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Abstract: Music generation demands modelling intricate multi-dimensional 
sequences while preserving structural coherence and emotional expressiveness. 
To address transformer’s limitations in detail retention, multi-track efficiency, 
and affective integration, we propose residual enhanced affective music 
transformer (REAM) with three key innovations: 1) residual dense blocks 
establishing inter-layer skip connections to enhance feature reuse and maintain 
fine-grained musical textures; 2) emotion-aware rotary positional encoding that 
dynamically modulates note relationships based on target sentiment vectors;  
3) lightweight residual modules enabling efficient parallel generation of  
multi-track compositions. Through systematic ablation studies and perceptual 
evaluations, REAM demonstrates superior performance in both objective 
reconstruction metrics and subjective musicality assessments. This framework 
bridges symbolic precision with affective depth, enabling computationally 
efficient generation of structurally coherent, emotionally controllable  
multi-instrument music compositions. 

Keywords: multi-part music generation; transformer; residual network; 
emotional modelling; lightweight architecture. 
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1 Introduction 

Music generation, situated at the intersection of artificial intelligence and art, has 
emerged as a highly promising yet challenging research frontier (Briot and Pachet, 2020; 
Kang et al., 2024). Compared to natural language or image generation tasks, music 
presents unique complexities: it is a structured, multi-dimensional, and emotionally rich 
temporal signal. In particular, multi-part music generation demands that models learn to 
simultaneously coordinate melody (Gao and Li, 2025), harmony, rhythm, and their 
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temporal evolution, all while maintaining overall coherence and conveying a targeted 
emotional atmosphere (Li et al., 2024a). These requirements place stringent demands on 
model design in terms of long-range dependency modelling, multi-voice interaction, and 
emotional expressiveness (Wang et al., 2024a). 

Traditional approaches to music generation include rule-based systems (Wang et al., 
2024b) and shallow statistical models (Wang et al., 2024c). Rule-based systems offer 
strong controllability but suffer from poor generalisation due to their reliance on hand-
crafted music theory rules (Bhandari and Colton, 2024; Kwiecień et al., 2024; Xin, 2024). 
Shallow neural models such as RNNs or LSTMs have shown promise in modelling 
musical sequences, but they struggle with capturing long-term dependencies, inter-voice 
synchronisation, and dynamic emotional variation (Li, 2024; Li et al., 2024b; Wang et al., 
2024d; Zhu et al., 2024). Furthermore, emotional modelling is often limited to using 
static emotion tags without dynamic integration into the music sequence, resulting in 
outputs that lack expressive consistency and emotional depth. 

Recently, transformer-based models have demonstrated strong capabilities in 
sequence modelling and have been adopted in music generation due to their self-attention 
mechanisms, which allow for direct modelling of global dependencies across sequences 
(Ayres et al., 2024; Liu et al., 2024). While transformers offer improved performance 
over earlier architectures, they also face significant limitations in this domain. First, their 
purely stacked architecture lacks mechanisms for cross-layer feature reuse, which leads to 
the dilution of low-level musical details (Chen et al., 2024) – such as note-level rhythmic 
variations (Wang et al., 2024d) or ornamentation – at higher semantic levels (Huang, 
2025). This weakens structural coherence and expressiveness. Second, their large 
parameter count and computational complexity make them inefficient for long  
multi-track sequences, limiting scalability. Third, standard positional encoding schemes 
fail to capture the nuanced evolution of emotion in music, leading to poor emotional 
controllability and ambiguous affective expression. 

To address these challenges, we propose a novel framework, REAM: residual 
enhanced transformer for affective multi-part music generation, which incorporates three 
core innovations targeting architecture optimisation, cross-layer information flow, and 
emotion-aware sequence modelling: 

1 We introduce residual dense blocks into both the encoder and decoder of the 
transformer. These blocks establish multi-layer skip connections that allow low-level 
musical features to flow into higher semantic representations, enabling deeper 
interaction across melody, harmony, and rhythm. This design ensures that  
fine-grained musical details are retained and integrated, enhancing the structural 
coherence and fidelity of generated music. 

2 We extend rotary position embedding by explicitly incorporating emotion labels into 
the positional encoding process. This enables the model to dynamically capture the 
temporal and affective dependencies between notes and emotional states. By 
conditioning generation on labels such as ‘joyful’ or ‘melancholic’, the model can 
modulate the acoustic and structural features of multi-part sequences in alignment 
with the intended affective tone, allowing for fine-grained emotional control. 
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3 Inspired by advances in image compression, we employ three-layer lightweight 
residual blocks with nonlinear activations and normalisation layers. These modules 
reduce parameter overhead while preserving high expressiveness, achieving an 
effective trade-off between model depth and computational efficiency. This is 
particularly beneficial for multi-part music generation tasks, where both model 
scalability and training stability are critical. 

2 Relevant technologies 

2.1 Residual network 

In the field of deep learning, there exists a complex relationship between network depth 
and model performance (Almukhalfi et al., 2024; Herrmann and Kollmannsberger, 2024). 
Theoretically, as the number of neural network layers increases, the model can learn 
more abstract and advanced feature representations, thereby enhancing its ability to 
model complex data patterns and continuously optimising performance (Zhao et al., 
2025). However, in practical applications, when the network layers become excessively 
deep, thorny problems such as gradient vanishing, gradient explosion, and degradation 
arise. Gradient vanishing refers to the exponential decay of gradients during 
backpropagation as the number of network layers increases, making it difficult to update 
the parameters of layers close to the input layer (Wu et al., 2024). Gradient explosion, on 
the contrary, means that gradients continuously increase during backpropagation, causing 
the parameter update magnitude to be too large and preventing the model from 
converging (Yang et al., 2024). Degradation manifests as a decline in model performance 
on both the training and test sets when the network depth reaches a certain level (Zohra  
et al., 2024). Even with the application of optimisation techniques such as batch 
normalisation (Li et al., 2024a), it is challenging to effectively address this issue. These 
problems severely restrict the development and application of deep neural networks. 

The proposal of the residual network (ResNet) provides an innovative solution to the 
above-mentioned challenges (Khan et al., 2025; Wang et al., 2024d). Its core structure is 
the residual block, which breaks the linear connection pattern between layers in 
traditional neural networks by introducing skip connections. Suppose the input of a 
residual block is x, the output is y, and the mapping after a series of nonlinear 
transformations (Wei et al., 2024) (such as convolution operations, batch normalisation 
operations, activation functions, etc.) is F(x). The output of the residual block can be 
expressed as: 

( )y F x x= +  (1) 

where x represents the input feature map of the residual block. In the network 
architecture, it is typically the output result of the previous network layer after operations 
such as convolution and pooling, carrying the feature information extracted by the 
preceding network. F(x) is the residual mapping with respect to the input x. This mapping 
is composed of multiple convolutional layers, batch normalisation (BN) layers, and 
activation functions (such as the ReLU function) connected in series. Its core objective is 
to learn the difference, i.e., the residual part, between the input x and the target output. y 
is the output feature map of the residual block, which integrates the original input 
information and the learned residual information. This unique structural design enables 
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the network to focus on learning the residual part instead of directly learning complex 
identity mapping relationships, greatly reducing the learning difficulty of the network. 
Meanwhile, the existence of skip connections allows input information to be directly 
transmitted to subsequent layers, effectively preventing information loss caused by 
excessive network depth and providing strong support for alleviating gradient vanishing 
and explosion phenomena. 

During the backpropagation process, the gradient calculation mechanism of the 
residual network undergoes a fundamental change due to skip connections. According to 
the chain rule, the gradient of the loss function L with respect to the input x can be 
derived as follows: 

( )1L L y L F x
x y x y x

∂ ∂ ∂ ∂ ∂ = = + ∂ ∂ ∂ ∂ ∂ 
 (2) 

In the above formula, L represents the loss function of the entire network. It measures the 
degree of difference between the model’s predicted results and the true labels through 
specific metrics (Connor et al., 2024; Huang and Ren, 2024) (such as cross-entropy loss 
function, mean squared error loss function, etc.), and it is a key indicator guiding the 

network’s parameter optimisation. L
x

∂
∂

 is the gradient of the loss function L with respect 

to the input x of the residual block. This gradient information determines the direction 
and magnitude by which the network parameters corresponding to the input x should be 

adjusted during the parameter update process to reduce the loss. L
y

∂
∂

 is the gradient of the 

loss function L with respect to the output y of the residual block, reflecting how changes 

in the output y affect the loss function L. ( )F x
x

∂
∂

 is the gradient of the residual mapping 

F(x) with respect to the input x, representing the sensitivity of changes in the residual part 
to the input x. It can be clearly seen from this formula that the gradient of the residual 
network consists of two parts. The constant term 1 is crucial as it ensures that even if the 

value of ( )F x
x

∂
∂

 approaches 0 during backpropagation, the gradient L
x

∂
∂

 will not vanish. 

This makes the training process of deep networks more stable, effectively avoiding the 
problem of network non-convergence caused by gradient vanishing and greatly 
improving the efficiency of network training and the performance of the model. 

Based on the excellent characteristics of the residual network, numerous researchers 
have conducted in-depth improvement and expansion work around it and widely applied 
it to multiple fields such as computer vision and natural language processing. As the 
backbone network, it can effectively extract the semantic information of images, 
providing rich features for subsequent pixel-level classification. This enables the model 
to accurately classify each pixel in the image, achieving high-quality semantic 
segmentation results. These research achievements and application practices are based on 
the residual network. 
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2.2 Transformer 

In the development history of deep learning, RNNs and their variants, such as LSTMs 
and gated recurrent units (GRUs), were once the mainstream models for processing 
sequential data (Wang et al., 2024c). However, these models have significant drawbacks. 
For example, due to the vanishing gradient problem, RNNs struggle to handle long 
sequential data, and their recurrent computation mechanism prevents parallel processing, 
resulting in low training efficiency. Although LSTMs and GRUs alleviate the gradient 
problem by introducing gating mechanisms, they still cannot fundamentally solve the 
bottleneck of sequential computation. The introduction of the transformer architecture 
completely breaks this dilemma. Replacing the traditional recurrent structure with the 
novel self-attention mechanism, it has achieved revolutionary breakthroughs in numerous 
fields, including natural language processing and computer vision, providing crucial 
theoretical and technical support for the research of this paper (Madarapu et al., 2024). 

The core of the transformer lies in the self-attention mechanism, which enables the 
model to dynamically calculate the degree of correlation between each position and other 
positions when processing sequential data, thus capturing long-range dependencies within 
the sequence (Pu et al., 2024). Suppose the input sequence is x = [x1, x2, …, xn]. For each 
position i, the input is first mapped to three different vector spaces through linear 
transformations to obtain the query vector qi, the key vector ki, and the value vector vi: 

i q i i k i i v iq W x k W x v W x= = =  (3) 

where xi represents the vector at the ith position in the input sequence, carrying the 
information corresponding to that position. Wq, Wk and Wv are all learnable weight 
matrices. Through training, the parameters are adjusted so that the model can learn 
appropriate mapping relationships, transforming the input into vectors suitable for 
calculating attention weights. qi is used to calculate the degree of correlation with other 
positions, ki is used to be queried by other positions for calculating the correlation, and vi 
contains the actual information of this position. 

Next, the similarity between the query vector qi and all key vectors kj (j = 1, 2, …, n) 
is calculated using dot product and then normalised to obtain the attention weight αij: 

( )
( )

1

exp

exp

i j k
ij n

i j k
j

q k d

q k d
=

⋅
=

⋅
α  (4) 

In this formula, dk is the dimension of the key vector k. The introduction of kd  for 
scaling is to prevent the dot product result from being too large, which could lead to the 
vanishing gradient problem of the softmax function. αij represents the attention weight of 
the ith position to the jth position, reflecting the correlation strength between the two 
positions. The larger the weight, the more relevant the information of the two positions is 
in the current calculation. 

Finally, the attention weights are weighted and summed with the value vectors vj to 
obtain the output zi of the self-attention mechanism: 
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1

n

i ij j
j

z v
=

=α  (5) 

where Zi integrates the information related to position i throughout the entire input 
sequence. In this way, the model can effectively capture long-range dependencies within 
the sequence. 

In practical applications, the transformer usually employs the multi-head attention 
mechanism. It consists of multiple independent self-attention heads that calculate in 
parallel, and then the results are concatenated and linearly transformed: 

( )1MultiHead( , , ) Concat , , O
hQ K V head head W=   (6) 

where Attention( , , ),Q K V
i i i ihead QW KW VW=  Q, K, and V are the query matrix, key 

matrix, and value matrix generated from the input sequence, respectively. h represents the 
number of attention heads. ,Q

iW  ,K
iW  V

iW  and WO are all learnable weight matrices. 
The multi-head attention mechanism can capture rich information from different 
representation subspaces, further enhancing the model’s ability to extract sequential 
features. 

Based on the transformer architecture, numerous pre-trained models, such as BERT 
and the GPT series, have emerged and achieved remarkable success in natural language 
processing tasks. In text classification tasks, BERT learns general language 
representations through pre-training on large-scale corpora, and after fine-tuning, it can 
reach leading performance in various classification tasks. In the field of machine 
translation, the transformer architecture significantly improves translation efficiency and 
quality due to its parallel computing advantage, becoming the fundamental architecture of 
current mainstream translation models. 

3 Residual enhanced transformer for affective multi-part music 
generation 

3.1 Residual dense connection encoder architecture 

The encoder of the proposed music emotion analysis model employs a residual dense 
connection (RDC) mechanism to achieve hierarchical modelling of polyphonic music 
through cross-layer feature fusion. Traditional transformer architectures face challenges 
in handling complex musical structures due to information propagation bottlenecks. In 
contrast, our approach introduces cross-layer connections after each transformer module, 
integrating low-level features with high-level abstract representations. Specifically, the 
output Hl of the lth encoder layer is computed as follows: 

( ) ( )( )1 1 1LayerNorm TransformerLayer Concatl l lH H H X− −= + +  (7) 

where l n dH ×∈  denotes the hidden state matrix of the lth layer, with n being the 
sequence length and d the feature dimension, and TransformerLayer(·) represents a 
standard. 
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Transformer layer operation, including multi-head self-attention and feed-forward 
networks, Concat(H1…l–1) signifies the concatenation of all hidden states from the first to 
the (l – 1)th layer along the feature dimension, n dX ×∈  is the input embedding matrix, 
preserving the original input information. 

To enhance the flexibility of feature fusion, a gating mechanism is introduced to 
selectively integrate cross-layer features: 

( )( )1 2Concat ,l l l
gG σ W H H− −= ⋅  (8) 

( ) ( )( )1 1 1LayerNorm TransformerLayer Concatl l l lH H G H X− −= + +  (9) 

where σ is the sigmoid activation function, Wg is a learnable weight matrix, and   
denotes element-wise multiplication. This gated residual dense connection (GRDC) 
mechanism allows the model to adaptively select relevant historical features, enabling 
simultaneous capture of temporal dependencies across bass, middle, and treble voices 
while mitigating the vanishing gradient problem in deep networks. 

3.2 Emotion-guided lightweight decoder 

In the decoder design, we propose an emotion-guided sublayer residual connection 
(EGSRC) mechanism to integrate emotion label information E into the music feature 
decoding process. The following connection is introduced between the self-attention and 
feed-forward network sublayers: 

( )( )2 1 1LayerNorm MultiHead ,S S E S X= + +  (10) 

where S1 and S2 represent the input and output of the sublayer, respective, and 
MultiHead(S1, E) denotes the multi-head attention computation with S1 as queries and E 
as keys/values, X is the cross-layer input to enhance feature propagation. 

To reduce model complexity, lightweight residual blocks (LRBs) are employed to 
replace traditional fully connected layers. Each LRB consists of a 1 × 1 dimensionality 
reduction convolution, a 3 × 3 feature extraction convolution, and a 1 × 1 dimensionality 
expansion convolution. The parameter count is calculated as: 

2Params 3light in outC k k k k C= ⋅ + ⋅ ⋅ + ⋅  (11) 

where Paramsconv = Cin · 32 · Cout, Cin and Cout are the number of input and output 
channels, respectively, k is the intermediate layer compression factor. 

Additionally, depthwise separable convolutions (DSConv) are introduced to further 
optimise the model structure: 

DSConv( ) Pointwise(Depthwise( ))x x=  (12) 

where Depthwise convolution applies spatial convolution to each input channel 
individually, while Pointwise convolution combines the output channels using 1 × 1 
convolutions. Through these optimisations, the decoder achieves a significant reduction 
in parameter count while maintaining feature representation capabilities and improving 
inference efficiency. 
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3.3 Rotary position embedding mechanism 

To address the challenges of modelling temporal dependencies in long music sequences, 
rotary position embedding (RoPE) is adopted to replace traditional sinusoidal position 
encodings, as shown in Figure 1. Given query vector qm and key vector kn, the attention 
score is computed using RoPE as follows: 

( ) ( )( )( )Attention , q m θ m n k n
m n

W x R W x
q k

d
−⋅

=  (13) 

where xm and xn are the input embeddings at positions m and n, respectively, Wq and Wk 
are linear transformation matrices, Rθ(m–n) is a rotation matrix whose parameters θ depend 
on the position difference (m – n). 

Figure 1 Rotary position embedding mechanism (see online version for colours) 

 

The rotation matrix Rθ is structured as: 

cos sin
sin cosθ

θ θ
R

θ θ
− 

=  
 

 (14) 

To adapt to the periodic nature of music data, we further propose periodic rotary position 
embedding (PRoPE), which modifies the parameter calculation method of the rotation 
matrix. This mechanism integrates absolute position information into vector 
representations, enabling the model to better capture long-range temporal dependencies 
and significantly enhancing the modelling of extended music sequences. 
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3.4 Emotion and music feature fusion framework 

The emotion label E is represented by a one-hot encoding Ke ∈  (where K is the 
number of emotion categories) and fused with the music symbol embedding d

tx ∈  as 
follows: 

t t ex x W e′ = + ⋅  (15) 

where d K
eW ×∈  is a learnable projection matrix that maps the emotion label to the 

same dimensional space as the music features. Building on this, we introduce  
emotion-conditional layer normalisation (ECLN): 

( )
2

ECLN t
t e e

x μx γ
σ

−= +
+

 β


 (16) 

where μ and σ are the mean and standard deviation of the input, respectively, γe and βe are 
emotion-conditioned scaling and shifting parameters derived from the emotion label e. 

The entire model is trained end-to-end by minimising a multi-task loss function: 

1 2 3cls seq con advλ λ λ= + + +      (17) 

where cls  is the emotion classification loss, using the cross-entropy loss function, seq  
is the sequence reconstruction loss, preserving musical structural information, con  is the 
contrastive learning loss, enhancing the discriminability of emotion features, adv  is the 
adversarial training loss, strengthening the model’s ability to extract emotion-related 
features, λ1, λ2, λ3 are hyperparameters balancing the contributions of each loss 
component. 

4 Experimental results and analyses 

To comprehensively evaluate the performance of the proposed REAM model, 
experiments were designed from four dimensions: multi-model performance comparison, 
ablation analysis of core modules, cross-emotion generation capability verification, and 
subjective human preference assessment. 

4.1 Comparative experiments: multi-model performance evaluation 

The REAM model was compared with five representative baseline models: 

• Transformer-XL: a representative architecture in long-sequence generation, it 
effectively mitigates the performance degradation of traditional positional encoding 
when handling long-range dependencies through relative positional encoding, 
demonstrating excellent performance in long-sequence modelling tasks. 

• CP transformer: this model focuses on optimising sequence feature representation. It 
enhances the model’s ability to understand and represent text semantic structures by 
designing a composite word encoding strategy. 
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• CEG-Transformer: an architecture that uses emotion labels as guidance. It achieves 
the deep integration of emotional information and the transformer architecture 
through the construction of emotion-driven attention mechanisms and network 
structures. 

• LSTM-Attn: a typical example of the combination of recurrent neural networks and 
attention mechanisms. This model combines the advantages of long short-term 
memory networks (LSTM) in temporal data processing with the focusing ability of 
attention mechanisms, showing good adaptability and generalisation ability in 
temporal data modelling tasks. 

• Rule-based: an expert system built based on harmony rules. It relies on established 
music theory rules to generate music. 

The experiment employed three evaluation metrics: emotional consistency (EC), 
measured by the classification accuracy of the generated music using the  
DUPSO-DSKSVM algorithm to assess its alignment with the target emotion; spatial 
interaction complexity (SIC), evaluated via the note synchronisation index (SI) to gauge 
the rhythmic and pitch coordination among voices; and structural rationality (SR), scored 
on a 10-point scale based on the correctness of chord progressions according to music 
theory rules. 

In terms of the emotional consistency (EC) metric, the rule-based model scored the 
lowest at 62.3%. This is because it completely relies on preset rules and lacks the ability 
to flexibly learn emotional features. LSTM-Attn and Transformer-XL scored in the 
middle range, indicating that traditional temporal modelling methods and relative 
positional encoding can capture certain emotional information, but they still have 
limitations in the accuracy of emotional expression in polyphonic music. CP transformer 
and CEG-Transformer significantly improved the EC index by optimising feature 
representation and introducing emotion guidance mechanisms. However, the REAM 
model further increased the EC to 87.5% with innovative designs such as the residual 
dense connection encoder and emotion-conditional layer normalisation, demonstrating its 
superiority in capturing and expressing emotional information. 
Table 1 Comparative experiments result 

Model EC (%) SIC (SI) SR 
Rule-based 62.3 0.21 7.8 
LSTM-Attn 75.1 0.34 8.2 
Transformer-XL 72.5 0.39 8.5 
CP transformer 82.5 0.45 8.8 
CEG-Transformer 85.0 0.48 8.9 
REAM 87.5 0.56 9.2 

Regarding the spatial interaction complexity (SIC), REAM’s value of 0.56 was 
significantly higher than that of other baseline models. Especially compared with the 
best-performing baseline model, CEG-Transformer (0.48), the improvement exceeded 
20%. This benefit comes from its cross-layer feature fusion mechanism in the encoder 
and the lightweight residual block design in the decoder, which can better model the 
complex rhythm and pitch coordination among multiple voices. In contrast, the  
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rule-based model only had an SIC of 0.21, reflecting that the generation method based on 
fixed rules has difficulty handling complex voice interactions. 

In the structural rationality (SR) metric, the REAM model led with a score of 9.2, 
indicating that the music it generated was more in line with professional standards in 
terms of chord progressions and other music theory structures. Among the other baseline 
models, CP transformer and CEG-Transformer scored 8.8 and 8.9 respectively, indicating 
that the improved models based on transformer have certain advantages in structure 
generation. However, the REAM model further improved the rationality of music 
structure while ensuring emotional expression through the optimisation of the multi-task 
loss function. 

4.2 Ablation experiments: verification of the effectiveness of key modules 

To evaluate the effectiveness of each key component in the proposed REAM model, we 
conduct a comprehensive ablation study. This analysis investigates the impact of 
removing or replacing individual modules on emotion classification accuracy, multi-part 
music reconstruction quality, long-range dependency modelling, and model efficiency. 
By comparing simplified variants with the full REAM model, we assess the actual 
contribution of each module to overall performance. 

Figure 2 REAM model variants performance comparison (see online version for colours) 

 

The complete REAM architecture includes the RDC encoder, the EGSRC decoder, the 
PRoPE positional embedding, the emotional fusion mechanism (e.g., ECLN), and a 
multi-task loss function composed of classification loss, reconstruction loss, contrastive 
loss, and adversarial loss. Based on this full model, we design five ablated variants as 
follows: 
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• w/o-RDC: replaces the RDC encoder with a standard transformer encoder, removing 
cross-layer residual dense connections 

• w/o-EGSRC: removes the emotion-guided stacked residual connections in the 
decoder, directly concatenating emotion labels to musical features 

• w/o-PRoPE: substitutes the emotion-aware rotary positional encoding with 
conventional sinusoidal positional encoding 

• w/o-ECLN: removes the emotional fusion module and uses standard LayerNorm 
without conditional normalisation 

• w/o-Contrastive&Adv: removes contrastive and adversarial loss terms, keeping only 
classification and reconstruction loss. 

Evaluation metrics include emotion classification accuracy (higher is better), music 
reconstruction error measured by mean squared error (MSE, lower is better), generation 
speed (tokens per second), and model size in parameter count. 

Results show that w/o-RDC exhibits a significant drop in emotion classification 
accuracy and a noticeable increase in reconstruction error, indicating that the RDC 
encoder improves representational capacity through cross-layer feature reuse and 
mitigates gradient vanishing. As shown in Figure 2, the w/o-EGSRC variant 
demonstrates decreased emotion consistency in generated music, suggesting that the 
decoder’s hierarchical emotion integration is critical for expressing intended emotional 
tones. w/o-PRoPE performs worst in long-sequence modelling tasks, validating that 
PRoPE effectively captures the periodic and hierarchical structures inherent in music. 
The w/o-ECLN variant yields poor classification accuracy and reduced generation 
quality, confirming that emotional fusion via conditional normalisation enhances the 
interaction between musical and emotional features. Finally, w/o-Contrastive&Adv 
retains reasonable reconstruction accuracy but produces emotionally monotonous 
outputs, highlighting the importance of contrastive and adversarial learning in 
constructing a more discriminative and expressive emotion space. 

In conclusion, all core components contribute substantially to REAM’s ability to 
generate emotionally consistent, structurally coherent, and computationally efficient 
multi-part music. The full REAM model consistently outperforms its ablated variants 
across all key evaluation metrics. 

4.3 Emotion transfer experiments: cross-emotion generation ability 

To evaluate the REAM model’s ability to generate emotionally controllable multi-part 
music, we conducted an experiment by fixing the model parameters and varying only the 
input emotion labels – namely, ‘excited’, ‘calm’, ‘sad’ and ‘tense’. For each emotion 
label, the model generated corresponding multi-voice music fragments. We then 
performed a comparative analysis of melodic and harmonic feature variations across the 
different emotional contexts. 

From the melodic perspective, the REAM model exhibits the capacity to adjust note 
pitch ranges and rhythmic density based on emotional input: 

• for ‘excited’ music, the increase in high-pitch melodies (+32%), the predominance of 
sixteenth notes (65%), and the overwhelming use of major chords (89%) together 
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create a bright, energetic musical atmosphere, aligning with listeners’ perception of 
excitement 

• for ‘sad’ music, the shift to lower-pitch melodies (+28%), higher ratio of dotted 
rhythms (58%), and increased use of minor chords (+41%) effectively convey a 
melancholic and subdued emotional tone 

• the ‘calm’ and ‘tense’ types exhibit intermediate characteristics, with ‘calm’ music 
emphasising moderate pitch and rhythmic balance, while ‘tense’ music leans towards 
irregular rhythmic structures and minor harmonies, reflecting emotional tension. 

From the perspective of multi-voice interaction, we observe notable differences in the 
average interval distance (i.e., the average pitch distance between simultaneous notes in 
different voices) under different emotional contexts: 

• the ‘excited’ type exhibits the largest average interval (4.2 degrees), creating a more 
spatially open and harmonically dynamic sound texture, which enhances musical 
tension and emotional intensity 

• conversely, the ‘sad’ type maintains a more compressed voice spacing (3.1 degrees), 
resulting in a tighter and more introspective auditory experience 

• ‘calm’ and ‘tense’ show moderate interval distributions, reflecting their intermediate 
affective positioning. 

These results demonstrate that REAM can translate abstract emotional semantics into 
concrete and diverse musical features, both in terms of pitch-rhythm construction and 
polyphonic coordination, as shown in Figure 3. The model’s ability to dynamically adapt 
melodic and harmonic elements, as well as voice interactions based on emotion, confirms 
its fine-grained control over emotional expression and its musical interpretability. 

Figure 3 Radar analysis diagrams of music characteristics based on different emotions  
(see online version for colours) 
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4.4 Subjective listening experiments: human preference assessment 

The experiment was set up as follows: 30 listeners, including 10 professional musicians 
and 20 ordinary listeners, were invited to rate the emotional expression clarity and voice 
hierarchy of the generated music on a 5-point scale. 

Figure 4 Model comparison on emotional clarity and voice hierarchy (see online version  
for colours) 

 

To highlight the REAM model’s effectiveness from a human-perception angle, typical 
evaluations from different listener groups are provided, as shown in Figure 4. 
Professional musicians noted, “in the polyphonic fragments generated by REAM, the 
emotional cues of each voice are clear, and the emotional echo between the violin melody 
and the piano accompaniment is natural”, emphasising its superior ability in creating 
harmonious, emotionally-consistent polyphony. These comments from both professional 
and non-professional perspectives jointly validate the REAM model’s excellence in 
emotional music generation. 

In terms of emotional expression clarity, the REAM model led with an average score 
of 4.34, surpassing the CP transformer (3.83) and CEG-Transformer (4.12). This is due to 
its unique emotion-music feature fusion framework. Through emotion-conditional layer 
normalisation and the optimisation of the multi-task loss function, the emotional cues of 
the generated music are more prominent and explicit. Both professional musicians and 
ordinary listeners can more clearly perceive the emotions conveyed by the music. 

In the evaluation of voice hierarchy, the REAM model’s average score of 4.28 was 
also higher than that of the other two baseline models. The evaluation from professional 
listeners, “the emotional cues of each voice in the polyphonic fragments generated by 
REAM are clear, such as the natural emotional echo between the violin melody and the 
piano accompaniment”, indicates that the residual dense connection and cross-layer 
feature fusion mechanism of its encoder can effectively construct a multi-voice structure 
with distinct layers and harmonious coordination. The feedback from ordinary listeners, 
“the music fragments of different emotions can be easily distinguished”, further 
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demonstrates that the REAM model not only performs well in emotional expression and 
voice construction but also has significant advantages in the overall perceptibility and 
distinguishability of music fragments. From the perspective of human subjective feelings, 
it fully verifies the practicality and effectiveness of the model. 

5 Conclusions 

In this paper, a residual enhanced transformer (REAM) for affective multi-part music 
generation is proposed, addressing challenges in long-range dependency modelling, 
multi-voice interaction, and emotional expression. Three core innovations are introduced: 
hierarchical residual dense connections enabling cross-layer feature fusion,  
emotion-aware rotary position encoding (ERoPE) for dynamic emotional modelling, and 
lightweight residual modules to balance efficiency and expressiveness. Experimental 
results on multiple metrics show significant improvements over baselines. The following 
conclusions can be drawn: 

• The hierarchical residual dense connections in the encoder retain low-level musical 
details and enhance structural coherence by facilitating cross-layer feature 
interaction. 

• ERoPE dynamically integrates emotion labels into positional encoding, improving 
the model’s ability to capture temporal-affective dependencies and achieve  
fine-grained emotional control. 

• Lightweight residual modules with depthwise separable convolutions reduce 
parameter overhead while maintaining expressive power, optimising computational 
efficiency for multi-track sequences. 

• The multi-task loss function, including classification, reconstruction, contrastive, and 
adversarial losses, enhances emotional discriminability and structural rationality. 

• The proposed REAM demonstrates superiority in generating emotionally coherent 
and structurally sophisticated multi-part music. However, the current focus on 
specific emotion categories may limit generalisation to highly nuanced emotional 
expressions. Future work will explore integrating more diverse emotional datasets 
and real-time interaction mechanisms to expand the model’s applicability in practical 
music creation scenarios. 
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