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Abstract: Satellite remote sensing is crucial for large-scale, regular monitoring 
of mineral mining. It helps grasp the mining status and fight illegal activities. 
However, challenges like scarce training datasets, low detection efficiency, 
fragmented targets, and inaccurate positioning exist. This paper focuses on 
open-pit coal mines. It presents a saliency-guided image-cutting algorithm and 
an improved non-maximum suppression-based object-relocation algorithm. 
These are integrated with a deep-learning object-detection model to form a 
deep-learning-based mine-detection framework. Tests on 10 large-scale images 
show the framework achieves 85.22% recall and 45.73% precision efficiently, 
outperforming pure deep-learning models. 
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1 Introduction 

China is rich in mineral resources, with all kinds of large, medium and small mines all 
over the country. Using satellite remote sensing technology to regularly monitor the 
mining situation in a large scale is an important means to timely grasp the development 
and utilisation of mineral resources and availably combat the illegal mining. Up to date, 
researches of mine monitoring using remote sensing images mainly focus on the 
identification and classification of mining features such as tailings pond, open-pit, 
buildings in mining area, etc. The existing methods can be roughly divided into three 
categories: visual interpretation, target detection based on artificial feature and traditional 
classifiers, and target detection based on depth convolution neural networks (DCNN). 

The accuracy of visual interpretation can be guaranteed, which is the main means for 
the national ministries and commissions to carry out relevant investigations and digital 
product production. However, it requires the participation of a large number of 
experienced interpreters, which makes it time-consuming, laborious and costly (Zhang  
et al., 2022). Methods of the second category can achieve high accuracy in some specific 
scenarios with clear steps and obvious interpretability of features. Whereas, the 
applicability of these methods need to be further improved. The target detection based on 
DCNN mainly focuses on the detection of open pit and tailing ponds. For example, 
Gallwey et al. (2020) adopted the depth CNN model to detect small manual mining areas 
on Sentinel-2 multispectral images, which obtained the error less than 8%. Zhang (2019) 
used CNN to automatically extract open pit on high spatial resolution images, which can 
obtain a recall rate of 91.3%. Lyu et al. (2021) used the YOLO-4 model to detect tailing 
ponds on high spatial resolution image, and the accuracy reached 89.7%. On the whole, 
although some preliminary applications have achieved promising results, most existing 
deep learning based methods only evaluate the accuracy on the constructed datasets, 
which can be hardly extend to the applications on large-scale remote sensing images. 

Some similarities exist between optical remote sensing images and natural images, 
which makes some detection algorithms for natural images can be used on remote 
sensing images. However, unique characteristics exist in remote sensing images, such as 
large size, diverse target directions, uneven target distribution, and complex backgrounds, 
which result in some new challenges. To solve the problem of large size, the most 
common method is to cut the image into blocks and then carry out detection on each 
block. However, it will produce a large number of blocks without targets as the 
proportion of targets is small and the distribution is uneven in large size images, resulting 
in low detection efficiency. Meanwhile, the targets located across blocks may be 
segmented, which would lead to low positioning accuracy. Wang et al. (2018) cut the 
image with a certain overlap rate, which improved the integrity of the target to a certain 
extent, while the number of image blocks increased, resulting in greater time redundancy. 
To reduce the time redundancy, R2-CNN (Pang et al., 2019) designed a strategy of ‘judge 
first, locate later’ to filter out blocks without target by considering the fact that most 
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blocks are background and the target to be detected is only concentrated in small areas. 
Thus, the computational burden can be reduced, but the issue that targets may be 
segmented is still unsolved. YOLT (Etten et al., 2018) used multiple lightweight models 
to detect the blocks, and then the detected results were fused, which improved the speed 
with relatively high accuracy. Zhou et al. (2024) proposed an adaptive attention-guided 
framework that integrates the convolutional block attention module (CBAM) and 
Transformer networks to enhance feature discrimination capability in cluttered scenes. 
The method demonstrates higher accuracy in detecting small and fragmented targets. 
Overall, the aforementioned methods are based on the strategy of evenly dividing the 
image, which may not be optimal. 

To sum up, the following problems still exist in large-scale and high-frequency mine 
monitoring using remote sensing images based on deep learning: 

1 Relevant research is less, resulting in insufficiency of dataset that can be used for 
model training. Furthermore, most of related works are only conducted on  
small-scale remote sensing images, but no framework for large-scale images has 
emerged. 

2 For remote sensing images with large coverage, the conventional method of first 
evenly cutting and then detecting block by block is not only inefficient, but also 
causes problem that the target may be segmented. 

3 Due to the poor monomer and unclear boundary of mine, accurately positioning mine 
targets faces more challenges. 

To solve these problems, this paper takes the open-pit coal mine as the research object, 
proposes an image cutting algorithm based on saliency guidance and a target relocation 
algorithm based on improved non-maximum suppression, and combines them with the 
deep learning object detection model to form a mine detection framework based on deep 
learning methods, which can realise the automatic detection of the open-pit coal mine in 
large-scale remote sensing images. Key contributions: 

1 Proposed a saliency-guided image cutting algorithm to reduce background 
redundancy while preserving target integrity, reducing average per-image detection 
time by 57.62% for Faster R-CNN models. 

2 Developed an improved non-maximum suppression (NMS) algorithm for nested 
target relocation, effectively resolving boundary ambiguity issues. 

3 Introduced an integrated deep learning framework combining guided image cutting 
and target relocation, achieving 85.22% recall rate and 45.73% precision on  
large-scale imagery. 

2 Design of the algorithm 

The proposed framework can be illustrated as Figure 1, which mainly contains the 
following steps: 

1 the saliency guided image cutting algorithm is used to cut the large-scale remote 
sensing images and obtain the image blocks to be detected 
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2 the dataset of open-pit coal mine is used to train the model, and the target detection 
of the image blocks to be detected is completed 

3 the target relocation algorithm based on improved non-maximum suppression was 
used to map and optimise the target, and the final detection results were obtained. 

Figure 1 Illustration of the proposed framework 

Step1. Image cutting 

Step2. Target detection 

Saliency 
detection 

Location of 
salient regions 

Image 
cutting 

Input 
Large-scale 

image 

Output 
Results 

Step3. Target relocation 

Mapping of 
detection results 

Improved non maximum 
suppression 

Data set 

Models of deep learning 

Faster R-CNN YOLO V3 

SSD RetinaNet 

 

2.1 The image cutting algorithm based on saliency guidance 

In the preprocessing of remote sensing images, background suppression and target region 
extraction are critical for improving detection efficiency. Wang et al. (2021) proposed a 
robust principal component analysis (RPCA) method for aluminum foil surface defect 
detection, which effectively separated defect features from background noise  
through low-rank and sparse decomposition. Inspired by this, our study employs a 
saliency-guided image cutting algorithm to focus on visually prominent regions, 
addressing the issue of target fragmentation in large-scale images more adaptively than 
traditional uniform cutting methods. The algorithm includes three steps: saliency 
detection, location of salient regions and image cutting. 

2.1.1 Saliency detection 
Saliency detection can quickly and effectively focus the salient regions with visual 
saliency differences in the image. Existing saliency detection algorithms can be roughly 
divided into two categories: bottom-up and top-down. The bottom-up algorithms are 
stimulus driven, which directly use the underlying visual features such as colour and 
brightness or various heuristic prior clues (such as contrast prior, background, 
connectivity prior, centre prior, etc.) to locate salient regions. The top-down algorithms 
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are task driven, which use training data with category labels to analyse task oriented 
visual attention, which require a large number of labelled data. In view of the visual 
characteristics of the open-pit coal mine and the lack of training data, a bottom-up IG 
algorithm based on global contrast is adopted to extract salient blocks in this paper. One 
example is shown in Figure 2(b). 

Figure 2 Steps of obtaining candidate blocks based on saliency guidance, (a) original image 
(b) saliency map (c) salient region map (d) candidate image blocks (see online version 
for colours) 

 
(a) (b) (c) (d) 

Notes: The red dots in (c) represent the centroid of each salient region. 
The blue wire frame in (d) is the cutting position and the white wire frame is the 
ground truth of the target. 

IG algorithm (Achanta et al., 2009) is a frequency-tuned saliency detection method. The 
main idea is to obtain pixel level saliency maps by calculating the difference between the 
average colour value (RGB or Lab) of each pixel (representing low frequency) and the 
whole image (representing high frequency) after Gaussian filtering. The saliency map S 
of image I can be calculated as: 

( , ) ( , )hcμ ωS i j I I i j= −  (1) 

where Iμ is the mean image feature vector, ( , )hcωI i j  is the corresponding image pixel 
vector value in the Gaussian blurred version of the original image. Using the Lab colour 
space, each pixel is a [L, a, b]T vector, and || || is the Euclidean distance. 

2.1.2 Location of salient regions 
The saliency maps are values within the range of [0, 255]. After using the Otsu algorithm 
binarisation, a map of a salient region can be obtained, which identifies the areas that are 
significant in the bottom visual features of the whole image, including the open-pit coal 
mine and some other objects. Then, according to the statistical prior of the target scales, 
eliminating the regions which are too small, the salient regions with a certain scale can be 
obtained, as shown by Figure 2(c). 

The Otsu (Ostu, 1979) algorithm determines the best segmentation threshold by 
maximising the between-class variance of foreground and background. The method for 
computing the between-class variance g of a greyscale image I can be calculated as: 

20 1 ( 0 1)g ω ω μ μ= × × −  (2) 

Here, g is defined as the inter-class variance between foreground and background, where: 

• $ω0$: proportion of foreground pixels to total image pixels 
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• $μ0$: average greyscale of all foreground pixels 

• $ω1$: proportion of background pixels to total image pixels 

• $μ1$: average greyscale of all background pixels 

Figure 3 Histogram of target area distribution in the coal mine dataset (see online version  
for colours) 

 

The optimal segmentation threshold is determined by exhaustively searching for the 
threshold value that maximises g. Subsequently, we statistically analysed target areas in 
the coal mine dataset, generating the area distribution histogram shown in Figure 3. 
Using the minimum area value (691) as the threshold, we filtered out excessively small 
connected regions, retaining only salient connected regions of reasonable scale as 
candidate target areas [Figure 2(c)]. 

2.1.3 Image cutting 
In order to obtain candidate blocks, the connected areas in Figure 2(c) are numbered and 
their centroids are calculated one by one. Then, the image is cut according to the prior 
scale of targets to be detected with the centroid coordinate as the centre point to obtain 
candidate blocks. Based on the dataset statistics, the average target diameter is 
approximately 600 pixels. Thus, the image block size is set to 800 × 800 pixels to ensure 
target integrity within each block, as shown by Figure 2(d). The centroid position (x, y) of 
a connected area Ω can be calculated by: 

( ) ( )( )
( ) ( )( )

, ;( , ) Ω , ; , Ω

, ;( , ) Ω , ; , Ω

( , ) ( , )

( , ) ( , )

i j i j i j i j

i j i j i j i j

x i S i j S i j

y j S i j S i j

∈ ∈

∈ ∈

 = ∗



= ∗


 
 

 (3) 
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Different from the commonly used methods which directly cut the image with a certain 
overlap rate, our algorithm can not only filter most of background, but also ensure the 
integrities of targets in candidate blocks, which may improve the subsequent detection 
efficiency and accuracy. 

2.2 Target detection based on deep learning models 

According to whether the region of interest (ROI) is required, target detection methods 
based on deep learning can be divided into two categories: two stage and one stage target 
detection. Two stage methods use the region recommendation network (RPN) to extract 
regions of interest, and then intercept the local feature layer of each ROI for classification 
and regression prediction. Typical methods include R-CNN (Ross et al., 2016), fast  
R-CNN (Girshick et al., 2015), faster R-CNN (Shaoqing et al., 2017), R-FCN (Dai et al., 
2016), and mask R-CNN (He et al., 2017). These methods can usually achieve high 
accuracy. However, efficiency is usually dissatisfactory due to the extraction of regions 
of interest which needs additional computation. One stage methods directly extract 
features from multi-layer deep feature maps for classification and position regression 
without extraction of regions of interest, such as SSD (Liu et al., 2016), the YOLO series 
(Redmon et al., 2016; Jo et al., 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 
2020; Wang et al., 2023), SSD (Liu et al., 2016), and RetinaNet (Lin et al., 2017). Speeds 
of these methods can basically meet the requirements of real-time systems, but the 
accuracies are slightly lower than those of two stage methods. Additionally, object 
detection algorithms can be categorised into anchor-based and anchor-free methods based 
on whether predefined anchor boxes are required. Anchor-based algorithms necessitate 
predefining a series of anchor boxes with varying sizes and aspect ratios, decoding final 
detection results by predicting anchor offsets; these methods require statistical analysis of 
target dimensions and aspect ratios in training data to determine hyperparameters such as 
anchor scales, aspect ratios, anchor density, and IoU thresholds, resulting in limited 
generalisation capability. In contrast, anchor-free algorithms eliminate anchor boxes, 
directly predicting pixel-wise probabilities of target presence and bounding box 
coordinates to generate detections, offering superior generalisation and effectiveness for 
irregularly shaped targets, with representative methods including CenterNet (Zhou et al., 
2019), FCOS (Tian et al., 2019), YOLOX (Ge et al., 2021), and FoveaBox (Kong et al., 
2020). 

This study selects mature and representative models from various object detection 
methodologies – faster R-CNN, SSD, YOLOv3, YOLOv5, RetinaNet, CenterNet, and 
YOLOX – to conduct detection experiments, enabling comparative analysis of their 
precision and applicability on our custom Open-Pit Coal Mine Target Detection Dataset. 
Sequentially, the model with highest performance is adopted to detect the candidate 
blocks obtained in Section 2.1. 

2.3 The target relocation algorithm based on improved non-maximum 
suppression 

After extraction of deep detector, target classification and position regression results on 
all candidate blocks are obtained. Sequentially, these location boxes need to be mapped 
to the original large-scale image, and the nested overlapping objects need to be filtered 
and relocated to obtain the final detection results. 
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The most commonly used method for eliminating repeatedly detected results is  
non-maximum suppression which comprehensively considers the located box score and 
the intersection over union (IOU) of each located box, and removes the non-maximum 
score results whose intersection over union are greater than a certain threshold. However, 
because the open-pit coal mines have the characteristics of unclear boundary, poor 
monomer, nesting and overlapping relationships between targets, this method can’t be 
effectively applicable for our study. For instance, when a small target is nested in a large 
one, the small one can’t be eliminated due to the small intersection over union, as marked 
by the green circle in Figure 3(b). Besides, when a target is located by multiple boxes, the 
maximum range covered by each box is the most accurate location result, as shown by 
the yellow circle in Figure 3(b). 
Table 1 Detailed description of target relocation algorithm 

Algorithm step Specific operation 
Step 1: Sorting • Sort all Bboxes by area (descending) 

• Set flags f1, f2, …, fₙ = 0 for all Bboxes 
Step 2: Grouping For *m* Bboxes where fi = 0: 

• Take the 1st Bbox as reference box for group *k* 
• For subsequent *m – 1* Bboxes: 

‣ Set flag fᵢ = *k* if its centre lies within the reference box 
Step 3: Merging For group *k*: 

• Merge all Bboxes to generate NewBbox: 
‣ Top-left: (min(x), min(y)) 
‣ Bottom-right: (max(x), max(y)) 
‣ Score: max(score) in group 

Loop Iteratively execute Steps 2-3 until all flags f1, f2, …, fₙ ≠ 0 

Figure 4 Target relocation based on improved non-maximum suppression, (a) ground true  
(b) results of non-maximum suppression (c) results of improved non-maximum 
suppression (see online version for colours) 

 
(a) (b) (c) 

Notes: The green circle in (b) represents the redundant target that has not been eliminated 
due to the small intersection ratio, while the yellow circle indicates the location 
boxes to be merged. 
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In this paper, an improved non-maximum suppression algorithm is proposed, which can 
further eliminate redundant nested targets and optimise location results. The location 
boxes obtained by the traditional non-maximum suppression are firstly sorted in 
descending order of area. Then, the location boxes whose centre points fall within the 
range of the current location box with maximum area are classified as a subset. 
Sequentially, the maximum and minimum corner coordinates among all location boxes in 
the subset are used to obtain the new location box with the highest score among all boxes 
in the subset. After traversing all the location boxes in turn, the new location box is the 
final result, as shown in Table 1. The final localisation results obtained by our algorithm 
are more consistent with the Ground truth, as shown in Figure 4(c). 

3 Experimental results and analysis 

3.1 Data and experimental setting 

The research area in this paper is China’s northwest region, where coal mines are widely 
distributed, with low density and various scales. In order to construct a dataset with 
higher applicable, 1,282 open-pit coal mines are labelled by visual interpretation in  
398 images with the resolution range of 1 m to 8 m and the size of 800 * 800 from Map 
World. Figure 5 shows some samples of the dataset. As can be seen, the open-pit coal 
mines appear with great differences in scale and shape. Meanwhile, some ground objects 
such as shadows, residential areas, and vegetation coverage areas are similar to the  
open-pit coal mine to some extent, which makes the data better reflect the real scene, and 
also poses a great challenge to detection methods. 

Figure 5 Samples of open-pit coal mines in our dataset (see online version for colours) 
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To verify the effectiveness of the proposed framework, ten remote sensing images of 
Gaofen Series Satellites located in Inner Mongolia are acquired as test images with the 
size of 3,000 to 6,000 pixels and the resolution of 1 m to 8 m, in which 88 targets are 
labelled as the ground truth by visual interpretation. 

3.2 Experiments and analysis 

According to the extracted method of candidate regions shown by Figure 2, ten 
aforementioned large-scale remote sensing images are cut into blocks. The conventional 
uniform cutting method is adopted to compare with our cutting method, which cutting 
image with the size of 800 × 800 pixels, step of 512 pixels (i.e., 288 pixels overlap). 
Statistics of candidate image blocks obtained by the two methods is shown in Table 2. 
Table 2 Comparison of two cutting methods 

Method Number of blocks 
Block with targets Number of complete  

targets in a block Number Ratio (%) 
Uniform cutting method 560 131 23.39 86 
Our cutting method 156 92 58.97 88 

In terms of the number of blocks, 560 blocks are obtained by uniform cutting, of which 
only 131 contain targets, while 156 blocks are obtained by our cutting method, 92 of 
which contain targets. The rest blocks obtained by our method contain shadow of 
mountains or cloud, vegetation coverage areas and other ground objects which are similar 
to the coal mining area in colour and brightness. Thus, further detection model needs to 
differentiate targets and backgrounds. In terms of integrity of the objects, blocks obtained 
by uniform cutting contains 86 complete objects, while all 88 complete objects are 
contained in blocks obtained by our methods. 

The above result indicates that our cutting method can effectively reduce the number 
of blocks and solve the problem of edge being segmented when used in cutting  
large-scale remote sensing images with certain differences in colour, brightness and other 
aspects. 
Table 3 Performances of different models 

Type Model Backbone mAP (%) Recall (%) Precision (%) 
Two-stage Faster R-CNN ResNet50 74.69 86.27 52.38 
One-stage SSD VGG16 74.99 66.67 82.93 
 YOLOv3 DarkNet-53 73.96 78.43 75.47 
 YOLOv5-s CSPDarknet 71.51 69.02 72.54 
 YOLOv5-m CSPDarknet 74.60 74.17 75.01 
 RetinaNet ResNet50 71.49 76.47 67.24 
Anchor-free CenterNet ResNet50 75.13 79.46 71.35 
 YOLOX DarkNet-53 75.72 78.92 72.51 
 YOLOX-s CSPDarknet 73.08 70.22 74.88 
 YOLOX-m CSPDarknet 74.84 74.96  
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Figure 6 Some results of different models, (a) GT (b) faster R-CNN (c) SSD (d) YOLOv3  
(e) RetinaNet (f) CenterNet (g) YOLOX (see online version for colours) 

 
(a) (b) (c) (d) (e) (f) (g) 

The constructed dataset is randomly divided into training set, verification set and test set 
using the ratio of 8:1:1. Online data enhancement methods such as distortion, scaling, 
flipping, and colour gamut transformation are used to increase the diversity of training 
samples. Detection experiments are conducted using Faster R-CNN, SSD, YOLO V3, 
YOLO V5, RetinaNet, CenterNet and YOLOX models, respectively. The performance of 
each model on the coal mine dataset is presented in Table 3, with partial detection 
examples shown in Figure 6. Undetected targets are marked with yellow circles, while 
false positives are indicated by green circles. In terms of detection recall, Faster R-CNN 
detected more targets, whereas other models exhibited varying degrees of missed 
detections – primarily for small-sized targets and those with low contrast against the 
background. Regarding detection accuracy, Faster R-CNN’s results included nested 
redundant objects and false alarms for visually similar targets such as shadows, 
vegetation-covered areas, and small dark surface features. YOLOX achieved the highest 
mean average precision (mAP). 
Table 4 Average times of detecting single image 

Models 
Average times of detecting single image (s) 

Uniform cutting Our cutting 
Faster R-CNN 6.89 2.92 
SSD 1.10 1.31 
YOLO V3 1.74 1.48 
Retinanet 2.96 1.82 
CenterNet 3.48 1.97 
YOLOX 1.93 1.54 

To study the running speeds, the trained models are used to detect the candidate blocks 
obtained by the two cutting methods. The average times of detecting single image are 
shown in Table 4. The experimental results show that our cutting method has great 
difference in the improvement effect of the average times of detecting single image when 
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using different detection models. The speed optimisation is the most obvious when using 
Faster R-CNN model detection, and the average times of detecting single image is 
shortened by 57.62%. This is because the detection speed of Faster R-CNN is the slowest 
among the detection models, and our cutting method greatly reduces the detection time 
by greatly reducing the number of candidate image blocks. At the same time, since the 
saliency detection in our cutting method is also time-consuming, the average times of 
detecting single image increases for the SSD model with faster detection speed. 

In order to test the framework proposed in this paper, ablation experiments are 
conducted to test the optimisation effect of the two improved aspect: saliency guided 
cutting and target relocation. The results are shown in Table 5. As can be seen, saliency 
guided cutting and target relocation have significant effects on increasing the number of 
correct detections and reducing the number of false detections. Specifically, the saliency 
guided cutting method directly eliminates a part of the background without targets, thus 
the number of false detection is reduced. Meanwhile, considering the centroid of a salient 
region as the centre of a block can ensure the integrity targets in the block. The target 
relocation based on the analysis of the spatial distribution characteristics of open-pit coal 
mines can eliminate some redundant nested sub targets, and the small targets that 
conform to an inclusion relationship are combined into a large one, which may reduce the 
number of false detections. Additionally, both proposed algorithms demonstrate strong 
portability across diverse object detection models. 
Table 5 Performance of different improved methods 

Algorithm combination TP FP Recall  
(%) 

Precision  
(%) 

F1-Score  
(%) 

Uniform Cutting + Faster R-CNN 63 199 71.59 24.08 36.04 
Guided Cutting + Faster R-CNN 68 123 77.27 35.60 48.75 
Guided Cutting + Faster R-CNN + Relocation 75 89 85.22 45.73 58.36 
Uniform Cutting + SSD 49 154 55.68 24.14 33.67 
Guided Cutting + SSD 49 98 55.68 33.33 41.76 
Guided Cutting + SSD + Relocation 51 72 57.95 41.16 47.67 
Uniform Cutting + YOLOv3 53 161 60.23 24.77 34.70 
Guided Cutting + YOLOv3 54 102 61.36 34.62 43.28 
Guided Cutting + YOLOv3 + Relocation 60 80 68.18 42.86 52.27 
Uniform Cutting + RetinaNet 52 169 59.09 23.53 33.17 
Guided Cutting + RetinaNet 52 118 59.09 30.59 40.37 
Guided Cutting + RetinaNet + Relocation 57 82 64.77 41.01 50.27 
Uniform Cutting + CenterNet 59 166 67.05 30.67 41.26 
Guided Cutting + CenterNet 60 118 68.18 33.71 45.58 
Guided Cutting + CenterNet + Relocation 65 82 73.86 44.22 54.77 
Uniform Cutting + YOLOX 61 175 69.32 25.85 36.86 
Guided Cutting + YOLOX 62 124 70.45 33.33 44.72 
Guided Cutting + YOLOX + Relocation 68 79 77.27 46.26 57.04 
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4 Conclusions 

In order to realise coal mine detection oriented to large-scale remote sensing images and 
improve detection efficiency and accuracy, this study proposes an image cutting 
algorithm based on saliency guidance and a target relocation algorithm based on 
improved non-maximum suppression, and combines them with the deep learning object 
detection model to form a mine detection framework based on deep learning methods. 
Experiments on 10 large-scale remote sensing images show that compared with the object 
detection model alone, the recall can be improved from 71.59% to 85.22%, and the 
precision can be improved from 24.08% to 45.73% by using our framework. Besides, our 
image cutting algorithm can reduce the number of image blocks, improve the efficiency, 
and solve the problem of edge being segmented on large-scale remote sensing images 
with differences in colour, brightness. In practical applications, the large coverage area 
and complex backgrounds of remote sensing images introduce visually similar features to 
coal mines – such as mountain or cloud shadows, isolated vegetation patches, dark 
cultivated land plots, water bodies, and artificial ponds – which frequently trigger false 
positives in optical remote sensing-based detection. Consequently, both detection 
accuracy and recall rates on large-scale imagery experience varying degrees of 
degradation compared to test dataset performance. Future work will explore multi-source 
image fusion techniques (e.g., Synthetic Aperture Radar with optical imagery, thermal 
infrared with optical imagery) to mitigate these challenges. Furthermore, to mitigate the 
lack of multi-source sample data, the simulation-based approach for remote sensing 
image generation could be employed – exemplified by Dong et al.’s (2025) simulated 
SAR image generation method specifically designed for target recognition task, which 
server as an effective data augmentation solution. 
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