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Abstract: High-performance concrete (HPC) functions stronger because it 
contains more components than ordinary concrete. The compressive strength 
(CS) of HPC prepared with fly ash (FA) and blast furnace slag (BFS) was 
assessed using several artificially-based analytics. In this study, the artificial 
rabbit optimisation (ARO) technique, abbreviated as AROR and AROLS for 
the radial basis function (RBF) neural network and the least square  
support vector regression (LSSVR) analysis, accordingly, was employed to 
identify the optimal values for the parameters that could be adjusted to  
enhance performance. The CS was used as the predicting objective, and  
1,030 experiments and eight input parameters were used to construct the 
suggested techniques. After that, the outcomes of the enhanced model were 
compared to those documented in the corpus of current scientific literature. The 
calculations suggest that combining AROLS with AROR research might be 
advantageous. The AROLS demonstrated much higher R2 2

Train(R  = 0.9853 and 
2
TestR  = 0.9912) and lower error metrics when compared to the AROR and 

previous papers. Finally, the offered technique for computing the CS of HPC 
increased by BFS and FA may be created using the recommended LSSVR 
analysis enhanced by ARO. 

Keywords: high-performance concrete; compressive strength; artificial neural 
network; least square support vector regression; artificial rabbit optimisation. 
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methods for assessing the energy-saving potential and enhancing the durability 
of construction materials, contributing to more sustainable and resilient 
infrastructure. His research plays an important role in promoting green building 
practices and improving the longevity and safety of construction materials in 
challenging environments. 

Guanglei Zhao graduated from Zhengzhou University of Aeronautics in 2007 
with a degree in engineering. He works at Henan Vocational University of 
Science and Technology in Zhoukou, Henan, China (466000). His primary 
research interest is machine-made sand fly ash concrete, focusing on its 
properties, applications, and environmental benefits in the construction 
industry. 

 

1 Introduction 

High-performance concrete has become a ‘must’ building material in almost all modern 
construction works because of its strength, durability, and lifespan, which are superior to 
conventional concrete. The American Concrete Institute, ACI, defines HPC as concrete 
that consists of very high criteria for various performance parameters, including but not 
limited to compressive strength, workability, durability, and consistency (Benemaran  
et al., 2024; Mathew et al., 2024a). Properties make it apt for demanding applications like 
bridges, high-rise buildings, and structures exposed to severe environmental conditions  
(Szolomicki and Golasz-Szolomicka, 2019).  Durability stands out of all the salient 
benefits of HPC compared to normal concrete (Abdul Nabi and Kadhim, 2020). Whereas 
the latter is prone to several problems, such as cracking, corrosion, and shrinkage after a 
certain period, HPC is made resistant to such breakdowns (Ding et al., 2021; Pandey  
et al., 2024). This is achieved by adding special additives and optimisation in mix designs 
to reduce permeability, increase resistance to chemical attack, and improve resistance 
against freeze-thaw (Pulivarthy, 2024). Improved durability increases the structure’s 
service life, reducing the frequency of repair and maintenance (Pierre et al., 2024a). This 
will bring about considerably more savings in a longer period (Bader and Lackner, 2020; 
Panyaram, 2024). 

Increased service life and reduction of maintenance costs are particularly important in 
infrastructure projects, where any downtime or loss of structural integrity can be critical 
(Lukutin and Kadhim, 2021a). In this respect, HPC represents a real service life extension 
compared to conventional concrete, which can often be repaired or even replaced under 
various environmental stresses (Rincon et al., 2024; Ikwuagwu et al., 2023). These  
long-term savings against its usually higher initial cost make HPC the cost-effective 
choice for some high-performance applications (Kadhim and Lukutin, 2021). This, 
however, is not as easy as making normal concretes (Pierre et al., 2024b). Normal 
concrete mixes cement, water, and aggregates in standard proportions, typically modified 
by achievable strength and workability (Nwezeh, 2023; Kadam and Deming, 2024). HPC 
mixtures allow for additional cementitious materials such as silica fume, fly ash, and 
GGBFS to improve the concretes’ properties (Alhusseini et al., 2024; Nwabuokei et al., 
2023; Thirunagalingam, 2024a). Materials intended for strengthening and reducing the 
water-cement ratio and improving the resistance of concrete against the action of external 
aggressive media (Jasper et al., 2024; Mathew et al., 2024b; Usman and Ullah, 2024). 
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Superplasticisers are the most common chemical admixtures used in producing HPC, 
which enhance workability without adding extra water (Sucharda et al., 2024; Santoso et 
al., 2021). 

Compressive strength in the performance of HPC is one of its main features 
(Mudunuri, 2024; Saxena et al., 2023). It is one of the indicative factors in the material’s 
ability to bear a mechanical load and different stresses without failure (Ikwuagwu et al., 
2024a; Suraj et al., 2024). Compared with traditional concrete, HPC shows a very high 
value of CS that ensures superior performance in the most extreme loading conditions 
(Zhao et al., 2024; Mehta et al., 2023; Tin et al., 2024). The mix design of HPC is  
fine-tuned to the respective proportions of various materials combined, such that a proper 
balance between the desired strength and durability characteristics is obtained  
(Al-Zubaydi and Kadhim, 2023). Advanced models allow a far larger degree of precision 
for predicting HPC behaviour under varying environmental and load conditions 
compared to what has been experienced (Banala, 2024; Kadhim and Lukutin, 2019; 
Thirunagalingam, 2024b). One of the major disadvantages of HPC involves cost and 
material availability (Abdal et al., 2023; Zanardo, 2024). Indeed, inclusion in HPC of 
supplementary cementitious materials and chemical admixtures can increase its cost, 
while the availability of certain ingredients may vary in different regions (Anand et al., 
2024; Nanban et al., 2024). While choosing a proper HPC mix design, the required 
performance should be weighed against local material availability and respective costs 
(Hadji et al., 2021; Kumar et al., 2024). 

Besides, HPC requires more complex quality control and more elaborate varieties of 
tests than normally used in regular concrete, which is again reflected in its final price 
(Elaiyaraja and Boinapalli, 2024). Although HPC is superior in its performance, 
conducting even more detailed and scrupulous testing is necessary to ensure 
dependability (Lukutin et al., 2022; Maroju, 2024). Mix design in HPC has to be tested 
for various conditions to realise whether it meets the intended strength, workability, and 
durability (Lukutin and Kadhim, 2021b). Some test areas involved are compressive 
strength, shrinkage permeability, and resistance to environmental degradations (Alomayri 
et al., 2023). Additional tests would be required, considering variable raw materials and 
environmental conditions in which the mix must be suitable for the intended use. 
Statistical regression techniques have already played a major role in fine-tuning HPC mix 
designs (Gupta et al., 2024). These kinds of methods permit an examination of complex 
relationships between various ingredients and the properties of concrete. Such methods 
shall enable researchers to optimise mix design for certain performance goals and thereby 
make such HPC meet a project’s technical and economic requirements (Ikwuagwu et al., 
2024b; Regin et al., 2021). This will also allow the engineer to statistically model and 
simulate HPC performance or behaviour under various environmental exposure 
conditions, such as extreme weather, heavy traffic loads, or aggressive chemical 
environments (Tiza et al., 2024; Raja et al., 2024). 

2 Literature review 

Data mining has lately attracted a lot of attention from the academic and industrial areas 
to handle engineering-related problems (Benemaran, 2023; Esmaeili-Falak and 
Benemaran, 2024a, 2024b). It might be quite advantageous to construct computer 
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simulations using data mining frameworks where research can be conducted. 
Professionals have recently utilised a variety of AI-based algorithms to forecast concrete 
mechanical properties. Additionally, Erdal et al. (2013) predicted the CS of HPC using 
bagged artificial neural networks (ANN) and gradient-boosted ANN. Regression trees, 
NNs, support vector machines (SVM), and chi-squared automated interaction detectors 
were investigated by Chou and Pham (2013) to assess the mechanical characteristics of 
different construction materials. 

Golafshani et al. (2022) proposed a tool that could estimate compressive strength via 
several data-driven techniques. In this regard, they extended multi-layer neural networks 
and radial basis function neural network models to the Harris hawks optimisation 
algorithm on a dataset that included 1,374 concrete mixture proportions, curing age, and 
values of CS. This hybridised model outperformed all the other models. Of all such 
variables, the most influencing ones on CS were cement, coarse aggregates, and fine 
aggregates, while slag, fly ash, and concrete age had less influence. 

Prakash et al. (2024) estimated the compressive strength of UHPC through nine 
hybrid machine-learning models involving different optimisation algorithms. The models 
developed in this study have used ANN and algorithms such as ALO, GWO, SSA, WOA, 
DA, PSO, HHO, SMO, and GTO using a dataset of 308 observations. The best model 
developed for ANN-GTO presented R2 = 0.9629 and RMSE = 0.0518 in modelling and 
R2 = 0.9578 and RMSE = 0.0540 during testing. Therefore, sensitivity and uncertainty 
analyses prove that the model will serve the purpose appropriately and thus be useful in 
civil engineering projects. Bian et al. (2024) applied RBF and XGB models to predict and 
optimise compressive strength in SCC mixtures. For this purpose, supplementary 
admixtures such as lime powders, fly ash, and silica fume were added to the dataset of 
experimental samples. NGOA and HGSO are applied to these models to give their four 
variants: XGBNG, XGBHG, RBFNG and RBFHG. Their XGBNG model gave the best 
precision, reaching a minimum OBJ value of 0.8062, followed by XGBHG, with an OBJ 
value of 1.657, RBFNG with an OBJ value of 2.4891, and RBFHG with an OBJ value of 
3.9131. 

Nguyen and Ly (2024) proposed integrating the GBR with three metaheuristic 
optimisation algorithms, such as SCSO, GWO_WOA, and ARO, for the axial 
compressive capacity prediction of the CFDS-ST columns. Considering the experimental 
results obtained for 153 data, GBR optimised through the ARO algorithm outperformed 
eight machine learning models, three design standards, and two empirical equations in 
prediction. The model optimised a CFDST column design for maximum ACC, 
considering the design constraints, which improved the safety and efficiency of CFDST 
structures. 

Imran et al. (2024) investigated the prediction of compressive strength in  
high-performance concrete using machine learning to overcome some tedious 
conventional methods. Using a large database, the models compared in this research 
effort include GPR, DT, MLR, SVM, and BR. The GPR model showed the best 
performance, with R2 at 0.943, RMSE at 4.397, and MAE at 3.230. These were followed 
by cement, coarse aggregate, sand, and water as the most relevant. GPR gave the best 
prediction accuracy in the present work; hence, it will be cost-effective and sustainable to 
estimate the compressive strength of HPC using GPR. Li et al. (2023) proposed a neural 
network model, RBFNN, for estimating the compressive strength and slump of HPC 
mixtures to reduce expensive experiments and improve precision. The model training was 
metaheuristically optimised using HGSO and multiverse optimiser techniques, including 
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fly ash and superplasticiser, in 181 HPC mixture datasets. Performed identically well, the 
MVO-based model outperformed it by having a smaller RMSE in a slump and 
accordingly 3.7 versus 5.3 mm and a higher R2 in slump flow rates, 98.25% versus 
96.86%. Both of these hybrid models predicted the hardness properties of HPC samples 
(Ramya et al., 2023). 

ANNs are the most studied learning methods, according to empirical efforts. ANNs 
are widely utilised to evaluate several tangible attributes (Lee, 2003; Ji et al., 2006; Yeh, 
2007; Amlashi et al., 2023). With these, predictions have been made regarding the CS 
and slump flow of HPC mixes (Kasperkiewicz et al., 1995; Prasad et al., 2009). In order 
to assess the CS of HPC, Rajasekaran and Lavanya (2007) utilised a wavelet neural 
network technique. Piro et al. (2022a) used multi logistic regression (MLR), an ANN, 
and a full quadratic (FQ) model to forecast the electrical resistivity (ER) and CS of 
concrete containing ground-granulated blast-furnace slag (GGBS) and steel slag (SS). 
The ANN predicted the concrete’s CS and ER more accurately than MLR and PQ. In a 
similar work, Piro et al. (2022b) evaluated the CS of concrete, including natural 
aggregates like steel slag, fine aggregate, and coarse aggregate, using a complete FQ, an 
M5P tree model, an ANN, a nonlinear regression (NLR), and a linear LR. It is possible to 
explain further study using various machine learning (ML) techniques. The CS of HPC 
was estimated using gradient-boosted ANN and bagged ANN (Hir et al., 2023). Chou and 
Pham’s (2013) cluster methods fared well compared to previous experiments. Rafiei et al. 
contrasted the effectiveness of their newly introduced deep machine with that of SVR and 
backpropagation NN (Rafiei et al., 2017b). With actual testing data from the UC Irvine 
ML reservoir, they find that the existing framework is only 98% accurate at most. The 
density of foamed concrete was calculated using a deep neural network architecture 
(Nguyen et al., 2019). An optimisation method provided a new solution to the concrete 
mix design issue (Rafiei et al., 2017a). For the CS of HPC mixes, new prediction work 
coupled orthogonal least squares (OLS) with genetic programming (GP) techniques. 

Atici (2010) created a regression model for predicting concrete strength using  
non-destructive testing methods and then conducted statistical tests to confirm the 
model’s correctness. Zain and Abd (2009) calculated HPC’s durability using multivariate 
power equations, which is significantly harder to predict than regular concrete due to the 
intricate interactions between its constituent parts and visible characteristics. The 
substantial nonlinearity in the interaction between its constituent parts and physical 
features makes it difficult to develop a mathematical model that can estimate the 
computing strength of HPC from the provided data. 

Chou et al. (2011) suggested a collection of supervised learning models that can 
predict the advancement of carbon capture and storage (CCS) technology as an example. 
According to the authors’ analytical results, multiple additive regression trees provide 
better prediction accuracy than other methods. When it came to predicting the elastic 
modulus of conventional and high-strength concrete. Yan and Shi (2010) discovered that 
SVM performed better than other models. This implies that SVM can produce predictions 
of this sort with extremely high accuracy. Along with other ML approaches like SVM, 
ANN is a dependable tool for forecasting CCS results by generating mapping functions. 
However, no single model has consistently been shown to estimate CCS findings better. 
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An extreme gradient boosting (XGBoost) was employed to train an extremely precise 
ML model. The study provided further a simple and free user interface to support the 
design of normal- and high-strength BFS and FA concrete. The compressive strength of 
1,030 concrete mixes containing cement (C), BFS and FA were collected and analysed. 
The baseline model tends to overfit, with R2 values of 0.996 and 0.919 for the training 
and testing datasets, respectively (Khan and Abbas, 2023). In another paper, the CS of 
concrete containing BFS and FA was estimated using coupling the ANFIS with improved 
grey wolf algorithm and dragonfly optimisation algorithm are innovative algorithms that 
estimate estimated compressive strength for lab results, in mo. This article noted that the 
ANFISDA hybrid model performs better than ANFISI_GWO (Hu, 2023). 

3 Main contribution 

Gene expression programming (GEP), adaptive neuro-fuzzy inference system (ANFIS), 
multivariate adaptive regression splines (MARS), and other research have all used input 
variables provided to the method for forecasting the target-dependent variables. However, 
SVR and RBF neural networks may be able to reduce errors and increase model precision 
throughout the modelling procedure. The study often finds no correlation between 
LSSVR and RBF and optimisation techniques, even though different models are being 
attempted to forecast the mechanical properties of concretes (Cheng et al., 2014; Abd and 
Abd, 2017; Al-Fugara et al., 2022; Zhang et al., 2020; Li et al., 2021; Lyu et al., 2021; 
Moodi et al., 2022; Regin et al., 2024). ARO was used in this work to identify the 
essential components of the LSSVR and RBF approaches that may be changed. The CS 
of HPC was the prediction aim, and 1,030 trials and eight input factors the primary 
admixture component, mix designs, and curing age were used to evaluate the proposed 
models. The application of ARO significantly improved prediction accuracy and stability 
in both the AROR and AROLS. ARO’s adaptive mechanism allows for quick 
convergence on optimal solutions, often requiring fewer iterations than traditional 
optimisers. ARO enhanced the optimisation process by effectively balancing exploration 
and exploitation, minimising the risk of local minima, and ensuring that model 
parameters are optimised to their fullest potential. Finally, the successful implementation 
of ARO in predicting HPC compressive strength suggests its potential for broader 
applications in other predictive models for concrete and construction materials. This 
study contributes to the current literature in several key ways: 

• By combining ARO with LSSVR (AROLS), this study demonstrates an 
improvement in predictive accuracy over both traditional methods and other artificial 
intelligence-based approaches. The reported R2 values and minimised error metrics 
signify the model’s precision, which could be crucial for accurate, reliable 
predictions in HPC research. 

• The use of ARO as an optimisation method for fine-tuning model parameters is 
relatively novel in HPC research. By comparing the performance of ARO-optimised 
RBF and LSSVR models, this study provides insights into how optimisation 
techniques can enhance AI-based models’ predictive capabilities, laying the 
groundwork for further exploration of optimisation algorithms in concrete science. 
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• This research contributes to sustainable construction by focusing on HPC enhanced 
with FA and BFS, both of which are more environmentally friendly alternatives to 
conventional concrete materials. The model’s ability to predict CS accurately 
supports the broader adoption of these materials by enabling engineers to optimise 
concrete mixes for specific structural requirements. 

• With a large dataset of 1,030 samples and a rigorous comparative approach, this 
study provides a substantial dataset for evaluating different machine learning 
techniques. 

4 Data properties and considered algorithms 

4.1 Artificial rabbit optimisation algorithm 

In terms of analysis, the actual-world survival strategies of rabbits are represented by an 
effective optimisation model by the suggested AROA [Figure 1(a)]. This deals with  
two tactics that are imitated: eating on the detour and unintentionally hiding. Initially, the 
detour foraging technique is replicated, in which the rabbit is compelled to consume the 
grass around nearby lairs to conceal its residence from potential adversaries. Second, 
using the randomised hiding strategy could reduce the chance that an opponent would 
capture a rabbit. Energy loss may also transpire during the third phase, which might 
prompt rabbits to adopt an irregular concealment approach in place of their detour 
feeding tactic (Wang et al., 2022). Every position in the original population is given a 
random location within the search region, according to equation (1): 

(1, dim) [ ] 1:= + × − =i RbRb LB rand UB LB i N  (1) 

The above formula indicates each rabbit’s location as Rbi the lower and upper bounds of 
the design variables as LB and UB, and the overall amount of rabbits in the population as 
represented by NRb and the overall amount of variables under evaluation as dim. 

Figure 1 (a) A rabbit nest with several burrows (b) Search mechanism based on the energy  
factor A (see online version for colours) 

  
 (a) (b) 
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4.1.1 Detour forage tactic 
According to the AROA’s detour foraging technique, each seeking rabbit chooses to 
participate in the diversion by switching spots with another randomly chosen searching 
rabbit from the swarm. The following formula illustrates how rabbits use foraging as a 
diversion: 

( )

1

( ) ( ) ( )1

1 5 , , 1: ,
2 10

)

0

(+ = + − ×

  + × × + = ≠    

k j k j

Rb

NRb iter Rb iter Rb iter Rb iter Zm

NDS round r k j N j k
 (2) 

( )( ) ( )
21

max 2sin 2
−

= × − ×
iter

IterZm c e e πr  (3) 

[ ]3
1 if ( )

( ) , 1: dim and 1: , dim
0 else

=
= = =


j g ψ
c j j ψ r  (4) 

1(dim),  (0, 1)=g randperm n N  (5) 

The above formulas state that iter specifies the current iteration, NDS indicates the 
regular distribution normal function, and NRbk and Rbk denote the new and old locations 
of the kth rabbit. Randperm is the name of a randomising transposition function. Three 
random numbers in the scope [0, 1] are shown by r1, r2 and r3 and the maximum number 
of iterations is shown by Itermax. 

4.1.2 Randomised hiding tactic 
A rabbit often dig tunnels close to its burrow for shelter while warding off attackers. The 
equation is provided here from this perspective. 

, ( ) ( (1 ))= × + ⋅k j kb iter Rb iter H G  (6) 

1: and 1: dim= =Rbk N l  (7) 

max
4

max

1− += × Iter iterH r
Iter

 (8) 

1 if
( ) , 1: dim

0 else
+

= =


i k
G j j  (9) 

The jth tunnel of the kth bunny is denoted by bk,j, and r4 seems to be an integer chosen 
randomly between [0, 1]. H represents the concealed value, which progressively reduces 
from 1 to 1/Itermax according to the current iteration. This trait suggests that these tunnels 
were initially built in a bigger rabbit habitat. As the number of repeats rises, this region 
gets smaller. In order to survive, rabbits must locate a safe place to live. They randomly 
choose one between the several holes they must hide in to prevent being discovered. This 
randomised concealment technique may be defined using the algebraic equation as 
follows: 
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( )5 ,( ) ( ) ( :)1 1( )+ = + × × − =k k k j k RbNRB iter Rb iter Zm r b iter Rb iter k N  (10) 

The location of the kth rabbit is altered as follows if successful diversion foraging or 
arbitrary concealment: 

( ) ( )
( ) ( )( )

( ) ( ) ( 1)
1

( 1) ( ) ( 1)
 ≤ +

+ =  + > +

k k k
k

k k k

Rb iter f Rb iter f NRb iter
Rb iter

NRb iter f Rb iter f NRb iter
 (11) 

4.1.3 Energy decline 
Energy is involved in modelling the transition from the discovering state associated with 
detour foraging to the exploitation stage associated with randomised hiding. The 
explanation of the factor of energy (AF) [Figure 1(b)] is as follows: 

max

1( ) 4 1 = × × − 
 

iterAF iter in
r Iter

 (12) 

4.2 RBF network 

Scholars use RBF, a calculating solution, in simulations (Broomhead and Lowe, 1988; 
Pierini et al., 2012). Three layers make up an RBFNN. The input layer contains a 
dataset’s input variables. A nonlinear feature that uses the RBF to reduce the 
dimensionality of the model receives the variables from the input layer. Technique 
formulation (Buhmann, 2000) states that RBF is a true-valued conductor connected with 
the present location and space from the source. The linear result layer combines the 
nonlinear projection results from the hidden layer, which are then applied to the linear 
regressor. Consequently, the regressor weights are determined using the linear  
least-squares method. Accordingly, the midline of the RBF and the input are indicated by 
the variables x and c in the method function φ(x, c). The φ varies according to the radial 
space of the input from the midline, r = ||x – c||. By summing the linear weights of the 
neurons in the hidden portions, one may calculate the result of a problem using  
equation (13). 

( )
1

( ) ( 1, 2, , )
=

= − = …
N

i ii
f x c φ x x i N  (13) 

The determination of the size and the appropriate number of concealed layers provide 
two difficult aspects of RBF, nevertheless. In relation to one another, the hidden layer 
should provide the constant spread and neuronal values. The most useful RBF is 
conducted by perfectly combining the previously described elements. Trial and error led 
to the discovery of these two values in earlier studies (Kisi and Cigizoglu, 2007; Kisi, 
2008; Zaji and Bonakdari, 2014). The most precise RBF network is obtained in this 
research by using the combined AROA-RBF design. The RBF structure, also known as 
AROR, is found by using the ARO approach, which yields the number and spread value 
of hidden neurons (Figure 2). The purpose of the RBF neural network in this study is to 
model the nonlinear relationships between input parameters and the compressive strength  
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of HPC. RBF networks are particularly effective for capturing complex patterns in data 
because they use radial basis functions that respond to different regions of the input 
space, enabling precise predictions even when interactions between variables are 
intricate. 

Figure 2 RBF neural network schematic (see online version for colours) 

 

4.3 Least square support vector regression analysis 

The SVR’s capacity to precisely forecast the accumulation rate is constrained by its 
computational complexity. Moreover, it is important to remember that this method may 
result in significant overhead processing. Adopting the LSSVR model is one suggested 
approach for traditional SVR models to address this issue. Unlike quadratic formulas, the 
current technique was designed to handle both nonlinear and linear equations. As a 
significant extension of SVR, the LSSVR model has remarkable abilities for both fitting 
and generalisation. By employing the square error as the objective function, it is feasible 
to obtain a significant decrease in computing load and a gain in computational efficiency. 
In several disciplines, the least squares technique has been the standard data management 
and analysis approach. The formula for the multiple nonlinear regression model is f(xi) = 
ωTφ(xi) + b + ε, wherein the variable vector ω ∈ RN is determined using the LSSVR. 

( )( )
( )

2

1

1
2

. . 1,( 2 , ),
=

= + − ⋅ −

= + + =

⋅

⋅


…

NT T
LSSVR i ii

T
i i i

g ω ω C y ω φ x b

s t y ω φ x b ξ i N
 (14) 
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The kernel function φ(·)was used to map the input space to a higher-dimensional region. 
In cases when the noise loss has a Gaussian distribution, the LSSVR machine can produce 
forecast results that exactly meet the specifications. The linear regression model’s 
decision function is f(x) = ωT · x + b. The parameters b ∈ R, ω = (ω1, …, ωL) ∈ RL, and xi 
∈ RL indicate the structure of the regression model. Using the linear regression model and 
the kernel function K(·, ·), the kernel approach generates the kernel regression paradigm 
LSSVR. 

f(xi) = ωT · φ(xi) + b is the nonlinear decision function of the LSSVR. K(xi, xj) =  
(φ(xi) · φ(xj)), φ: RL → H, where H denotes a Hilbert area, (φ(xi) · φ(xj)) the area H’s inner 
product, and T denotes the transpose of the vector. The LSSVR model is a robust 
predictive tool designed to minimise errors in estimating compressive strength. Focusing 
on reducing squared errors and achieving a balance between accuracy and generalisation, 
LSSVR can handle high-dimensional data and noisy datasets, which is essential for 
reliable CS predictions across varied HPC compositions. It is evident from the preceding 
derivation that the LSSVR framework’s regression outcomes are directly influenced by 
the kernel function width (g) and the penalty factor (c). As such, while using it, it is 
crucial to carefully select the appropriate values for g and c. The current study makes use 
of AROA approaches to keep the model true to the proper values of c and g. 

4.4 Dataset 

This research evaluated H samples utilized in published articles (Yeh, 1998a, 1998b, 
1999, 2003, 2006) and was taken from the UC Irvine repository. The study’s findings are 
included in the extra sources section of this paper. Normal OPC was used to produce 
every sample, and it was usually treated thereafter. Presently available literature on HPC 
testing makes samples of different sizes and shapes. Inputs and outputs are as follows: 

Inputs: 

• the content of cement (C) 

• The rate of BFS to cement (BFS/D) 

• The rate of FA to cement (FA/C) 

• The water-to-cement rate (W/C) 

• The superplasticiser to cement rate (SP/C) 

• The coarse aggregate to cement rate (CAG/C) 

• The fine aggregate to cement rate (FAG/C) 

• The HPC age (AC) 

Output. 
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4.4.1 CS of HPC 
For the training and testing datasets, the distribution plots of these components are shown 
in Figure 3, while Table 1 shows the ranges of these database entries. The data collection, 
containing 1,030 items, was split into two sub-sets by guidelines in earlier research: the 
training stage contained 70% (721) of the dataset, while the testing stage included 30% 
(309) of the data (Khorsheed and Al-Thubaity, 2013; Leema et al., 2016). The base set 
was uniformly distributed, so these portions could be chosen randomly. There was no 
substantial cross-correlation in the 8D input region, indicating that the selection of these 
input variables was appropriate based on statistical analysis (Yeh, 1998a, 1998b, 1999, 
2003, 2006). 
Table 1 Statistical indices are important for the objective and inputs 

Data Index 
Output  Inputs 

CS 
(MPa)  C 

(kg/m3) 
W
C

 FA
C

 BFS
C

 CAG
C

 FAG
C

 AC 
(days) 

SP
C

 

Tr
ai

n 

Minimum 2.332  102 0.267 0.0 0.0 1.552 1.226 3.0 0.0 
Maximum 82.599  540 1.882 1 1.504 8.696 9.235 365.000 0.069 
Standard 
deviation 

17.718  101.84 0.298 0.306 0.446 1.549 1.323 67.717 0.02 

Skewness 0.304  0.511 1.163 0.989 1.467 0.596 1.194 2.993 0.245 
Kurtosis –0.549  –0.692 2.104 –0.269 1.284 –0.127 2.572 10.189 –1.243 

Te
xt

 

Minimum 6.267  132 0.2 0.0 0.0 1.716 1.135 1.0 0.0 
Maximum 74.987  540 1.694 1.430 1.584 7.148 5.993 360 0.125 
Standard 
deviation 

13.44  110.075 0.341 0.418 0.513 1.632 1.405 50.155 0.031 

Skewness 0.499  0.533 0.554 1.043 1.036 0.580 0.556 4.229 0.873 
Kurtosis 0.214  –0.228 –1.068 –0.307 –0.314 –1.237 –0.956 20.129 0.190 

Scholars used the Pearson correlation coefficient (PCC) [equation (15)]. 

,
( , )=y z

y z

μ y zσ
δ δ

 (15) 

The covariance among y and z, as well as the normal deviations of y and z, are shown by 
the values of μ(y, z), δy and δz in equation (1). Figure 4 displays the PCC values between 
the input and output parameters. When significant positive or negative PCC impacts are 
present, and it may indicate poor methodology if the research cannot describe how these 
effects have impacted the findings. Since some PCC values were less than 0.531; it is clear 
that these PCC values are most likely not the primary source of the multicollinearity 
issues. A large number of factors have a considerable impact on each other (more than 
0.641). Among CAG/C and FAG/C, there is the largest PCC (0.942). Higher negative 
correlations are also available, which can make forecasting more challenging. C and 
CAG/C had the strongest negative correlations, with a difference of –0.923. 
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Figure 3 The distribution of the variables (see online version for colours) 
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Figure 3 The distribution of the variables (continued) (see online version for colours) 
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(f) 

 



   

 

   

   
 

   

   

 

   

    Applying artificial rabbit optimisation-LSSVR analysis 15    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 The distribution of the variables (continued) (see online version for colours) 

  
(g) 

  
(h) 

Figure 4 Pearson correlation coefficient variables (see online version for colours) 
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4.5 Evaluation metrics 

Six performance measures were used to evaluate the hybrid models. For this purpose, 
precise measurements [equations (16) to (21)] were made for the coefficient of 
determination (R2), one extra index (A20-Index), relative absolute error (RAE), mean 
absolute error (MAE), root relative square error (RRSE), and root mean square error 
(RMSE). 

( )( )

( ) ( )

2

12

2 2

1 1

=

= =
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 
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d dd
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m m z z
R

m m z z
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D
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D
dd

m z
RAE

m m
 (21) 

where 

md and m  the records and their mean 

zd and z  the simulated and their mean 

D the dataset’s total number 

d20 the samples’ number has a record-per-simulated-individual rate between 
0.80 and 1.20. 

5 Findings and explanation 

5.1 Discussions 

To forecast the CS of the HPC enhanced by BFS and FA, this study shows the results of 
the ARO-based models (AROP with RBF named AROR and ARO with SLSVR called 
AROLS). As previously mentioned, the performance of LSSVR and RBF is dependent on 
the proper proportioning of the constituent elements. The values of the HPC CS observed 
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and computed for the AROR and AROlS structures developed throughout the training 
and testing phases are displayed in Figure 5. Additionally, a normal distribution of curves 
was used to display the proportion of error in the carbon dioxide (CS) concentration. The 
central point of the distribution served as a representation of the zero-error percentage 
line. R2, RMSE, MAE, RAE, RRSE, and A20-Index values were used to assess the utility of 
the AROR and AROLS (Table 2). There is a lot of promise for producing precise 
estimations of HPC’s CS using both AROLS and AROR. 
Table 2 Offered frameworks’ performance 

Phase Metric 

This 
article 

This 
article  

Comparison 

Mousavi  
et al. 

(2012) 

Gandomi 
and 

Alavi 
(2012) 

Chou 
and 

Pham 
(2013) 

Nguyen 
et al. 

(2021) 

Dao  
et al. 

(2020) 

Lee et al. 
(2023) 

AROR AROS  GEP MGGP ANN SEM GPR XGB (all 
data) 

Train R2 0.9727 0.9853  0.8224 0.7885 – 0.84 0.888 0.944 
MAE 1.7949 1.1736  5.202 5.56 – 4.91 3.996 2.592 

RMSE 2.9374 2.1523  – 7.36 – 6.3 5.59 3.878 
RAE 0.1237 0.0809  – – – – – – 
RRSE 0.1658 0.1215  – – – – – – 

A20-Index 0.9417 0.975  – – – 0.68 – – 
Test R2 0.9755 0.9912  0.8354 0.8046 0.8649 0.8567 0.888 – 

MAE 1.2931 0.6615  5.19 5.48 4.421 4.482 3.913 – 
RMSE 2.117 1.2684  – 7.31 6.329 5.968 5.597 – 
RAE 0.1222 0.0625  – – – – – – 
RRSE 0.1575 0.0944  – – – – – – 

A20-Index 0.9709 0.9838  – – – 0.752 – – 

The findings of this inquiry were also impartially contrasted with those of other studies 
that have been released. With R2 values of 0.9853 and 0.9912 for AROLS and 0.9727 and 
0.9755 for the train and test phases of AROR, the combined AROR and AROLS 
approaches performed rather well in terms of estimation. Choosing the best course of 
action requires carefully examining and assessing the signals produced. Throughout the 
train process, the AROLS’s RMSE value decreased relative to the AROR, moving from 
2.9374 MPa to 2.1523 MPa. Within the test section, calculations showed a moderate drop 
from 2.117 MPa to 1.2684 MPa. With MAETrain = 1.1736 MPa and MAETest = 0.6615 
MPa, the MAE metric also produced similar findings with RMSE, indicating that the 
AROLS showed improved capability for CS evaluation. Compared to the AROR, which 
had MAETrain = 1.7949 MPa and MAETest = 1.2931 MPa, these values were smaller. A 3% 
rise in the training segment and a 1.5% rise in the testing part for AROLS were found for 
the A20-Index signal, indicating similar results. 
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Figure 5 The outcomes of the systems based on ARO, (a) AROR (b) AROLS (see online version 
for colours) 
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Before creating the estimations, several approaches were compared and evaluated, 
including GEP (Mousavi et al., 2012), the semi-empirical method (SEM) (Nguyen et al., 
2021), Gaussian process regression (GPR) (Dao et al., 2020), ANN (Chou and Pham, 
2013), multi-gene genetic programming (MGGP) (Gandomi and Alavi, 2012), and 
extreme gradient boosting (XGB) (Lee et al., 2023). With reference to Table 2, it is 
evident that the proposed AROLS outperformed those found in the literature. RMSE of 
6.3 MPa vs. 2.1523 MPa, MAE of 4.91 MPa vs. 1.1736 MPa, A20-Index of 0.68 vs. 0.975, 
and R2 of 0.84 vs. 0.9853 indicate that SEM underperformed compared to AROLS 
(Nguyen et al., 2021). In comparison to AROS, GEP showed a much higher MAE and a 
significantly smaller R2 (at 0.8224 and 5.202 MPa, respectively) (Mousavi et al., 2012). 
Though it eventually fell short, the most current technique, XGB, came dangerously close 
to surpassing AROLS (Lee et al., 2023). Other techniques, like MGGP (Gandomi and 
Alavi, 2012) and ANNs (Chou and Pham, 2013), performed badly when compared to 
AROLS (0.9853), with R2 values of 0.8046 and 0.8469, accordingly. In terms of R2, 
RMSE and MAE, the AROS also fared better than the GPR (Dao et al., 2020). 
Descriptions, arguments, and comparisons all point to the AROLS as the best model to 
use in real-world applications when attempting to estimate the improved computational 
capacity of HPCs via the employment of FA and BFS. 

The application of ARO significantly improved prediction accuracy and stability in 
both the AROR and AROLS. The study reports R2 values of 0.9853 (training) and 0.9912 
(testing) for AROLS, demonstrating ARO’s effectiveness in reducing errors and 
enhancing model performance in the context of complex, nonlinear relationships. ARO’s 
adaptive mechanism allows for quick convergence on optimal solutions, often requiring 
fewer iterations than traditional optimisers. ARO enhanced the optimisation process by 
effectively balancing exploration and exploitation, minimising the risk of local minima, 
and ensuring that model parameters are optimised to their fullest potential. Finally, the 
successful implementation of ARO in predicting HPC compressive strength suggests its 
potential for broader applications in other predictive models for concrete and construction 
materials. 

Figure 5(a) presents the scatter plot of the AROR model, and Figure 5(b) presents the 
scatter plot of the AROLS model. These plots demonstrate the accuracy of the models, as 
indicated by data points clustered near the best-fit line, which corresponds to an R2 value 
of 1, representing optimal conditions. In the training phase of the AROR model, the data 
points are widely scattered but mostly close to the best-fit line. This scatter reduces 
during the testing phase, indicating a slight improvement in model performance. The 
error line in the AROR model’s performance plot further highlights this improvement, 
with a high count of training and testing datasets near the zero error line, indicating the 
model’s accuracy. In contrast, the AROLS model performs better than the AROR model. 
The scatter plot of the AROLS model in Figure 5(b) shows a strong connection between 
the datasets and the best-fit line throughout the training and testing stages. The precision 
and dependability of the AROLS are demonstrated by the error plot, which displays that 
most datasets fall between –10% and +10%. 

5.2 Limitations of the study 

Despite the promising results obtained in this study, several limitations should be 
acknowledged: 
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• The controlled experiments may not fully replicate the variability and conditions 
found in real-world construction environments. Factors such as environmental 
conditions, material quality, and human error can impact the CS of HPC in practice, 
which were not accounted for in this study. 

• The study focuses on the CS of HPC at specific points in time. It does not consider 
the long-term performance or durability of HPC, which are critical factors in 
construction applications. Future research should investigate how these models 
predict long-term strength and performance under various environmental conditions. 

• The models assume that the input parameters and the resulting HPC are 
homogenous. In practice, variations in mixing, curing, and material properties can 
lead to heterogeneous characteristics in the concrete, potentially affecting the 
accuracy of the predictions. 

• The reliance on AI-based predictions for critical infrastructure components 
necessitates a rigorous validation process to ensure safety and reliability. 
Overreliance on model predictions without thorough validation could pose ethical 
and safety risks in construction projects. 

5.3 Future studies suggestions 

• Investigate the long-term performance and durability of HPC predicted by the 
AROLS and AROR models. This includes studying the effects of environmental 
conditions, aging, and other factors that may influence the CS and overall 
performance of HPC over extended periods. 

• Combining ARO with other advanced optimisation techniques, such as genetic 
algorithms or particle swarm optimisation, may enhance model performance. 
Comparative studies could identify the most effective combinations for predicting 
HPC properties. 

• Conduct real-world trials to validate the predictive capabilities of the AROLS and 
AROR models. Collaborations with construction projects can provide practical 
insights and help refine the models based on real-world data and conditions. 

• Extend the study’s scope to encompass multifactorial investigation of other HPC 
mechanical parameters, such as durability metrics, tensile strength, and flexural 
strength. Understanding the interplay between different properties can lead to more 
comprehensive predictive models. 

• Future studies could integrate sustainability metrics, such as carbon footprint and 
energy consumption, into the predictive models. This approach aligns with the 
growing emphasis on sustainable construction practices and can help optimise 
performance and environmental impact. 

The ARO-enhanced LSSVR model provides a reliable method for predicting HPC 
compressive strength, improving project planning and quality control by allowing precise 
forecasting of concrete performance before casting. This accuracy supports data-driven 
decision making, enabling engineers to select cost-effective and sustainable materials, 
reducing trial-and-error, and optimising resource allocation. Furthermore, the model aids 
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in risk mitigation, ensuring structures meet safety standards, particularly in projects with 
high durability requirements. The integration of ARO with LSSVR introduces an 
effective optimisation approach in concrete science, enhancing the theoretical framework 
for predictive modelling in complex systems like HPC. This work advances sustainable 
engineering theory by showing that eco-friendly materials can perform well, offering 
empirical support for green engineering practices. Additionally, the study provides a 
benchmark for accuracy in HPC research, guiding future advancements in machine 
learning applications within material science and civil engineering. 

6 Conclusions 

Developing a method for thoroughly evaluating forecast methods to estimate the CS of 
HPC was the primary goal of this study. It attempted to develop techniques that could use 
the LSSVR analysis and RBF neural network to predict the features of HPC both before 
and after hardening. The ARO, also known as AROLS and abbreviated AROR, were 
used in this work to determine whether essential elements of the RBF and LSSVR 
techniques may be changed. The following are the primary findings: 

• With R2 values of 0.9853 and 0.9912 for AROLS and 0.9727 and 0.9755 for the train 
and test parts of AROR, respectively, the merged AROR and AROLS techniques 
fared rather well in terms of estimate. 

• Throughout the train process, the AROLS’s RMSE value decreased relative to the 
AROR, moving from 2.9374 MPa to 2.1523 MPa. The test segment computations 
show a modest pressure drop from 2.117 MPa to 1.2684 MPa. Additionally, the 
RMSE and the RAE, RRSE and MAE metrics yielded similar findings, indicating that 
the AROLS shown better abilities for CS assessment. Comparable outcomes were 
seen for the A20-Index signal, demonstrating an increase for AROLS of 1.5% during 
testing and 3% during training. 

• In terms of comparative findings, it was evident that AROLS outperformed research 
when stated values R2, RMSE, A20-Index, and MAE indices were taken into account. 

• Descriptions, arguments, and comparisons all point to the AROLS as the best model 
to use in real-world applications when attempting to estimate the improved 
computational capacity of HPCs via the employment of FA and BFS. 
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