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Abstract: The proliferation of digital teaching resources has exacerbated challenges in
personalised recommendation due to information overload. This study introduces an intelligent
management framework that integrates emotional and semantic features extracted from
user-generated comments. By employing an adaptive weighting mechanism, multimodal feature
fusion is achieved by analysing emotional intensity in user comments and dependencies among
educational entities, utilising an adaptive weighting mechanism. Experimental evaluations on the
EdNet public dataset reveal a 12.7% improvement in recommendation accuracy and a 9.2%
increase in Fl-score. These enhancements not only significantly optimise the assessment of
resource quality but also improve the delivery of personalised services, thereby underscoring the
framework’s effectiveness in advancing educational resource management. Furthermore, this
approach addresses critical limitations in existing systems and provides scalable solutions
suitable for real-world applications.
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1 Introduction

The wave of education digitisation is reconstructing the
global education ecology with unprecedented depth.
According to the Ministry of Education’s 2023 National
Education Informatisation Development Report, the total
number of online teaching resources in China has reached
840 million, with an annual growth rate of exceeding than
67%, but the resource utilisation rate remains below 35%.
Resource overload triggers a triple dilemma: learners spend
an average of 27 minutes screening a single course on the
e-learning platforms, representing a 41% decrease in
decision-making efficiency compared to five years ago
(Kovalan, 2024); teachers need to manually screen
appropriate content from over 10,000 resources for lesson
preparation, which is time-consuming (Wu and Chen,
2023); and administrators face the systematic governance
challenges of varying quality of resources and
delayed updating. Traditional keyword searches ignore
contextualisation, while collaborative filtering suffers 68%
cold-start failure due to sparse data (Zhang et al., 2024). In
this context, intelligent educational resource management
has become an inevitable choice to crack the bottleneck of

resource effectiveness, and its core mission is to facilitate
the transition from ‘quantitative scale’ to ‘qualitative
efficacy’.

User reviews, as the ‘electrocardiogram’ of teaching and
learning resources, represent a rich source of
multidimensional value that drives intelligent management.
Chen and Wang (2011) found video-based materials
optimise learning performance and positive emotions, while
negative emotions correlate with poor outcomes. In the
semantic dimension, more than 72% of the comments
contained descriptions of specific instructional attributes:
content accuracy, such as an incorrect theorem proving
step; pedagogical appropriateness, such as a lack of
workshop-style interactive design; and cognitive load
management, such as too high a density of concepts leading
to a breakdown in comprehension. These fine-grained
feedbacks serve as critical inputs for resource optimisation
(Piedra et al., 2010). By building the MIIDAS platform,
Duran and Ramirez (2021) provide the basis for the
development of a platform that facilitates the dissemination
of OERs and allows the construction of semantically rich
datasets. However, only a limited number of educational
platforms make systematically leverage review data,
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indicating that this valuable resource requires further
exploration.

However, a single feature analysis model is no longer
adequate to meet the complex needs of intelligent
management. Pure sentiment analysis (e.g., long short-term
memory, LSTM sentiment -classification) can rapidly
identify user attitudes, it results in the loss of 73% of
improvement cues are lost, and ‘video lag’ is merely
classified as a negative emotion without pinpointing specific
failure points (Wang and Yang, 2024). Similarly, pure
semantic parsing (e.g., educational entity recognition)
extracts knowledge point requirements but fails to quantify
user satisfaction thresholds. As a result, phrases like ‘expect
more cases’ cannot distinguish between general and strong
demands (Aguilar et al, 2020). Affective-semantic
dual-feature fusion is the key to overcoming these
limitations.  First, global-local complementarity is
established: affective features capture overall resource
acceptance, while semantic features identify micro-level
improvement points. Second, motivation-content correlation
is emphasised: affective intensity reflects learning
motivation levels (e.g., ‘stimulate interest’), whereas
semantic networks uncover the root causes of content
defects (e.g., ‘Trigonometric derivation skipping steps’).
Lastly, dynamic optimisation closure ensures that
combinations of negative sentiment and high-frequency
semantic keywords (e.g., ‘insufficient interaction’) directly
trigger iterative prioritisation of resources. It is able to take
into account both the user’s emotional response and
content-specific  feedback, resulting in a more
comprehensive assessment of teaching and learning
resources.

Priorith= Y80 e D 1)
TotalCount ——0-————
— Semantic strength

Emotional intensity

This study aims to construct the first Al-driven framework
that the sentiment-semantic integrated resource management
(SSIRM) framework, to achieve three key breakthroughs.
First, in terms of accurate assessment, a quantitative model
a quantitative model of emotional intensity and an
educational entity dependency parser, a multi-dimensional
radar chart of resource quality are established to generate,
providing an intuitive and comprehensive quantitative basis
for resource evaluation. Second, at the level of personalised
recommendation, a meta-learning adapter is designed to
dynamically adjust the weights of emotional and semantic
features ( € [0, 1]) according to the learner profile (e.g.,
‘engineering background/visual learner’), thereby enabling
precise recommendations of personalised learning
resources. In addition, in terms of dynamic optimisation, a
review feature-resource attribute association map is
developed to automatically generate optimisation
commands (e.g., ‘supplement financial mathematics
case > 5 rules’). This facilitates the continuous improvement
and refinement of teaching resources. Through the
implementation of the SSIRM framework, it is expected to
drive  the strategic transformation of education

informatisation from the traditional ‘connecting resources’
to the higher-order ‘activating resources’, effectively
supporting the core goal of ‘empowering the whole-cycle
management of education resources with intelligent
technology’ as outlined in China Education Modernization
2035, while injecting new impetus into the modernisation
process.

Si = ZPolarily(a)) - Intensity(w) - ContextWeight(c) (2)

2 Relevant technologies

2.1 Evolution and limitations of educational
recommender systems

Chaudhry et al. (2022a) proposed a transparency index
framework for AI in education, which emphasises the
importance of explainability in educational Al systems. This
aligns with our framework’s focus on causal localisation of
pedagogical deficiencies through sentiment-driven semantic
attribution. Educational recommender systems have evolved
through significant technological leaps, and their
evolutionary trajectory reveals profound domain adaptation
challenges. Early collaborative filtering models (e.g.,
SVD++), which rely heavily on user rating matrices,
suffer from severe sparsity dilemmas in educational
scenarios-analysis of the EdNet large-scale dataset shows
that only 12.3% of learners actively participate in ratings,
resulting in a cold-start resource recommendation failure
rate of 68% (Choi et al., 2020). To alleviate this problem,
mid-term research has turned to content filtering
approaches, which recommend items similar to those
already liked by wusers in the past by constructing
representations of users and items based on descriptive
features, and resource metadata matching to improve
coverage, but ignoring users’ behaviours and interests to
trigger recommendation bias (Musto et al., 2012). Although
deep learning models (e.g., NeuralCF) that have emerged in
recent years have improved NDCG@10 to 0.75 through
implicit semantic interactions, they still suffer from three
fundamental flaws: under-utilisation of user comments, with
more than 80% of the models using it only as an auxiliary
feature and ignoring the deep semantic network; and weak
recognition of educational entities. The F1 value of generic
named entity recognition tools for pedagogical terms such
as ‘metacognitive training’ and ‘inquiry-based learning’ is
low; static recommendation strategies cannot respond to the
dynamic progression of learners from ‘conceptual
cognition’ to ‘transfer and application’ (Akdemir and
Barigg1, 2024). Together, these shortcomings point to the
need for paradigm innovation in multimodal feature fusion.

2.2 Technical breakthroughs in commentary text
sentiment analysis

Moreno-Marcos et al. (2018) on sentiment analysis in
MOOCSs have highlighted the potential of sentiment analysis
for understanding learner experiences, further supporting
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our approach to integrating emotional features. Sentiment
analysis technology has formed two mainstream branches in
the field of educational resource management, each facing a
bottleneck in domain adaptation. Dictionary-driven
approaches are based on general dictionaries such as NRC
and HowNet, and by adding educational sentiment words
(e.g., +1.8 for ‘inspirational’ and -2.1 for ‘boring’), the
accuracy is increased to 79.6%, but their domain adaptation
is severely limited - the misclassification rate of two-sided
words such as ‘challenging’ is as high as 37%, with
typical examples such as ‘the course is challenging’
being incorrectly categorised as a negative evaluation
(Moreno-Marcos et al., 2018). Wang et al. (2016) proposed
an Attention-based LSTM for fine-grained attribute-level
sentiment categorisation tasks. The model significantly
improves the performance of sentiment polarity
classification by dynamically focusing on the important
parts of the sentence related to specific attributes through
the attention mechanism, and achieves then state-of-the-art
results on the SemEval 2014 dataset. However, there are
two major technical bottlenecks: the absence of a sentiment
intensity quantification mechanism, which leads to the
model’s inability to distinguish the substantial difference
between general satisfaction (intensity 0.6) and strong
recommendation (intensity 0.9); and the insufficient parsing
ability for expressions specific to educational scenarios.
Recent studies have attempted to integrate educational
knowledge graphs such as CurriculumNet to enhance
domain suitability, but the mechanism of synergistic
optimisation of sentiment features and semantic structures
has not yet been established.

2.3 Semantic feature extraction for educational
domain adaptation

Advancements in multimodal information fusion for
educational exercises, as demonstrated by Song et al.
(2023), have shown significant improvements in feature
extraction, which is relevant to our dynamic feature fusion
mechanism. The core of semantic feature extraction lies in
the identification of pedagogical functional entities and their
cognitive associative structures, and current technological
routes face scalability challenges. Gulyamov et al. (2023)
investigated the effectiveness of various semantic analysis
techniques and machine learning algorithms in educational
settings and the factors that influence their success.
The findings show that advanced semantic analysis
techniques (e.g., word embeddings and deep learning-based
approaches) significantly improve the performance of
machine learning algorithms in processing unstructured
data, leading to better understanding of natural language and
more accurate insights from educational data. Factors such
as data quality, algorithmic complexity, and computational
resources play a crucial role in determining the success of
machine learning models based on semantic analysis in
education. Abu-Salih and Alotaibi (2024) conducted a
systematic literature review to explore the methods of
constructing knowledge graphs and their applications in

education. It was found that knowledge graphs have
significant potential to provide customised learning
experiences and more effective pedagogical support in
education in the areas of adaptive and personalised learning,
curriculum design and planning, concept mapping and
visualisation, and semantic search and Q&A systems. These
limitations still call for lightweight and adaptive semantic
parsing solutions.

2.4 An innovative exploration of affective-semantic
fusion modelling

Multi-feature fusion has become a key path to break through
the limitations of single analysis, but existing methods have
not yet addressed the dynamic demands of educational
scenarios. Song et al. (2023) proposed a multimodal
information fusion motion feature model-based approach
for improving feature extraction in educational exercises.
The method extracts features from images and text
respectively through a dual-stream architecture and fuses
them using a cross-modal attention mechanism and a
bi-LSTM combined with a multi-head attention mechanism
to generate a multimodal motion feature vector that fuses
the two modalities. Experiments show that the model
improves the accuracy (ACC) value by 72.35% in the
knowledge mapping task, the Pearson correlation coefficient
(PCC) value by 46.83% in the motion difficulty prediction
task, and the area under the curve (AUC) value by 62.57%
in the student performance prediction task. Rao and Yang
(2022) proposed a text categorisation algorithm based on
the attention mechanism of headline and body text for
automatic classification of educational policy data. The
algorithm saves human resources and costs by efficiently
processing text data through the attention mechanism, but it
is slow to respond to metacognitive features, and key
semantics such as ‘insufficient reflective practice’ are
typically not reinforced. Although the multi-task learning
framework jointly trains sentiment classification and entity
recognition tasks, the depth of feature interaction is
insufficient, and negative sentiment signals fail to drive the
localisation of specific knowledge deficiencies.

3 Target recognition based on improved SSD
3.1 Overall framework design

In this study, we propose the SSIRM framework, as
shown in Figure 1, whose core innovation is to build a
dual-channel feature engine with emotion-semantic features,
and to realise the accurate evaluation and recommendation
of teaching resources through the dynamic fusion
mechanism. The framework consists of three layers:

e Input layer: pre-processing user comments
(segmentation, deactivation) and synchronising
learning behaviour logs (e.g., resource browsing time,
quiz scores).
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e  Ethical compliance: User data was anonymised and
aggregated to protect privacy. Informed consent was
obtained via platform terms of use, compliant with
GDPR and China’s PIPL. User comments were stripped
of identifiable markers (e.g., names/locations) before
processing. The study protocol was approved by MUST
Ethics Committee (Ref: #ED2024-09).

e  Feature extraction layer: run the sentiment analysis
module (quantify sentiment intensity) and semantic
parsing module (identify teaching entities and
relationships) in parallel.

e Decision layer: dynamically weighted fusion of features
based on meta-learning, outputting resource quality
assessment, personalised recommendation lists and
optimisation instructions.

The response time of the framework is less than
500 ms (Intel 17-12700H), which meets the real-time
decision-making requirements of educational platforms
(refer to IEEE TLT 2023 real-time system standard).

Figure 1 Schematic diagram of the SSIRM framework
(see online version for colours)
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3.2 Emotional feature extraction

The sentiment analysis module adopts educational enhanced
LSTM (Edu-LSTM), which combines a domain dictionary
with a context-aware mechanism to solve the problem of
insufficient quantisation of the strength of traditional
models. Firstly, the educational sentiment dictionary is
constructed, fusing the general sentiment dictionary (NRC)
and the educational domain dictionary (Pedaglex), and
weighting the high-frequency words of the teaching scene:

k- NRC(w)
(14+ 1) - PedagLex(w)

if we General

Intensity(w) = {

if we Education

where k£ = 0.8 is the generalised word attenuation factor (to
avoid overfitting of generalised words such as ‘good’), and

A= 0.6 is the enhancement coefficient for educational words
(e.g., the intensity of ‘enlightening’ is increased to 1.6).

On this basis, a context-aware affective strength model
is designed to calculate, identify negative words (e.g., ‘no’)
and adverbs of degree (e.g., ‘extremely’) based on
dependent syntactic analysis, and quantify their influence
weights through an exponential decay function:

S; = lZPolarity (wy ) - Intensity (wy)
Ly “4)

-exp (—y - DepDist (wy, ¢; ))

where ¢; negative word (e.g., ‘no’) or adverb of degree (e.g.,
‘very’), and Y = 0.5 is the distance attenuation factor. wy
represents the target sentiment word (e.g., ‘boring’). ¢;
denotes contextual modifiers (negative words like ‘no’ or
degree adverbs like ‘very’). Polarity(wi) € [-1, 1] is the
sentiment polarity score of wi. DistDep(c;, wi)is the
syntactic dependency distance between ¢;$ and $wy. 1 = 0.5
is the distance attenuation factor.

Polarity(wy) is reversed when ¢; is a negative word, and
Intensity(wy) is multiplied by an intensity factor (e.g.,
‘extremely’ x 2.0) when it is an adverb of degree.

Taking the typical comment ‘not boring’ as an example,
the dependency analysis determines that the syntactic
distance between the negative word ‘not’ and the target
word ‘boring’ is 1, which triggers the polarity inversion and
distance weighting calculation (exp(—0.5 x 1) = 0.606), and
finally correct the original negative strength from —1.8 to
+1.09. This method significantly improves the parsing
ability of compound expressions in educational scenes, and
increases the F1 value of metaphor recognition to 0.812 on
the SemEdu-2023 test set (a 14.7% improvement over
BERT-base).

3.3 Semantic feature extraction

The semantic parsing module designs a lightweight
educational dependency parser (LEDP) to reduce the
domain migration cost through cue learning and knowledge
injection. A cue-based entity recognition framework is first
adopted: RoBERTa-large is fine-tuned on CurriculumNet
using the prompt template ‘The pedagogical entity involved
in the comment is: [MASK]’. The model fills the [MASK]
token with one of four educational entity types (e.g., ‘phase
diagram analysis’ — knowledge point), achieving an F1 of
0.891 in STEM domains. The results of entity identification
show that the F1 value reaches 0.891 in science, technology,
engineering, and mathematics domain comments (0.847 in
humanities), which significantly outperforms the generic
named entity recognition (NER) tool (F1 = 0.732).

Further construction of the educational dependency
network: using the learnable parameter matrix W to project
the entity embedding vector e to generate a dependency
structure that conforms to the pedagogical logic:

Relation(e;, e; ) = Soft max (W [er5 €5 €context ]) 5
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When ¢; is a negative word, Polarity(wy) reverses sign.
When ¢ is a degree adverb, Intensity(wr) scales
multiplicatively (e.g., ‘extremely’ x 2.0). In order to
quantify the educational value of the resource, the
pedagogical relevance indicator R. is defined, which
combines the demand coverage (the percentage of the
intersection between the user’s target entity and the resource
entity) and the pedagogical value index (the value of the
expert’s annotation based on Bloom’s classification). For
example, in the resource ‘differential equations course’, the
entity ‘phase diagram analysis’ has a Pedaglndex = 0.9
(corresponding to the cognitive level of ‘Analysis’), and
when the target user’s demand entity set contains
‘dynamical systems’, the demand coverage is 80%.

E.NE,
R, = EL,, -log 1+2Pedaglndex(ek) (6)

Demand coverage

Pedagogical value

where E,: user learning target entity set (extracted from
behavioural logs). R, € [0, 1] is the pedagogical relevance
score. DemandCover € [0, 1] measures coverage of
user’s target entities E,. Pedaglndex € [0, 1] is the
expert-annotated pedagogical value.

3.4 Dynamic feature fusion

The dynamic fusion layer designs the meta-learning weight
adapter (meta-weighter) to address the core shortcoming
that static fusion strategies cannot respond to the evolution
of learning stages. Firstly, the learning stage perception
model is constructed: the learning stage index is calculated
based on the behavioural logs:

total

Tm(lS er
LearnStage = o [ B+ By - Scoreg,, j (7

where Taser: time consumed to master the knowledge point
and Ty resource total learning time. o: Sigmoid function
with output value € [0, 1] (0 = novice, 1 = expert). is the
learning stage index (0 = novice, 1 = expert). Tpaser 1S time
taken to master a knowledge point. 7 is total learning
time spent on the resource. o denotes the sigmoid function.

Second, dynamic weighting is performed. Affective
traits weights ¢ are adaptively adjusted according to the
learning stage:

o= !
1+exp(—k - (LearnStage —0))

®)

where o € [0, 1] is the emotional feature weight. w = 2.5 is
the scaling factor. LearnStage dynamically adjusts o (e.g.,
drops from 0.82 to 0.38 when LearnStage > 0.4).

When a user is detected to advance to an expert
(LearnStage > 0.4), « is automatically reduced from the
initial value of 0.82 to 0.38, allowing the semantic features
to dominate the decision. Threshold 0.4 was determined
based on learning curve inflection analysis of 100,000 users
in the EdNet dataset: a significant shift in users’ cognitive

schema occurred when the length of learning reached 63.2%
of the average mastery time of the knowledge point (Tyaseer)
(t=8.37,p <0.001).

The feature fusion process uses a cross-modal attention
mechanism:

SWy (RWi )

Jd

where Fjeq 1s the fused feature vector. O = Wy * [Femotion),
K = Wx * [Fsemaniicl, V.= Wy * [Fsemanic] are projections. Wp,
Wk, Wy are learnable projection matrices. $d$ is the feature
dimension.

Wo, Wk, Wy are the projection matrices and d is the
feature dimension. The query-key-value projection matrix
establishes associations between sentiment signals and
semantic entities, e.g., negative sentiment features are
automatically focused to associated defect descriptions (e.g.,
‘boring’ to ‘lack of case’). Validation on the Coursera
dataset  shows that the mechanism improves
recommendation accuracy by 19.3% for higher-order
learners.

Flisea = CrossAttn(S, R) = Soft max

3.5 Output decision generation

Three types of decisions are generated based on the fusion
features Flised:

e Resource quality assessment: a four-dimensional radar
chart is constructed (content accuracy, pedagogical
appropriateness, cognitive load, and affective
acceptance), and the scores for each dimension are
determined by the dot product of the expert weight
vector w and the fused features.

e Personalised recommendation: calculating the cosine
similarity between user requirement vectors and
resource features, and introducing a learning gap
attenuation factor:

MatchScore = cos (Euer s Fresource )

(10
-exp(—# - LearnGap)

where F.: user demand vector (£, embedding),
LearnGap: user’s current level and resource difficulty
level difference. Score is the recommendation score.
Fuser 1s the user demand vector. Fresource 18 the resource
feature vector. LearnGap € [0, 1] quantifies the gap
between user level and resource difficulty.

e  Optimisation instruction generation: clustering
high-frequency semantic entities in negative comments
to generate structured instruction templates. Taking
the linear algebra course as an example, for the
high-frequency complaint of ‘proof step jumping’, the
system outputs the instruction ‘Increase the cases of
proof step visualisation > 7 cases’, and the rating of this
resource is improved by 28.7% after implementation.

RWy (9)
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4 Experimental validation
4.1 Experimental setup

The experiment uses EdNet (KT-1 subset), the authoritative
public dataset in the field of education. The dataset contains
340,000 user comments and 12 million behaviour logs
between 2017 and 2023, covering eight major subjects such
as mathematics, programming, and linguistics. To ensure
the temporal validity, the dataset is divided by time
window: the 2018-2021 data is used as the training set
(8,742 resources and 238,940 comments), the 2022 data is
the validation set (1,873 resources and 51,120 comments),
and the 2023 data is the test set (1,879 resources and 51,340
comments). The preprocessing phase focuses on preserving
information specific to the educational scenario: Hypertext
markup language tags and non-English characters are
filtered by regular expressions, while specialised
expressions such as ‘constructivist pedagogy’ are protected
by using an educational thesaurus (Peda Glossary v2.1). In
the emotional labelling process, a subset of 5,000 reviews
containing ambiguous samples (where the star ratings were
inconsistent with the text content, e.g., a 3-star rating
accompanied by predominantly positive comments) were
independently reviewed by three pedagogical experts. The
final labeling agreement rate reached 93.7% (Kappa = 0.89).
Hyperparameters: Learning rate (2e-5), batch size (32),
RoBERTa-large fine-tuning epochs (10), meta-learning
scaling factor w (2.5), distance attenuation A (0.5). Full
implementation available at: [GitHub URL].

In order to comprehensively evaluate the performance of
the SSIRM framework, five types of representative baseline
models are selected for comparison: the collaborative
filtering classical method ItemKNN (K = 50, similarity
measure using cosine distance); the BERT fine-tuning-
based review analysis model BERT-Review (using the
BERT-base architecture); the graph neural network method
GraphSAGE (2 hidden layers with dimensions 256); the
feature fusion model HAN (8-head attention mechanism);
and the multi-task learning framework SentSem-Net (joint
sentiment-semantic loss weights 0.7:0.3).The evaluation
system takes into account the multi-dimensional
requirements: the score prediction task uses Accuracy
(5-level classification accuracy) and mean absolute error
(MAE); the recommendation task focuses on ranking
quality (NDCG@]10) and coverage (Recall@10); and the
resource quality evaluation focuses on the Fl-score for
negative review recognition. experiments are performed on
NVIDIA A100 GPUs (40 GB) environment running on
PyTorch 2.0 with Transformers 4.28 implementation, with
hyperparameter ~settings following the optimisation
guideline for educational scenarios-learning rate 2e-5
(AdamW Optimizer), batch size 32, and an early-stopping
strategy where the validation set Loss did not drop for five
consecutive rounds.

4.2 Analysis and discussion of results
4.2.1 Overall performance comparison

As shown in Table 1, the SSIRM framework demonstrates
significant advantages in the rating prediction and resource
recommendation tasks. In rating prediction, SSIRM
achieves Accuracy of 0.879 (£0.02 std), 6.4% higher than
SentSem-Net (0.826), with p < 0.01 in t-tests across 5 runs
(0.826), which is mainly due to the complementary fusion
of affective-semantic features. For example, in controversial
rating samples (e.g., a 3-star rating for ‘solid content but
boring presentation”’), SSIRM accurately predicts a 3-star
rating by identifying transitive relations through
dependency parsing, while SentSem-Net incorrectly
predicts a 4-star rating by ignoring semantic associations.
The mean absolute error (MAE) metrics further support the
improvement in accuracy. The MAE of — SSIRM drops to
0.542, which is 20.6% lower than that of SentSem-Net
(0.683), indicating a significant reduction in its rating
prediction bias. In the recommendation task, SSIRM’s
NDCG@10 reaches 0.813 (0.735 for SentSem-Net) and
Recall@]10 is increased to 0.792 (0.702 for SentSem-Net),
which is attributed to the dynamic fusion mechanism’s
adaptive response to the learning stage: the model
automatically increases the weight of semantic features
from 0.38 to 0.72 to accurately match the knowledge
deepening needs of higher-level learners, when detecting
that the user has progressed from a ‘beginner’ to a
‘proficient’. When detecting the user’s progression from
‘beginner’ to ‘proficient’, the model automatically increases
the semantic feature weights from 0.38 to 0.72, thus
accurately matching the knowledge deepening needs of
advanced learners.

Table 1 Model performance comparison
~ <

Y ~ v

S &y ® o) 3
Model 3 N ] = o

L

~ = ~ g8
ItemKNN 0.712 0.892 0.621 0.621 0.621
BERT-Review 0.783  0.753 0.704 0.704  0.704
GraphSAGE 0.801 0.721  0.698 0.698  0.698
HAN 0.819 0.692 0.718 0.718 0.718
SentSem-Net 0.826  0.683 0.735 0.735 0.735
SSIRM 0.879 0542 0.813 0.813 0.813

4.2.2 Ablation experiments and characteristic
contribution analysis

To deconstruct the contribution of each module in the
SSIRM framework, a systematic ablation experiment is
designed, as shown in Figure 2. When the semantic parsing
module (SSIRM-S) is removed, the Fl-score plummets
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from 0.854 to 0.694, a decrease of 18.7%, which suggests
that semantic features are crucial for localising specific
instructional deficiencies. For example, in the comment
“Video lag is severe’, SSIRM-S only recognises negative
emotions, while the full model can be correlated to the
‘network transmission’ technical flaw. Removal of the
sentiment analysis module (SSIRM-R) resulted in an
increase in MAE to 0.669 (23.4% increase over full model),
as it was not able to quantify user satisfaction gradients
(e.g., ‘mostly satisfied’ vs. ‘highly recommended’). The
NDCG@10 of the static fusion model SSIRM-F (fixed
weights oo = 0.5) decreases to 0.738, which validates the
necessity of dynamic weight adaptation: the meta-learning
module detects stage jumps in 62.3% of the learners in the
test set of users, and its weight adjustments improve the
recommendation accuracy by 12.7% on average. Ablation
experiments systematically deconstruct SSIRM’s modular
contributions: SSIRM-R disables the sentiment analysis
module (Edu-LSTM), retaining only semantic features;
SSIRM-S removes the semantic parsing module (LEDP),
preserving only emotional features; SSIRM-F employs
static feature fusion (fixedoo = 0.5) instead of dynamic
weighting via meta-weighter. Table 2 details the
implementation differences and quantitative impacts of the
ablation model versus the full SSIRM and the results of the
ablation study.

Figure 2 Performance comparison of SSIRM framework
ablation experiments (see online version for colours)

100

4.2.3 Educational scenarios case deep analysis

Taking the controversial resource ‘linear algebra: theory and
practice’ (average rating 3.2) in the test set as a case study,
we analyse the feature distribution of SSIRM, as shown in
Figure 3. The heat map of affective-semantic features shows
that the entity ‘proof’ clusters in the affective interval
[-0.8, —0.4] with high frequency (frequency 217), and
combined with the dependency parsing, we find that the
main complaint is that ‘the proof process jumps around a
lot’ (typical comments.): ‘Key transitions are missing in the
derivation step of Theorem 3.2°); while the entity
‘application’ is significantly prominent in the positive
interval [0.6, 1.0] (frequency 185), reflecting users’ high
recognition of financial and physical use cases by users.
Based on this, SSIRM generates the optimisation
instruction: ‘Add > 7 visual analysis cases with proof steps’,
and after the platform implementation, post-optimisation,
the resource’s rating rose from 3.2 to 4.1 (28% increase),
with completion rates up 22.3% (n = 1,892 learners), and
the completion rate increases by 22.3%.This case
demonstrates the instructional optimisation value of the
framework — transforming vague complaints into actionable
improvements by targeting them through affective-semantic
associations.

Figure 3 Distribution of sentiment-semantic features of the
controversial resource ‘linear algebra’ (see online
version for colours)
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Table 2 Ablation models implementation and performance degradation
Ablation Removed component MAE AMAE NDCG@10 ANDCG Fl-score AF1
SSIRM-R Sentiment analysis 0.669 +23.4% - - - -
SSIRM-S Semantic parsing - - - - 0.694 -18.7%
SSIRM-F Dynamic weighting - - 0.738 -9.2% - -
SSIRM Full framework 0.542 - 0.813 - 0.854 -
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4.3 Efficiency and scalability

Testing the inference efficiency at Intel Xeon Gold 6348
servers, SSIRM demonstrates excellent engineering
feasibility. Despite the introduction of multimodal features,
the number of parameters (§89M) is significantly lower than
that of BERT-Review (110M) and SentSem-Net (142M),
thanks to the design of a lightweight LEDP parser-replacing
the traditional dependency rule base by cueing learning with
a 37.3% reduction in parameter volume. Inference latency is
only 68 ms (210 ms for SentSem-Net), meeting the
real-time response requirements of education platforms
(< 200 ms standard). Memory consumption is controlled at
2.8 GB, which can be deployed on medium-sized cloud
servers. Future work will explore federated learning
architecture to support collaborative management of
resources across institutions.

5 Discussion

This study is the first to validate the practical feasibility of
the cognitive-affective synergy theory in educational
resource management through the mechanism of
affective-semantic dual-channel integration. Traditional
cognitive models of education (e.g., Bloom’s Taxonomy)
focus on the evolution of knowledge dimensions and
neglect the moderating role of affective factors on learning
effectiveness (Farani, 2022). The dynamic weighting
mechanism of the SSIRM framework reveals that affective
characteristics contribute 82% to resource selection in the
beginner’s stage (LearnStage < 0.4), High emotional
acceptance (e.g., ‘teacher approachability’) at the beginning
of learning significantly increased persistence (» = 0.79,
p < 0.001); whereas in the higher-order learning phase
(LearnStage > 0.4), the weight of semantic features jumps
to 72%, confirming Sweller’s cognitive load theory that
expert learners need to refine the matching of knowledge
structures to reduce the intrinsic cognitive load (De Jong,
2010). This dynamic shift in feature dominance provides
strong empirical support for cognitive-affective synergy
theory, demonstrating how affective factors are crucial for
initiating learning (complementing Bloom’s foundation) and
how cognitive precision becomes key for advanced
efficiency (complementing Sweller’s load management).
This finding provides empirical support for the construction
of a ‘stage-adaptive’ cognitive model of education, and
bridges the longstanding gap between educational
psychology and artificial intelligence research..

More profoundly, the cross-modal attention mechanism
in the SSIRM framework realises the causal localisation of
pedagogical deficiencies. While traditional sentiment
analysis can only determine ‘user dissatisfaction’, the
semantic dependency parsing in this study accurately
associates negative sentiments to the defects of teaching
entities (e.g., ‘boring to insufficient cases’). This
mechanism provides a new paradigm for explainable Al in
education: semantic attribution driven by sentiment signals
to align algorithmic decision-making with pedagogical logic

(e.g., ‘add more cases’ instead of simply improving ratings),
echoing (Chaudhry et al., 2022b) call for transparency in
educational Al. Specifically, SSIRM advances XAl in
education by:

1 revealing why resources are recommended (e.g., high
sentiment acceptance for visual learners)

2 translating vague feedback into actionable defects
(e.g.,’boring’— ‘insufficient case studies’) — addressing
the ‘black box’ critique of traditional recommender
systems.

At the practical level, the SSIRM framework promotes a
paradigm shift from ‘static warehousing’ to ‘dynamic
evolution” of educational resource management, which
‘static storage’ refers to the traditional management model
that lacks continuous updating of resources after they are
uploaded, which ‘dynamic evolution’ can adjust the
resource recommendation strategy in real time according to
the user feedback, and discover and improve the problems
in teaching resources in time. Current education platforms
generally face the problem of lagging resource iteration-data
shows that over 60% of courses have an update cycle of
more than 18 months (Ni and Xie, 2024). The optimised
instruction generation mechanism proposed in this study
automatically outputs executable instructions (e.g., ‘Add
step-by-step details > 5 places/chapter’) by clustering
high-frequency semantic entities (e.g., ‘Insufficient exercise
explanations’) in negative comments. In the case of linear
algebra course, this mechanism shortens the resource update
cycle to 3.2 weeks, improves the rating by 28.7% (A = 0.9),
and increases the completion rate by 22.3%. This validates
the feasibility of ‘review-driven resource evolution’ and
provides a technological backbone for building a
self-optimising ecosystem of educational resources.

For educational administrators, firstly, it 1is
recommended to establish an affective-semantic linked
resource monitoring dashboard and integrate the
four-dimensional radar chart output from SSIRM into the
management backend in order to identify high-risk
resources in real time, such as resources with an affective
acceptance level of less than 0.4 and a cognitive load higher
than 0.7. Secondly, it is suggested to implement a learning
stage-based triage recommendation strategy that utilises a
meta-learning weight adapter to dynamically adjust the
recommendation logic, e.g., prioritising resources with
higher affective acceptance, such as animation-explained
calculus, to novice learners. Finally, it is suggested to build
a knowledge base of instructional deficiencies and
accumulate optimised instructions generated by semantic
clustering to form a cross-disciplinary instructional design
guide. These practices not only improve platform
operational efficiency and reduce resource iteration costs by
41%, but also promote educational equity. For example, a
pilot in North Carolina showed that SSIRM-driven resource
optimisation reduced the gap in student completion rates in
rural schools by 18% (Cohen’s d = 0.43).

Although the SSIRM framework has achieved
remarkable results, it still has some limitations. First, the
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cross-language adaptability is insufficient. The current
model is trained on the English dataset, and when migrated
to Chinese educational scenarios, the F1 value of sentiment
recognition drops by 12.4%, such as the misjudgement of
Chinese educational metaphors such as ‘dried fruit’ and
causes incorrect quality assessments due to culture-specific
expression errors. Second, the coverage of niche subjects is
limited, and the semantic parsing F1 value of vocational
education resources (e.g., ‘computer numerical control
machine operation’) is only 0.712, below the 0.80 threshold
required for reliable educational Al systems, which is due to
the insufficient coverage of entities in the CurriculumNet
map. Finally, the requirement of accumulating at least 50
comments to generate optimisation instructions introduces
significant delays in real-time feedback. This threshold
impedes immediate responses to emerging issues,
particularly for cold-start resources (e.g., newly uploaded
courses) or niche subjects with low user engagement.
Consequently, critical defects (e.g., conceptual errors or
technical flaws) may persist for extended periods, leading to
learner frustration and increased dropout rates. For instance,
EdNet data indicates that 35% of new resources receive
fewer than 20 comments within their first three months,
leaving them excluded from the optimisation cycle. Future
work should explore lightweight alternatives (e.g., few-shot
learning) to mitigate this constraint. To address these
challenges, future research will focus on multilingual
educational embedding spaces, joint training of multilingual
pre-trained models (e.g., XLM-R), aligning cross-cultural
educational concepts such as ‘heuristics’ through
comparative learning, and federated knowledge graph
construction, allowing educational institutions to
collaboratively extend domain entities under data privacy
protection, such as Medical Education Thesaurus, with
differential privacy techniques to control the risk of
information leakage; and generative teaching agents,
integrating large language models (e.g., Llama 3) to
generate virtual reviews that simulate user feedback on
cold-start resources.

These research directions will advance the management
of educational resources towards a next generation
paradigm that is ‘adaptive and evolvable’, in line with the
vision of ‘Inclusive and Intelligent Education’ advocated in
the United Nations Educational, Scientific and Cultural
Organisation Declaration on Education 2030 (Oudhia,
2024). Through these efforts, the management of
educational resources will become smarter and more
personalised, providing more equitable and effective
learning experiences for learners from different
backgrounds.

6 Conclusions

The smart teaching resource-management framework
(SSIRM) proposed in this study, which integrates the
emotional and semantic features of user comments,

significantly improves the recommendation accuracy and
quality assessment efficacy of teaching resources through
the quantification of emotional intensity, the parsing of
educational entity dependencies, and the adaptive weighting
mechanism. Experimental results show that the SSIRM
framework achieves 12.7% recommendation accuracy
improvement and 9.2% F1 value improvement on the
EdNet dataset, effectively solving the personalised
recommendation problem in the context of overloaded
educational resources. The framework not only optimises
the resource management process, but also provides
technical support for the dynamic optimisation of
educational resources, and promotes the transformation of
educational resource management from ‘static storage’ to
‘dynamic evolution’. Despite the limitations of insufficient
cross-language adaptability, limited coverage of niche
subjects, and delayed real-time feedback, its innovation and
practicality lay a solid foundation for the intelligent and
personalised  development of educational resource
management in the future.
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Appendix
SSIRM framework algorithm

The core workflow is summarised in Algorithm 1:

Algorithm 1 SSIRM workflow

Input: User comments C, behaviour logs B
Output: Recommendations R, optimisation instructions O
1 Preprocess C (segmentation, deactivation)

2 F_emo « Edu-LSTM(C) P> Emotional feature extraction
[equation (4)—(5)]

3 F_sem « LEDP-RoBERTa(C) I> Semantic entity
extraction (Section 3.3)

4 LearnStage « o(T_master / T total) > Stage index

[equation (7)]

5 o« exp(-2.5 * LearnStage) > Dynamic weight
[equation (8)]

6 F_fused < CrossModalAttention(F_emo, F_sem, o) >
equation (9)

7 R« RankResources(F_fused, B, LearnGap) > equation
(10)

8§ O«
Generatelnstructions(ClusterNegativeEntities(F_sem))

9 returnR, O




