 
the model design but also offers a strong technological support for cognitive  
diagnosis-based English learning task adaption in the smart classroom environment, so 
laying a strong basis for further study and application. 

4.3 Experiments on adaptive task recommendation and learning effectiveness 
enhancement 

With an emphasis on assessing the influence of the proposed cognitive state-based 
adaptive model for English learning tasks (CD-ELAM) on task suggestion, this 
experiment intends to confirm its effectiveness in task recommendation. Real teaching 
data was used for experiments; the performance of several approaches in task suggestion 
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was thoroughly investigated by means of a comparison with the conventional cognitive 
diagnostic models GDINA, DINO, and random task recommendation approaches. 

This paper uses two main indicators to evaluate the performance of the model. Time 
Reduction measures the model’s capacity to optimise the learning path through the task 
moderation mechanism to enhance learning efficiency; Score Improvement refers to the 
average increase in students’s test scores after completing the recommended tasks, so 
reflecting the progress of cognitive mastery. Time reduction tests the model’s capacity to 
maximise the learning path via the task control mechanism, hence improving learning 
efficiency. Figure 3 displays on the indicators the experimental findings of several 
models: 

Figure 3 Adaptive task recommendation learning effect (see online version for colours) 
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First, in terms of academic performance improvement, the CD-ELAM model attained a 
notable gain of 12.8 points on average, well above the other relative models. By contrast, 
the GDINA and DINO models attained effective but rather large performance increases 
of 9.5 and 8.7 points respectively. This implies that CD-ELAM can more successfully 
match tasks appropriate for learners’ present level by means of accurate modelling of 
learners’ cognitive state and thorough expression of task aspects, therefore fostering their 
knowledge mastery and skill enhancement. 

Second, in terms of learning time optimisation, CD-ELAM reduces time by 18.6%, 
well above 12.3% of GDINA and 10.5% of DINO. This result greatly increases the 
learning efficiency by showing that the task control mechanism of CD-ELAM can 
suitably arrange the order and complexity of tasks, thereby avoiding the time-consuming 
repetition of tasks too difficult or too simple. Random recommendation, on the other 
hand, only slightly reduced 2.1% of the time, underscoring the need for tailored 
recommendations in terms of saving instructional time. 

With both learning performance gains (5.3 points) and time savings (2.1%) far lower 
than the cognitive diagnostic model-based approach, random recommendations lagged 
the most as well. This shows that random task recommendations make it difficult to 
create efficient learning paths by ignoring learners’ unique variations and cognitive 
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needs, therefore producing either unsatisfactory learning outcomes or efficiency. In 
general, the CD-ELAM model reflects the potential and utility of combining cognitive 
diagnosis with adaptive techniques and offers great benefits in intelligent English 
learning task recommendation. 

5 Conclusions 

This research presents a cognitive diagnosis-based adaptive model for English learning 
tasks (CD-ELAM), designed to provide personalised task recommendations through four 
primary modules, hence improving learning efficiency and effectiveness. Experiments 
demonstrate that the model surpasses conventional models and fosters the advancement 
of personalised learning. 

However, it possesses limitations, such as a restricted capacity to manage intricate 
cognitive structures, inadequate dynamic modeling, a singular data source, and the 
necessity for enhancement in user experience. To address the above limitations, future 
research can be carried out in the following aspects: 

1 Multi-dimensional learning data integration: Forming a more comprehensive and 
dynamic learner portrait by incorporating non-cognitive factors like learners’ 
emotions, behavioural trajectories, learning motivation, etc. helps achieve more 
personalised learning task recommendation and precise intervention in the smart 
classroom environment and enhance teaching interactivity and adaptability 
(McGrew, 2022). 

2 Enhance the real-time performance and computational efficiency: To meet the  
real-time processing needs of large-scale and diverse learning data in the smart 
classroom, we optimise the model’s computational performance and response speed, 
develop a lightweight algorithmic framework, ensure the system’s efficient operation 
and instant feedback in actual teaching, and support teachers’ and students’ dynamic 
teaching activities. 

3 Enhance the interpretability and the user experience: Strengthen research on model 
diagnosis and recommendation results interpretability, improve teachers’ and 
students’ understanding and trust in system feedback, optimise the learning interface 
with smart classroom interaction design, increase teaching transparency and user 
participation, and promote smart classroom teaching quality improvement (Saini and 
Goel, 2019). 

4 Interdisciplinary and cross-cultural smart classroom promotion: We can investigate 
the application and validation of the adaptive model in smart classrooms of many 
disciplines and cultures, improve the generalisation capacity of the model, and 
support personalised learning theory and technology to land in the practice of smart 
education globally in the future. 
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