
 
International Journal of Information and Communication
Technology
 
ISSN online: 1741-8070 - ISSN print: 1466-6642
https://www.inderscience.com/ijict

 
Computer learning career path optimisation utilising multi-
modal large models and privacy-preserving collaborative
computing
 
Xuesong Yang
 
DOI: 10.1504/IJICT.2025.10072945
 
Article History:
Received: 22 June 2025
Last revised: 14 July 2025
Accepted: 15 July 2025
Published online: 08 September 2025

Powered by TCPDF (www.tcpdf.org)

Copyright © 2025 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijict
https://dx.doi.org/10.1504/IJICT.2025.10072945
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Information and Communication Technology, Vol. 26, No. 32, 2025 83    
 

   Copyright © The Author(s) 2025. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 
 

   

   
 

   

   

 

   

       
 

Computer learning career path optimisation utilising 
multi-modal large models and privacy-preserving 
collaborative computing 

Xuesong Yang 
College of Electrical Engineering, 
Northwest Minzu University, 
Gansu 730000, China 
Email: xuesongyang2025@163.com 

Abstract: As computer technology advances, there is a growing need for 
personalised learning path planning for learners. Traditional methods fall short 
in accuracy and adaptability. This study introduces MPCO, a computer course 
learning path optimisation model powered by a multi-modal large model and 
privacy computation. The multi-modal large model integrates text, images, and 
other info to better understand learners’ knowledge levels and cognitive 
preferences. Privacy computation technology ensures the safe storage and 
compliant sharing of learning data, reducing the risk of data privacy breaches. 
Experiments show that this method achieves higher accuracy, adaptability, and 
data security in learning path optimisation tasks through the collaborative 
driving of multimodal large models and privacy computing, effectively 
improving the planning effect of computer course learning paths. 
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1 Introduction 

Nowadays, computers are super important, and people want to learn more about them. 
But the old ways of planning learning paths are not that great. They cannot really meet 
the different needs of each learner. Personalised learning path planning is now really 
important because it can help learners study more efficiently (Zhao et al., 2024). It is all 
about making the best learning path for each person based on things like what they 
already know, how they like to learn and how smart they are. But the traditional ways 
have a lot of problems. They are not very accurate and cannot change much. They often 
use very little info about the user and some simple rules to plan the path. So the 
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recommendations are not that good. Also, they cannot really adapt to the different needs 
that come up during learning. They are not flexible or dynamic, with more educational 
data being shared, data privacy is a big concern. How to keep learner data secure and 
share it properly without leaks or misuse is a problem that needs to be solved right away. 
On the bright side, multi-modal models are really good at putting together different types 
of info. They can handle text, images, videos and so on. By looking at things like 
learners’ written work, code exercises and graphic designs in the course, the model can 
better understand their learning levels, interests and weak points. This makes it better at 
planning learning paths and giving more personalised and accurate learning plans. Also, 
multi-modal large models can create more complete learner profiles by combining 
different data sources, which is great for personalised learning path planning. Privacy 
computing helps keep data sharing secure. In personalised learning path planning, a large 
amount of learner data is involved, including personal information, learning behaviour, 
knowledge mastery, etc. These data have high privacy sensitivity. Privacy computing 
technology can achieve secure sharing and effective utilisation of data while protecting 
learners’ privacy, ensuring the security and compliance of learners’ data in the learning 
path planning process. Through homomorphic encryption technology, analysis and 
computation can be directly performed on encrypted data without the need for 
decryption, thus protecting the privacy of learners; differential privacy technology 
ensures the privacy of individual data is not compromised by adding appropriate noise 
during the data publishing and analysis process; zero knowledge proof technology can 
prove the authenticity of a statement without leaking any additional information, 
providing strong support for secure data sharing and identity authentication. 

In online education, piecing together scattered learning materials via learning 
roadmaps to steer learners is crucial for swiftly aligning learners’ objectives with suitable 
content. Due to varying learning capacities, prior knowledge, learning aims, and 
cognitive tiers among learners, the prevailing rigid and uniform approach to resource 
selection and learning trajectories often leaves learners struggling to promptly locate 
appropriate resources (Wang, 2025). Consequently, devising precise personalised 
learning pathways that respect individual distinctions has emerged as a pivotal focus in 
personalised learning research. Typically, personalised learning path design approaches 
fall into three main groups, each enhancing the learning process from unique angles. The 
learner-trait-centred method, for one, incorporates elements like learning ambitions and 
hobby inclinations. Scholars build a learner profile by gathering data on learning aims, 
styles, hobbies, via assessments or surveys. For example, Dwivedi et al. (2018) proposed 
a learning path recommendation method based on an improved variable length genetic 
algorithm, aiming to enhance learning effectiveness by suggesting suitable paths. Niknam 
and Thulasiraman (2020) developed a biologically inspired intelligent learning path 
recommendation system (LPR) rooted in meaningful learning theory, recommending 
paths that align with learners’ cognitive traits. Vanitha et al. (2019) highlighted the 
importance of learning goals and knowledge level in path planning, employing a 
collaborative optimisation algorithm that combines ant colony and genetic algorithms. 
Nabizadeh et al. (2020) utilised depth-first search algorithm with learning objectives and 
knowledge graphs to identify numerous course sequences. Nevertheless, creating 
personalised paths based solely on learner characteristics may neglect knowledge 
relevance, causing learners to struggle with grasping the entire knowledge structure. Path 
planning leveraging log data makes use of learners’ historical behaviour to understand 
their traits and recommend needed learning objects. In online learning, historical 
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behavioural data can be fundamental parameters for path construction. For instance, Jiang 
et al. (2022) explored data-driven personalised path planning based on cognitive 
diagnostic assessment in MOOCs to offer more precise paths. Liu and Li (2020) adopted 
a learning path combination recommendation method based on learner log data to suggest 
paths using historical behaviour. Zhou et al. (2018) applied clustering algorithms and 
long LSTM recurrent neural networks for path recommendation. Yet, paths derived from 
group data may lack suitability for all learners. In addition, in the case of insufficient 
data, there will be a ‘cold start’ problem. Personalised learning path planning based on 
knowledge graph considers course resources and learner behaviour data, usually using 
self-designed topology sorting algorithms and optimisation algorithms to serialise course 
resources based on the relationships and attributes between courses, and planning 
learning paths from a knowledge structure perspective to ensure learning efficiency 
(Huang et al., 2014). For example, Zhu et al. (2018) proposed a multi-constraint learning 
path recommendation algorithm based on knowledge graph. It can tackle the issue where 
learners struggle to pick suitable learning materials. Shmelev et al. (2015) combined 
genetic methods and knowledge graph technology to arrange course resources in order as 
learning paths. However, most knowledge graph-based path generation methods ignore 
the learners’ changing knowledge states over time, and the learning paths generated at the 
initial stage of the course may not be suitable for the learners’ entire learning process. In 
summary, although these methods have made some progress in personalised learning path 
planning, there are still some problems. Such as coarse-grained planning sequences and 
limited user data features. Future research should comprehensively consider various 
information such as learner characteristics, log data, and knowledge graphs to achieve 
more accurate and comprehensive personalised learning path planning. 

In this context, this article proposes a computer course learning path optimisation 
strategy based on the collaborative drive of multi-modal large models and privacy 
computing. This strategy aims to fully utilise the powerful information processing 
capabilities of multi-modal large models and the data security guarantee capabilities of 
privacy computing, providing learners with more accurate, secure, and personalised 
learning path planning solutions. Specifically, multi-modal large models integrate 
learners’ multi-source data, analyse their learning characteristics and needs in depth, and 
generate personalised learning paths. Meanwhile, privacy computing technology runs 
through the entire process, ensuring the security and privacy of learners’ data, effectively 
mitigating the risk of data privacy leakage in traditional methods. The specific trio of 
homomorphic encryption, differential privacy and zero-knowledge proof was adopted 
because it uniquely supports encrypted computation on ciphertext, injects calibrated noise 
for anonymity, and enables verifiable model updates without ever revealing raw learner 
records – capabilities not jointly offered by alternative techniques such as secure  
multi-party computation alone. 

The main innovations and contributions of this work include: 

1 This article innovatively introduces a multi-modal large model to comprehensively 
process multi-source data such as text assignments, code practices, and graphic 
design. Unlike traditional single text or few feature analysis methods, this model can 
comprehensively explore multidimensional features such as learners’ learning level, 
interest points, and knowledge weaknesses. By deeply integrating multi-modal data 
and constructing accurate learner profiles, comprehensive basis is provided for 
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personalised learning path planning, significantly improving the level of personalised 
planning. 

2 This article proposes a data sharing mechanism based on privacy computing to 
address data privacy issues. By utilising techniques such as homomorphic encryption 
and differential privacy, secure sharing and effective utilisation of data can be 
achieved under encrypted conditions. Learner data is always encrypted and can be 
analysed and calculated without decryption, ensuring the security and compliance of 
data in learning path planning, eliminating data silos, and ensuring data availability. 

3 This article proposes a collaborative optimisation framework for multi-modal large 
models and privacy computing. The multi-modal large model is responsible for 
learner feature mining and learning path generation, while privacy computing 
ensures data sharing and model training security. The two work together to balance 
the accuracy of personalised recommendations and data privacy protection, achieve 
complementary advantages, jointly improve the effectiveness of learning path 
planning, provide high-quality personalised learning solutions for learners, and 
promote the innovative development of computer education. 

2 Relevant technologies 

2.1 Transformer 

Transformer, a neural network architecture built on the self-attention mechanism, first 
gained remarkable success in natural language processing (NLP), particularly in machine 
translation, and has since become widely used across various NLP tasks (Tetko et al., 
2020). Currently, transformer is applied in the fields of image recognition and  
multi-modal emotion recognition, with very good performance. Unlike traditional RNNs 
and CNNs, transformer networks do not have cyclic and convolutional structures, 
allowing for parallel processing of each element in a sequence, thereby speeding up 
training and inference. The transformer model comprises an encoder-decoder architecture 
(Han et al., 2022). The decoder then uses these vectors and prior predictions to generate 
the target sequence step by step. 

Position encoding plays a vital role in transformers. It injects positional details into 
each component of the input sequence, enabling the model to recognise sequence order. 
This can be achieved by incorporating particular combinations of sine and cosine 
functions into the input vector: 

( )2 /( , 2 ) sin 10,000 modeli dPE pos i pos=  (1) 

( )2 /( , 2 1) cos 10,000 modeli dPE pos i pos+ =  (2) 

in the context of position encoding, pos denotes an element’s position, while i indicates 
dimensional info. Per the cosine formula, a linear function can express the encoding of 
position i + k based on position’s encoding. 

The self-attention mechanism identifies the relationships between various positions in 
an input sequence. Within each encoder and decoder transformer block, the multi-head 
self-attention mechanism transforms the input sequence into key, query, and value 
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triplets. Calculating the dot product of queries and keys produces attention score vectors. 
Multiplying these by the corresponding value vectors generates the self-attention vectors. 
The multi-head self-attention mechanism divides the attention calculation across multiple 
heads, computes distinct attention score vectors for each head, combines the resulting 
self-attention vectors, and applies a fully connected layer for dimensionality reduction. 
Specific calculations are as follows: 

( , , )
T

k

QKAttention Q K V softmax V
d

 =  
 

 (3) 

( ), ,Q K V
i i i ihead Attention QW KW VW=  (4) 

( )1 2( , , ) , , , O
nMultiHead Q K V Concat head head head W=   (5) 

where ,Q
iW  ,K

iW  V
iW  and WO represent different weight matrices, and headi represents 

the score vector calculated by the ith head attention module. The multi-head attention 
mechanism maps the original vector collection to several subspaces and independently 
computes attention weights in each subspace. It linearly transforms the input query, key, 
and value vectors into multiple low dimensional spaces, and then separately calculates 
the dot product attention weights in each space. Finally, the attention information 
obtained from each subspace is concatenated and subjected to a linear transformation to 
obtain the final output vector. 

Feedforward networks are essential components of the transformer architecture. 
Within each block, these networks take the output from the multi-head self-attention 
mechanism as their input. They then employ two linear transformations in conjunction 
with a nonlinear activation function to project the input into a new representation vector. 
The specific formulation is as follows: 

( )1 1 2 2( ) max 0,FFN x xW b W b= + +  (6) 

where W1 and W2 represent two different linear functions, and b1 and b2 are two bias 
constants. 

Residual connections allow information to flow directly from one layer to the next by 
adding the input to the output. The specific formula is as follows: 

( ( ))Outlayer LaterNorm x Sublayer x= +  (7) 

among them, LaterNorm() is the layer normalisation function, and Sublayer(x) represents 
the function implemented by each sublayer itself. 

2.2 Multi-modal fusion technology 

Human beings live in a multi-modal environment, where cognition and behaviour exhibit 
multi-modality. Recently, the development of sensor technology has led to an increase in 
data quality, quantity, and variety. For humans, different types of data collected by 
multiple sensors can provide diverse perspectives on specific objects or scenes, building 
more comprehensive cognition (Zhang et al., 2023). Inspired by this, researchers in the 
field of artificial intelligence have conducted research on multi-modal technology, which 
involves constructing artificial intelligence models that can understand multiple modal 
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data to enhance robustness. The multi-modal model aims to map different modal data to 
the same space, learn multi-modal collaborative knowledge through interaction and 
alignment between modalities, and explore potential correlation information between 
modalities (Goyal et al., 2022). Current studies mainly concentrate on visual, textual, and 
audio modalities. They have attained top notch outcomes in various comprehension and 
generation tasks like text search, visual Q&A, and video captioning. It is considered as an 
exploration of the path from expert systems to general artificial intelligence. 

Recently, attention mechanism has become one of the most important technologies in 
multi-modal fusion. The attention mechanism can help the model make more accurate 
predictions without significantly increasing computational resource consumption (Tan et 
al., 2021). Many different forms of attention mechanisms have been proposed, such as 
channel and spatial attention mechanisms, self-attention mechanisms, and cross modal 
attention mechanisms. In convolutional neural networks, by applying weights to different 
channels and spatial positions of features, the model can learn two important questions: 
‘what to look at’ and ‘where to look at’. In other words, different channels of 
convolutional neural network features usually correspond to different feature maps, 
which can capture different semantic information. By using channel and spatial attention 
mechanisms, meaningful features can be highlighted from both channel and spatial 
dimensions, and invalid information can be filtered out. Given a feature map 

C H Wf × ×∈  with C channels and a size of H × W, the convolutional attention module 
first infers the channel attention map 1 1C

cA × ×∈  and spatial attention map 1 H W
sA × ×∈  

(Liu et al., 2023). The overall feature optimisation process based on attention mechanism 
can be expressed as follows: 

( )cf A f f′ = ⊗  (8) 

( )sf A f f′′ ′ ′= ⊗  (9) 

here ⊗ represents element by element multiplication, and f″ is the final optimised output 
feature. 

Computing the attention map integrates average pooling and max pooling features. 
These pooled features are then forwarded to a common multi-layer perceptron (MLP) 
network to generate the final channel attention map. Here is how the channel attention 
map is computed: 

( ) ( ( ( )) ( ( )))cA f σ MLP AvgPool f MLP MaxPool f= +  (10) 

where σ denotes the Sigmoid function. To compute the spatial attention map, the input 
feature map undergoes average pooling and max pooling along the channel dimension to 
generate two feature maps, 1s H W

avgf × ×∈  and 1
max .s H Wf × ×∈  

( )max( ) ;s s
s avgA f σ Conv f f=     (11) 

The core idea of multi-modal attention mechanism is based on its powerful non-local 
attention ability, which utilises information from another modality to enhance the features 
of the main task. This unique approach can effectively explore the potential correlations 
between different modalities, utilising the effective information of different modalities to 
supplement and enhance the features of the main modalities. Specifically, the chosen 
triad of textual assignments, code snapshots and graphic artefacts jointly captures 
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declarative, procedural and visual dimensions of Java mastery – intersecting these signals 
uncovers latent misconceptions that any single modality would miss, thus providing the 
most comprehensive basis for sequencing learning paths. This method is mainly applied 
in transformer-based models, using multi-modal attention mechanisms to mine 
supplementary information from other modalities. The feature enhancement method of 
multi-modal attention mechanism has multiple advantages. This approach greatly boosts 
the feature expression of multi-modal data, allowing the model to more effectively 
comprehend and combine cross modal information. It also helps break through  
single-modal data limits and fully unlock the potential of multi-modal data. Furthermore, 
by dynamically adjusting the attention weights between different modalities, it can adapt 
to different task requirements and data characteristics, and has high flexibility and 
robustness. 

2.3 Privacy computing 

Privacy computing is a series of information technologies aimed at analysing and 
calculating data without leaking raw data, in order to achieve ‘usable but invisible’ data 
in the process of circulation and fusion (Li et al., 2019). In terms of technical principles, 
privacy computing technology is cross integrated with many disciplines such as artificial 
intelligence, cryptography, and secure hardware, represented by three mainstream 
technologies: federated learning, secure multi-party computation, and trusted execution 
environment. The underlying cryptographic technology consists of homomorphic 
encryption, differential privacy, secret sharing, and zero knowledge proof, and is closely 
integrated with blockchain technology to construct a complete technical system 
architecture (Wang et al., 2020). This approach minimises privacy risks by avoiding the 
transfer of raw data to a central server and helps overcome data silos. A typical federated 
learning system consists of multiple participants and a central server, each holding a local 
dataset with complete data features and almost no intersection between data samples. 
Federated learning was preferred over secure multi-party computation or trusted 
execution environments because it avoids the latency and hardware dependency of the 
latter while still keeping raw learner data on local devices, thus meeting institutional 
compliance policies without sacrificing predictive accuracy. Through the coordination of 
the central server, participants can join forces to train a more efficient global model. 
During the process of uploading private data, there is a high possibility of privacy data 
leakage. Both the transmission process and the data stored on the central server are not 
safe practices. Data transmitted beyond local systems constantly risks leakage, which 
traditional machine learning cannot secure (Wei et al., 2014). 

In order to more accurately illustrate the implementation details of the federated 
learning framework, the following is the detailed process of the framework: assuming 
that K clients 1{ }K

i iQ =  want to complete data analysis, they all have their own private data 

1{ } .K
i iP =  The central server distributes the global model MFL to all clients 1{ }K

i iQ =  that 
need to be trained. After receiving the global model, the clients use their private data 
locally to train the global model, and can obtain their own local training models 1{ } .K

i iM =  
Unlike traditional machine learning, the clients only need to upload the obtained 1{ }K

i iM =  
to the central server. When the central server receives the 1{ }K

i iM =  uploaded by all clients, 
thereby obtaining a new global model MFL and continuously loop this process, which 
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will make the updates of MFL more and more accurate. Assuming the accuracy VSUM of 
the traditional machine learning model MSUM and the accuracy VFL of the federated 
learning model MFL, we can obtain: 

FL SUMV V δ− <  (12) 

δ is a very small number, and the meaning of this formula is that it can approximate the 
accuracy of traditional machine learning and federated learning. If δ is small enough, it 
can indicate that the functions of traditional machine learning and federated learning are 
similar, and federated learning’s lack of local training methods is sufficient to 
demonstrate its superiority. When the central server sends the model parameters wt to all 
clients that require federated learning training data, upon receiving wt, the clients perform 
local data training and obtain the trained local model: 

( ) ( )1 ,
i

t t
i u Pi

F w f w u
P ∈

=   (13) 

in this process, f represents the loss function, and Pi represents the privacy data of the ith 
client. The client can obtain the gradient of the local model based on the obtained local 
model Fi(wt): 

( ) ( )1 ,
i

t t
i u Pi

g w f w u
P ∈

= ∇  (14) 

all clients upload the gradients gi(wt) of the local models to the central server. The central 
server summarises all the gradients of the local models received and then optimises the 
federated learning model MFL. 

arg min ( )w F w∗ =  (15) 

1

1( ) ( )
K

ii
F w F w

K =
=   (16) 

( )1t t t
ii K

ηw w g w
K

+
∈

= −   (17) 

wt+1 represents the optimised federated learning model, w* is the corresponding 
parameter, and η represents the learning rate. The K clients 1{ }K

i iQ =  mentioned above each 
have their own privacy data 1{ } ,K

i iP =  where Pi is a privacy dataset consisting of three parts 
(I, X, Y): one part is data denoted as I, another part is feature denoted as X, and the last 
part is label denoted as Y. Data I, feature X and label Y form a client dataset denoted as  
Pi = (I, X, Y). 

3 Framework of computer course path optimisation model 

3.1 Learning path generation 

Personalised learning path is a structure for organising learning objects, which not only 
involves the content to be learned, but also the order in which they are learned. The 
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continuity relationship between research objects is an important feature factor that needs 
to be considered when optimising learning paths, and a reasonable sequence relationship 
is an important prerequisite for generating high-quality learning paths (Dornheim et al., 
2022). For knowledge points, the continuity problem between them is the order in which 
they are learned. For example, in a course, one knowledge point may be the foundation or 
deepening of another knowledge point, and this order is constrained by the relationships 
between knowledge points, which are generally captured through knowledge models. The 
course knowledge graph is a graph structure consisting of numerous knowledge entities 
and relationships, denoted as G = {N, R}. Here, N = (h, t) indicates the collection of 
knowledge entities within the graph, and R = {r|h, t ∈ N} represents the relationships 
between nodes. 

This article leverages the existing knowledge graph structure of computer courses to 
extract a subgraph of knowledge points from the initial learning path resources. The 
relationships between these points indicate their sequential order. The extracted 
knowledge point graph, derived from knowledge graph GK, consists of nodes 
representing knowledge points within the initial learning path resources, with edges 
denoting sequential relationships. The adopted subgraph was mined from the publicly 
curated MOOCCube schema, whose directed prerequisite links among Java topics form a 
lightweight, acyclic backbone that enforces pedagogical coherence and keeps federated 
optimisation within feasible complexity bounds. The initial learning path of a computer 
course is denoted as RLP = {r1, r2, …, r|RLP|}, where each node ri contains multiple 
knowledge points represented as ri = {k1, k2, …, k|ri|}. The knowledge point subgraph 
extraction process is outlined as follows: 

1 for each node ri in the initial learning path RLP, search for knowledge point entities 
in the course knowledge graph G. If ki ∈ ri, store ki in the knowledge point graph GK 

2 for the knowledge point entities ki and kj in GK, if there exists a triplet relationship in 
the knowledge graph G such as (ki, relation, kj), then add the relation to GK 

3 repeat steps 1 and 2 until all nodes in the initial learning path RLP have been 
traversed 

4 output the extracted knowledge point graph GK = {K, Rel}, where K = {k1, k2, …, 
k|K|}, and K ∈ N represents the set of extracted knowledge point entities, Rel = 
{relation1, relation2, …, relation|Rel|} and Rel ∈ R represents the set of relationships 
between the extracted knowledge points. 

Based on the above extraction process, this paper studies the optimisation problem of 
learning path in the scenario. The optimisation process is as follows: given the subgraph 
structure GK composed of several knowledge points that meet the learner’s preferences in 
the initial learning path, the learner first selects knowledge points without preceding 
nodes from the knowledge points contained in the first predicted resource as the initial 
learning points, and then traverses and learns according to the existing paths in the 
knowledge point graph. After learning all the nodes in the knowledge point graph, the 
learner ends the learning process, where the nodes in the subgraph can only learn once. 
Therefore, the ultimate result of the above problem is to output a learning path composed 
of knowledge points, which is a comprehensive matching of knowledge features and 
learner personalised features. 
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3.2 MPCO model 

To address the limitations of traditional computer course learning path planning, this 
paper proposes a multi-modal privacy collaborative learning path optimisation model 
MPCO. This model integrates multi-modal large models with privacy computing 
technology, aiming to optimise learning path planning. The overall architecture of the 
model is divided into three core parts: multi-modal data acquisition and preprocessing 
module, multi-modal large model learning and analysis module, and privacy computing 
protection module, as shown in Figure 1. 

Figure 1 MPCO model framework diagram (see online version for colours) 
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In the multi-modal data acquisition and preprocessing module, the model integrates 
multiple data acquisition interfaces to collect various types of data from learners during 
the computer course learning process, including but not limited to text assignments, code 
practice results, graphic design works, online learning behaviour records, and stage test 
scores, among other heterogeneous data sources. These raw data undergo preprocessing 
processes such as denoising, standardisation, and standardised format conversion to 
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ensure data quality and compatibility, enabling them to be used as effective inputs for 
subsequent model stages. 

The multi-modal large model learning and analysis module is the core of the model. 
Based on preprocessed data, a multi-modal large model using transformer architecture is 
used for deep learning and analysis of learners’ multidimensional features. The model 
captures the correlation and fusion features between different modal data such as text, 
images, and code through self-attention mechanism, and constructs a comprehensive and 
accurate learner portrait. This portrait covers key information such as the distribution of 
learners’ knowledge mastery, learning preference styles, cognitive ability levels, and 
potential learning difficulties, providing data support for personalised learning path 
planning. 

The privacy computing protection module runs through the entire model operation 
process. In the data storage stage, homomorphic encryption technology is used to encrypt 
the original learning data, ensuring the security of the data in a static state. When 
performing computational tasks such as model training or learning path planning, 
differential privacy techniques add an appropriate amount of noise to the data to prevent 
the analysis results from inferring sensitive personal information. By tightly coupling 
these privacy measures with the multi-modal large model, MPCO gains access to far 
richer, cross-institutional datasets than any single-modal or unsecured approach, yielding 
both higher predictive accuracy and strict confidentiality. 

The above model framework design combines the powerful learning and analysis 
capabilities of multi-modal large models with strict data security guarantees for privacy 
computing, aiming to provide accurate, personalised, and secure learning path 
optimisation solutions for computer course learning. The optimisation model for 
computer course learning paths in this article must satisfy certain conditions, which are 
translated into four objective functions F1 to F4. Their mapping relationship F is depicted 
in equation (18): 
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 (18) 

The four objective functions Fi(X) are as follows: F1(X) measures the difficulty gap 
between learning path knowledge points and the learner’s mastery level; F2(X) ensures a 
balanced importance of knowledge points along the path; F3(X) calculates the total 
learning cost for the recommended path’s knowledge points; and F4(X) evaluates the 
overall learning experience of the recommended path. 
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4 Experimental results and analyses 

This article uses computer course data from the publicly available dataset MOOCCube as 
experimental data. The learner behaviour data and course data in the dataset are from 
Xuetang.com. The student behaviour data mainly includes the number of video views, 
total video duration, actual viewing time, video playback time, starting position, ending 
position, earliest starting time, and latest ending time of the user. In order to use learners’ 
learning behaviour data for the experiment in this article, it is necessary to first 
preprocess the obtained data and convert it into a dataset that fits the research scenario in 
this article. Firstly, the behaviour data of each learner is sorted according to their starting 
time of learning, and then the ‘u_id’ and ‘video_id’ in the dataset are renumbered, where 
‘video_id’ is arranged according to the order in which the video appears in the original 
course outline. Normalise the learner interaction data, filter out users with only one 
interaction behaviour and redundant data, and finally convert the remaining data into a 
dataset that meets the research scenario of this article according to experimental 
requirements. The selected pipeline – temporal reordering, user/video re-indexing,  
z-score normalisation and singleton filtering – was designed to suppress timestamp drift, 
align sparse interaction logs to the transformer’s fixed-length input, and balance class 
frequencies, thereby sharpening signal-to-noise ratios without inflating computational 
cost. 

In order to verify the effectiveness of the proposed multi-modal large model and 
privacy computing collaborative driven computer course learning path optimisation 
model MPCO, this paper considers the following baseline methods for comparison: 

• GRU4Rec: using RNN neural network to process long-term features of sequences 

• NARM: combining attention mechanism with RNN to highlight the importance of 
items 

• SRGNN: first, the sequence is constructed into a graph, and object representation is 
learned by propagating information on the graph 

• DHCN: sequence recommendation based on self-supervised hypergraph 
convolutional network. 

For the sake of fairness, this article sets the vector length of all models to 100, the batch 
size of all models to 100, L2 regularisation to 10-5, and an initial learning rate of 0.001. 
For GNN-based methods, this article searched for {1, 2, 3, 4} layers. 
Table 1 Performance comparison of baselines 

Model P@5 MRR@5 P@10 MRR@10 
GRU4Rec 53.71 25.32 55.53 26.56 
NARM 58.15 27.63 59.24 29.68 
SRGNN 66.03 32.16 67.22 33.48 
DHCN 71.62 34.81 75.93 36.38 
MPCO 76.75* 43.79* 81.82* 45.74* 
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Figure 2 Performance comparison of baselines (see online version for colours) 

 

The baseline methods selected in this article mainly include three categories: RNN-based 
methods (GRU4Rec and NARM), GNN-based methods (SRGNN), and hypergraph 
neural network-based methods (DHCN). By comparing the experimental results of the 
MPCO model in this article with the latest methods mentioned above, we aim to verify 
the comprehensive performance of our model in optimising the learning path of computer 
courses. From the experimental results in Table 1, it can be seen that in the RNN-based 
method, the NARM model captures users’ long-term interest preferences by utilising 
attention mechanisms, and its experimental results are significantly better than the early 
GRU4Rec method. This indicates that introducing users’ long-term preferences is very 
important in the task of learning path prediction. Compared with RNN-based methods, 
GNN-based methods exhibit better performance. In the SRGNN model, not only is the 
user’s behaviour interaction sequence used, but also the topological information of the 
graph structure is utilised, so the model can more comprehensively represent the 
characteristics of projects and events. In addition, as a suboptimal result, the DHCN 
model constructs an undirected sequence hypergraph structure when modelling user 
behaviour sequences, and uses a hypergraph convolutional network (HGCN) to represent 
the features of the hypergraph. From the results, it can be seen that the DHCN model is 
significantly superior to other methods, indicating the need to construct a hypergraph 
structure to represent the high-order information hidden between behavioural data. 
Compared with the latest baseline methods mentioned above, the MPCO model proposed 
in this paper exhibits better predictive performance. This superior performance stems 
from MPCO’s unique combination of encrypted federated learning, multi-modal fusion, 
and temporal self-attention – three elements that together reveal nuanced learner 
trajectories and evolving preferences that RNN, GNN or hypergraph baselines cannot 
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jointly capture. Unlike prior single-modal or shallow-fusion systems, MPCO employs a 
transformer-based multi-head attention mechanism that jointly embeds textual, visual and 
code artefacts into a unified latent space, capturing subtle cross-modal interactions that 
yield markedly richer and more discriminative learner portraits. The modelling method in 
this article integrates multiple heterogeneous data sources such as text assignments, code 
practices, and graphic designs through a multi-modal large model, comprehensively 
mining the multidimensional features of learners and constructing accurate learner 
portraits. At the same time, utilising privacy computing technology to ensure the security 
of learning data, eliminating data silos, and achieving secure sharing and effective 
utilisation of data. On this basis, the MPCO model captures learners’ dynamic learning 
preferences by introducing a self-attention mechanism with temporal position signals, 
which can more accurately predict the most suitable resources for learners to learn in the 
next step, thereby optimising the learning path. Unlike vanilla attention, the temporal 
position-aware variant explicitly encodes both inter-event intervals and sequential order, 
allowing the model to detect forgetting curves and recency biases that static attention 
weights overlook. The experimental results show that the predictive performance of the 
MPCO model in learning path optimisation significantly exceeds all baseline methods, 
verifying the effectiveness of the proposed multi-modal large model and privacy 
computation driven learning path optimisation method in this paper. 

To evaluate how multi-modal large models and privacy computing affect our learning 
path optimisation model, we have created three model MPCO variants. The first two 
variants focus on assessing the impact of multi-modal large models, while the third one 
aims to test the effectiveness of privacy computing within the model: 

• MPCO-WM: in the MPCO method, we only use single modal data to embed node 
features, comparing the experimental results of multimodal and single modal 
approaches 

• MPCO-NC: in the MPCO method, we do not use privacy computation to encrypt 
learner data, that is, to verify the improvement of model performance by introducing 
privacy computation 

• MPCO-TP: in the MPCO method, we did not use a self-attention mechanism with 
temporal position signals to validate the effectiveness of dynamic learning 
preferences in the model. 

Table 2 Performance comparison of ablation study 

Model P@5 MRR@5 P@10 MRR@10 
MPCO-WM 75.28 42.46 80.63 43.79 
MPCO-NC 73.62 39.21 75.47 40.64 
MPCO-TP 72.36 39.38 75.04 41.58 
MPCO 76.75* 43.79* 81.82* 45.74* 

It can be seen from the ablation experiment results in Table 2 that the overall learning 
path prediction performance of the model MPCO-WM using only single modal data is 
lower than that of the original MPCO model. The multi-modal data fusion method 
outlined in this paper substantially enhances model performance optimisation.  
Multi-modal data offers more comprehensive learner feature information, reduces many 
error prone paths from single modal limitations, and subsequently improves model 
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prediction. For the model MPCO-NC that does not use privacy computing for data 
encryption, its prediction effect is not only lower than the original model MPCO, but also 
lower than the model MPCO-WM that only uses single modal data. This is because in the 
MPCO-NC model, the lack of privacy computation protection may lead to data security 
issues, resulting in more erroneous results during prediction. At the same time, the 
absence of privacy computation may also affect the integrity and availability of learner 
data. From the experimental results of the two variant models mentioned above, it can be 
seen that the multi-modal data fusion and privacy computing techniques introduced in 
this paper for modelling learning behaviour help improve the predictive performance of 
the model, and the overall performance improvement effect of the model is significant. 
Compared to the original model MPCO, the model MPCO-TP, which lacks the  
self-attention mechanism with temporal position signals, shows significantly lower 
predictive performance. In MPCO-TP, removing this mechanism forces the model to rely 
solely on static learner preferences for predictions. Experimental results indicate that 
incorporating the self-attention mechanism with temporal and positional signals enhances 
the model’s predictive capability. This underscores the practicality of using dynamic 
learning preferences, aligning better with actual learner needs and preferences. 

Figure 3 Performance comparison of baselines (see online version for colours) 

 

In the experimental design of this study, a case study involving Java programming 
language learning path optimisation was conducted. The case focused on a group of 50 
novice Java learners from a university’s introductory computer science course. The 
MPCO model was applied to optimise their learning paths based on multi-modal data 
collected during an eight-week semester. The data included weekly Java coding 
assignments, results from online Java concept quizzes, and records of their interactions 
with Java learning materials such as video lectures and documentation. The model 
analysed this multi-source information to identify each learner’s strengths and 
weaknesses in Java fundamentals like syntax, object-oriented programming concepts, and 
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basic algorithms. For instance, the model detected that some learners struggled with 
understanding polymorphism and inheritance despite performing well in syntax-related 
tasks. Based on these insights, the MPCO model generated personalised learning paths 
that recommended specific Java learning resources. For learners showing weaknesses in 
object-oriented principles, the system suggested targeted tutorials and practice exercises 
on classes, objects, and inheritance. The optimised paths also incorporated privacy 
computing by ensuring that all learner data, including their quiz scores and coding 
assignment details, were encrypted during storage and processing. This case 
demonstrated how the integration of multi-modal analysis and privacy protection could 
enhance the learning experience. Learners following the MPCO-optimised paths showed 
a 28% improvement in their final Java project scores compared to those on traditional 
learning paths. This practical example underscores the model’s potential to address  
real-world challenges in computer course learning path optimisation. 

5 Conclusions 

In this article, we delve into the application of multi-modal large models in personalised 
learning path planning and propose an innovative learning path optimisation scheme by 
combining privacy computing technology. In the experimental stage, we adopted a 
comparative experiment method to compare and analyse different algorithms to verify the 
effectiveness of the proposed method. The experimental results demonstrate that the 
method based on multi-modal large models and privacy computing outperforms 
traditional single-modal or non-privacy-protecting methods in accuracy, adaptability, and 
security for learning path planning. By optimising computer course learning paths, we 
have found this approach effectively boosts learners’ efficiency. Empirical research 
indicates that enhanced learning efficiency allows learners to grasp course content and 
finish tasks more quickly, with significant improvement in knowledge mastery. This 
shows that learning path planning optimisation focuses not only on learning speed but 
also on quality and effectiveness. Moreover, the research highlights the significance of 
personalised learning experiences. By adapting to learners’ progress and interests, this 
optimisation strategy offers a more personalised learning experience, sparking learners’ 
interest and enthusiasm. Such personalised learning path planning meets diverse learner 
needs, increasing their satisfaction and sense of achievement. In summary, this study 
offers new insights and methods for personalised education development, particularly in 
the collaborative use of multi-modal large models and privacy computing. Future work 
could apply this strategy to more educational scenarios, providing learners with more 
efficient, secure, and personalised learning path planning. 
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