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Abstract: As computer vision technology grows quickly, the automatic 
creation and stylistic replication of calligraphic fonts has become a major area 
of study in digital art and cultural heritage. This paper suggests a multi-task 
learning model that combines a convolutional neural network (CNN) and a 
generative adversarial network (GAN). The conditional generative adversarial 
network (cGAN) is used to do the style migration and to make high-quality 
calligraphic fonts automatically and to fine-tune the simulation of different 
styles. The method works better than several popular generation methods when 
it comes to image structure fidelity, style expressiveness, and perceptual 
consistency, showing that it has both artistic and practical significance. This 
paper’s research gives new ideas and technical help for using computer vision 
to digitise traditional art. 
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1 Introduction 

As information technology grows quickly, traditional Chinese calligraphy, which is a 
cultural treasure, is facing new difficulties and chances. Calligraphy is more than just 
writing words; it is a deeply philosophical and artistic means to express oneself that 
shows the calligrapher’s thoughts and feelings (Cao and Champadaeng, 2024). 
Calligraphy is a cultural language that goes beyond time and geography. It has a 
particular aesthetic value because of how the brush strokes, ink rhythm, structure, and 
other parts alter. But most individuals find it hard to master this art form because it takes 
a lot of time and practice to study and create calligraphy. At the same time, as society 
becomes more modern, it is becoming harder to promote and make traditional calligraphy 
popular. How to get around this problem so that more people may enjoy and appreciate 
the beauty of calligraphy is an important issue for the growth of art in modern society. 
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The main objective of this study is to not only come up with new ways to 
automatically create calligraphic typefaces, but also to help the process of making 
calligraphic art digital. With the help of computers, calligraphy can be passed on in the 
digital world and change to meet the needs of modern society. This opens more 
opportunities for calligraphy education, cultural exchange, and even business use. 

The following are some ways in which this work is more original than previous 
research: 

1 The proposal of multi-task learning model: this study creates a multitask learning 
model that can do both style simulation and automatic production of calligraphic 
typefaces at the same time. The model in this paper can not only automatically create 
beautiful calligraphic fonts based on what the user wants, but it can also imitate the 
styles of other calligraphers as it is making the fonts. This is how it achieves the 
integration function. This multi-task learning paradigm offers a novel way to make 
digital calligraphy. 

2 Innovative application combining CNN and GAN: this study smartly blends CNN 
and GAN to make calligraphy fonts. CNN is in charge of getting deep-level features 
from calligraphy images so that the fonts it makes follow the structure and style rules 
of traditional calligraphy. GAN, on the other hand, keeps improving the results of the 
generation process by having the generator and the discriminator train each other in a 
way that makes the process more natural and beautiful. Not only does this 
combination improves the quality of the generation but also makes the model more 
durable. 

3 Optimisation and innovation of style migration techniques: the classic style 
migration method can copy diverse art styles, but it does not always get the small 
changes between styles in the unique art form of calligraphy. This paper improves 
the style transformation process based on traditional CNN by introducing the 
optimised style migration technique. This makes the calligraphic works more 
delicate and natural in style transformation and better shows the unique qualities of 
calligraphy. 

4 The realisation of cross-styled calligraphic font generation and style conversion: this 
paper’s approach is different from many others because it looks at both the 
automated creation of calligraphic fonts and the modelling of styles at the same time. 
This new idea not only makes the model more flexible, but it also gives calligraphic 
art a wider range of ways to express itself. 

The new ideas above give us a new way to think about how to digitally modify 
calligraphic art and open new possibilities for using computer vision technology in the art 
world. 

2 Computer vision 

Computer vision is a big part of AI that tries to let computers see and comprehend 
pictures and videos the same way that people do (Manovich, 2021). It comprises a 
number of activities, like recognising images, finding targets, segmenting images, 
generating images, and so on. Deep learning technology is growing quickly, and 
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computer vision research and use have made great strides. Deep learning approaches 
have shown to be very effective at tasks including picture classification, target 
recognition, and image synthesis. Computer vision is now used in a lot of different areas, 
such analysing medical images, driving cars automatically, and keeping an eye on 
security. 

CNN is one of the most important technologies in the field of computer vision, and its 
use has helped computer vision make a lot of progress. By mimicking how the human 
visual system works, CNN automatically pulls information from incoming photos, 
processes them through a multi-layer network structure, and then sorts, finds, or creates 
them. The best thing about CNN is that it can automatically learn the local features of an 
image through convolutional processing, so you do not have to write complicated feature 
extraction techniques by hand (Hossain and Sajib, 2019). 

A convolutional layer, a pooling layer, a fully connected layer, and an activation 
function are the most important parts of the CNN network construction. The 
convolutional layer uses convolutional procedures to find local features in the image, 
while the pooling layer uses downsampling to make the image smaller. This saves 
processing power and keeps important information in the image. The fully connected 
layer combines and sorts the features that were extracted. The activation function adds a 
nonlinear modification, which lets the network learn more complicated patterns. CNN’s 
network structure not only makes image processing faster, but it also considerably 
increases the model’s capacity to articulate itself. This allows deep learning to make big 
strides in computer vision. 

CNN has been utilised for a lot of different vision jobs as computer vision technology 
has come a long way. AlexNet, VGGNet, and ResNet are examples of classical CNN 
models that have done quite well at tasks like image classification and target recognition 
(Wu, 2024). The advent of AlexNet, especially in the ImageNet picture classification 
challenge, signalled the start of the deep learning era and substantially sped up research 
in the field of computer vision. Faster R-CNN and other models can not only find objects 
in an image but also find their exact location. This is one of the basic technologies in the 
field of computer vision right now. CNN has also made great strides in the task of 
recognising faces. 

In the realm of computer vision, GAN is also an essential approach, along with CNN. 
There are two elements to GAN, a generator and a discriminator. GAN is a popular tool 
in computer vision for things like making new images, changing the look of an image, 
and improving existing picture (Alqahtani et al., 2021). This technology is frequently 
utilised in art creation, image restoration, and data enhancement. The combination of 
CNN and GAN allows the generator to make images that are more detailed and realistic, 
which is a big step forward in the field of image production tasks. 

CNNs are great at extracting and modelling visual features, whereas GANs are great 
at creating new data through adversarial training. Together, they work well. When you 
put the two together, you can solve some tough computer vision problems more easily. 
For instance, in image super-resolution reconstruction, GAN may make high-resolution 
images with a generator, and CNN can pull out the deep characteristics of the image to 
make sure the generated image is of good quality. 
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3 Calligraphy font generation and style simulation 

In recent years, calligraphy font development and style simulation has become a more 
and more popular area of cutting-edge research that combines computer vision and 
artificial intelligence. The purpose of study in this area is not only to make typefaces that 
look good, but also to copy the styles of different calligraphers based on what is needed. 
This will help keep the art of calligraphy alive and new in the digital age. As deep 
learning and computer vision technology improve quickly, more and more algorithms 
have been used to create and style calligraphic fonts. This has led to many intriguing 
results (Al-Ayyoub et al., 2018). 

First, most conventional approaches for making calligraphy fonts use rule-based 
generation models. By looking at and modelling existing calligraphic font examples, 
these technologies automatically make new fonts that follow specific guidelines. 
However, these rule-based models are generally not able to portray the deep artistic 
subtleties of calligraphic typefaces, and they are also not very flexible or creative, 
especially when it comes to showing the diverse styles of different calligraphers. So, in 
the last few years, more and more research has focused on learning-based generation 
methods, especially machine learning and deep learning, to make calligraphic typefaces 
that look good and can be customised. 

Some old image processing technologies are also used to make calligraphic fonts and 
simulate different styles. For instance, image segmentation algorithms can cut apart 
different portions of calligraphic glyphs and make new fonts based on how these parts are 
put together (Miao et al., 2024). Image segmentation can help you get strokes and ink 
strokes out of a typeface so that you can better copy the writing style of a certain 
calligrapher in style simulation. Researchers can also utilise optimisation-based 
approaches to make calligraphic typefaces. For example, they can set optimisation goals 
like the balance and symmetry of the letters to make them seem better. 

At the same time, several algorithms that use feature learning have also done well in 
this area. Deep learning and other machine learning methods can help feature learning 
algorithms automatically understand the qualities of calligraphy fonts, including the way 
the strokes curve and alter, and then use these features to make new fonts. According to 
this algorithm, creating calligraphy fonts can not only meet the requirements, but also 
show a unique artistic style with more creativity. 

Still, there are certain problems with generating calligraphy fonts and simulating 
styles. First, the variety and intricacy of calligraphic typefaces make it hard for current 
generation models to capture all the artistic nuances, especially the smoothness of strokes 
and the way details are expressed. These models still cannot precisely imitate the artistic 
styles of calligraphers. Second, most of the current approaches for style migration and 
generation need a lot of training data, but making high-quality calligraphic font datasets 
is still quite hard (Iluz et al., 2023). So, how to make algorithms even more expressive 
and less reliant on data is still a very important issue in the field. 

Even with these problems, using computer vision technology offers new ways to 
create calligraphic fonts and simulate styles. Computers can automatically pull out useful 
qualities from a lot of calligraphic font data to make better fonts that look good. These 
methods give new ways to make calligraphic art and give researchers a starting point for 
future work on making calligraphic fonts and simulating styles. 
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4 Model design for automated generation and style simulation of 
calligraphic fonts 

4.1 Dataset and preprocessing 

This study uses the CASIA-Online Chinese Handwriting Database, which is provided by 
the Institute of Automation of the Chinese Academy of Sciences (CASIA) and is all 
about studying Chinese handwriting fonts. The dataset has a lot of examples of 
calligraphic fonts and is good for making calligraphic fonts and simulating styles. Table 1 
gives more information about this dataset: 
Table 1 Information about CASIA-Online Chinese Handwriting Database 

Dataset name CASIA-Online Chinese Handwriting Database 
Data source Institute of Automation, Chinese Academy of Sciences (CASIA) 
Dataset type Handwritten font database 
Number of 
samples 

Over 10,00 Chinese character samples, including works from multiple 
calligraphers 

Calligraphy styles Includes regular script, running script, cursive script, clerical script, etc. 
Data format Image format (PNG, JPEG) with corresponding labels 
Dataset features Provides handwritten fonts in various calligraphy styles, suitable for font 

generation and style simulation research 

Before training a model with the CASIA dataset, a number of exact preparation steps 
must be taken to make sure the data is of high quality and consistent. This will make 
model training more effective. Some of the specific procedures in preprocessing are 
scaling images, getting rid of noise, improving data, and processing labels. 

The first step in preprocessing is to resize the image. All the photos in the dataset 
need to be the same size, which is 128 × 128 pixels (Ivanescu, 2022). This size keeps 
adequate details and makes sure that network processing is quick. We utilise the 
cv2.resize() method from the OpenCV package to make sure that all the input photos are 
the same size. 

In image preprocessing, denoising is a key aspect. As calligraphy images may be 
affected by the shooting angle, scanning quality or writing irregularities, noise is often 
introduced. For this reason, we use Gaussian Blur to smooth the image, effectively 
removing high-frequency noise, preserving the font outline, and enhancing the learning 
effect of the subsequent model. 

In order to enhance the generalisation ability of the model, we also performed data 
enhancement operations. The ImageDataGenerator in Keras is used to generate diverse 
training samples by rotating, cropping, scaling and flipping horizontally (Lalitha and 
Latha, 2022). This process not only enhances data diversity but also helps the model 
better adapt to different styles of calligraphy handwriting and reduces the risk of 
overfitting. 

Finally, label processing is also a part that cannot be ignored. The character labels 
corresponding to each image are converted into one-hot encoding form so that the model 
can learn better classification. To do this, we make a dictionary that has all the possible 
characters for each character label. Then we use the np.zeros() and np.argmax() functions 
in NumPy to change the character labels into the right binary variables. 
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The preprocessed dataset gives the deep learning model high-quality inputs for 
training and makes the model better at generalising by adding more data and removing 
noise. This makes the task of generating calligraphic fonts and simulating styles go more 
smoothly. 

4.2 Model design and implementation 

To make sure that calligraphic fonts can be generated and styled automatically in a way 
that is both efficient and realistic, this model design has three main modules: feature 
extraction and modelling, generation and style simulation, and training and optimisation. 
The functions of each module are tightly related, and collectively they carry out the entire 
process, from entering data to creating the final typefaces. 

4.2.1 Feature extraction and modelling 
This module oversees getting useful feature information from the input handwritten font 
images so that the next steps in font development and style simulation can be based on it. 
The main way this module works is by using CNN, which can quickly pull out both local 
and global elements of the image, such the shape of the strokes, the thickness of the 
typeface, and the structure’s regularity, from the original image through a multi-layer 
convolution operation (Li et al., 2024). The following equation can be used to define the 
convolution operation: 

, ,
1 1

,( )
k k

out m n i m j n
m n

F i j σ W X b+ +
= =

 
= ⋅ +  

 
  (1) 

where Xi,j is the pixel value of the input picture at position (i, j), Wm,n is the weight of the 
convolution kernel, b is the bias term, σ is the activation function, and Fout(i, j) is the 
feature map that comes out of the convolution operation. The formula demonstrates how 
the convolution kernel finds the convolution of the input picture in a certain area. 

The pooling layer is also very critical for the feature extraction procedure, along with 
the convolution operation. The pooling layer makes the feature map smaller by 
downsampling it. It keeps the most important features in the image, cuts down on the 
amount of computation, and makes the model more stable. Maximum pooling is a 
standard way to accomplish pooling that picks the highest number in the pooling window. 
Its equation is: 

( ), ,
[ :] [: , ]

maxi j m n
m i i k n j j k

P F
∈ + ∈ +

=  (2) 

where Pi,j is the feature map after pooling, Fm,n is the value in the pooling window, and k 
is the size of the pooling window. The pooling process can efficiently lower the spatial 
dimension while keeping the most critical feature information which makes the network 
even more powerful (Akhtar and Ragavendran, 2020). 

The feature extraction module is based on more than just convolution and pooling. It 
also incorporates batch normalisation and dropout to make the model train faster and 
better at generalising (Garbin et al., 2020). Batch normalisation guarantees that the input 
data has a constant distribution by normalising it at each layer. This stops the problem of 
gradient vanishing during training, as seen in equation: 
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ˆ X μ γX
σ
−= ⋅ + β  (3) 

where X is the input data, µ and σ are the mean and standard deviation of the input, γ and 
β are the learnable scaling and translation parameters, and X̂  is the normalised output. 
Batch normalisation makes the network’s training much faster and more stable. 

Lastly, in the feature extraction stage, the final output feature maps are flattened and 
transmitted to the fully connected layer for more processing after the procedures of 
convolution, pooling, and normalisation. The fully connected layer’s job is to turn the 
high-dimensional features taken from the image into feature variables that can be 
differentiated. This is the first step in the tasks of font synthesis and style simulation. The 
model can gradually get global information from the local details of the image and get a 
feature representation that can accurately show the calligraphic typefaces by designing 
these layers. 

4.2.2 Font generation and style simulation 
This module uses GAN to create font graphics that look like calligraphy and allow for 
migration between different styles. This module can make delicate and personalised 
calligraphy fonts by using GAN’s generation and adversarial mechanisms and CNN’s 
feature extraction. This adds to the variety of font styles and ways of expressing art. 

The GAN has two parts: the generator and the discriminator (Zhang et al., 2021). The 
generator makes samples that look like real font pictures, and the discriminator checks to 
see if the created images are real. The generator and the discriminator are taught against 
each other to improve their tactics over time. We can use the following equation to show 
what the generator does: 

( ), Generator ;( ,) GG z y z y θ=  (4) 

where z is random noise or other possible variables, y is a style label that shows the 
intended style, G(z, y) is the font image that the generator makes, and θG is a parameter of 
the generator. 

The discriminator’s job is to figure out if the input image is from a real dataset or not. 
It does this by giving an output value D(x), which is the chance that the image is a real 
image. The following is the output formula for the discriminator: 

( )( ) D DD x σ W x b= ⋅ +  (5) 

where x is the input image, WD and bD are the weight and bias of the discriminator, 
respectively. 

Here is the output expression of the conditional generator. The conditional 
generator’s output expression is as follows: 

( ),ˆ ];[ Gz yx G θ=  (6) 

where y is a style tag that shows different styles, such regular script, running script, and 
so forth. Depending on the style tags, the generator creates the right font images. This 
design gives the generator more control over how font styles are made, so that the fonts it 
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makes not only follow the rules of calligraphy but can also work with a lot of diverse 
calligraphic styles. 

The discriminator, on the other hand, makes the generator’s output better by 
comparing the genuine image to the one that was made (Nie et al., 2018). Adversarial 
training helps the generator, and the discriminator work together to make realistic font 
images in a range of calligraphic styles. The goal of training the discriminator is to make 
the judgement of the created picture as accurate as possible. 

4.2.3 Training and optimisation 
The main purpose of adversarial training is to teach the generator how to make bogus 
images and the discriminator how to tell them apart. The two then play a game to help 
each other get better. This optimisation process’s main goal function may be written as: 

, ,logmin max ( , ) [ ( , log)] [ ( ( ( ) )1 , , ) ]x y z y
G D

D x y D G z y yV D G = + −   (7) 

where x is the genuine image, y is the style label, and z is a random noise variable taken 
from a Gaussian distribution. The generator’s job is to lower the overall loss, while the 
discriminator’s job is to raise the function (Pan et al., 2020). This creates a closed-loop 
structure for adversarial training. 

A style consistency loss is also included in the training to make the style 
representation even more accurate. This loss helps the generator better capture style 
features while keeping the structure stable by looking at the discrepancies between the 
generated image and the target style samples in the deep feature space. Loss is defined as 
this: 

( ) 2

2
( ( , ))style targetL G z y x= −φ φ  (8) 

where ϕ(·) is the style feature mapping taken from the pre-trained CNN network, and 
xtarget is the reference picture of the style that goes with it. 

In short, this module effectively combines structural and stylistic aspects using an 
acceptable adversarial training mechanism and style guiding technique. This gives the 
final generation effect a strong training base. Algorithm 1 explains how to put the model 
into action: 

Algorithm 1 Pseudo-code for calligraphy generation and style simulation model 
1: begin 
2: Initialise generator G parameters θ_G, discriminator D parameters θ_D; 
3: Initialise optimiser with learning rate α; 
4: for t = 1 to N do 
5: Sample real images x, style labels y from dataset D; 
6: Sample noise vector z from standard Gaussian distribution; 
7: // Feature extraction phase 
8: RealStructFeat = CNN_encoder(x); 
9: StyleInfo = Style_embedding(y); 
10: // Generation phase 
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11: FakeImg = G(z, StyleInfo); 
12: // Discrimination phase 
13: D_real = D(x, y); 
14: D_fake = D(FakeImg, y); 
15: // Loss calculation 
16: L_adv = log(D_real) + log(1 – D_fake); 
17: L_gen = L_adv;  
18: // Backpropagation and update for discriminator 
19: Grad_D = compute gradients of L_adv w.r.t θ_D; 
20: θ_D ← θ_D – α · Grad_D; 
21: // Backpropagation and update for generator 
22: Grad_G = compute gradients of L_gen w.r.t θ_G; 
23: θ_G ← θ_G – α · Grad_G; 
24: // Optional: learning rate scheduler 
25: if t % 1,000 == 0 then 
26: Adjust learning rate α; 
27: end if 
28: end for 
29: return trained G(θ_G), trained D(θ_D); 
30: end 

5 Experiment and result analysis 

5.1 Experimental setting and evaluation indicators 

This paper creates a systematic experimental process to check how well the model works 
for automatically generating and simulating the style of calligraphic fonts. The process 
includes data partitioning, training configuration, comparison model selection, and a full 
performance evaluation. The experiments take place in Ubuntu 22.04, on an NVIDIA 
RTX 4090 GPU, using PyTorch 2.1.0 as the software framework (Nalini et al., 2025). 
The model parameters are updated in mini batches during training, with a batch size of 32 
and an initial learning rate of 0.0002 for the Adam optimiser. The training process lasts 
for 200 rounds (Chen et al., 2019). 

We split the dataset into training, validation, and test sets in the ratio of 8:1:1 to make 
sure that each style category was evenly distributed. We also normalised and  
centre-aligned each character sample. 

To fully evaluate the quality and style simulation ability of the model-generated font 
images, this paper presents three evaluation indexes. These indexes are quantitatively 
analysed in terms of several dimensions, including image structural fidelity, stylistic 
expressiveness, and perceptual consistency. 

The structural similarity index (SSIM) is a way to compare the brightness, contrast, 
and structure of the generated image to the target image. It is defined as: 
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where μ is the mean, σ is the variance, is the covariance, C1 and C2 are constants that 
make sure the denominator is never zero. The original SSIM value is between 0 and 1, 
and the closer it is to 1, the closer the structure is (Sara et al., 2019). 

Fréchet inception distance (FID) finds the Fréchet distance between the generated 
image and the real image by taking the feature distribution of the inception network at a 
specific layer (Buzuti and Thomaz, 2023). This work changes FID into a uniform 
assessment direction to get rid of the problem of the numerical scale being too big: 

min

max min
1 FID FIDFID

FID FID
−= −

−
 (10) 

where FIDmin and FIDmax are the lowest and highest FID values that were seen in the 
experiment. The bigger value of FID after processing means that the image that was 
made is more like the real image distribution. 

Content perceived difference (CPD) looks at the difference in perception between the 
generated image and the target image (Kim et al., 2024). It does this by looking at the 
multilayer features derived from pre-trained CNNs, with a focus on the fine textures and 
local structures. CPD shows how the human eye prefers font style and stroke fineness 
over changes at the pixel level. This is what it means: 

( )
( ) 2

1 2

ˆ( )
ˆ, 1

)
1

(

L
l l

ll

x
CPD

x
xx

L x ε=

−
= −

+
φ φ

φ
 (11) 

where φl(·) is the feature extractor for the lth layer of the pre-trained CNN, L is the 
number of perceptual layers you want to use, and ε is a tiny constant that is included to 
prevent division by zero. This rating ranges from 0 to 1, and higher values mean that the 
style is better preserved, and the variations are less noticeable. 

When put together, the metrics above can show how well the model does at 
generating fonts from different angles without needing to be scored by hand. SSIM and 
CPD work together to capture the connection between structural and stylistic 
characteristics, especially in the style simulation job. FID, on the other hand, gives a 
statistical picture of the overall quality. 

5.2 Experimental process and results 

Experiment 1 focuses on quantitatively comparing the fundamental parameters of 
structural integrity, textural details, and overall perceptual quality of character pictures in 
order to confirm the proposed model’s basic generative capabilities in the calligraphic 
font production assignment. For comparison purposes, three typical generation models 
are chosen as baseline controls. 

First, we employ the classic convolutional self-encoder (baseline-AE) as the basis 
generative framework. An encoder compresses the input image into low-dimensional 
features, and then a decoder reconstructs the image. This method is straightforward to set 
up and train, but it does not work as well for reducing complicated details or generating 
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high-quality images. For example, it is extremely hard to capture the rich stroke texture 
and structural characteristics of calligraphic typefaces. 

Second, CycleGAN is a method for changing the domain of images without 
supervision (Jiangsha et al., 2022). It uses generative adversarial networks to change the 
style of images by adding cyclic consistency loss. It does not need paired training data 
and works well for converting between styles, however for some font production jobs, the 
pictures it makes often have blurry borders and local deformation because there are not 
any strict structural limits. 

Finally, Pix2Pix is a famous example of a conditional generative adversarial network 
(Rau et al., 2019). It uses paired picture data for end-to-end training and can better 
understand the relationship between input and output. For font generation, Pix2Pix can 
employ conditional information to make the generation more accurate and detailed. 
However, there is still a performance bottleneck when it comes to the wide range of style 
adjustments that can be made to calligraphic typefaces. 

These three models show distinct technological pathways, such as classic encoder, 
unsupervised style migration, and conditional adversarial training. They give a full 
picture of the models’ strengths in this study. 

We used the same training set to train all the models and the same test set to test 
them. The obtained results are image centre-aligned and size-normalised so that the 
multiple model outputs can be compared. Figure 1 shows the average score of the four 
models in the test set based on the three metrics: 

Figure 1 Performance comparison of different models in font generation task (see online version 
for colours) 
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The graphic shows that the proposed approach makes a big difference in all three 
measures. The SSIM score, which is 0.869, is about 12% higher than the baseline-AE 
score of 0.752. This shows that the model is quite good at keeping the font’s structure 
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intact. This shows that the model can accurately capture and recreate the complicated 
stroke patterns of Chinese characters, making sure that the basic shape of the font it 
creates is clear and easy to understand. 

The model also gets the best score of 0.764 on the FID metric, which is much higher 
than CycleGAN’s 0.672 and Pix2Pix’s 0.701. This shows that the generated fonts are 
considerably more like genuine data when it comes to feature distribution. This is another 
evidence that the model is better at restoring detail texture and overall style. The rise in 
the CPD index (0.793) shows that the generated fonts are more consistent in the  
multi-layer perceptual feature space. This means that the model can recover the subtle 
changes and artistic texture of the calligraphic strokes in a more detailed fashion. 

The findings of experiment 1 showed that the model is not only good at modelling the 
structure of fonts, but also at restoring perceptual quality and stylistic detail. To fully test 
the proposed model’s performance in the multi-style calligraphic font simulation task, 
experiment 2 uses a test set that includes several common calligraphic styles, like regular, 
running and cursive. This is done to see how well the model can convert between styles 
and restore details. The goal of the studies is to see if the model can capture and express 
complicated calligraphic styles. This will show that it has the best of both worlds: style 
migration and multi-task creation. 

In this experiment, we compare seven well-known and widely applied multi-style 
image generation and transfer models. 

One of them is CycleGAN, an unsupervised method that uses cycle consistency loss 
to convert images between two domains without requiring paired data. Another is 
StarGAN, which allows for image translation across multiple domains, making it easier 
to switch between different calligraphy styles. StarGAN v2 is an improved version that 
enhances style expression through additional style encoding and a more precise style 
control mechanism (Barzilay et al., 2021). Both multimodal unsupervised  
image-to-image translation (MUNIT) and diverse image-to-image translation (DRIT) 
may change styles clearly and evident. They do this by separating content and style in an 
implicit space. On the other hand, style-aware GAN adds a style-aware module to the 
model to help it capture more intricate textures and features. Finally, AttnGAN adds an 
attention mechanism that makes the model better at focusing on small details in an image 
and does well at generating fine-grained images. The models above show different 
technical approaches to current multi-style image generation. They include unsupervised 
learning, multi-domain transformation, style separation, and attention mechanism. They 
provide a full and strong reference for comparing the models’ performance in this study. 

Figure 2 shows the outcomes of the experiment. 
The figure shows that the model suggested in this study does the greatest job on all 

three evaluation metrics. This fully shows that it is the best at mimicking multi-style 
calligraphic typefaces. The current model has an SSIM score of 0.797, which is much 
higher than the second-ranked StarGAN v2 (0.782) and AttnGAN (0.773). This means 
that the current model successfully combines several calligraphic style elements while 
keeping the fonts’ structure and clarity, and the typefaces it creates follow writing rules 
and have significant artistic expression. 

Second, the FID shows how comparable the distribution of stylistic elements is 
between the created fonts and the real data. The proposed model gets the highest score of 
0.718, which is better than all the other models that were compared. This means that the 
typefaces made by the model are more like real calligraphy samples in terms of how they 
are distributed generally, and they can change styles more naturally and smoothly. 
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CycleGAN, on the other hand, has the lowest FID value because it does not have a way 
to modify style, which makes the style profile of the converted fonts less clear. 

Figure 2 Comparison of the performance of multi-style calligraphic font simulation models  
(see online version for colours) 
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The CPD metric backs up the model’s claim that it is better at capturing calligraphic 
details. With a score of 0.745, this model is better than style-aware GAN (0.707) and 
other baseline models. This shows that it can better reproduce the fine details of stroke 
texture and style. This is very important for calligraphic fonts, which are an art style that 
needs a lot of detail to show. 

Figure 3 Simulation generation of official script style (see online version for colours) 
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In short, the experimental results show that the current model is far better at simulating 
multi-style calligraphy fonts than other models. They also show that integrating multi-
task learning, optimised style migration, and detail capturing techniques works. 

To prove that the model can model dynamic strokes even more, we use the simulation 
of the clerical and cursive styles as an example (see Figurea 3 and 4). The model 
separates the temporal features of the two fonts into the probability of stroke distributions 
in the spatial domain using cGAN and multilayer convolutional feature extraction. 

Figure 4 Simulation generation of cursive style (see online version for colours) 

 

6 Conclusions 

This study methodically designs and implements a multi-task learning model that 
combines CNN and GAN to solve the challenge of automatically generating and 
simulating the style of calligraphic typefaces using computer vision technologies. This 
paper combines the current state of research in related fields to show the problems with 
traditional methods for capturing style details and converting between styles. It then 
suggests a model architecture made up of three modules: feature extraction, generation 
and style simulation, and training optimisation. The model can not only make fonts that 
are clear and follow calligraphic rules, but it can also depict different styles and textures 
of strokes in multi-style simulation. In the experimental phase, two systematic tests are 
done to compare the most common generation models using three measures: SSIM, FID, 
and CPD. The results reveal that the model in this work has greatly improved the quality 
of the fonts and the performance of several styles. This proves that its technological route 
is both legitimate and useful. 

Even if the model in this research has several good points, it still has some problems. 
First, the quality and variety of the dataset are very important for the training process. 
The current dataset, on the other hand, only covers a few styles and has a limited number 
of samples, which could make it harder for the model to generalise. Second, the model 
might still do better with complicated styles or details, and the restoration of some fine 
strokes and hyphenated styles is still not accurate enough. Also, the model needs a lot of 
computing power and takes a long time to train, which makes it hard to quickly use and 
promote in real-world situations. 

To fix the problems listed above, future research can go in the following directions: 
first, to make calligraphic style datasets that are bigger and more varied, covering more 
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calligraphic genres and personalised styles. This will make the model more adaptable and 
expressive. Second, investigate lightweight network structures and efficient training 
methods to make the model less complicated and speed up the process of generating new 
styles and converting existing ones (Gendy et al., 2023). Third, the detailed expression 
mechanism of style migration technology is looked into in more depth, and the accuracy 
and naturalness of style conversion are improved even more by using new technologies. 
Finally, we create an intelligent calligraphy font generation system that gives real-time 
feedback and style regulation functions, considering user interaction and personalised 
customisation needs. This system will help computer vision technology become more 
widely used in the creation and preservation of digital calligraphy. 

In short, this paper gives us a new way to do things and a way to test them out when it 
comes to automatically creating and simulating calligraphic fonts. This not only adds to 
the possible uses of computer vision, but it also sets the stage for the digital innovation of 
traditional art. We hope that future research will continue to push this field forward. 
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