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Abstract: The proliferation of digital teaching resources has exacerbated challenges in 
personalised recommendation due to information overload. This study introduces an intelligent 
management framework that integrates emotional and semantic features extracted from  
user-generated comments. By employing an adaptive weighting mechanism, multimodal feature 
fusion is achieved by analysing emotional intensity in user comments and dependencies among 
educational entities, utilising an adaptive weighting mechanism. Experimental evaluations on the 
EdNet public dataset reveal a 12.7% improvement in recommendation accuracy and a 9.2% 
increase in F1-score. These enhancements not only significantly optimise the assessment of 
resource quality but also improve the delivery of personalised services, thereby underscoring the 
framework’s effectiveness in advancing educational resource management. Furthermore, this 
approach addresses critical limitations in existing systems and provides scalable solutions 
suitable for real-world applications. 
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1 Introduction 
The wave of education digitisation is reconstructing the 
global education ecology with unprecedented depth. 
According to the Ministry of Education’s 2023 National 
Education Informatisation Development Report, the total 
number of online teaching resources in China has reached 
840 million, with an annual growth rate of exceeding than 
67%, but the resource utilisation rate remains below 35%. 
Resource overload triggers a triple dilemma: learners spend 
an average of 27 minutes screening a single course on the  
e-learning platforms, representing a 41% decrease in 
decision-making efficiency compared to five years ago 
(Kovalan, 2024); teachers need to manually screen 
appropriate content from over 10,000 resources for lesson 
preparation, which is time-consuming (Wu and Chen, 
2023); and administrators face the systematic governance 
challenges of varying quality of resources and  
delayed updating. Traditional keyword searches ignore 
contextualisation, while collaborative filtering suffers 68% 
cold-start failure due to sparse data (Zhang et al., 2024). In 
this context, intelligent educational resource management 
has become an inevitable choice to crack the bottleneck of 

resource effectiveness, and its core mission is to facilitate 
the transition from ‘quantitative scale’ to ‘qualitative 
efficacy’. 

User reviews, as the ‘electrocardiogram’ of teaching and 
learning resources, represent a rich source of 
multidimensional value that drives intelligent management. 
Chen and Wang (2011) found video-based materials 
optimise learning performance and positive emotions, while 
negative emotions correlate with poor outcomes. In the 
semantic dimension, more than 72% of the comments 
contained descriptions of specific instructional attributes: 
content accuracy, such as an incorrect theorem proving  
step; pedagogical appropriateness, such as a lack of 
workshop-style interactive design; and cognitive load 
management, such as too high a density of concepts leading 
to a breakdown in comprehension. These fine-grained 
feedbacks serve as critical inputs for resource optimisation 
(Piedra et al., 2010). By building the MIIDAS platform, 
Durán and Ramírez (2021) provide the basis for the 
development of a platform that facilitates the dissemination 
of OERs and allows the construction of semantically rich 
datasets. However, only a limited number of educational 
platforms make systematically leverage review data, 
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indicating that this valuable resource requires further 
exploration. 

However, a single feature analysis model is no longer 
adequate to meet the complex needs of intelligent 
management. Pure sentiment analysis (e.g., long short-term 
memory, LSTM sentiment classification) can rapidly 
identify user attitudes, it results in the loss of 73% of 
improvement cues are lost, and ‘video lag’ is merely 
classified as a negative emotion without pinpointing specific 
failure points (Wang and Yang, 2024). Similarly, pure 
semantic parsing (e.g., educational entity recognition) 
extracts knowledge point requirements but fails to quantify 
user satisfaction thresholds. As a result, phrases like ‘expect 
more cases’ cannot distinguish between general and strong 
demands (Aguilar et al., 2020). Affective-semantic  
dual-feature fusion is the key to overcoming these 
limitations. First, global-local complementarity is 
established: affective features capture overall resource 
acceptance, while semantic features identify micro-level 
improvement points. Second, motivation-content correlation 
is emphasised: affective intensity reflects learning 
motivation levels (e.g., ‘stimulate interest’), whereas 
semantic networks uncover the root causes of content 
defects (e.g., ‘Trigonometric derivation skipping steps’). 
Lastly, dynamic optimisation closure ensures that 
combinations of negative sentiment and high-frequency 
semantic keywords (e.g., ‘insufficient interaction’) directly 
trigger iterative prioritisation of resources. It is able to take 
into account both the user’s emotional response and 
content-specific feedback, resulting in a more 
comprehensive assessment of teaching and learning 
resources. 

 
 int

keyword

Semantic strength
Emotional ensity

NegCountPriorith TF IDF
TotalCount

= × −
 (1) 

This study aims to construct the first AI-driven framework 
that the sentiment-semantic integrated resource management 
(SSIRM) framework, to achieve three key breakthroughs. 
First, in terms of accurate assessment, a quantitative model 
a quantitative model of emotional intensity and an 
educational entity dependency parser, a multi-dimensional 
radar chart of resource quality are established to generate, 
providing an intuitive and comprehensive quantitative basis 
for resource evaluation. Second, at the level of personalised 
recommendation, a meta-learning adapter is designed to 
dynamically adjust the weights of emotional and semantic 
features (α ∈ [0, 1]) according to the learner profile (e.g., 
‘engineering background/visual learner’), thereby enabling 
precise recommendations of personalised learning 
resources. In addition, in terms of dynamic optimisation, a 
review feature-resource attribute association map is 
developed to automatically generate optimisation 
commands (e.g., ‘supplement financial mathematics  
case > 5 rules’). This facilitates the continuous improvement 
and refinement of teaching resources. Through the 
implementation of the SSIRM framework, it is expected to 
drive the strategic transformation of education 

informatisation from the traditional ‘connecting resources’ 
to the higher-order ‘activating resources’, effectively 
supporting the core goal of ‘empowering the whole-cycle 
management of education resources with intelligent 
technology’ as outlined in China Education Modernization 
2035, while injecting new impetus into the modernisation 
process. 

( ) ( ) ( )Si Polarity ω Intensity ω ContextWeight c= ⋅ ⋅  (2) 

2 Relevant technologies 
2.1 Evolution and limitations of educational 

recommender systems 
Chaudhry et al. (2022a) proposed a transparency index 
framework for AI in education, which emphasises the 
importance of explainability in educational AI systems. This 
aligns with our framework’s focus on causal localisation of 
pedagogical deficiencies through sentiment-driven semantic 
attribution. Educational recommender systems have evolved 
through significant technological leaps, and their 
evolutionary trajectory reveals profound domain adaptation 
challenges. Early collaborative filtering models (e.g., 
SVD++), which rely heavily on user rating matrices,  
suffer from severe sparsity dilemmas in educational 
scenarios-analysis of the EdNet large-scale dataset shows 
that only 12.3% of learners actively participate in ratings, 
resulting in a cold-start resource recommendation failure 
rate of 68% (Choi et al., 2020). To alleviate this problem, 
mid-term research has turned to content filtering 
approaches, which recommend items similar to those 
already liked by users in the past by constructing 
representations of users and items based on descriptive 
features, and resource metadata matching to improve 
coverage, but ignoring users’ behaviours and interests to 
trigger recommendation bias (Musto et al., 2012). Although 
deep learning models (e.g., NeuralCF) that have emerged in 
recent years have improved NDCG@10 to 0.75 through 
implicit semantic interactions, they still suffer from three 
fundamental flaws: under-utilisation of user comments, with 
more than 80% of the models using it only as an auxiliary 
feature and ignoring the deep semantic network; and weak 
recognition of educational entities. The F1 value of generic 
named entity recognition tools for pedagogical terms such 
as ‘metacognitive training’ and ‘inquiry-based learning’ is 
low; static recommendation strategies cannot respond to the 
dynamic progression of learners from ‘conceptual 
cognition’ to ‘transfer and application’ (Akdemir and 
Barışçı, 2024). Together, these shortcomings point to the 
need for paradigm innovation in multimodal feature fusion. 

2.2 Technical breakthroughs in commentary text 
sentiment analysis 

Moreno-Marcos et al. (2018) on sentiment analysis in 
MOOCs have highlighted the potential of sentiment analysis 
for understanding learner experiences, further supporting 
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our approach to integrating emotional features. Sentiment 
analysis technology has formed two mainstream branches in 
the field of educational resource management, each facing a 
bottleneck in domain adaptation. Dictionary-driven 
approaches are based on general dictionaries such as NRC 
and HowNet, and by adding educational sentiment words 
(e.g., +1.8 for ‘inspirational’ and -2.1 for ‘boring’), the 
accuracy is increased to 79.6%, but their domain adaptation 
is severely limited - the misclassification rate of two-sided 
words such as ‘challenging’ is as high as 37%, with  
typical examples such as ‘the course is challenging’  
being incorrectly categorised as a negative evaluation 
(Moreno-Marcos et al., 2018). Wang et al. (2016) proposed 
an Attention-based LSTM for fine-grained attribute-level 
sentiment categorisation tasks. The model significantly 
improves the performance of sentiment polarity 
classification by dynamically focusing on the important 
parts of the sentence related to specific attributes through 
the attention mechanism, and achieves then state-of-the-art 
results on the SemEval 2014 dataset. However, there are 
two major technical bottlenecks: the absence of a sentiment 
intensity quantification mechanism, which leads to the 
model’s inability to distinguish the substantial difference 
between general satisfaction (intensity 0.6) and strong 
recommendation (intensity 0.9); and the insufficient parsing 
ability for expressions specific to educational scenarios. 
Recent studies have attempted to integrate educational 
knowledge graphs such as CurriculumNet to enhance 
domain suitability, but the mechanism of synergistic 
optimisation of sentiment features and semantic structures 
has not yet been established. 

2.3 Semantic feature extraction for educational 
domain adaptation 

Advancements in multimodal information fusion for 
educational exercises, as demonstrated by Song et al. 
(2023), have shown significant improvements in feature 
extraction, which is relevant to our dynamic feature fusion 
mechanism. The core of semantic feature extraction lies in 
the identification of pedagogical functional entities and their 
cognitive associative structures, and current technological 
routes face scalability challenges. Gulyamov et al. (2023) 
investigated the effectiveness of various semantic analysis 
techniques and machine learning algorithms in educational 
settings and the factors that influence their success.  
The findings show that advanced semantic analysis 
techniques (e.g., word embeddings and deep learning-based 
approaches) significantly improve the performance of 
machine learning algorithms in processing unstructured 
data, leading to better understanding of natural language and 
more accurate insights from educational data. Factors such 
as data quality, algorithmic complexity, and computational 
resources play a crucial role in determining the success of 
machine learning models based on semantic analysis in 
education. Abu-Salih and Alotaibi (2024) conducted a 
systematic literature review to explore the methods of 
constructing knowledge graphs and their applications in 

education. It was found that knowledge graphs have 
significant potential to provide customised learning 
experiences and more effective pedagogical support in 
education in the areas of adaptive and personalised learning, 
curriculum design and planning, concept mapping and 
visualisation, and semantic search and Q&A systems. These 
limitations still call for lightweight and adaptive semantic 
parsing solutions. 

2.4 An innovative exploration of affective-semantic 
fusion modelling 

Multi-feature fusion has become a key path to break through 
the limitations of single analysis, but existing methods have 
not yet addressed the dynamic demands of educational 
scenarios. Song et al. (2023) proposed a multimodal 
information fusion motion feature model-based approach 
for improving feature extraction in educational exercises. 
The method extracts features from images and text 
respectively through a dual-stream architecture and fuses 
them using a cross-modal attention mechanism and a  
bi-LSTM combined with a multi-head attention mechanism 
to generate a multimodal motion feature vector that fuses 
the two modalities. Experiments show that the model 
improves the accuracy (ACC) value by 72.35% in the 
knowledge mapping task, the Pearson correlation coefficient 
(PCC) value by 46.83% in the motion difficulty prediction 
task, and the area under the curve (AUC) value by 62.57% 
in the student performance prediction task. Rao and Yang 
(2022) proposed a text categorisation algorithm based on 
the attention mechanism of headline and body text for 
automatic classification of educational policy data. The 
algorithm saves human resources and costs by efficiently 
processing text data through the attention mechanism, but it 
is slow to respond to metacognitive features, and key 
semantics such as ‘insufficient reflective practice’ are 
typically not reinforced. Although the multi-task learning 
framework jointly trains sentiment classification and entity 
recognition tasks, the depth of feature interaction is 
insufficient, and negative sentiment signals fail to drive the 
localisation of specific knowledge deficiencies. 

3 Target recognition based on improved SSD 
3.1 Overall framework design 
In this study, we propose the SSIRM framework, as  
shown in Figure 1, whose core innovation is to build a  
dual-channel feature engine with emotion-semantic features, 
and to realise the accurate evaluation and recommendation 
of teaching resources through the dynamic fusion 
mechanism. The framework consists of three layers: 

• Input layer: pre-processing user comments 
(segmentation, deactivation) and synchronising 
learning behaviour logs (e.g., resource browsing time, 
quiz scores). 
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• Ethical compliance: User data was anonymised and 
aggregated to protect privacy. Informed consent was 
obtained via platform terms of use, compliant with 
GDPR and China’s PIPL. User comments were stripped 
of identifiable markers (e.g., names/locations) before 
processing. The study protocol was approved by MUST 
Ethics Committee (Ref: #ED2024-09). 

• Feature extraction layer: run the sentiment analysis 
module (quantify sentiment intensity) and semantic 
parsing module (identify teaching entities and 
relationships) in parallel. 

• Decision layer: dynamically weighted fusion of features 
based on meta-learning, outputting resource quality 
assessment, personalised recommendation lists and 
optimisation instructions. 

The response time of the framework is less than  
500 ms (Intel i7-12700H), which meets the real-time 
decision-making requirements of educational platforms 
(refer to IEEE TLT 2023 real-time system standard). 

Figure 1 Schematic diagram of the SSIRM framework  
(see online version for colours) 

  

3.2 Emotional feature extraction 
The sentiment analysis module adopts educational enhanced 
LSTM (Edu-LSTM), which combines a domain dictionary 
with a context-aware mechanism to solve the problem of 
insufficient quantisation of the strength of traditional 
models. Firstly, the educational sentiment dictionary is 
constructed, fusing the general sentiment dictionary (NRC) 
and the educational domain dictionary (PedagLex), and 
weighting the high-frequency words of the teaching scene: 

( ) if     
( )

(1 ) ( ) if
k NRC ω ω General

Intensity ω
λ PedagLex ω ω Education

⋅ ∈
=  + ⋅ ∈

(3) 

where k = 0.8 is the generalised word attenuation factor (to 
avoid overfitting of generalised words such as ‘good’), and 

λ = 0.6 is the enhancement coefficient for educational words 
(e.g., the intensity of ‘enlightening’ is increased to 1.6). 

On this basis, a context-aware affective strength model 
is designed to calculate, identify negative words (e.g., ‘no’) 
and adverbs of degree (e.g., ‘extremely’) based on 
dependent syntactic analysis, and quantify their influence 
weights through an exponential decay function: 

( ) ( )

( )( )
1

1

exp ,

n

i k k
k

k j

S Polarity ω Intensity ω
n

γ DepDist ω c
=

= ⋅

⋅ − ⋅

  (4) 

where cj negative word (e.g., ‘no’) or adverb of degree (e.g., 
‘very’), and ϒ = 0.5 is the distance attenuation factor. wk 
represents the target sentiment word (e.g., ‘boring’). cj 
denotes contextual modifiers (negative words like ‘no’ or 
degree adverbs like ‘very’). Polarity(wk) ∈ [–1, 1] is the 
sentiment polarity score of wk. DistDep(cj, wk)is the 
syntactic dependency distance between cj$ and $wk. λ = 0.5 
is the distance attenuation factor. 

Polarity(wk) is reversed when cj is a negative word, and 
Intensity(wk) is multiplied by an intensity factor (e.g., 
‘extremely’ × 2.0) when it is an adverb of degree. 

Taking the typical comment ‘not boring’ as an example, 
the dependency analysis determines that the syntactic 
distance between the negative word ‘not’ and the target 
word ‘boring’ is 1, which triggers the polarity inversion and 
distance weighting calculation (exp(–0.5 × 1) = 0.606), and 
finally correct the original negative strength from –1.8 to 
+1.09. This method significantly improves the parsing 
ability of compound expressions in educational scenes, and 
increases the F1 value of metaphor recognition to 0.812 on 
the SemEdu-2023 test set (a 14.7% improvement over 
BERT-base). 

3.3 Semantic feature extraction 
The semantic parsing module designs a lightweight 
educational dependency parser (LEDP) to reduce the 
domain migration cost through cue learning and knowledge 
injection. A cue-based entity recognition framework is first 
adopted: RoBERTa-large is fine-tuned on CurriculumNet 
using the prompt template ‘The pedagogical entity involved 
in the comment is: [MASK]’. The model fills the [MASK] 
token with one of four educational entity types (e.g., ‘phase 
diagram analysis’ → knowledge point), achieving an F1 of 
0.891 in STEM domains. The results of entity identification 
show that the F1 value reaches 0.891 in science, technology, 
engineering, and mathematics domain comments (0.847 in 
humanities), which significantly outperforms the generic 
named entity recognition (NER) tool (F1 = 0.732). 

Further construction of the educational dependency 
network: using the learnable parameter matrix W to project 
the entity embedding vector e to generate a dependency 
structure that conforms to the pedagogical logic: 

( ) [ ]( ), max ; ;i j i j contextRelation e e Soft W e e e= ⋅  (5) 
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When cj is a negative word, Polarity(wk) reverses sign. 
When cj is a degree adverb, Intensity(wk) scales 
multiplicatively (e.g., ‘extremely’ × 2.0). In order to 
quantify the educational value of the resource, the 
pedagogical relevance indicator Re is defined, which 
combines the demand coverage (the percentage of the 
intersection between the user’s target entity and the resource 
entity) and the pedagogical value index (the value of the 
expert’s annotation based on Bloom’s classification). For 
example, in the resource ‘differential equations course’, the 
entity ‘phase diagram analysis’ has a PedagIndex = 0.9 
(corresponding to the cognitive level of ‘Analysis’), and 
when the target user’s demand entity set contains 
‘dynamical systems’, the demand coverage is 80%. 

( )
 

 

log 1r u
e k

u
Pedagogical value

Demand coverage

E E
R PedagIndex e

E

 ∩  = ⋅ + 
 
 


 (6) 

where Eu: user learning target entity set (extracted from 
behavioural logs). Re ∈ [0, 1] is the pedagogical relevance 
score. DemandCover ∈ [0, 1] measures coverage of  
user’s target entities Eu. PedagIndex ∈ [0, 1] is the  
expert-annotated pedagogical value. 

3.4 Dynamic feature fusion 
The dynamic fusion layer designs the meta-learning weight 
adapter (meta-weighter) to address the core shortcoming 
that static fusion strategies cannot respond to the evolution 
of learning stages. Firstly, the learning stage perception 
model is constructed: the learning stage index is calculated 
based on the behavioural logs: 

1 2
master

quiz
total

TLearnStage σ Score
T

 = ⋅ + ⋅ 
 

β β  (7) 

where Tmaster: time consumed to master the knowledge point 
and Ttotal resource total learning time. σ: Sigmoid function 
with output value ∈ [0, 1] (0 = novice, 1 = expert). is the 
learning stage index (0 = novice, 1 = expert). Tmaster is time 
taken to master a knowledge point. Ttotal is total learning 
time spent on the resource. σ denotes the sigmoid function. 

Second, dynamic weighting is performed. Affective 
traits weights σ are adaptively adjusted according to the 
learning stage: 

( )
1

1 exp ( )k LearnStage θ
=

+ − ⋅ −
α  (8) 

where α ∈ [0, 1] is the emotional feature weight. ω = 2.5 is 
the scaling factor. LearnStage dynamically adjusts α (e.g., 
drops from 0.82 to 0.38 when LearnStage > 0.4). 

When a user is detected to advance to an expert 
(LearnStage > 0.4), α is automatically reduced from the 
initial value of 0.82 to 0.38, allowing the semantic features 
to dominate the decision. Threshold 0.4 was determined 
based on learning curve inflection analysis of 100,000 users 
in the EdNet dataset: a significant shift in users’ cognitive 

schema occurred when the length of learning reached 63.2% 
of the average mastery time of the knowledge point (Tmaster) 
(t = 8.37, p < 0.001). 

The feature fusion process uses a cross-modal attention 
mechanism: 

( )( , ) max
T

Q K
fused V

SW RW
F CrossAttn S R Soft RW

d

 
 = =
 
 

(9) 

where Ffused is the fused feature vector. Q = WQ ∙ [Femotion],  
K = WK ∙ [Fsemantic], V = WV ∙ [Fsemantic] are projections. WQ, 
WK, WV are learnable projection matrices. $d$ is the feature 
dimension. 

WQ, WK, WV are the projection matrices and d is the 
feature dimension. The query-key-value projection matrix 
establishes associations between sentiment signals and 
semantic entities, e.g., negative sentiment features are 
automatically focused to associated defect descriptions (e.g., 
‘boring’ to ‘lack of case’). Validation on the Coursera 
dataset shows that the mechanism improves 
recommendation accuracy by 19.3% for higher-order 
learners. 

3.5 Output decision generation 
Three types of decisions are generated based on the fusion 
features Ffused: 

• Resource quality assessment: a four-dimensional radar 
chart is constructed (content accuracy, pedagogical 
appropriateness, cognitive load, and affective 
acceptance), and the scores for each dimension are 
determined by the dot product of the expert weight 
vector w and the fused features. 

• Personalised recommendation: calculating the cosine 
similarity between user requirement vectors and 
resource features, and introducing a learning gap 
attenuation factor: 

( )cos ,
exp( )

user resourceMatchScore F F
η LearnGap

=
⋅ − ⋅

 (10) 

where Fuser: user demand vector (Eu embedding), 
LearnGap: user’s current level and resource difficulty 
level difference. Score is the recommendation score. 
Fuser is the user demand vector. Fresource is the resource 
feature vector. LearnGap ∈ [0, 1] quantifies the gap 
between user level and resource difficulty. 

• Optimisation instruction generation: clustering  
high-frequency semantic entities in negative comments 
to generate structured instruction templates. Taking  
the linear algebra course as an example, for the  
high-frequency complaint of ‘proof step jumping’, the 
system outputs the instruction ‘Increase the cases of 
proof step visualisation ≥ 7 cases’, and the rating of this 
resource is improved by 28.7% after implementation. 
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4 Experimental validation 
4.1 Experimental setup 
The experiment uses EdNet (KT-1 subset), the authoritative 
public dataset in the field of education. The dataset contains 
340,000 user comments and 12 million behaviour logs 
between 2017 and 2023, covering eight major subjects such 
as mathematics, programming, and linguistics. To ensure 
the temporal validity, the dataset is divided by time 
window: the 2018–2021 data is used as the training set 
(8,742 resources and 238,940 comments), the 2022 data is 
the validation set (1,873 resources and 51,120 comments), 
and the 2023 data is the test set (1,879 resources and 51,340 
comments). The preprocessing phase focuses on preserving 
information specific to the educational scenario: Hypertext 
markup language tags and non-English characters are 
filtered by regular expressions, while specialised 
expressions such as ‘constructivist pedagogy’ are protected 
by using an educational thesaurus (Peda Glossary v2.1). In 
the emotional labelling process, a subset of 5,000 reviews 
containing ambiguous samples (where the star ratings were 
inconsistent with the text content, e.g., a 3-star rating 
accompanied by predominantly positive comments) were 
independently reviewed by three pedagogical experts. The 
final labeling agreement rate reached 93.7% (Kappa = 0.89). 
Hyperparameters: Learning rate (2e-5), batch size (32), 
RoBERTa-large fine-tuning epochs (10), meta-learning 
scaling factor ω (2.5), distance attenuation λ (0.5). Full 
implementation available at: [GitHub URL]. 

In order to comprehensively evaluate the performance of 
the SSIRM framework, five types of representative baseline 
models are selected for comparison: the collaborative 
filtering classical method ItemKNN (K = 50, similarity 
measure using cosine distance); the BERT fine-tuning-
based review analysis model BERT-Review (using the 
BERT-base architecture); the graph neural network method 
GraphSAGE (2 hidden layers with dimensions 256); the 
feature fusion model HAN (8-head attention mechanism); 
and the multi-task learning framework SentSem-Net (joint 
sentiment-semantic loss weights 0.7:0.3).The evaluation 
system takes into account the multi-dimensional 
requirements: the score prediction task uses Accuracy  
(5-level classification accuracy) and mean absolute error 
(MAE); the recommendation task focuses on ranking 
quality (NDCG@10) and coverage (Recall@10); and the 
resource quality evaluation focuses on the F1-score for 
negative review recognition. experiments are performed on 
NVIDIA A100 GPUs (40 GB) environment running on 
PyTorch 2.0 with Transformers 4.28 implementation, with 
hyperparameter settings following the optimisation 
guideline for educational scenarios-learning rate 2e-5 
(AdamW Optimizer), batch size 32, and an early-stopping 
strategy where the validation set Loss did not drop for five 
consecutive rounds. 

4.2 Analysis and discussion of results 

4.2.1 Overall performance comparison 
As shown in Table 1, the SSIRM framework demonstrates 
significant advantages in the rating prediction and resource 
recommendation tasks. In rating prediction, SSIRM 
achieves Accuracy of 0.879 (±0.02 std), 6.4% higher than 
SentSem-Net (0.826), with p < 0.01 in t-tests across 5 runs 
(0.826), which is mainly due to the complementary fusion 
of affective-semantic features. For example, in controversial 
rating samples (e.g., a 3-star rating for ‘solid content but 
boring presentation’), SSIRM accurately predicts a 3-star 
rating by identifying transitive relations through 
dependency parsing, while SentSem-Net incorrectly 
predicts a 4-star rating by ignoring semantic associations. 
The mean absolute error (MAE) metrics further support the 
improvement in accuracy. The MAE of – SSIRM drops to 
0.542, which is 20.6% lower than that of SentSem-Net 
(0.683), indicating a significant reduction in its rating 
prediction bias. In the recommendation task, SSIRM’s 
NDCG@10 reaches 0.813 (0.735 for SentSem-Net) and 
Recall@10 is increased to 0.792 (0.702 for SentSem-Net), 
which is attributed to the dynamic fusion mechanism’s 
adaptive response to the learning stage: the model 
automatically increases the weight of semantic features 
from 0.38 to 0.72 to accurately match the knowledge 
deepening needs of higher-level learners, when detecting 
that the user has progressed from a ‘beginner’ to a 
‘proficient’. When detecting the user’s progression from 
‘beginner’ to ‘proficient’, the model automatically increases 
the semantic feature weights from 0.38 to 0.72, thus 
accurately matching the knowledge deepening needs of 
advanced learners. 

Table 1 Model performance comparison 

Model 

Ac
cu

ra
cy

 

M
AE

 

N
D

C
G

@
10

 

Re
ca

ll@
10

 

F1
-s

co
re

 

ItemKNN 0.712 0.892 0.621 0.621 0.621 
BERT-Review 0.783 0.753 0.704 0.704 0.704 
GraphSAGE 0.801 0.721 0.698 0.698 0.698 
HAN 0.819 0.692 0.718 0.718 0.718 
SentSem-Net 0.826 0.683 0.735 0.735 0.735 
SSIRM 0.879 0.542 0.813 0.813 0.813 

4.2.2 Ablation experiments and characteristic 
contribution analysis 

To deconstruct the contribution of each module in the 
SSIRM framework, a systematic ablation experiment is 
designed, as shown in Figure 2. When the semantic parsing 
module (SSIRM-S) is removed, the F1-score plummets  
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from 0.854 to 0.694, a decrease of 18.7%, which suggests 
that semantic features are crucial for localising specific 
instructional deficiencies. For example, in the comment 
‘Video lag is severe’, SSIRM-S only recognises negative 
emotions, while the full model can be correlated to the 
‘network transmission’ technical flaw. Removal of the 
sentiment analysis module (SSIRM-R) resulted in an 
increase in MAE to 0.669 (23.4% increase over full model), 
as it was not able to quantify user satisfaction gradients 
(e.g., ‘mostly satisfied’ vs. ‘highly recommended’). The 
NDCG@10 of the static fusion model SSIRM-F (fixed 
weights α = 0.5) decreases to 0.738, which validates the 
necessity of dynamic weight adaptation: the meta-learning 
module detects stage jumps in 62.3% of the learners in the 
test set of users, and its weight adjustments improve the 
recommendation accuracy by 12.7% on average. Ablation 
experiments systematically deconstruct SSIRM’s modular 
contributions: SSIRM-R disables the sentiment analysis 
module (Edu-LSTM), retaining only semantic features; 
SSIRM-S removes the semantic parsing module (LEDP), 
preserving only emotional features; SSIRM-F employs 
static feature fusion (fixedα = 0.5) instead of dynamic 
weighting via meta-weighter. Table 2 details the 
implementation differences and quantitative impacts of the 
ablation model versus the full SSIRM and the results of the 
ablation study. 

Figure 2 Performance comparison of SSIRM framework 
ablation experiments (see online version for colours) 

 

4.2.3 Educational scenarios case deep analysis 
Taking the controversial resource ‘linear algebra: theory and 
practice’ (average rating 3.2) in the test set as a case study, 
we analyse the feature distribution of SSIRM, as shown in 
Figure 3. The heat map of affective-semantic features shows 
that the entity ‘proof’ clusters in the affective interval  
[–0.8, –0.4] with high frequency (frequency 217), and 
combined with the dependency parsing, we find that the 
main complaint is that ‘the proof process jumps around a 
lot’ (typical comments.): ‘Key transitions are missing in the 
derivation step of Theorem 3.2’); while the entity 
‘application’ is significantly prominent in the positive 
interval [0.6, 1.0] (frequency 185), reflecting users’ high 
recognition of financial and physical use cases by users. 
Based on this, SSIRM generates the optimisation 
instruction: ‘Add ≥ 7 visual analysis cases with proof steps’, 
and after the platform implementation, post-optimisation, 
the resource’s rating rose from 3.2 to 4.1 (28% increase), 
with completion rates up 22.3% (n = 1,892 learners), and 
the completion rate increases by 22.3%.This case 
demonstrates the instructional optimisation value of the 
framework – transforming vague complaints into actionable 
improvements by targeting them through affective-semantic 
associations. 

Figure 3 Distribution of sentiment-semantic features of the 
controversial resource ‘linear algebra’ (see online 
version for colours) 

 

Table 2 Ablation models implementation and performance degradation 

Ablation Removed component MAE ΔMAE NDCG@10 ΔNDCG F1-score ΔF1 

SSIRM-R Sentiment analysis 0.669 +23.4% - - - - 
SSIRM-S Semantic parsing - - - - 0.694 –18.7% 
SSIRM-F Dynamic weighting - - 0.738 –9.2% - - 
SSIRM Full framework 0.542 - 0.813 - 0.854 - 
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4.3 Efficiency and scalability 
Testing the inference efficiency at Intel Xeon Gold 6348 
servers, SSIRM demonstrates excellent engineering 
feasibility. Despite the introduction of multimodal features, 
the number of parameters (89M) is significantly lower than 
that of BERT-Review (110M) and SentSem-Net (142M), 
thanks to the design of a lightweight LEDP parser-replacing 
the traditional dependency rule base by cueing learning with 
a 37.3% reduction in parameter volume. Inference latency is 
only 68 ms (210 ms for SentSem-Net), meeting the  
real-time response requirements of education platforms  
(< 200 ms standard). Memory consumption is controlled at 
2.8 GB, which can be deployed on medium-sized cloud 
servers. Future work will explore federated learning 
architecture to support collaborative management of 
resources across institutions. 

5 Discussion 
This study is the first to validate the practical feasibility of 
the cognitive-affective synergy theory in educational 
resource management through the mechanism of  
affective-semantic dual-channel integration. Traditional 
cognitive models of education (e.g., Bloom’s Taxonomy) 
focus on the evolution of knowledge dimensions and 
neglect the moderating role of affective factors on learning 
effectiveness (Farani, 2022). The dynamic weighting 
mechanism of the SSIRM framework reveals that affective 
characteristics contribute 82% to resource selection in the 
beginner’s stage (LearnStage < 0.4), High emotional 
acceptance (e.g., ‘teacher approachability’) at the beginning 
of learning significantly increased persistence (r = 0.79,  
p < 0.001); whereas in the higher-order learning phase 
(LearnStage > 0.4), the weight of semantic features jumps 
to 72%, confirming Sweller’s cognitive load theory that 
expert learners need to refine the matching of knowledge 
structures to reduce the intrinsic cognitive load (De Jong, 
2010). This dynamic shift in feature dominance provides 
strong empirical support for cognitive-affective synergy 
theory, demonstrating how affective factors are crucial for 
initiating learning (complementing Bloom’s foundation) and 
how cognitive precision becomes key for advanced 
efficiency (complementing Sweller’s load management). 
This finding provides empirical support for the construction 
of a ‘stage-adaptive’ cognitive model of education, and 
bridges the longstanding gap between educational 
psychology and artificial intelligence research.. 

More profoundly, the cross-modal attention mechanism 
in the SSIRM framework realises the causal localisation of 
pedagogical deficiencies. While traditional sentiment 
analysis can only determine ‘user dissatisfaction’, the 
semantic dependency parsing in this study accurately 
associates negative sentiments to the defects of teaching 
entities (e.g., ‘boring to insufficient cases’). This 
mechanism provides a new paradigm for explainable AI in 
education: semantic attribution driven by sentiment signals 
to align algorithmic decision-making with pedagogical logic 

(e.g., ‘add more cases’ instead of simply improving ratings), 
echoing (Chaudhry et al., 2022b) call for transparency in 
educational AI. Specifically, SSIRM advances XAI in 
education by: 

1 revealing why resources are recommended (e.g., high 
sentiment acceptance for visual learners) 

2 translating vague feedback into actionable defects 
(e.g.,’boring’→ ‘insufficient case studies’) – addressing 
the ‘black box’ critique of traditional recommender 
systems. 

At the practical level, the SSIRM framework promotes a 
paradigm shift from ‘static warehousing’ to ‘dynamic 
evolution’ of educational resource management, which 
‘static storage’ refers to the traditional management model 
that lacks continuous updating of resources after they are 
uploaded, which ‘dynamic evolution’ can adjust the 
resource recommendation strategy in real time according to 
the user feedback, and discover and improve the problems 
in teaching resources in time. Current education platforms 
generally face the problem of lagging resource iteration-data 
shows that over 60% of courses have an update cycle of 
more than 18 months (Ni and Xie, 2024). The optimised 
instruction generation mechanism proposed in this study 
automatically outputs executable instructions (e.g., ‘Add 
step-by-step details ≥ 5 places/chapter’) by clustering  
high-frequency semantic entities (e.g., ‘Insufficient exercise 
explanations’) in negative comments. In the case of linear 
algebra course, this mechanism shortens the resource update 
cycle to 3.2 weeks, improves the rating by 28.7% (Δ = 0.9), 
and increases the completion rate by 22.3%. This validates 
the feasibility of ‘review-driven resource evolution’ and 
provides a technological backbone for building a  
self-optimising ecosystem of educational resources. 

For educational administrators, firstly, it is 
recommended to establish an affective-semantic linked 
resource monitoring dashboard and integrate the  
four-dimensional radar chart output from SSIRM into the 
management backend in order to identify high-risk 
resources in real time, such as resources with an affective 
acceptance level of less than 0.4 and a cognitive load higher 
than 0.7. Secondly, it is suggested to implement a learning 
stage-based triage recommendation strategy that utilises a 
meta-learning weight adapter to dynamically adjust the 
recommendation logic, e.g., prioritising resources with 
higher affective acceptance, such as animation-explained 
calculus, to novice learners. Finally, it is suggested to build 
a knowledge base of instructional deficiencies and 
accumulate optimised instructions generated by semantic 
clustering to form a cross-disciplinary instructional design 
guide. These practices not only improve platform 
operational efficiency and reduce resource iteration costs by 
41%, but also promote educational equity. For example, a 
pilot in North Carolina showed that SSIRM-driven resource 
optimisation reduced the gap in student completion rates in 
rural schools by 18% (Cohen’s d = 0.43). 

Although the SSIRM framework has achieved 
remarkable results, it still has some limitations. First, the 
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cross-language adaptability is insufficient. The current 
model is trained on the English dataset, and when migrated 
to Chinese educational scenarios, the F1 value of sentiment 
recognition drops by 12.4%, such as the misjudgement of 
Chinese educational metaphors such as ‘dried fruit’ and 
causes incorrect quality assessments due to culture-specific 
expression errors. Second, the coverage of niche subjects is 
limited, and the semantic parsing F1 value of vocational 
education resources (e.g., ‘computer numerical control 
machine operation’) is only 0.712, below the 0.80 threshold 
required for reliable educational AI systems, which is due to 
the insufficient coverage of entities in the CurriculumNet 
map. Finally, the requirement of accumulating at least 50 
comments to generate optimisation instructions introduces 
significant delays in real-time feedback. This threshold 
impedes immediate responses to emerging issues, 
particularly for cold-start resources (e.g., newly uploaded 
courses) or niche subjects with low user engagement. 
Consequently, critical defects (e.g., conceptual errors or 
technical flaws) may persist for extended periods, leading to 
learner frustration and increased dropout rates. For instance, 
EdNet data indicates that 35% of new resources receive 
fewer than 20 comments within their first three months, 
leaving them excluded from the optimisation cycle. Future 
work should explore lightweight alternatives (e.g., few-shot 
learning) to mitigate this constraint. To address these 
challenges, future research will focus on multilingual 
educational embedding spaces, joint training of multilingual 
pre-trained models (e.g., XLM-R), aligning cross-cultural 
educational concepts such as ‘heuristics’ through 
comparative learning, and federated knowledge graph 
construction, allowing educational institutions to 
collaboratively extend domain entities under data privacy 
protection, such as Medical Education Thesaurus, with 
differential privacy techniques to control the risk of 
information leakage; and generative teaching agents, 
integrating large language models (e.g., Llama 3) to 
generate virtual reviews that simulate user feedback on 
cold-start resources. 

These research directions will advance the management 
of educational resources towards a next generation 
paradigm that is ‘adaptive and evolvable’, in line with the 
vision of ‘Inclusive and Intelligent Education’ advocated in 
the United Nations Educational, Scientific and Cultural 
Organisation Declaration on Education 2030 (Oudhia, 
2024). Through these efforts, the management of 
educational resources will become smarter and more 
personalised, providing more equitable and effective 
learning experiences for learners from different 
backgrounds. 

6 Conclusions 
The smart teaching resource-management framework 
(SSIRM) proposed in this study, which integrates the 
emotional and semantic features of user comments,  
 
 

significantly improves the recommendation accuracy and 
quality assessment efficacy of teaching resources through 
the quantification of emotional intensity, the parsing of 
educational entity dependencies, and the adaptive weighting 
mechanism. Experimental results show that the SSIRM 
framework achieves 12.7% recommendation accuracy 
improvement and 9.2% F1 value improvement on the  
EdNet dataset, effectively solving the personalised 
recommendation problem in the context of overloaded 
educational resources. The framework not only optimises 
the resource management process, but also provides 
technical support for the dynamic optimisation of 
educational resources, and promotes the transformation of 
educational resource management from ‘static storage’ to 
‘dynamic evolution’. Despite the limitations of insufficient 
cross-language adaptability, limited coverage of niche 
subjects, and delayed real-time feedback, its innovation and 
practicality lay a solid foundation for the intelligent and 
personalised development of educational resource 
management in the future. 
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Appendix 
SSIRM framework algorithm 
The core workflow is summarised in Algorithm 1: 

Algorithm 1 SSIRM workflow 

Input: User comments C, behaviour logs B 
Output: Recommendations R, optimisation instructions O 
1 Preprocess C (segmentation, deactivation) 
2 F_emo ← Edu-LSTM(C) ▷ Emotional feature extraction 

[equation (4)–(5)] 
3 F_sem ← LEDP-RoBERTa(C) ▷ Semantic entity 

extraction (Section 3.3) 
4 LearnStage ← σ(T_master / T_total) ▷ Stage index 

[equation (7)] 
5 α ← exp(–2.5 * LearnStage) ▷ Dynamic weight  

[equation (8)] 
6 F_fused ← CrossModalAttention(F_emo, F_sem, α) ▷ 

equation (9) 
7 R ← RankResources(F_fused, B, LearnGap) ▷ equation 

(10) 
8 O ← 

GenerateInstructions(ClusterNegativeEntities(F_sem)) 
9 return R, O 

 


