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Abstract: Immune signatures strongly associate with the progression of labour 
towards the active phase of labour. However, the detailed relationship is still 
not clear. Herein, interpretable machine learning methods are implemented for 
mining complex immune data. Principal component analysis and covariance 
analysis are employed to achieve dimensionality reduction of the immune 
features (1,058) as input. Using 16 key immune features as input, RMSE 
decreased from 277 min to 214 min by Ridge model. Moreover, sure 
independence screening and sparsifying operator (SISSO) was implemented to 
establish a glass-box model for generating interpretable mathematical 
information format of key immune features associated with induced labour 
progression. The prediction accuracy was further improved by SISSO input 
with only 14 features (R2 = 0.9934, RMSE = 42 min, MAE = 30 min), and the 
exact mathematical format of the model was obtained [equation (5)]. Reliable 
description of progression is established from labour induction until 
establishing active labour. 

Keywords: interpretable machine learning; labour induction;  
compressed-sensing method; regression; pregnancy. 

Reference to this paper should be made as follows: Hu, R., Li, J., Liu, Y., 
Zhang, Q., Bai, Z., Zhao, Z., Guo, W. and Liu, R. (2025) ‘Screening and 
sparsifying maternal immune features for predicting labour induction based on 
a glass-box model’, Int. J. Data Mining and Bioinformatics, Vol. 29, No. 6, 
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1 Introduction 

Labour induction has an enormous impact on maternal and foetal well-being (NICE, 
2021; Oladapo et al., 2018; Sande et al., 1983), which is usually recommended in the 
situation of deteriorating foetal or/and maternal status. The benefit and safety of 
induction, e.g., lower rates of caesarean delivery, were shown by Grobman et al. (2018), 
which can exist even in the absence of a biomedical indication. Labour inductions 
constitute around 40% of all deliveries now and are being increasingly performed in the 
USA (Ameri et al., 2024; Rydahl et al., 2019). During active labour, the local 
environment is inflammatory (Ando et al., 2021; Migale et al., 2016; Orsi and Tribe, 
2008; Pique-Regi et al., 2019; Sivarajasingam et al., 2016). It is detectable and echoed in 
maternal circulating immune cells, e.g., increased frequencies of CD56+CD16+ natural 
killer cells, neutrophils activation, and the increase of inflammatory cytokines (Yuan  
et al., 2009; Zhang et al., 2017). Currently, the reliable description of progression since 
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labour induction until establishing active labour is still weak, and the prediction of 
complication and labour induction success is still not accurate enough. This is owing to 
the highly nonlinear correlation and intricate relationship between the ‘biological 
determinants’, (e.g., immune features) and the progression since labour induction (Migale 
et al., 2016; Orsi and Tribe, 2008; Pique-Regi et al., 2019; Sivarajasingam et al., 2016). 

Several methods of data analytics or machine learning were developed and applied to 
mine medical science data (Alber et al., 2019; Ando et al., 2021; Camacho et al., 2018; 
De Santiago and Polanski, 2022; Kaur et al., 2019; Peng et al., 2021; Shehab et al., 2022; 
Swanson et al., 2023; Zheng et al., 2023). Thus far, the works of machine learning in 
medical science mostly used black-box models to regress measurable biological 
properties (descriptors), such as immune features, that can be related to the medical 
process (e.g., labour) (Afrifa et al., 2023; Alsharif, 2023; Ando et al., 2021; Chen et al., 
2024; Meyer et al., 2023). It is challenging to extract meaningful biological insights from 
a black-box model owing to its high complexity. The internal logic of the black-box 
models cannot be readily explainable. Interpretable methods of machine learning, which 
merge the biological interpretability of mathematics-based model with the prediction 
capacity of black-box models, provide an alternative to the conventional black-box 
models. 

The reliable prediction of progression after labour induction is an important 
component of theoretical description and clinical decision-making for maternal and foetal 
well-being. These relationships should be revealed by one descriptor, including several 
parameters that can capture the underlying mechanism of labour process. The challenge 
is that tiny changes in biological determinants may cause a qualitative variation of the 
pregnant body. For instance, during labour, many different phenomena, processes and 
changes of feto-maternal physiology exist, including endocrine adaptations (McLean  
et al., 1995; Mendelson, 2009; Mesiano, 2007), infiltration of immune cells into the 
placenta and foetal membranes (Gomez-Lopez et al., 2014; Romero et al., 1989; 
Shynlova et al., 2013), foetal membrane rupture (Menon et al., 2019), uterine contractility 
augmentation, cervical dilation (Norwitz et al., 1999), and culminating in foetus delivery. 
After identification of the descriptor, essentially any learning approach, including 
regressions and classifications based on kernel function, artificial neural networks, and so 
on, can be straightforwardly applied. The key role of the descriptor has been identified 
explicitly in many pioneering works of catalysis (Andersen et al., 2019) and materials 
science (Ghiringhelli et al., 2017, 2015; Ouyang et al., 2018) using machine learning 
methods, while relatively less attention has been focused on medical science. 

In this study, the peripheral immune data after labour induction have been regressed 
based on data dimensionality reduction and model hyperparameter adjustment to avoid 
overfitting and increase prediction accuracy. An interpretable machine learning method, 
named sure independent screening and sparsifying operator (SISSO), is implemented to 
describe the dynamic changes of the specific maternal immune system in the period 
between labour induction and active labour establishment. SISSO can even deal with 
billions of object features, and does not suffer from high correlation of the features. We 
establish a mathematical model, which is an analytic and explicit function of input 
immune features, rather than a specific biological model. We accept that the intricate 
processes, which compete and/or cooperate in induced labour, can not be describable 
necessarily by a rigorous and closed biological equation with complete pathways (Draxl 
and Scheffler, 2018). This work opens a new perspective of screening the biological 
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determinants that affect the variability in induced labour, which can provide 
mathematical models for the establishment of new biological mechanism. 

2 Data mining methods 

2.1 Dataset 

The data published by Ando et al. (2021) have been used. In their observational study, a 
time schedule of immunologic adaptations during labour was detected, in which 
functional changes and peripheral immune cell phenotype were serially analysed after 
medical induction of labour. In their file of ‘preprocessed.csv’ (Ando et al., 2021), the 
‘time’ column and ‘sampleID’ column jointly mark the index of the sample. The values 
in the feature column corresponding to the same indicators of ‘time’ and ‘sampleID’ are 
treated as the same sample. Therefore, a vector with 1058 dimensions and a total of 48 
vectors were obtained. In the regression, X is a 48 × 1,058 matrix, and the corresponding 
Y is a 48 dimensional vector with the values in the column of ‘minsinceinduction’. We 
hope to establish an accurate and interpretable relationship between intracellular 
signalling marker or frequency of immune cell type and time since the induction of 
labour. During model training, the data were split into two sets randomly, including the 
training set (70%) and the testing set (30%). 

2.2 Machine learning models 

In this work, different machine learning models were employed for the regression of the 
data, including ridge (Tikhonov, 1943), least absolute shrinkage and selection operator 
(LASSO) (Tibshirani, 1996), and sure independence screening (SIS) and sparsifying 
operator (SISSO) (Ouyang et al., 2018). The method of principal component analysis 
(PCA) (Lever et al., 2017) was employed to achieve dimensionality reduction of the 
input. Compared with SISSO, covariance analysis (Khammar et al., 2020) was also 
carried out for descriptor selection. 

2.2.1 LASSO regression 
LASSO regression is a multivariate linear regression added with 1-norm part as model 
parameter. In the LASSO model, a hyperparameter, λ, controls the relative importance of 
the regularisation term and the mean square error loss term. The value of λ was optimised 
firstly to increase the prediction accuracy. 5-fold cross validation was implemented 
during the optimisation to achieve a good generalisation ability. 

2
1+L y X λ= − β β  (1) 

2.2.2 Ridge regression 
Ridge regression is another multivariate linear regression model using the square of  
2-norm as model parameter. In the Ridge model, the hyperparameter, λ, also determines 
the relative importance of the regularisation term and the mean square error loss term. 
The value of λ was optimised to increase the prediction accuracy of Ridge model. 5-fold 
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cross validation was implemented during the optimisation to achieve a good 
generalisation ability. 

2 2
2+L y X λ= − β β  (2) 

2.2.3 Principal component analysis 
PCA is a robust tool of data analysis in many fields, ranging from material science to 
medical science (Shlens, 2014). Relevant information can be extracted from confusing 
data sets by PCA using a non-parametric technique. PCA can simplify the  
high-dimensional data with high complexity, in which the patterns and trends can be 
retained. The dimension of the data can be reduced by PCA through geometrically 
projecting onto lower dimensions, i.e., principal components (PCs). The best summary of 
the data can be determined by using a limited number of PCs. 

2.2.4 Descriptor selection based on covariance 
As a widely used statistical method, covariance analysis deals with quantitative data from 
experimental studies in many fields, including medical science. Given an n-dimensional 
random variable, X = (x1, x2 … xn), there exists covariance between its different 
components (features), which can form a covariance matrix, Cn×n, as shown in  
equation (3). 

( )( ) ( )( )ij i i j jC E x E x x E x = − −   (3) 

where E represents expectation. The positive value of the element Cij in the covariance 
matrix indicates that the features (xi and xj) are positively correlated. If the value is 
negative, it indicates that xi and xj are negatively correlated. The larger the absolute value, 
the stronger the correlation. If Cij is zero, then xi and xj are independent. 

2.2.5 SISSO 
To construct the feature spaces of Φ1, Φ2 and Φ3, the set of functional/algebraic operators 
given in equation (4) was used. 

{ }
def

1 2 3ˆ , , , exp, exp , , , ,mH sqrt− − −= + − × −  (4) 

m, the superscript, describes that a dimensional analysis was performed when we applied 
ˆ mH  to primary features (φ1 and φ2). Only the combinations that are physically 

meaningful have been retained. Only the primary features possessing the same unit have 
been subtracted or added. 

In a small feature subspace which is selected by SIS, the sparsifying l0 constraint has 
been applied. The subspace size is equal to a SIS value (user-defined) times the 
descriptor dimension. 

In our work, the dimension of the descriptor was set to 4; maximal feature complexity 
was also set to 4. Number of features in each of the SIS-selected subspace was set to 50 
(Ouyang et al., 2018). The feature was removed when its number is smaller than 10–3 and 
larger than 105. 
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3 Result 

3.1 LASSO regression 

In the LASSO model, the value of hyperparameter (λ) was optimised firstly to increase 
the prediction accuracy. The results are shown in Figures 1(a)–1(b). The value of R2 
increased constantly with the increase of λ from 0.1 to 1.1. When λ was higher than  
1.1, R2 was nearly unchanged. The LASSO model performs best at λ = 2.0, where  
RMSE = 257 min, MAE = 203 min and R2 = 0.72. Therefore, the value of λ was set to be 
2.0 in the subsequent investigation and discussion. Our results based on LASSO model is 
consistent with those reported by Ando et al. (2021) (RMSE = 277 min). 

Figure 1 Influence of hyperparameter (λ) on RMSE (blue) and MAE (orange) values of (a) 
LASSO regression and (c) Ridge regression. Influence of hyperparameter (λ) on R2 of 
(b) LASSO regression and (d) Ridge regression (see online version for colours) 

 
(a)     (b) 

 
(c)     (d) 

3.2 Ridge regression 

In the Ridge model, the value of λ was also adjusted, and the results are shown in  
Figures 1(c)–1(d). The prediction accuracy of Ridge model exhibited severe fluctuations 
by changing the value of λ from 0.1 to 2.0, which is very different from the trend for 
LASSO regression. According to our results, Ridge regression model has the best 
performance when λ = 1.5, where R2 = 0.77, RMSE = 232 min, and MAE = 180 min. 
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3.3 Interpretability brought by dimensionality reduction 

Multiple linear regression models with regularisation terms (LASSO and Ridge) achieved 
good regression results. But the input vector of each sample was as high as 1,058 
dimensions. The excessively high input dimension inevitably leads to a large amount of 
redundancy in the model, and overfitting can easily occur. We hope to make the model 
more concise by using dimensionality reduction technology, so that the knowledge 
learned by machine learning models from the data can be more easily understood by 
researchers. 

3.3.1 Dimensionality reduction by PCA 
Firstly, the dimensionality of the input data is reduced by PCA technology. Then, the 
performance of the linear models (LASSO and Ridge) using the input generated by PCA 
dimensionality reduction was tested. 

Figure 2 Influence of the dimension of input data after PCA processing on RMSE (blue) and 
MAE (orange) of (a) LASSO model and (c) Ridge model. Influence of the dimension  
of input data after PCA processing on R2 of (b) LASSO model and (d) Ridge model 
(see online version for colours) 

 
(a)    (b) 

 
(c)    (d) 

We investigated the changes in model performance of LASSO when the input vector was 
reduced to different dimensions (2–20 dimensions) by PCA technique. As shown in 
Figures 2(a)–2(b), when the input dimension was lower than 12, both RMSE and MAE 
values were large. RMSE and MAE were constantly decreased by increasing the input 
dimension from 12 to 15. RMSE and MAE had the minimum values of 219 min and 167 
min, respectively, when the input dimension was 15. At this time, the R2 value is 0.62. 
When the input dimension was higher than 15, both RMSE and MAE did not change 
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much. The maximum goodness of fit (R2 = 0.72) was obtained when the input dimension 
was 16. Under this condition, the corresponding values of RMSE and MAE were 252 min 
and 181 min, respectively. 

After PCA dimensionality reduction, the performance change of Ridge model is 
almost the same with that of LASSO model. As shown in Figures 2(c)–2(d), the 
minimum values of RMSE and MAE were 218 min and 166 min, respectively, when the 
input dimension was 15 and the corresponding value of R2 was 0.63. When the input 
dimension of the model was 16, the maximum R2 was achieved, which is 0.72, and 
corresponding RMSE and MAE were 253 min and 184 min, respectively. Both Ridge and 
LASSO models exhibited similar performance when the input dimension is reduced by 
PCA. 

3.3.2 Descriptor selection based on covariance 
In order to increase interpretability of the model, the covariance method was employed 
for dimensionality reduction, in which correlation analysis was achieved based on 
covariance values. We calculated the covariance between different features and the target 
property (time since induction), sorted them based on the absolute values of the 
covariance, and selected the features possessing the highest covariance with the target 
property as the descriptor. The 30 features selected based on covariance values that have 
the strongest correlation with the target properties are listed in Table 1. Here, we tested 
the prediction performances of LASSO and Ridge models using the top 20 features as the 
input descriptor. 

Figures 3(a)–3(b) show the impact of the top N (N = 2–20) features as input on model 
performance of LASSO. These features possess higher absolute values of the covariance 
with the target property. When the top 19 features were selected as input, the smallest 
RMSE and MAE were obtained, which are 227 min and 155 min, respectively. But the 
goodness of fit was only 0.37. When the top 16 features were selected, the goodness of fit 
was 0.74, while RMSE and MAE are 231 min and 179 min, respectively. Thus, LASSO 
model can achieve the best performance when input with the top 16 features. 

The pattern of Ridge model is almost identical to that of LASSO. Figures 3(c)–3(d) 
shows that the minimum RMSE (218 min) and MAE (151 min) values were achieved 
when Ridge model was input with the top 19 features possessing the highest correlation 
with the target property. But the goodness of fit was only 0.42. When the top 16 features 
were selected, the goodness of fit was 0.77, while RMSE and MAE were 214 min and 
166 min, respectively. At this point, the goodness of fit is consistent with the 
performance of a model that directly uses all features as input. 

3.4 SISSO 

Covariance analysis can achieve good interpretability through selecting the most relevant 
properties as input, and the model performance is similar to those input using all features 
(1,058). However, we still hope to develop glass-box models with interpretable and 
superior performance. SISSO was chosen because the priority of this work is to derive 
compact, interpretable, and physically meaningful equations from a huge pool of 
candidate features in medical applications. In comparison, decision trees and SHAP serve 
different purposes: either as general-purpose classifiers (trees) or model explainers 
(SHAP). 
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Table 1 Top 30 features determined by covariance analysis 
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Figure 3 RMSE (blue) and MAE (orange) values of (a) LASSO model and (c) Ridge model input 
with different amounts of features as descriptor. R2 values of (b) LASSO model and  
(d) Ridge model input with different amounts of features as descriptor (see online 
version for colours) 

 
(a)    (b) 

 
(c)    (d) 

Note: The features with higher absolute value of covariance with the target property (time 
since induction) were preferably selected. 

Figure 4 Regression results of complicated [(a), R2 = 0.9961, RMSE = 38 min, MAE = 26 min] 
and all [(b), R2 = 0.9934, RMSE = 42 min, MAE = 30 min] labour induction processes 
by the as-developed SISSO model (see online version for colours) 

 
(a)    (b) 

A SISSO model has been built for mining medical data, and all the top 30 features 
determined by covariance analysis were tested. The best 4D descriptor of Φ3 was 
identified by SISSO, in which 14 features are included. Four immune features that 
strongly associated with time since induction are CD4Tcells_pSTAT3, mDCs_pSTAT3, 
MDSCs_pSTAT3, CCR2poscMCs_pSTAT3. Ten frequency features are also included in 
the model, including CD8Tcells_Frequency, CD4Tcm_Frequency, CD56loCD16posNK_ 
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Frequency, CD8Tmem_Frequency, CD62LposCD4Tnaive_Frequency, CCR2poscMCs_ 
Frequency, CD8Tef_Frequency, CD4Tem_Frequency, CD8Tnaive_Frequency, MDSCs_ 
Frequency. The exact prediction model of time since induction using these features is 
given in equation (5). 

[ ]
[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

[ ] [ ] [ ]

pSTAT3

Frequency Frequency

Frequency Frequency

pSTAT3

Frequency

pSTAT3 Frequency Frequency

CD4Tcells
3,535.69

CD8Tcells CD56loCD16posNk
+

CD4Tcm CD8Tmem

mDCs
CD62LposCD4Tnaive

5,303.47
mDCs CD8Tcells CCR2poscMCs

15.

y = ×

− ×
× −

−
[ ]

[ ]
[ ] [ ] [ ]

[ ]
[ ]

[ ]
[ ]
[ ]

pSTAT3

Frequency
pSTAT3 pSTAT3

Frequency

pSTAT3

Frequency Frequency

Frequency Frequency

MDSCs
05

CD8Tef
mDCs CCR2poscMCs

CD4Tem

CCR2poscMCs
+27.55 4.07

CD62LposCD4Tnaive CD8Tef
CD8Tnaive MDSCs

×
− ×

× +
−

 (5) 

The regression results of the as-developed model are shown in Figure 4. High accuracy 
(R2 > 0.99, RMSE < 42 min, MAE < 31 min) was obtained on both the complicated data 
and the whole database. Therefore, an interpretable model with clear mechanism and 
superior performance has been established. 

4 Discussion 

Currently, it is still hard to describe labour onset and establishment, particularly induced 
labour, by a biologically founded model with an analytical and closed expression. 
Because the labour processes are determined by substantial intricate and multilevel 
theoretical concepts. A LASSO model was introduced by Ando et al. (2021) and a RMSE 
of 277 min was obtained. In the model, 1,058 features were considered, but only 48 
samples were input. Thus, the equation system is an underdetermined system, resulting in 
an infinite number of solutions. The model possessed excessive hypothesis space, which 
will easily lead to overfitting. But the accuracy of regression was still low (RMSE = 277 
min), indicating that the LASSO model can be further optimised. Herein, we firstly 
optimised the linear models (LASSO and Ridge) by adjusting hyperparameter (λ). The 
prediction accuracy was only slightly increased (Ridge model, R2 = 0.77, RMSE =  
232 min, MAE = 180 min). Moreover, PCA was employed to reduce the number of the 
features that input into the prediction model. By changing the dimension of the input 
from 2 to 20, the improvement in the regression results is still limited. In addition, the 
biological meanings of the new descriptors after PCA dimensionality reduction are 
unclear based on these traditional black-box models. 

PCA is a mature dimensionality reduction technique. However, the physical meaning 
of the new descriptor after PCA dimensionality reduction is unclear. In order to increase 
interpretability of the model, the covariance method was employed for dimensionality 
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reduction, in which correlation analysis was achieved based on covariance values. We 
calculated the covariance between different features and the target property (time since 
induction), sorted them based on the absolute values of the covariance, and selected the 
features with the highest covariance with the target property as the descriptors. The top 
20 features determined by covariance analysis were tested in LASSO and Ridge models. 
The values of RMSE and MAE were decreased to 214 min and 166 min on Ridge model, 
respectively, where R2 = 0.77. But the results are still not ideal. It can be concluded that 
the hypothesis spaces established by current linear models (LASSO and Ridge) is not 
suitable for the data of labour induction. It turns out that the linear approach breaks down 
due to the unstructured feature space with correlated candidate features of induced 
labour. The problems of large feature space and small training set have been solved by 
SISSO. SISSO exhibited superior advantages for dealing with the correlated immune 
features of induced labour. SISSO autonomously screens the best features and removes 
irrelevant features from the combination of 1,058 immune features as a new descriptor, 
so that the feature space has been efficiently optimised. The regression accuracy has been 
greatly increased (R2 = 0.9934, RMSE = 42 min, MAE = 30 min). Given the available 
feature space, SISSO also identifies the accurate relationship between immune features 
and labour progress in terms of an analytical equation [equation (3)]. The 14 features 
selected by SISSO, which are most prominently in the STAT3 pathway, are biologically 
plausible markers for labour progression (Papatheodorou et al., 2013; Sivarajasingam  
et al., 2016). Previous reports (Vega-Sanchez et al., 2010; Yuan et al., 2009) showed that 
IL-6 gene expression in circulating leukocytes was enhanced during active labour, which 
well matches our conclusion that active labour associates STAT3 signalling. 

5 Conclusions 

In summary, the regression of peripheral immune data of labour induction is 
systematically investigated. The input and model parameter (λ) of two black models 
(LASSO and Ridge) were optimised. The prediction accuracy of LASSO model and 
Ridge model is hardly improved by adjusting λ and reducing input dimensionality by 
PCA and covariance analysis, which demonstrates the inherent defect of both linear 
models. The hypothesis space established by the linear models (LASSO and Ridge) is not 
suitable for the complex immune data after labour induction. In comparison, SISSO can 
establish a suitable hypothesis space based on only 14 features for properly dealing with 
the complex immune data of induced labour. As a complementary method to the 
commonly-used black-box approaches, SISSO can identify and translate the hidden 
patterns into detailed mathematic forms, which can form testable theories and 
hypotheses. Our results demonstrate that the interpretable machine learning methods pave 
the way to significantly advance scientific understanding in medical domain. 
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