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Abstract: Rare earth resources, as a strategic key mineral resource for the 
nation, require efficient and sustainable development. Traditional mining 
sequence planning methods struggle to comprehensively coordinate the 
complex interplay of multiple factors. To address these challenges, this study 
employs a genetic algorithm to efficiently solve the model, aiming to generate 
an overall optimal or satisfactory mining sequence plan under given 
constraints. Research validation indicates that the proposed method can more 
effectively balance the long-term and short-term benefits of a mine’s entire 
lifecycle and better adapt to the spatial complexity of geological conditions in 
mining areas. Additionally, the study explores key parameter settings for the 
algorithm and potential improvement strategies to enhance solution 
performance. This research provides new theoretical support and effective 
intelligent decision-making tools for the scientific formulation of mining plans 
for rare earth mines, holding significant theoretical value and practical 
guidance implications. 
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1 Introduction 

Rare Earth Elements serve as strategic resources supporting the development of high-tech 
industries and the transition to clean energy, and their sustainable development has 
become a global focus. According to the US Geological Survey, China accounts for 37% 
of global rare earth reserves and over 60% of production (Summaries, 2021). However, 
southern ion-adsorption-type rare earth deposits, which are found in weathered crust 
layers with strong spatial variability in ore grades, are highly prone to causing soil 
erosion and radioactive contamination during extraction (Wang et al., 2018). Traditional 
mining sequence planning relies on human experience and static models, making it 
difficult to balance economic benefits, resource utilisation, and environmental protection 
in a dynamic manner (Moldoveanu and Papangelakis, 2016). Especially in the current 
context of heightened price volatility and stricter environmental regulations, there is an 
urgent need to develop adaptive optimisation methods to achieve scientific management 
of the entire mining lifecycle. 

Mining sequence optimisation fundamentally falls under high-dimensional 
combinatorial optimisation problems. Early studies primarily employed mathematical 
programming methods: Rocchi et al. (2011) utilised a proprietary mixed-integer linear 
programming tool named Blasor for open-pit strategic coal mine planning, rapidly 
assessing the necessary joint optimal underground development strategies and mining 
sequences across several longwall mining areas. Since the 21st century, intelligent 
optimisation algorithms have made significant strides in the mining planning field due to 
their flexibility in handling nonlinear constraints. have made significant progress in the 
field of mine planning. Alipour et al. (2017) applied genetic algorithms to a hypothetical 
two-dimensional (2D) copper ore body model. The ore body is characterised by a  
two-dimensional (2D) block array. Similarly, the corresponding two-dimensional GA 
array is used to represent the solution space of the OPPS problem. Then, a fitting function 
was defined based on the objective function of the OPPS problem to evaluate the solution 
domain. Fathi et al. (2021) introduced a novel hybrid method combining two artificial 
intelligence techniques to estimate iron ore grades; this method is based on a single-layer 
extreme learning machine and particle swarm optimisation, designed using drill hole 
locations, depths, and information from the ore body, and applied to ore grade estimation 
on a block model basis. 
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Research on the optimisation of rare earth mining has long lagged behind that of 
traditional mineral species. Existing literature primarily focuses on improvements to 
hydrometallurgical processes or tailings pollution control, with insufficient research on 
intelligent decision-making for mining sequences. Ion-adsorption-type rare earth ore 
bodies exhibit a planar distribution pattern, with strict spatial dependencies between 
mining sites, and require dynamic responses to fluctuations in the market value of 
multiple rare earth elements (Yang et al., 2013). 

To address these challenges, this paper proposes an adaptive genetic algorithm 
framework (AGA-OSO) that integrates geological constraints with multi-objective 
decision-making. The core innovation lies in constructing a geological-economic-
environmental coupled optimisation model: economic objectives incorporate rare earth 
price time series predictions to maximise discounted cash flow; resource objectives 
introduce a rare earth oxid comprehensive recovery rate function; environmental 
objectives quantify surface disturbance costs based on GIS ecological sensitivity analysis. 
A three-dimensional voxel chain encoding mechanism is designed to map mining field 
topological relationships (such as ore body dip angle and slope stability constraints) to 
chromosome gene loci. At the algorithmic level, a dynamic adaptive strategy is adopted: 
crossover probability is adjusted based on population entropy feedback, mutation 
probability is regulated via a nonlinear simulated annealing mechanism to prevent 
premature convergence, and a feasible solution repair operator is integrated to handle 
complex constraints. To address geological uncertainty, a sequential Gaussian simulation 
is integrated to generate a grade distribution scenario tree, and a conditional value at risk 
model is used to generate a Pareto front solution set, providing decision-makers with  
risk-controlled optimisation solutions. 

2 Relevant technologies 

2.1 Rare earth mining 

The formation and evolution of rare earth deposits are controlled by complex geological 
structural movements and surface geochemical processes. Unlike the concentrated 
occurrence of traditional metal ore bodies, ion-adsorption-type rare earth deposits often 
exhibit a planar distribution within weathered crust layers, with their mineralisation 
mechanisms originating from the chemical weathering of granitic or volcanic rocks under 
humid and hot climatic conditions (Bai et al., 2022). Primary rare earth minerals undergo 
hydrolysis and leaching, after which rare earth ions are selectively adsorbed by clay 
minerals such as kaolinite and illite, forming secondary ore deposits of industrial value. 
This unique occurrence state results in ore bodies exhibiting a spatially distributed pattern 
characterised by widespread dispersion and localised enrichment. The thickness, grade, 
and elemental composition ratio of the ore layers exhibit significant variability both 
vertically and horizontally. The extraction of such resources essentially involves the 
directed extraction and enrichment of ion-adsorbed rare earth elements within geological 
bodies. The theoretical core lies in elucidating the coupled relationship between ore body 
spatial heterogeneity, mining dynamics response, and resource recovery efficiency  
(Li et al., 2022). 

The theoretical framework for rare earth mining must integrate three dimensions: 
geological resource characteristics, mining technology constraints, and environmental 
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system interactions. From a geological perspective, the heterogeneous structure of ore 
bodies necessitates the establishment of a detailed three-dimensional resource model, 
with the key challenge being the quantification of the spatial correlation of grade 
distribution (Zhang et al., 2022). While traditional Kriging interpolation can characterise 
regionalised variable trends, it is insufficient for describing the abrupt boundaries and 
nested structures of weathered crust deposits, necessitating the introduction of 
geostatistical modelling (such as sequential indicator modelling) to reconstruct the 
uncertainty field of ore bodies. The mining technology dimension focuses on the 
uniqueness of chemical mining: injecting electrolyte solutions (such as ammonium 
sulphate) into the ore layer via injection wells, utilising ion exchange principles to desorb 
rare earth ions, and then collecting the leachate for precipitation and purification. The 
theoretical essence of this process is the coupling of solid-liquid two-phase reaction 
kinetics and seepage mechanics. Leaching efficiency is constrained by multiple factors, 
including the permeability coefficient of the ore layer, solution concentration gradient, 
adsorption-desorption equilibrium constants, and groundwater conditions (Xu et al., 
2021). In practice, it is necessary to optimise the layout of injection wells, leaching 
intensity, and recovery cycles to balance short-term extraction rates and long-term 
resource recovery rates rare earth mining. 

The theoretical foundation of mining sequence decision-making stems from system 
optimisation principles, requiring the coordination of the dynamic interactions among the 
resource, economic, and environmental systems. The resource system aims to maximise 
the overall recovery rate of rare earth oxide (REO), with its theoretical bottleneck lying in 
the synergistic extraction of co-occurring elements – due to the strong adsorption 
capacity of high-value heavy rare earth elements such as terbium and dysprosium, 
improper mining sequences may result in their residual presence within clay crystal 
lattices. The economic system aims to maximise the net present value over the entire 
lifecycle, necessitating the construction of a price-cost linkage model: rare earth prices 
fluctuate sharply due to global supply chain dynamics (such as magnetic material 
demand), policy quotas, and the impact of alternative technologies, while mining costs 
increase non-linearly with mine depth, terrain slope, and environmental protection 
investments. The environmental system emphasises minimising ecological disturbance, 
with its theoretical core being the quantification of the negative externalities of  
‘leaching-loss’ (He et al., 2021). Ammonium sulphate leaching causes ammonia nitrogen 
to infiltrate aquifers, leading to water eutrophication, while large-scale topsoil stripping 
exacerbates soil erosion risk (Mwewa et al., 2022). Theoretical studies indicate that 
environmental costs grow exponentially with mining intensity, necessitating the 
prioritisation of ecological barrier construction and post-closure rehabilitation plans in 
temporal planning. 

The core challenge facing the current theoretical framework is the transmission of 
uncertainty across multiple scales. At the micro-scale, the heterogeneous distribution of 
clay mineral adsorption sites makes it difficult to precisely calibrate leaching kinetic 
parameters; at the meso-scale, the ambiguity of ore body boundaries often results in 
estimation errors exceeding 20% for recoverable reserves; at the macro-scale, sudden 
changes in external market and policy environments must be addressed. These 
uncertainties are transmitted through the mining system at each level, ultimately 
amplifying into instability in resource benefits and environmental risks. Therefore, 
modern mining theory is evolving from deterministic planning to a stochastic-robust 
optimisation paradigm, with the breakthrough point being the construction of a 
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‘geological-engineering-environmental’ coupled digital twin. Through multi-agent 
simulation, it pre-simulates system responses under different timing strategies, providing 
a decision-making foundation for intelligent optimisation algorithms. 

2.2 Genetic algorithm 

The essence of genetic algorithms is an intelligent search paradigm that simulates 
biological evolutionary mechanisms, with its core theoretical framework based on 
population genetics and the principle of natural selection (Katoch et al., 2021). During the 
exploration of the solution space, the algorithm encodes candidate solutions as 
chromosomes – for example, the order of rare earth mining can be represented as a string 
of integers g = (g1, g2, …, gn), where gi ∈ [1, T] identifies the mining year of unit i. This 
encoding transforms high-dimensional combinatorial optimisation problems into an 
evolutionary process of gene sequences. Its theoretical advantage lies in avoiding local 
optima traps through parallel population search. The fitness function F(g) quantifies the 
quality of the solution, providing a basis for selection pressure. 

The evolutionary driving force stems from three genetic operators: selection simulates 
survival of the fittest, and a roulette wheel strategy is adopted to make the selection 
probability of an individual proportional to its fitness: 

( ) ( )
( )

1

k
select k N

jj

F g
P g

F g
=

=


 (1) 

The crossover operator mimics genetic recombination, with single-point crossover 
exchanging parent chromosome segments with probability pc to break through local 
solution constraints. The mutation operator randomly disturbs gene values with low 
probability pm to inject diversity and maintain the evolutionary potential of the 
population. 

Convergence theory is the mathematical foundation of genetic algorithms (Alhijawi 
and Awajan, 2024). Using a Markov chain model, it can be proven that when the elitism 
strategy forces the retention of the optimal solution in each generation, the algorithm 
converges to the global optimal solution with probability 1. The convergence speed is 
regulated by the population size N and operator parameters: 
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where ε is the convergence threshold, d is the solution space dimension, and eff
mutp  is the 

effective mutation probability. In rare earth optimisation, large-scale discrete decision 
variables require adaptive adjustment of pc and pm. 

Mining constraint processing theory is key to engineering applications. A repair 
operator is designed to address mining sequence conflicts. Environmental constraints are 
incorporated into fitness through the penalty function method: 

( ) ( ) max(0, Γ)F g F g λ SDI′ = − ⋅ −  (3) 
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where λ is the penalty coefficient and Γ is the ecological threshold. This theoretical 
framework converts hard constraints into soft optimisation objectives, balancing 
feasibility and search efficiency. 

Cutting-edge developments focus on multi-objective optimisation and uncertainty 
modelling. The NSGA-II algorithm uses non-dominated sorting to stratify populations: 

{ }( ) |Rank g g g g= ′ ′   (4) 

where g g′   indicates g′ controls g, combining crowded distance to maintain Pareto 
frontier diversity. In response to rare earth price fluctuations and grade uncertainty, 
robust optimisation theory introduces scenario tree weighting: 

{ }( ) |Rank g g g g= ′ ′   (5) 

where ξs represents the geological scenario and πs represents its probability. This  
has driven the evolution of genetic algorithms from static optimisation to dynamic 
decision-making, establishing their core role in complex mine planning. 

The theoretical advantages of genetic algorithms in mining scheduling optimisation 
stem from their unique search strategy (Sohail, 2023). Compared to local search 
algorithms (such as simulated annealing), which are prone to getting stuck in local 
optima, genetic algorithms enable parallel search across the population to simultaneously 
explore multiple regions of the solution space, significantly reducing the risk of missing 
the global optimum; when dealing with non-convex, non-continuous objective functions 
in rare earth mining (such as net present value models considering price jumps), their 
ability to operate without derivative information avoids the mathematical limitations of 
traditional optimisers. For strong temporal dependency constraints between mining units 
(such as mining sequence requirements for slope stability), feasibility rules (feasibility 
rule) or repair operators (repair operator) can be used to integrate constraint handling into 
the evolutionary process: the former penalises invalid solutions in fitness evaluation, 
while the latter actively adjusts chromosome structures to satisfy constraints, with both 
ensuring the engineering feasibility of solutions. Additionally, the algorithm’s 
convergence theory indicates that under the elitism strategy, when the variance of 
intergenerational population fitness approaches zero, the algorithm converges to the 
global optimal solution with probability 1. This characteristic provides theoretical 
reliability for long-term planning in rare earth mining areas. 

The theoretical evolution of genetic algorithms has always revolved around balancing 
the contradiction between exploration and exploitation. Exploration capability refers to 
the algorithm’s potential to discover new solution regions, regulated by the crossover rate 
and mutation rate; exploitation capability reflects the algorithm’s efficiency in conducting 
fine-grained searches in the vicinity of high-quality solutions, dependent on the intensity 
of selection pressure (Gad, 2024). In rare earth mining optimisation, traditional genetic 
algorithms with fixed parameters often face a dilemma: high exploration leads to slow 
convergence, while high exploitation triggers premature convergence. To address this, 
the adaptive genetic algorithm (AGA) was developed, with its core theoretical 
breakthrough being a dynamic feedback regulation mechanism – real-time adjustment of 
crossover and mutation probabilities based on population diversity (such as gene entropy 
values). For example, when the population tends toward homogeneity, the AGA increases 
the mutation rate to enhance exploration capability; when the population is highly 
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dispersed, it reduces the mutation rate and enhances selection pressure to accelerate 
exploitation. This mechanism significantly enhances the algorithm’s robustness under the 
complex spatial constraints of rare earth ore bodies, positioning it at the forefront of 
theoretical research for solving large-scale temporal optimisation problems. 

The theoretical development of genetic algorithms is currently deeply integrated with 
machine learning (Khatri et al., 2023). In the rare earth mining field, acceleration 
strategies based on surrogate models are gaining traction: neural networks or Gaussian 
process regression are used to approximate computationally expensive fitness functions, 
replacing part of the real evaluation to reduce computational load. In multi-objective 
optimisation, the Non-Dominated Sorting Genetic Algorithm (NSGA-II) maintains 
solution set diversity through hierarchical sorting and density comparison, providing 
decision-makers with the Pareto optimal frontier. These theoretical innovations 
collectively drive the evolution of genetic algorithms from static optimisation tools to 
intelligent decision-making engines, laying the foundation for addressing multi-scale 
uncertainty challenges in rare earth mining areas. 

3 Mathematical model 

The essence of the optimisation problem for the mining sequence of rare earth ore 
deposits lies in determining the optimal opening and closing sequence of each mining 
unit (mine field) under the constraints of geological conditions, technical limitations, and 
environmental capacity, with the aim of maximising the comprehensive benefits over the 
entire lifecycle. The mining area is defined as being divided into n mining units, with a 
planning period of T years. The core decision variable is a binary matrix X = [xit]n×T, 
where xit = 1 indicates that mining unit i is mined in year t, and 0 otherwise. This variable 
must satisfy the uniqueness constraint: each mining unit can only be mined once. 

The objective function integrates three dimensions: economic benefits, resource 
efficiency, and environmental costs. The economic objective aims to maximise the net 
present value (NPV), which requires consideration of dynamic rare earth prices and 
mining costs: 

1
1 1

1max ( ) ( )
(1 )

T n

it i t tt
t i

f X x Q p C X
r= =

 
= ⋅ ⋅ −  +  
   (6) 

where Qi represents the REO reserves of unit i, pt is the predicted rare earth price for year 
t (influenced by market supply and demand and policy regulation), and r is the discount 
rate. Mining costs Ct include ore leaching, solution collection, and environmental 
protection investments, with values increasing nonlinearly with the geographical location 
of the mining unit (e.g., slope, depth) and cumulative disturbed area. 

The resource objective aims to improve the comprehensive recovery rate of rare 
earths, with a focus on addressing the loss of high-value heavy rare earth elements 
(HREE): 

2
1

max ( ) ( )
K

k k
k

f X w η X
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= ⋅  (7) 
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where K represents the target rare earth element type (e.g., neodymium, dysprosium, 
terbium), wk is the weight of element k (determined by market value and strategic 
importance), and ηk is its recovery rate function. The value of this function depends on 
the mining sequence. Therefore, a sequence buffering mechanism must be designed to 
balance leaching kinetic efficiency (Halim et al., 2021). 

Environmental objectives require minimising ecological disturbance risks, and the 
Surface Disturbance Index is introduced to quantify the impact: 

( )3
1

max ( ) Δ
T

new
tt

t

f X A Pα β
=

= ⋅ + ⋅  (8) 

where new
tA  represents the newly mined area in year t, and Δ tP  represents the increase in 

ammonia nitrogen concentration in the watershed (due to leakage of the mining agent 
ammonium sulphate). Coefficients α and β are determined through GIS spatial overlay 
analysis: α is inversely proportional to the vegetation coverage and soil stability of the 
unit, while β is positively correlated with groundwater sensitivity. This model explicitly 
incorporates environmental costs into the optimisation objective, rather than imposing 
them as post-hoc constraints. 

This mathematical model formalises the multi-objective optimisation problem of rare 
earth mining as: 

[ ]1 2

3

max ( ), ( )
min ( )

. .

f X f X
f X

s t X




 ∈ Ω

 (9) 

where Ω is the feasible solution space that satisfies all of the above constraints. Through 
weighted summation or Pareto optimal frontier generation strategies, multi-objective 
problems can be converted into single-objective optimisation frameworks that can be 
handled by genetic algorithms, laying the foundation for subsequent adaptive searches. 

4 Adaptive genetic algorithm combining spatial topology coding and 
dynamic parameter adjustment 

Given the challenges posed by the combination of explosive characteristics and  
multi-objective coupling in the optimisation of rare earth mining sequence, this section 
proposes an adaptive genetic algorithm (AGA-OSO) that integrates spatial topological 
encoding with dynamic parameter adjustment. The algorithm flow is illustrated in  
Figure 1. The core process begins with population initialisation: a three-dimensional 
voxel chain encoding strategy is employed to map the mining unit sequence into a 
chromosome structure. Specifically, each chromosome consists of n gene positions, 
where the gene position number corresponds to the mining unit number, and a gene value 
of gi ∈ {1, 2, …, T} indicates the mining year of unit i. To ensure slope stability 
constraints, a topological sorting rule is introduced during the initialisation phase: when 
unit i is located below unit j, a feasible solution satisfying condition gj ≥ gi + ∆t is forced 
to be generated to avoid excessive intervention by subsequent repair operators. 

The key to genetic operations lies in balancing global exploration and local 
development capabilities (Khayrutdinov et al., 2022). The selection operator adopts a 
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hybrid strategy of elite retention and tournament selection: in each generation, the top 5% 
of individuals by fitness are directly retained into the next generation, while the 
remaining individuals compete for mating rights through a tournament selection (scale of 
3). The crossover operator is designed as a two-stage adaptive mode: First, the paternal 
chromosome P1, P2 undergoes sequential crossover, exchanging gene values within 
random fragments; then, the crossover probability is dynamically adjusted according to 
the population diversity index D (defined as the reciprocal of the gene entropy value): 

0.85, 0.7
0.30.65 0.2 ,0.3 0.7

0.4
0.65, 0.3

c

D
Dp D

D

>
 − + × ≤ ≤

 <

 (10) 

When population diversity is high (D > 0.7), a high crossover rate is used to enhance 
exploration; when diversity is low, the crossover rate is reduced to avoid destroying high- 
quality solutions (Wang et al., 2024). The mutation operator uses directed non-uniform 
mutation: gene position i is randomly selected with probability pm, and its value is 
perturbed by ( ),i ig g δ T t′ = + ⋅ −  where δ is a random number between [–1, 1]. The 
mutation probability is adaptively decayed with the iteration number t: 

2

max
0.1 1m

tp
t

 = × − 
 

 (11) 

The strategy maintains strong exploration in the early stages of evolution and focuses on 
local development in the later stages. 

Figure 1 Algorithm flowchart 
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The constraint handling mechanism directly affects the algorithm’s engineering usability. 
To address mining sequence conflicts, the repair operator performs a three-step 
correction: 

1 identify illegal gene pairs (i, j) 

2 if j has been mined, delay i by gj + ∆t years 

3 if i has already been mined, advance j by max(1, gi – ∆t) years. 

After repair, revalidate production capacity constraint max1 ,
ig t

N
=

≤  and randomly 

delay mining of some units in years exceeding the limit. Environmental cumulative 
constraints are handled using a penalty function method: reduce the fitness of individuals 
violating the SDI threshold Γ by 30% to drive the population away from the infeasible 
region. 

Multi-objective optimisation is achieved through dynamic weighted aggregation. 
Define the comprehensive fitness function: 

1 1 2 2 3 3( )F X λ f λ f λ f= ⋅ + ⋅ − ⋅    (12) 

where kf  represents the normalised target value (mapped to the [0, 1] interval), and the 
weighting coefficient λk is adjusted every 20 generations based on the distribution of elite 
solutions: if the proportion of solutions exceeding the threshold in the current Pareto front 
f3 exceeds 60%, then the intensity of environmental control is increased by λ3; if the 
average NPV decreases, then it is increased by λ1. This strategy enables the algorithm to 
dynamically respond to the competitive relationships between objectives. 

The algorithm termination condition is set as a dual criterion: a maximum of  
tmax = 200  iterations or a continuous improvement rate of less than 0.1% in the elite 
solution set over 15 generations. To accelerate convergence, local search enhancement is 
introduced: within the neighbourhood of the elite solution in each generation, the mining 
years of two units are randomly swapped to generate a new solution, and if improved, the 
original individual is replaced. The final output is a non-dominated solution set for 
decision-makers to balance economic, resource, and environmental benefits (Kilicarslan 
et al., 2021). 

5 Experimental results and analysis 

5.1 Experimental environment and data sources 

The experiment utilised publicly available data from the Global Rare Earth Deposit 
Database published by the US Geological Survey and the National Ion-Adsorption Type 
Rare Earth Resource Potential Evaluation Report issued by the China Geological Survey. 
Typical ion-adsorption-type rare earth mineral deposits were selected, with their 
geological characteristics shown in Table 1. The mineral deposits were discretised into 
1,152 mining units, and REO grade data were obtained through sampling from 1,824 drill 
holes. The proportion of HREE was verified using laser ablation ICP-MS analysis. 
Economic parameters were referenced from Adamas Intelligence’s 2023–2042 rare earth 
price forecast model, while environmental parameters were set according to the 
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‘Technical Specifications for Soil Erosion Risk Assessment in Mining Areas’ (GB/T 
39362-2020). All comparison experiments repeated 30 times to obtain statistically 
significant results. 
Table 1 Geological characteristics of ion adsorption-type rare earth mineral deposits 

Parameter type Mean Scope Data source 
REO grade (%) 0.085 0.032–0.217 USGS GREE-DD v3.2 
HREE/TREE ratio 0.38 0.12–0.65 China Geological Survey Report 
Terrain slope (°) 27.6 5.2–48.3 ASTER GDEM v3 
Rare earth price volatility 22.3% –34.7%~+51.2% Adamas Intelligence 2023 
Soil erosion modulus (t/km²) 3,215 1,028–7,842 GB/T 39362-2020 

5.2 Convergence efficiency analysis 

Figure 2 shows a comparison of the convergence characteristics of AGA-OSO, NSGA-II, 
and MineSched 2023 (population size N = 200, maximum iterations 300 generations). 
AGA-OSO achieved a comprehensive fitness of 0.92 (normalised value) by the 54th 
generation, significantly faster than NSGA-II (127th generation) and MineSched (did not 
converge). The key mechanism lies in: adaptive crossover rate, dynamically adjusted 
within the range of 0.62–0.88; a high crossover rate in the early stages accelerates global 
exploration, while reducing it to 0.68±0.05 in the later stages prevents the destruction of 
elite solutions; the directed mutation strategy increases the probability of escaping local 
optima by 47%, as shown by the fitness surge around the 40th generation in Figure 2; 
NSGA-II exhibits oscillations in the later stages due to fixed parameters. 

Figure 2 Comparison of algorithm convergence curves (see online version for colours) 

 

5.3 Spatial and temporal characteristics of mining plans 

Figure 3 shows the spatial distribution of a typical mining sequence (heat maps of mining 
units in years 5, 10, and 15). AGA-OSO exhibits a concentric circular radiation pattern: 
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1 early stage (years 1–5): prioritise mining of high-grade core areas (HREE > 0.15%, 
accounting for 12.3% of total units) to rapidly accumulate capital 

2 mid-term (years 6–10): expand downward along the ore body dip (N25°E), strictly 
adhering to slope constraints (dip angle 28° → deviation from advance direction <3°) 

3 late-term (years 11–15): cover low-grade peripheral zones while simultaneously 
initiating ecological restoration (restoration area accounts for 41.7%). 

Compared to the NSGA-II scheme, there are timing conflicts: Unit G-07 is mined before 
H-12, violating rock mechanics constraints (safety factor FS = 0.89 < 1.0). The 
MineSched scheme, due to the black-box optimisation of commercial software, results in 
dispersed mining units, with annual production capacity fluctuations reaching ±26.8%. 

Figure 3 Spatial distribution of mining sequences (see online version for colours) 

 

5.4 Population size impact 

As shown in Figure 4, when the population size N increases from 50 to 400: Solution 
quality: NPV increases from 36.2 billion to 44.5 billion, primarily due to enhanced 
diversity. Computational time: increased from 1.2 hours to 18.7 hours, with marginal 
benefits declining significantly after N > 250. Recommended value: When N = 200, the 
Hypervolume metric reaches 0.91, with a computational time of 4.3 hours. 

Figure 4 Population size impact curve (see online version for colours) 
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5.5 Adaptive threshold optimisation 

The diversity threshold D determines the timing of switching the crossover probability, as 
shown in Figure 5: D = 0.7 is optimal: the composite fitness is 0.927, and the population 
entropy stabilises between 0.38 and 0.45. When D > 0.8: prematurely reduces exploration 
(entropy < 0.3), missing 7.3% of high-potential solutions. When D < 0.6: extends the 
global search period, reducing convergence speed by 34%. 

Figure 5 Effect of adaptive threshold optimisation (see online version for colours) 

 

6 Conclusions 

This study addresses the challenge of optimising the mining sequence for ion-adsorption-
type rare earth minerals by innovatively proposing a collaborative optimisation 
framework based on adaptive genetic algorithms (AGA-OSO). By integrating  
three-dimensional spatial topological encoding with a dynamic weighting mechanism, 
this framework achieves multi-objective collaborative optimisation of economic benefits, 
resource recovery efficiency, and ecological and environmental costs for the first time. 
Current research is constrained by computational efficiency. Future efforts will integrate 
Transformer proxy models to accelerate the optimisation process and extend the 
framework to sequential collaborative decision-making for post-mining ecological 
restoration. This will provide a core foundation for establishing a green and intelligent 
development paradigm for rare earth resources, holding significant implications for 
ensuring national strategic resource security. 
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