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Abstract: Coastal communities worldwide face significantly higher risks than 
their inland counterparts, primarily due to threats like tsunamis, dam failures, 
and storm surges. Identifying and addressing these hazards before they result in 
loss of life is paramount. This paper presents a numerical scheme developed in 
MATLAB to solve shallow water equations, offering a valuable tool for 
mitigating these critical threats. Traditionally, computational limitations in 
memory and speed have required the division of complex simulations into 
smaller, more manageable sections in computational fluid dynamics. While 
advancements in computational power have grown exponentially, so too has 
the complexity of the problems being addressed. The model employs finite 
difference methods to solve the shallow water equations, utilising user-defined 
parameters such as domain size, shape, grid resolution, and boundary 
conditions. It generates customised data and presents results through animated 
visualisations. The results from this model have shown promising potential, 
highlighting its ability to enhance understanding and mitigation strategies for 
coastal hazards significantly. 

Keywords: coastal hazards; coastal fluid dynamics; mitigation strategies; 
shallow water equations; MATLAB simulation. 
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1 Introduction 

Ocean waves play a vital role in daily life, influencing everything from weather 
forecasting to climate modelling (Mendez and Rueda, 2008). They significantly impact 
weather predictions by modulating surface friction and enhancing the accuracy of 
hurricane intensity forecasts. Extreme ocean waves also pose a threat to coastal 
communities and offshore industries (Mendez et al., 2008). Waves propagate from 
deepwater to shallow regions. This paper focuses specifically on the shallow-water 
region, typically defined as areas where wave propagation occurs in depths of less than 
1,000 feet (304 metres). In contrast, deep water is generally considered to be over 4,000 
feet (1,219 metres) deep. The depth-to-wavelength ratio (h/L) characterises the transition 
from deep to shallow waves. Waves in deep water have an h/L ratio greater than 1/2, 
while transitional waves fall between 1/2 and 1/20. Waves with an h/L ratio of less than 
1/20 are considered shallow water waves (Balitsky, 2019). As waves move from deep to 
shallow waters, their height increases while their speed decreases. This slowdown occurs 
because the shallower depth affects the wave’s energy and momentum, leading to a rise 
in steepness and eventually causing the wave to break. The reduction in speed results 
from the water’s shallower depth, which impacts the wave’s energy distribution. As the 
velocity decreases, the wave height increases in compensation to conserve energy. Figure 
1 presents a schematic model of wave-coast interaction, along with the corresponding 
formulas. 

Wave propagation has been the subject of extensive research, with the foundational 
equations governing wave motion derived from the principles of conservation of mass, 
momentum, and energy. These equations can be adapted into different forms depending 
on assumptions related to fluid viscosity, compressibility, and domain characteristics 
(Stastna and Steinmoeller, 2023). However, a careful selection of assumptions is 
necessary to achieve accurate simulation results. Water movement is often described by 
shallow water equations, which are based on fluid mechanics principles and assume that 
the fluid is inviscid and incompressible. Shallow water flows are characterised by regions 
where free surfaces exist, and the primary flow component is typically horizontal 
velocity. Gravitational forces play a crucial role in generating stress on these free 
surfaces. The shallow water equations have broad applications in several critical fields, 
including tsunami propagation, river flows, dam breaks, and storm surges (Kumar et al., 
2022). 

The propagation of tsunamis poses a significant threat to coastal regions worldwide, 
prompting extensive efforts in detection, forecasting, and emergency preparedness to 
minimise loss of life and mitigate damage. A key component in understanding and 
predicting tsunami behaviour is the use of shallow water equations, which model the 
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complex dynamics of wave propagation. These equations enable more accurate 
predictions of wave height, speed, and arrival times, which help identify at-risk areas and 
support the implementation of targeted evacuation plans and early warning systems. 
Furthermore, they provide critical insights into the potential impact on infrastructure and 
ecosystems, informing strategies to enhance coastal resilience and preparedness against 
future tsunami events. 

Shallow water equations for river flows are a powerful tool for accurately modelling 
river flow patterns and water levels, making them essential for analysing flow dynamics 
in various environments. These equations predict flood risks and identify vulnerable areas 
by capturing water movement across multiple terrains and accounting for slope and 
surface friction factors. This modelling capability is crucial for flood management, urban 
planning, and the design of flood control infrastructure. Moreover, it aids in assessing the 
effectiveness of mitigation strategies, enabling better preparation and response to 
potential flooding events. 

Catastrophic dam failures can result in massive loss of life and extensive damage to 
infrastructure, driven by high-speed flows and shockwaves that propagate rapidly through 
affected areas. These events can lead to flash floods, overwhelming communities and 
causing irreparable harm. Researchers such as Roberts and Zoppou (2003) utilise shallow 
water equations to simulate the sudden and violent collapse of dams, providing critical 
insights into the behaviour of floodwaters and their resulting impact on downstream 
regions. This modelling is crucial for enhancing emergency response strategies, designing 
resilient infrastructure, and mitigating the overall risk of such disasters. 

Modelling storm surges, driven by wind, atmospheric pressure, and tidal forces, is 
critical for accurately assessing coastal risks. This modelling helps inform early warning 
systems and guides the development of effective mitigation strategies, ensuring better 
preparedness to protect lives, property, and infrastructure from the devastating impacts of 
these extreme events. 

Figure 1 Wave transformation from deep to shallow water (see online version for colours) 

  

Source: Balitsky (2019) 

Several numerical methods are available for solving shallow water equations, including 
the finite difference and finite element methods. This study focuses specifically on the 
finite difference method. This approach involves selecting computational points and 
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determining their spacing, which is the foundation for applying a finite difference 
approximation scheme. The process then computes the equations across the domain at 
each timestep. When modelling any problem, making informed and sensible decisions 
regarding the selection of appropriate initial and boundary conditions for the specific 
scenario is crucial. This study models the inlet boundary condition by a sinusoidal wave. 
In contrast, the outlet boundary conditions are adaptable, allowing for either wave 
reflection or absorption based on user input. The primary goal of this research is to 
develop a code capable of conducting three-dimensional numerical simulations of 
shallow water equations, offering users the flexibility to define and manipulate key 
parameters such as domain size, wave characteristics, and boundary conditions. 

2 Mathematics and numerical methods 

Fluid mechanics, the study of fluid motion, offers a comprehensive framework for 
understanding and modelling a wide range of flow phenomena. The governing equations 
that describe fluid behaviour are rooted in the fundamental principles of mass, 
momentum, and energy conservation. These equations provide the mathematical 
foundation for analysing the behaviour of fluids under various conditions. The specific 
flow scenario examined in this paper closely aligns with real-world phenomena observed 
in coastal regions, where dynamic interactions between water and the environment give 
rise to complex fluid behaviours. This study extends beyond theoretical analysis, 
addressing practical challenges in coastal engineering, environmental management, and 
disaster preparedness, where fluid dynamics play a crucial role in understanding wave 
propagation, flooding, and other critical processes. By leveraging these principles, the 
research aims to contribute to a deeper understanding of fluid behaviour and inform 
solutions to pressing issues in coastal and hydrodynamic systems. 

2.1 Mass conservation equations 

The mass conservation equation states that the mass of fluid within a control volume 
remains constant over time, Δt. For a fixed control volume bounded by surfaces of 
dimensions dx, dy, dz along the x, y, and z axes, the mass of the fluid at time t is pdxdydz. 

After a time interval Δt, the mass of the fluid changes to .
ρ

ρ dt dxdydz
t

   
 The fluid’s 

mass change is described as in equation (1), (Ge et al, 2024). 

ρ ρ
ρdxdydz ρ dt dxdydz dtdxdydz

t t

      
  

 (1) 

The fluid mass entering the control volume at time Δt is given by ρudxdydzdt, and the 
mass of the fluid leaving the control volume at time Δt is provided by 

.
ρu

ρu dxdydzdt
t

   
 The difference in fluid mass entering and leaving the control 

volume at time Δt in the x-direction is given by equation (2) in (Crowhurst and Li, 2013). 

    
ρu ρu

x direction ρudxdydzdt ρu dxdydzdt dxdydzdt
x x

         
 (2) 
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Similarly, the difference in fluid mass entering and leaving the control volume at time Δt 
in the y-direction and z-direction is expressed by equation (3) and equation (4). 

  
ρv

y direction dxdydzdt
y


 


 (3) 

 
ρw

z direction dxdydzdt
z


 


 (4) 

The total change in fluid mass in the control volume at time Δt is shown in equation (5). 

ρu ρv ρw
dxdydzdt

x y z

         
 (5) 

Combining equations (1) and (2), the mass continuity equation for three-dimensional 
unsteady compressible flows is given in equation (6). 

0
ρ ρu ρv ρw

t x y z

   
   

   
 (6) 

In this study, the fluid is assumed to be incompressible, meaning its density remains 
constant; therefore, the density gradient is zero. This simplification transforms the 
continuity equation into a volume conservation equation, as presented in equation (7). 

0
ρu ρv ρw

x y z

  
  

  
 (7) 

2.2 Equations of motion 

The equations of motion arise from Newton’s second law of motion, which states that the 
force equals the rate of change of momentum over time. In fluid mechanics, these forces 
can include shear or tangential forces caused by fluid viscosity and gravitational effects 
within the control volume. The pressure exerted in the x-direction within a control 
volume is calculated by equation (8) (Li, 2024). 

xp
P

F dxdydz
x


 


 (8) 

Shear and tangential forces in the x-direction in a control volume can be determined by 
equations (9) and (10), (Oliver, 1998). 

yxxx zx
xs xx xx yx zx

τδ τ
F δ δ dx dydz τ dy dxdz τ dz dxdy

x y z

                     
 (9) 

yxxx zx
xs

τδ τ
F dxdydz

x y z

  
      

 (10) 

Each face of the control volume experiences one normal stress δ, and two shear stresses τ. 
The following relationship is derived from Newton’s second law of motion. 

xs xF M A   (11) 
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where M is the mass flow rate in the control volume given by ρdxdydz; Ax is the 

acceleration of the fluid in the x-direction given by 
du

t
; u is a function of u(x, y, z, t). 

( , , , )
x

u x y z dt
A

t





 (12) 

x
u u u u

A u v w
t x y z

   
   
   

 (13) 

The terms ,
du

u
dx

 
du

v
dy

, ,
du

w
dz

 are known as the convective acceleration terms and 

account for the change in velocity at a given time concerning distance; the term 
du

dt
 is 

known as the local acceleration term, which accounts for the change in velocity at a given 
distance concerning time. The total force acting on the control volume in the x-direction 
is given by equation (14), (Cheviakov and Zhao, 2024). 

 yxxx zx
x

τδ τP
F X dxdydz

x x y z

  
          

 (14) 

From equations (12) and (14), the relationship can be derived as follows: 

 yxxx zx
τδ τdu du du du P

ρ u v w X
dt dx dy dz x x y z

                
 (15) 

The sum of pressure and viscous forces is proportional to the coefficient of shear stress 
and linear deformation, while normal forces are a function of the coefficient of angular 
deformation. These principles yield the Navier-Stokes equations in the x-direction (see 
equation (16)), y-direction (see equation (17)), and z-direction (see equation (18)) as 
provided below (Lyons, 2014). 

2u u du du du P
ρ ρ u v w μ u

t t x y z x

                    
 (16) 

2v v dv dv dv P
ρ ρ u v w μ v

t t x y z x

                    
 (17) 

2w w dw dw dw P
ρ ρ u v w μ w

t t x y z x

                    
 (18) 

2.3 Shallow water equations 

The shallow water equations can be derived from the shallow water wave theory. Shallow 
water wave theory assumes that the depth is much smaller than the wavelength and the 
hydrostatic pressure. The pressure is considered to be constant everywhere (Augier et al., 
2019). 

0P   
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Fluid on the surface with its velocity components u, v at a time Δt must satisfy the 
changes in its position z = η(x, y, t), (Augier et al., 2019). 

η η η
dz dt dx dy

t x y

  
  
  

 (19) 

 
η η η

w u v
t x y

  
  
  

 (20) 

The component along z from Euler’s equation is considered gravity. 

1dw w w w w P
u v w g

dt t x y z ρ z

    
      
    

 (21) 

The vertical acceleration term 
w

t

 
  

 is neglected since the value is minimal compared to 

the horizontal component (Hedley, 2009). 

0 

0  

 

P
ρg

z
P

ρgdz dz
z

P ρgz C


   




   


  

   (22) 

Applying boundary conditions the equation (22) turns into: 

 ( )P ρgz ρgη ρg η z      (23) 

Substituting for pressure in the x component of Euler’s equation gives equation (24), 
(Carrier and Yeh, 2005). 

du η
ρg

dt x


 


 (24) 

Integrating the continuity equation for depth in the x-direction yields: 

0
η

d

u w
dz

x z

 
 








  (25) 

Getting the shallow water equation: 

0
η

d

η η
udz u

t x x

  
  

    (26) 

The equations (24) and (26) are known as shallow water equations, (Maatoug and Ayadi, 
2016). 

2.4 Boussinesq equation 

The Boussinesq equation, as expressed in equation (27), simplifies fluid flow analysis by 
assuming that the vertical component of velocity increases linearly from the bed to the 
surface, neglecting the small convective terms in kinematic conditions (Chen and Liu, 
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1995). This assumption reduces the complexity of the problem by approximating the 
vertical velocity profile in a way that explicitly eliminates the need to account for 
variations in velocity at different depths. Additionally, the equation neglects the small 
convective terms in the kinematic boundary conditions. It is a valuable approximation for 
flows where vertical velocity gradients are relatively small and the horizontal flow 
dominates. This simplification is especially effective in shallow water flow scenarios, 
where the primary focus is on the horizontal movement of water, and vertical variations 
in velocity are assumed to be minimal. While this approximation may not be universally 
applicable in all fluid dynamics problems, it provides a practical solution for modelling 
certain types of flow, particularly in coastal and riverine environments. 

dh h
w

dt t


 


 (27) 

Using the assumption: 

( )
 

h z
w z

t h





 (28) 

Neglecting the convective terms from Euler’s equation: 

1
 

w P
g

t ρ z

 
  

 
 (29) 

Accounting for the vertical distribution:  

23

3 2

1zz h h P
g

h t ρ zt h

          
 (30) 

Neglecting the power of derivatives: 

3

3

1z h P
g

h ρ zt

 
  


 (31) 

Integrating from the point of P = 0 to z to obtain the pressure distribution (Whitham, 
1974): 

2 2 2 2

2 2

1
( )

h h h

z z z

P z h P h z h
dz g dz dz ρg h z ρ

ρ z h ρ zht t

   
       

      (32) 

Substituting the pressure distribution in the Euler equation: 

3 2 2 2 2 2

2

( )

2 2

u h z h h z h h z
g

t x h x t x hx t

           
                 

 (33) 

Neglecting derivative products, following the Boussinesq equation:  

3

2

1

3

u h h
g

t x x t

  
  

   
 (34) 
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2.5 Numerical method 

The finite difference approximation of partial differential terms in equations aims to solve 
them numerically. However, since it involves approximation, errors can arise during 
computation. The scheme becomes increasingly unstable as errors accumulate with larger 
timesteps (Lighthill. 2005). Therefore, assessing stability and accuracy is crucial when 
employing finite difference schemes. The discrepancy between the solution obtained 
through finite differences and the actual solution is called the truncation error. Reducing 
the spatial and temporal step sizes or employing Taylor series expansions can minimise 
the truncation error. Taylor series expansion for f(x + Δx) can be written as follows 
(Bosa and Petti, 2010; Broomans, 2003). 

2 2 3 3

2 3
( ) ( )

2! 3!

f x f x f
f x x f x x

x x x

    
       

  
   (35) 

2 2 3

2 3

( )

( ) 2! 3!

f f x x fx x f x f

x x x x

       
   

   
  (36) 

In finite difference form, the forward differencing is written as: 

1

(Δ )
i if ff

x x
 




 (37) 

Similarly, using the Taylor series to expand f(x–Δx) and rearranging leads to backward 
differencing, which is written as:  

1  
(Δ )

i if ff

x x





 (38) 

Central differencing can be obtained by subtracting forward and central differencing 
schemes.  

1 1

2(Δ )
i if ff

x x
 




 (39) 

Correspondingly, solving for horizontal and vertical velocity components for the shallow 
water equations leads to equations (40) and (41) (Broomas, 2003; Welahettige et al., 
2018). 

 1
, , , ,
n n n n
i j i j i i j i i j

t
u u g n n

x


 


  


 (40) 

 1
, , , 1 , 1
n n n n
i j i j i j i j

t
v v g n n

x


 


  


 (41) 

Similarly, solving for the wave height for the shallow water equations leads to equation 
(42) (Broomans, 2003). 


2

1 1
, , , , 1, , 1 ,

2
2 4n n n n n n n

i j i j i j i i j i j i j i j

t
n n n n n n n

x v
 

  

 
        

 
 (42) 
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The sponge layer criterion is introduced once the wave has propagated to 75% of the 
domain length. At this point, the wave-dampening function is applied to mitigate wave 
reflections (see Table 1). This technique helps to prevent spurious reflections at the 
boundaries that could distort the simulation results. The sponge layer gradually absorbs 
the wave energy, ensuring the wave does not artificially bounce back into the 
computational domain. By applying the wave-dampening function in a controlled 
manner, the sponge layer effectively simulates the natural dissipation of energy that 
would occur in real-world conditions, contributing to a more accurate representation of 
wave behaviour and enhancing the overall stability of the numerical model. 

Table 1 Boundary conditions 

Boundary condition Function 

Inlet  2 2sinZ A x y    

Outlet Reflective or sponge layer 

3 Code development and testing 

For this study, MATLAB was selected for its efficient and robust computational 
environment. It performs complex mathematical calculations, analyses, and optimisations 
with remarkable speed, accuracy, and precision. By treating all variables as matrices, 
MATLAB facilitates seamless matrix operations. Additionally, the symbolic toolbox 
allows for straightforward calculus computations when needed. The graphical interface is 
user-friendly and easy to program, enhancing workflow efficiency. MATLAB also 
provides various functions for visualising results, ensuring aesthetic quality and high 
precision. In addition, MATLAB code is compatible across multiple versions of the 
software. 

4 Results and discussion 

To evaluate wave behaviour over time, Figure 2(a) plots the maximum wave height 
against timestep based on numerical methods, while Figure 2(b) illustrates wave 
amplitude versus wavelength using an analytical sine wave under the absorption 
boundary outlet condition. Initially, the maximum wave height within the domain 
corresponds closely to the analytical solution. As the simulation advances, gravitational 
effects embedded in the numerical model gradually reduce the wave height. The sponge 
layer parameters outlined in Table 1 also contribute to this damping behaviour. When the 
wave reaches 75% of the domain width, the sponge layer becomes active, further 
suppressing wave propagation. To accelerate convergence, wave heights that decay to 
negligible values are approximated as zero. By t = 90, the wave height stabilises at zero, 
indicating convergence of the simulation. Upon convergence, a ‘simulation complete’ 
dialog box appears. If convergence is not achieved, an ‘incomplete’ dialog recommends 
adjusting the timestep to improve results. 
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Figure 2 Maximum wave height using (a) numerical method and (b) analytical sinusoidal wave 
(see online version for colours) 

  

(a)     (b) 

Figure 3 Max wave height vs. timestep from (a) numerical method for RBOC (b) max wave 
height from analytical sinusoidal wave for RBOC (see online version for colours) 

  

(a)     (b) 

In addition, Figure 3(a) illustrates the maximum wave height over a timestep, calculated 
using numerical methods under a reflective boundary outlet condition for Risk-Based 
Optimal Control (RBOC). As the wave moves through the domain, its height gradually 
decreases. Upon reaching the boundary, the wave height increases due to accumulation 
against the outlet, followed by reflection back into the domain. In contrast, Figure 3(b) 
presents the analytical sine wave solution for RBOC, which maintains a constant wave 
height throughout. This idealised model omits external influences such as gravity, 
whereas the numerical simulation accounts for these effects. As a result, while the initial 
wave height matches the analytical solution, deviations emerge during propagation due to 
gravitational and other external factors. 
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Figure 4 Initial timestep simulation of absorption boundary (see online version for colours) 

 

Figure 5 Final timestep simulation of absorption boundary with sponge layer criteria (see online 
version for colours) 

 

  

Figures 4 and 5 demonstrate simulations conducted under the absorption boundary outlet 
condition. These figures illustrate the propagation of waves through the domain at 
different time steps: Figure 4, at an earlier time, and Figure 5, at a later time. Figure 4 
shows that as the wave reaches 23 m, there is a noticeable decrease in wave height due to 
the sponge layer criteria, which initiates damping when the wave reaches 75% of the 
domain length (23 m out of 30 m). 

Plots in Figures 6 and 7 present the reflective boundary outlet condition, where the 
wave reflects after reaching the outlet, as expected. Figures 4 to 7 are computed for the 
specified domain size and plotted against the wave height calculated using numerical 
methods. The right side plots of Figures 4 and 5 provide a side view of the wave 
simulation, clearly showing the damping effect on wave height. In contrast, the right side 
plots of Figures 6 and 7 present a top view, emphasising the reflection effect at the outlet. 
These perspectives are chosen for visualisation purposes. Notably, no wave height 
damping is observed when the reflective boundary outlet condition is applied. 
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Figure 6 Initial timestep simulation of reflective boundary (see online version for colours) 

  

Figure 7 Final timestep simulation of reflective boundary (see online version for colours) 

  

5 Conclusions 

The paper uses user-defined data to present a MATLAB-based code developed for the 
three-dimensional numerical simulation of shallow water equations. The code employs 
the Finite Difference method, which necessitates selecting computational grid points and 
their spacing. Once these parameters are defined, a finite difference approximation 
scheme is applied to solve the equations over the domain at various time steps. The inlet 
boundary condition used in this study is a sinusoidal wave, while the outlet boundary 
conditions can be either reflective or absorbing, based on user input. The code generates 
an animated plot that visually demonstrates the wave dynamics. For reflective boundary 
conditions, the animation displays wave propagation and reflection from the outlet wall, 
continuing until the specified number of time steps is completed. For absorbing boundary 
conditions, the wave’s height diminishes as it reaches 75% of the domain length, and the 
simulation alerts the user upon complete dampening within the designated time steps. An 
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incomplete simulation alert is issued if the wave does not thoroughly dampen. Future 
work will focus on enhancing the accuracy of the numerical schemes, as greater accuracy 
is crucial for addressing more complex problems. Improving the computer’s processor 
efficiency is essential for handling more significant issues or real-world scenarios. Future 
enhancements could also include integrating bed slope variations into the simulation, 
investigating different bed slope sizes, and analysing wave breakpoints, which are critical 
for subsequent research. Furthermore, examining the accuracy and stability of various 
numerical schemes will be an essential area of study. 
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