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Abstract: As information technology and artificial intelligence grow quickly, 
intelligent transformation in education has become a major trend. This study 
suggests an intelligent educational resource allocation model based on 
multimodal feature fusion-driven (MERA) to fix the flaws with the current 
system, which are that it is static, not very responsive, and not very 
personalised. MERA combines the transformer structure, self-attention 
mechanism, and graph neural network (GNN) with multi-objective 
optimisation strategies to provide a detailed model and dynamic resource 
allocation for complicated, varied educational data. To fully test the model’s 
performance, three related experiments are planned and carried out. The results 
reveal that the MERA model is far better at using resources efficiently. In 
general, this study gives intelligent educational resource management a new 
technical path and a theoretical base. 
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1 Introduction 

1.1 Background of study 

The education sector is going through a huge digital and intelligent transition because of 
the constant development of artificial intelligence, data mining, and big data processing 
technologies (Cantú-Ortiz et al., 2020). The standard approach for allocating educational 
resources mainly uses administrative regulations, empirical judgements, or static 
indicators, and it does not give accurate answers to the needs of each student or the needs 
of different educational situations. This method is hard to use in the present education 
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ecosystem because it is so diverse and changes so quickly. This is especially true when 
resources are limited and there are conflicts in educational justice. 

There are now many new types of education, such as online learning platforms, smart 
classrooms, and personalised learning systems. These new types of education give us a 
lot of technical tools and situations to collect and analyse education data. While they are 
running, these systems create a lot of different and large amounts of data, such as 
students’ behaviour patterns, learning progress, exam scores, interactive voice, teaching 
videos, courseware text, and other types of information. Multimodal data has more 
semantic layers and is more like the true process of teaching and learning than  
single-modal data. This makes it much more useful for making resource decisions 
(Gandhi et al., 2023). 

But it is still hard to figure out how to get the most important information out of these 
complicated and varied datasets and combine information from multiple modes in a 
useful way. Multimodal feature fusion is a key topic in cross-modal learning research. In 
the last few years, it has made great progress in computer vision, natural language 
processing, and recommender systems. In intelligent education situations, this technical 
framework is expected to help solve the problem of data fragmentation and help us better 
understand and model the needs of learners, which will lead to better support for 
allocating educational resources. 

By building a deep model architecture that combines GNN, transformer,  
self-attention mechanism, and other tools, it can effectively model the higher-order 
relationship and dynamic dependence between multimodal data. This will improve the 
model’s ability to represent students’ portraits and the generalisation ability of resource 
scheduling strategy. Also, using both optimisation algorithms and scheduling techniques 
together can make resource allocation even more real-time, fair, and efficient, which is a 
technical assurance for the smart administration of educational resources. 

So, the topic of optimising the allocation of educational resources based on 
multimodal feature fusion is at the cutting edge of the intersection of educational 
technology and artificial intelligence. This research not only helps move educational 
resources from rough allocation to intelligent optimisation but also gives us a new way to 
think about how to use computer technology in intelligent education. 

1.2 Objective and significance of study 

The study wants to create a multimodal feature fusion-driven intelligent educational 
resource allocation model, or MERA for short. MERA will fully explore and combine 
different types of data from the educational environment, such as students’ behavioural 
records, course text content, teaching images, interactive speech, and more. It will then 
create a single multimodal expression representation to accurately perceive, dynamically 
schedule, and intelligently match educational resources. The study looks at how to make 
educational resources more useful, distributed, and responsive in a multimodal 
information environment. It also looks at how to use deep fusion technology and graph 
modelling methods to find the best way to go from data perception to feature expression 
to decision optimisation. 

As part of the model design process, the transformer structure, GNN, and  
self-attention mechanism from deep learning are combined to make the system better at 
modelling complicated, different kinds of interactions. At the same time, the resource 
scheduling technique uses multi-objective optimisation ideas to find a balance between 
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fairness, personalisation, and timeliness in the allocation results (Alkurd et al., 2020). 
This study not only wants to fix the problems with existing educational resource 
allocation strategies that make them static and unresponsive, but it also wants to create an 
intelligent decision-making framework that can be expanded and moved to meet the 
different needs of educational management systems. 

This research is essential for both theory and practice: 

1 Theoretical level: this study combines multimodal learning, graph computation, and 
resource optimal scheduling techniques to suggest a cross-modal feature modelling 
and driving mechanism for educational situations. This adds to the technical depth 
and research scope of using AI in smart education. The MERA model looks at a 
closed-loop path from bottom-layer perception to top-layer reasoning, which is 
especially useful for multimodal embedded representation and allocation mechanism 
linkage modelling. It solves the problem of fragmentation between data processing 
and resource decision making in traditional methods and helps task-oriented AI 
system construction methods become more common in education. 

2 Application level: the MERA model can help school administrators better allocate 
resources so they can better respond to the rising variations in demand for education 
and pressure on resources. With the help of multimodal data, the system can see the 
status of learners and the demand for instruction in real time, allocate resources on 
demand, and make changes as needed. This helps to cut down on waste and bias in 
resource allocation. MERA can also help with algorithms and technology in a variety 
of common situations, such as recommending personalised lessons, managing 
regional education in a balanced way, and improving the services offered by online 
education platforms. 

3 Methodological level: at the feature expression level, a fusion strategy for the 
different types of education is suggested. This breaks the current mainstream 
methods’ reliance on a single modality. At the allocation strategy level, graph 
structure learning and dynamic optimisation techniques are used to make resource 
scheduling understandable and flexible, and to make the system more stable and 
adaptable during deployment. 

In short, this study looks at the deep connection between multimodal feature fusion and 
intelligent resource scheduling. By building the MERA model, it not only adds to the 
body of research on intelligent education, but it also gives a methodological basis and a 
way to build personalised and intelligent education service systems in the future. This is 
very useful for research and promotion and has a lot of social value. 

2 Theoretical foundation and related research 

2.1 Theoretical foundation of multimodal feature fusion 

As information technology grows quickly, data sources are becoming more diverse and 
varied. This is especially true when different types of data, like images, text, speech, 
video, sensor signals, and so on, are all present at the same time. Multimodal feature 
fusion has become an important technology for improving the system’s ability to think 
and make decisions (Zhang et al., 2020). Multimodal fusion is more than just putting 
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together data from diverse sources; it is also the process of getting useful information 
from different sources and combining it into one body of knowledge. Fusion combines 
the best parts of several modalities to make up for the shortcomings of single-modal 
information expression which results in a more expressive and generalised joint 
representation. 

In theory, multimodal fusion has two fundamental problems: aligning the different 
modes and combining the features. The idea behind multimodal fusion is that diverse 
modalities can be aligned in terms of time, space, meaning, and even structure. This way, 
features from different modalities can match up at the same semantic level. Because the 
data types and representations of different modalities are so different, like how text 
sequences and image pixel matrices are structured differently and how speech signals are 
continuous over time while text is made up of separate word sequences, these differences 
make it hard for direct fusion to get a good joint representation. 

Modal alignment is commonly done with modality-specific encoders to fix this 
problem. There are M various types of modalities, and the input data for each one is 
represented as xi. Each modality’s deep coding function fi extracts and transforms the 
features of xi. 

( ) , 1, 2, ,i i ih f x i M= =   (1) 

where hi is the semantic embedding vector for the ith modality. The encoder usually uses 
deep learning structures like convolutional neural network (CNN), recurrent neural 
network (RNN), transformer, and others to create the right network structure for the data 
of each modality (Zhao and Ji, 2022). This lets the different modalities be mapped into 
the same potential representation space. 

The quality of fusion is directly affected by modal alignment. After coding and 
mapping, the modal features should be close to each other in the semantic space. This 
shows how relevant distinct modal information is to each other. For instance, in a visual 
question-and-answer system, the image and text descriptions should be able to show the 
same scene or meaning after they have been aligned. Many studies have used  
cross-modal comparison learning approaches to improve the alignment effect even 
further (Zheng and Zhang, 2020). These methods encourage inter-modal semantic 
consistency by making positive sample pairs as similar as possible and negative sample 
pairs as distinct as possible. 

The next step after modal alignment is to combine the features. The way multimodal 
features are combined influences how well the final fusion representation works and how 
well the job that comes after it works. There are three main types of fusion strategies: 
early fusion, middle fusion, and late fusion. Early fusion is when you directly splice or 
fuse at the original feature level (He and Liu, 2021). This is simple and intuitive, but it is 
hard to deal with the differences in distribution and time between heterogeneous 
modalities. Mid-term fusion takes into account the expressive ability and the capture of 
interaction information by fusing at the deep feature representation level. This is thought 
to be an effective way to do multimodal fusion. Late fusion is when the decision-making 
results of each modality are merged after they have been processed by an independent 
model. This is good for model integration and multitasking, but it may lose the  
fine-grained interaction information across modalities. 

The attention mechanism is often utilised in the mid-term fusion session of deep 
learning frameworks which can give distinct modalities different weights and change 
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how much each modal feature contributes based on the input samples’ contextual 
information. This makes the fusion representation more flexible and focused. Its main 
way of doing math is commonly shown as: 

1
i i

M

i

hz
=

=α  (2) 

1
1

M

i i=
= α  (3) 

In this case, w is the parameter vector that needs to be trained, and αi is the weight that 
shows how important the ith modality is. The model can automatically change the weight 
distribution based on the input samples after training. This makes the information 
expression more accurate. The attention mechanism can also effectively block out noise 
and improve the fusion quality when the information between modalities is unbalanced or 
some modalities are noisy. 

GNN has also been used in multimodal fusion, along with the weight-weighting 
fusion method. GNN provides feature interaction and integration through message 
transmission and node update mechanisms by building a heterogeneous graph between 
multimodal features (Xu et al., 2022). In this graph, nodes represent modal features or 
entities and edges show how they are related. The graph structure may model 
complicated higher-order dependencies, find the hidden connections between modalities, 
and make the fusion representation more expressive and stable. This structured 
integration gives a deeper semantic meaning to multimodal information, especially in 
areas like scene data and social networks. 

To sum up, the theory of multimodal feature fusion deals with two main problems: 
how to align modes and how to combine features. Modal alignment fixes the differences 
between distinct modalities so that they can all be shown in the same potential space. 
Feature combination, on the other hand, uses a number of methods to effectively combine 
information from different modalities. The ongoing development of ideas and methods 
has led to widespread use of multimodal technology in many areas. This technology is 
the foundation for building intelligent systems that can perceive and reason well. 

2.2 Current research status of intelligent educational resource allocation 

Smartly allocating educational resources is a key aspect of making personalised 
education a reality. The goal is to meet the learning needs of each student and raise the 
overall quality of teaching by making the best use of limited resources. As the idea of 
intelligent education becomes more popular and technology improves, the problem of 
resource allocation has gotten more difficult, and the data dimensions and interaction 
interactions involved have become more and more complicated. To deal with this 
complexity, academics have come up with a number of algorithms and models from 
different points of view, all with the goal of making resource allocation as optimal and 
adaptable as possible. 

In the beginning, the field of intelligent resource allocation was mostly based on 
traditional mathematical planning approaches including linear programming, integer 
programming, and dynamic programming (Forootani et al., 2021). These methods use 
clear objective functions and limitations to mathematically describe the resource 
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allocation problem and find the best or worst solutions. As an example, linear 
programming can be used to schedule resources at the system level by creating an 
objective function that maximises the use of learning resources or student happiness, 
along with limitations like the number of resources and time schedules. But in real 
educational settings, there are challenges with multiple objectives, multiple constraints, 
and uncertainty that make standard planning methods less effective and less scalable. 
This is especially true when dealing with large-scale dynamic change scenarios. 

Population intelligence algorithms have become a popular area of research to fix 
these problems. Genetic algorithms (GA) are often used to allocate resources because 
they replicate the process of biological evolution and find the best answer for everyone 
by using selection, crossover, and mutation procedures. It does not need to use gradient 
information, which is a plus, and it works well for nonlinear and non-convex optimisation 
problems. On the other hand, particle swarm optimisation (PSO) uses the way bird flocks 
look for food to efficiently move through the search space by having groups work 
together. It can also swiftly find the best solution. The ant colony algorithm (ACO) works 
effectively for path planning and combinatorial optimisation issues by mimicking how 
ants move pheromones (Tutuko et al., 2018). These algorithms all have strong global 
search capabilities and are robust enough to handle the complex constraints and  
multi-objective optimisation needs of allocating educational resources. However, they 
also have the problems of being hard to adjust parameters and having a slow convergence 
speed. 

As machine learning technology has improved, intelligent recommended systems 
have become one of the most important tools for allocating educational resources. 
Collaborative filtering (CF) algorithms look at how similar users’ past behaviours are to 
offer learning resources that fit students’ requirements and interests. The model-based CF 
method uses matrix decomposition and deep learning to make recommendations more 
accurate and useful in more situations. But CF is sensitive to the cold-start problem and is 
hard to deal with the changing needs of each learner. Content-based recommendation 
algorithms make up for this by looking at the feature information of resources and 
students’ learning profiles to find better matches for each student. Deep learning 
approaches have been utilised a lot in the last few years for things like extracting resource 
features and modelling student behaviour. Structures like CNN and RNN can 
automatically find complex feature patterns to help make recommendations and 
schedules more accurate. 

Reinforcement learning (RL) is especially good at allocating resources in changing 
contexts because it learns by interacting with them. People think of resource scheduling 
as a challenge of making decisions in a sequence, where people choose actions based on 
the status of the environment to get the most long-term benefits. Deep reinforcement 
learning (DRL) uses the representation power of deep neural networks to process  
high-dimensional state spaces effectively. For example, with deep Q networks (DQN), 
intelligence can enhance the allocation strategy by continuously trying and failing to get 
closer to the state-action value function (Talaat, 2022). But its training process is 
complicated and depends heavily on modelling the environment, so it needs to find ways 
to make its samples more stable and efficient in real-world use. 

Hybrid algorithms, which have become more common in the last several years, 
combine the best parts of other methodologies. Also, hybrid methods that combine group 
intelligence algorithms with deep learning improve the optimisation even more by 
helping the search process through deep feature extraction. These kinds of strategies are 
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more flexible and robust when it comes to allocating educational resources, and they 
work well for projects that are multimodal and have several goals. 

Also, intelligent resource allocation strategies based on multimodal fusion are 
becoming a hot topic in research as multimodal data collection becomes more prevalent. 
Multimodal fusion uses the multidimensional aspects of students’ behavioural data, 
cognitive states, sentiment analysis, and teaching resources to create a rich feature space 
that gives the resource allocation model correct information support. GNN models the 
relationship graph between students and resources to capture the complex structure of 
their interactions and match resources to students in a way that takes the context into 
account. This strategy not only makes personalised recommendations more accurate, but 
it also makes the model easier to understand and more adaptable. 

Overall, research in the area of intelligent educational resource allocation has changed 
throughout time, with algorithms changing from classical optimisation to intelligence and 
dynamics. To move intelligent education in the direction of higher personalisation and 
accuracy, researchers need to keep looking into algorithm design and system 
implementation. 

3 Model design and optimisation methods 

3.1 Model construction 

The MFRE model is a system that uses deep learning and graph computing technologies 
to sense features across different modes and schedule resources dynamically for smart 
educational situations. See Figure 1. The model structure is set up in a hierarchical way, 
with four key parts: the feature expression layer, the multimodal fusion layer, the graph 
structure modelling layer, and the resource allocation optimisation layer. 

3.1.1 Feature representation layer 
The feature representation layer of the MFRE model has a feature encoding mechanism 
that works well and is specific to the different types of input data from different sources 
in an educational setting. The goal is to get a detailed picture of student behaviour, 
teaching resources, and environmental information all in one place. First, the layer cleans 
up the raw data and makes it more stable by removing noise and outliers. Next, different 
types of deep learning structures are utilised to find the most important attributes in each 
modality. This makes the expression more interesting and useful. 

For the time series class of student behaviour data, the MFRE model adds the 
transformer encoder based on the self-attention mechanism. This encoder can pick up on 
long-distance dependencies and changes that happen over time in the learning process 
(Fu et al., 2023). Assuming the input sequence is X, we can write X as: 

{ }1 2, , , TX x x x=   (4) 

where xt is the feature vector at moment t. The self-attention mechanism gives more 
weight to the significant time nodes by figuring out how the query matrix Q, the key 
matrix K, and the value matrix V are related. This is how the formula looks: 
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Attention , , so tm) ax( f
k

QKQ K V V
d

 =  
 


 (5) 

where kd  is a scaling factor that keeps the dot product from getting too big, which 
would cause the gradients to disappear or explode. This method lets the model 
automatically focus on important learning behaviour segments, as when students keep 
trying to solve hard problems or review knowledge points a lot, to pick up on little 
changes in how motivated and effective they are at learning. 

Figure 1 Structure of MFRE model (see online version for colours) 

Start: data collection and pre-processing

Step 1: Extraction of modal internal features by coding with 
CNN

Step 2: Linear transformation to complete modal alignment

Gating and multi-attention mechanisms

Step 3: Modelling with GNN

Adaptive information aggregation using GAT

Step 4: Multi-targeted scheduling

Online update mechanism
 

The methodology uses CNN to encode multi-dimensional information about structured or 
semi-structured data like instructional materials and environmental information. This 
includes things like content attributes, difficulty level, frequency of use, and instructor 
feedback on the resources. For example, the feature mapping method for the input feature 
vector xr is: 

( )r rh σ Wx b= +  (6) 

where W is the weight matrix and b is the bias vector. The activation function σ is chosen 
to be leaky ReLU to make the nonlinear expression better. The encoder slowly improves 
the deep semantics of resource and environmental features through multi-layer stacking 
and regularisation approaches. It also makes features better at telling the difference 
between things and generalising. 
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The feature expression layer also looks at how to unify the scale and align the 
distribution of different modal features. It uses batch normalisation and layer 
normalisation to help with the problem of gradients disappearing during training, which 
makes the model more stable and speeds up the training process (Garbin et al., 2020). In 
the end, this layer maps the coding results of each modality to a single high-dimensional 
vector space. This gives multimodal fusion structured and fully articulated inputs, making 
sure that the information from diverse modalities may interact and function together 
efficiently. 

In short, the layer builds a multidimensional feature representation framework by 
combining the self-attention mechanism and deep coding technology. This framework 
can not only deeply explore the internal structure of a single modality, but it can also lay 
a solid foundation for cross-modal fusion. This not only helps the model understand 
complicated, mixed-up educational data better, but it also gives it a strong foundation for 
later intelligent resource scheduling. 

3.1.2  Multimodal fusion layer 
The multimodal fusion layer is the main part of the MFRE model that connects the 
feature expression layer and the resource scheduling optimisation layer. Its main jobs are 
to combine data from different sources, make sure that information from different modes 
is aligned, and allow for deep interaction. Data in the education field includes things like 
student behaviour, teaching materials, and environmental factors. These things have 
structural and semantic differences and merging them directly could cause information 
loss or conflict. Therefore, it is important to achieve modal alignment first, so that the 
different modal features can be mapped to a single potential space. Let hi be the feature 
representation of the ith modality. To finish the alignment, use linear transformation: 

i ii iW hh b= +  (7) 

where Wi and bi are trainable parameters that make the modal features constant in size 
and distribution, get rid of scale disparities and bias, and make it easier to combine them 
later. 

After the alignment is done, the model adds a gating mechanism that changes the 
relevance of each modal characteristic on the fly (Tan et al., 2021). This stops the 
information from being redundant or conflicting, which can happen with simple 
superposition. In particular, the following form is used: 

( )i g gig W bhσ= +  (8) 

1
i

M

i
i

z g h
=

 
 
 

=  φ  (9) 

where gi is the sigmoid activation function that makes the gating vector, φ is the nonlinear 
activation, and   is the product at the element level. This gating method can change the 
weights based on the task requirements and modal properties to make the fusion 
expression more relevant and useful. 

The MFRE fusion layer adds a multi-head attention mechanism to better capture the 
complex and multi-level interactions between modalities. This lets the model focus on 
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different modal feature interactions in different subspaces by parallelising multiple 
attention heads. Set the query, key, and value matrices as Q, K and V. The steps in the 
multi-head attention calculation are: 

( )head Attention , , 1, ,Q K V
i i i iQW KW VW i h= =   (10) 

( )1MultiHead , , Concat , ,( ) O
hQ K V head head W=   (11) 

where ,Q
iW  ,K

iW  V
iW  and WO are trainable parameter matrices. The multi-head 

attention not only helps the model find more detailed modal relationships, but it also 
makes the fusion results more diverse and robust, which helps it deal with the problems 
of data heterogeneity and changing conditions in educational situations. 

The fusion layer also makes sure that deep network training is stable and that 
information flows smoothly by using residual connection and normalisation methods. 
The multimodal fusion output has a lot of features (Kong et al., 2023). It shows the deep 
semantic synergy between modalities and the relative contribution of each modality to the 
current task. This gives an accurate and discriminative input basis for the next steps of 
graph structure modelling and resource allocation optimisation. 

In short, the MFRE model’s multimodal fusion layer combines modal alignment, 
gating fusion, and a multi-attention mechanism to get a deep understanding of and 
dynamic trade-offs of different types of educational data. This greatly improves the 
model’s ability to perceive and make decisions about intelligent educational resource 
allocation, and it provides a solid technological guarantee for building a highly efficient 
and intelligent educational resource management system. 

3.1.3 Graph structure modelling layer 
In the MFRE model, the graph structure modelling layer takes over the multimodal 
features output from the fusion layer, aiming at mining the deep semantic connections 
between many types of entities and interactions in the education system. MFRE creates a 
GNN-based modelling scheme to better show these interactions. This scheme makes full 
use of the expressive capability of graph structure to improve the model’s ability to 
understand and make inferences about systems. Data items in real educational contexts 
exhibit clear graph structure aspects, for example, the relationships between students and 
courses, teachers and resources, and social interactions among students collectively 
constitute a dynamic, diversified and heterogeneous network structure. 

The model first makes multimodal things like learners, courses, and resources into 
node sets V and relationships like behaviours, teaching, and cooperation into edge sets E. 
This gives us the graph structure G: 

( , )G V E=  (12) 

The output of the multimodal fusion layer gives each node an embedding vector. The 
strength of the edges can change depending on how often certain behaviours happened in 
the past, how strong the relationships between nodes are, or how similar the content is. 
The different types of nodes and edges in the graph constitute a heterogeneous network, 
giving a rich structural priority for the model. 

MFRE uses graph attention networks (GAT) to provide adaptive information 
aggregation in this graph structure so that it can learn context-aware node representations 
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(Wei et al., 2022). For each node v in the graph, its representation is updated by 
aggregating the features of nearby nodes u and weighting the sum: 

( )
v u

u N v
uv Whh σ

∈

 ′ =
 
 
 α  (13) 

where hu is the neighbour node feature, W is the shared weight matrix, αvu is the attention 
weight of node u to node v and σ is the activation function. This method enables nodes to 
focus on their more semantically important neighbours during representation update, 
effectively increasing the discriminative and contextual adaptability capabilities of 
feature representation. 

To better reflect the diverse interaction structure in educational settings, MFRE adds 
a relationship type encoding and meta-path aggregation technique based on GAT to help 
share information between different types of nodes. For example, student-course-resource 
connections illustrate indirect correlations of resource requirements, while  
teacher-course-student paths reflect chains of pedagogical influence. The model can 
create a more hierarchical and explanatory embedded representation by controlling how 
certain paths spread through the graph. 

The final output of the graph structural modelling layer is a global context-aware, 
structural relationship-driven set of node embeddings that give high-quality inputs to help 
further resource scheduling optimisation. This layer makes the model more adaptable to 
complex network structures and connects individual behaviours to system hierarchies in 
intelligent educational systems. This makes the model stronger and better able to work in 
changing educational settings. 

3.1.4 Resource allocation optimisation layer 
The resource allocation optimisation layer is the MFRE model’s decision-making 
terminal. Its main goal is to use the integrated multimodal feature expression and graph 
structure modelling results to create an intelligent schedule and the best use of 
educational resources. In real life, educational resources like courses, teachers, and 
learning tools are often limited and structured. At the same time, users’ needs are varied 
and changed over time. This makes it hard for traditional static allocation or rule-based 
systems to meet the need for accurate services in large-scale intelligent educational 
systems (Sophia, 2025). So, MFRE adds a multi-objective optimisation technique at this 
level to find a compromise between the fairness, personalisation, and timeliness of the 
resource allocation process. 

Resource allocation optimisation is modelled as a multi-objective scheduling 
problem, where each objective function measures the system performance from a 
different optimisation point of view. For example, improving customer pleasure while 
preserving overall load balance, or guaranteeing optimal resource utilisation while 
enhancing services for disadvantaged groups. To do this, the model looks at a number of 
different metrics to create an optimisation objective vector and make scheduling choices 
that work within limits. In formal terms, it can be said as: 

1 2 3min fair personal timely
Y

L λ L λ L λ L= ⋅ + ⋅ + ⋅  (14) 

where Y is the resource allocation matrix; the three loss functions are the fairness loss of 
allocation, the personalisation bias loss, and the response timeliness loss; λi is the 
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adjustable weight coefficient, which lets you switch strategies based on the needs of 
different educational situations. During training, the gradient optimisation approach can 
be used to change this objective function repeatedly. It can also be used with 
reinforcement learning or a dynamic feedback system to make the performance better 
when it is deployed online. 

In real life, MFRE first uses the graph embedding output from the previous layer to 
figure out how well students and resources match up. Then it uses the multi-objective 
optimisation function to come up with the final allocation method. To improve 
practicality and scalability, the system additionally constructs a priority queue-based 
scheduler, which makes secondary corrections and filters the scheduling results to assure 
the overall optimal efficiency in resource-limited settings. 

MFRE also has an online updating feature that lets you change the scheduling 
approach while tasks are running. The system can recognise changes in user behaviour 
and resource status in real time, combine past allocation records with expected trends, 
update and optimise goal weights, and create a closed-loop resource management process 
(Righi et al., 2019). This technique is particularly useful for complicated educational 
activities such as customised learning path suggestion, cross-regional resource 
deployment and multi-terminal resource collaboration. 

The resource allocation optimisation layer is designed so that MFRE can not only 
work well with static data but also schedule tasks quickly and easily in changing 
situations. This layer effectively closes the gap between understanding and action by 
combining in-depth expression, structural perception, and decision feedback. It does this 
by showing the full path from multimodal perception to educational intervention and 
providing algorithmic guarantees and technical support for the long-term growth of 
intelligent educational systems. 

3.2 Evaluation indicators 

This research builds a set of normalised evaluation index systems from four different 
angles to fully evaluate the real-world consequences of the MFRE model on the 
intelligent educational resource scheduling job. These signs show that the model is better 
at the algorithmic level and that it can really be used in educational settings. 

First, resource utilisation is used to see if the system is being used enough for the 
number of resources it has (Kjaer et al., 2019). This indicator looks at whether the system 
can make the best use of resources for users who require them without adding to the total 
quantity of resources. The overall service capacity of the system and the rationality of 
resource allocation both depend on how well resources are allocated. This is a crucial 
factor in deciding whether the resource scheduling method is effective. 

Second, personalised matching shows if the resource distribution genuinely meets the 
demands and characteristics of each user. In smart education settings, various users have 
very varying needs and wants for resources. Because of this, the system’s ability to 
effectively match users based on their profiles is the most important way to determine 
how smart it is. A higher level of personalised matching means that the system can better 
recognise what users need and offer them varied and accurate teaching resource push 
services. This makes learning more successful and satisfying. 

Third, the fairness indicator checks to see if resources are being shared fairly across 
different groups of users. As a social issue, the distribution of educational resources, in 
addition to the goal of efficiency, needs to consider fairness, to ensure that all types of 
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user groups have access to the right services. This indicator gives a numerical score to the 
level of balance in the distribution of resources. It also checks to see if the system has 
major problems with resource concentration or skewed distribution. The system works 
better at protecting vulnerable users and keeping the balance across regions when the 
allocation is more even. 

Finally, the response efficiency indicator looks at how quickly the system can 
respond to a request and finish allocating resources. In large-scale education systems, 
real-time is a key part of making sure that the service is good and that scheduling may 
change as needed (Canizo et al., 2019). Higher response efficiency means that the system 
can process information and give feedback in real time better. It can also change based on 
the needs of users and the state of resources, which makes it suitable for highly dynamic 
situations like online education. 

Overall, these four assessment indicators create a performance evaluation framework 
that looks at things from many angles and is easy to use. It can fully show the MFRE 
model’s main skills in allocating intelligent educational resources. It not only looks at 
how accurate and efficient the algorithm is, but also how fair and adaptable it is to change 
educational situations, which is very useful in real life and for guiding future use. 

4 Experimental design and analysis of results 

4.1 Experimental setup and dataset description 

This research does an experimental design using real multimodal educational datasets to 
see if the suggested MFRE model works in real-life educational situations. It also sets up 
the assessment procedure by combining the normal task needs and model capabilities. To 
make sure the assessment results are accurate and consistent, the experiment includes 
data pretreatment, model training, parameter optimisation, and performance comparison. 
Table 1 Dataset overview (EdNet) 

Module 
category Data content Description 

User 
features 

Answer accuracy, active time, video 
watch time, click records 

Describes user behaviour patterns and 
study habits; serves as input for user 
embeddings 

Resource 
features 

Question knowledge points, resource 
type, course difficulty, 
recommendation frequency 

Describes static and dynamic features 
of educational resources 

Interaction 
logs 

User responses, question IDs, 
timestamps, feedback states 

Represents dynamic user-resource 
relationships, used for heterogeneous 
graph construction 

The EdNet dataset is used as the basis for the experiments in this study. It was released 
by Riiid from its e-learning platform Santa. The EdNet dataset is used as the basis for the 
experiments in this study. It was released by Riiid from its e-learning platform Santa and 
includes the interaction behaviours of more than 780,000 students. These behaviours 
include questions, explanation videos, time information, answer results, course structure, 
and more. The data is rather complex in terms of structure and usefulness. After filtering 
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and cleaning, this study isolates the three basic modules of user characteristics, resource 
attributes and interaction records, and produces a subset of experiments appropriate to 
multimodal modelling and resource allocation. 

Table 1 shows the main information in the dataset. 
To make sure that the model’s training is effective and can be repeated, this paper 

does all the experiments in a local high-performance computing environment. Table 2 
shows the specific configurations and hyper-parameter settings used. 

Table 2 not only gives the experimental procedure a clear framework and genuine 
data, but it also makes sure that the MFRE model’s ability to describe, schedule, and 
generalise in complicated educational situations can be rigorously examined. 
Table 2 Experimental settings 

Item Description 
Hardware platform NVIDIA RTX 3090 GPU, Intel i9 CPU, 64 GB RAM 
Software environment Python 3.9, PyTorch 2.1, CUDA 11.7, DGL 1.1 
Batch size 128 
Learning rate 0.0005 (with Adam optimiser) 
Maximum epochs 100 (with early stopping after 5 stagnant epochs) 
Data split strategy Time-based user-level split: 70% train, 15% validation, 15% test 
Cross-validation method 5-fold cross-validation 
Initialisation strategy Xavier initialisation 
Evaluation frequency Once per epoch on validation set, for dynamic learning rate 

adjustment and model selection 

4.2 Experiment 1: analysis of the resource allocation structure 

This paper first does resource allocation structure analysis experiments to see how the 
MFRE model responds when it has to deal with different types of resources. This is to 
check its adaptability and ability to schedule resources intelligently in real educational 
resource allocation scenarios. The experiments focus on common educational resources 
like video lectures, practice questions, extra materials, and real-time feedback. By 
looking at the proportion of resources in the model’s final allocation decision, we can see 
how well the model understands and prefers the role weights of different resources. This 
lets us evaluate the system’s scheduling equilibrium and strategy rationality. 

A representative sample of 5,000 users is taken from the EdNet dataset and merged 
with their learning goals, behavioural traits, and current stage of learning. This 
information is then fed into the trained MFRE model to create the resource allocation 
plan. Next, the model’s tendency to schedule resources under multimodal feature fusion 
is analysed by counting the percentage of each type of resource in the final recommended 
total. Figure 2 shows how the different types of resources are divided up in the model 
output: 

Video lectures and practice problems take up the most space in the overall resource 
allocation findings, with 38.4% and 34.7%, respectively. This shows that the MFRE 
model, after adding multimodal characteristics, focuses on meeting learners’ direct 
demands for knowledge explanation and practical training. This is in keeping with the 
present teaching strategy of ‘understanding + training’ in the intelligent education system. 
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The model automatically shows how important video is for transferring knowledge and 
creating concepts. It also stresses how important memory improvement and skill transfer 
through practice are, which shows that it has high content perception and scheduling 
skills. 

Figure 2 Resource allocation proportions by MFRE model (see online version for colours) 

26.9% 11.7%
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34.7%
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 Video Lectures
 Practice Exercises
 Real-time Feedback
 Supplementary Materials / Reports

 

Further analysis reveals that despite the relatively low allocation of real-time feedback 
and extension materials (15.2% and 11.7%, respectively), they are still moderately 
allocated by the system, suggesting that the model does not only focus on mainstream 
resources, but also considers the necessary role of ancillary support in the personalised 
learning process. The allocation ratio of real-time feedback shows that the model can 
change dynamically, which means it can give timely responses and guidance during the 
learning process. The expansion materials, on the other hand, show that the system has a 
differentiated supply strategy for some high-ability or independent learning users, which 
helps to create a multi-level and gradient learning resource system. 

The MFRE model does a good job of following the allocation strategy of giving 
priority to core resources and balancing auxiliary resources in resource scheduling. This 
shows that it has a deep awareness of structure and can adapt to tasks. The proportion of 
different resources is not just an average; it is a smart and tailored distribution based on 
user profiles, resource attributes, and interaction history. This finding not only shows that 
the multimodal fusion technique works to represent features, but it also strongly supports 
the next steps of precise matching and dynamic optimisation of instructional resources. 

4.3 Experiment 2: overall assessment of personalised recommendation 
matching degree 

This paper designs a second set of experiments to statistically measure how well the 
resource recommendation results match users’ real learning needs from a global 
perspective. This is to check the overall adaptation performance of the MFRE model in 
personalised recommendation. The tests no longer look at different types of users; 
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instead, they look at how accurate and reasonable the recommended content is. The 
results are then sorted into three groups: highly matched, partially matched, and 
obviously mismatched. This shows how well the model can model complex groups of 
users as a whole. 

The experiment randomly picks 3,000 EdNet users who are always learning and 
records the recommended content for each round after inputting the trained MFRE 
model. It then uses both manual annotation and behavioural validation methods to figure 
out how well the recommendations fit. Figure 3 shows the findings of the statistics: 

Figure 3 Overall match distribution of MFRE recommendations (see online version for colours) 

41.4%

10%
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First, looking at the overall distribution, the MFRE model produces 58.6% of highly 
matched recommendation results. This shows that the model has strong reasoning and 
expression skills after considering user behaviour data, semantic features of the content, 
and scenario information. It can also accurately respond to the current learning needs of 
most users. This ratio reveals that the system has a good quality of content recognition 
and recommendation under multimodal situations, which meets the basic objectives of 
intelligent educational resource scheduling for accuracy and personalisation. 

Second, 31.4% of the matches are partial, making them a bigger secondary element of 
the recommendation results. The analysis shows that this segment is largely about people 
who are in the knowledge migration or stage transition period, and their learning interests 
and behaviour labels are not very clear. The recommended contents are mostly going in 
the same direction, however some are deeper or harder than others. This shows that there 
is still opportunity for development in the model to cope with dynamic learning state 
changes, especially in capturing prospective learning motivations and intention 
prediction, which can be further increased. 

Last but not least, the percentage of obvious mismatch outcomes is 10.0%. This is not 
a lot, but it still needs to be looked at from the point of view of model optimisation. This 
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kind of recommendation mistake happens most often when there are not many users, 
when there are problems with labels, or when a system is just starting off. MFRE uses 
GNN and multimodal fusion algorithms to help with this kind of difficulty, however the 
results show that there are still some areas that need work. 

4.4 Experiment 3: contribution of key modules 

This research describes ablation experiments that will help us better understand how each 
important module in the MFRE model affects the performance of intelligent educational 
resource allocation. By taking away the multimodal fusion layer, the graph structure 
modelling layer, and the resource allocation optimisation layer one at a time, we can see 
how missing modules affect the model as a whole and check that the design of each 
section is necessary and works. The tests are conducted using the same EdNet dataset and 
unified assessment indexes as the previous ones to ensure comparable findings. 

The exact settings are as follows: 

• complete model (MFRE): has all the design modules as a baseline for performance 

• without fusion layer: takes off the multimodal fusion portion and solely uses single 
modal information to allocate resources 

• without graph layer: takes off the GNN module and does not pay attention to the 
complicated relationship between users and resources in a graph 

• without optimisation, there is no multi-objective optimisation approach, and the 
resource allocation strategy is limited to static rules. 

Figure 4 displays the performance of each model version on the comprehensive 
assessment index. 

The full MFRE model has the highest scores on all the indicators. This shows how the 
multimodal fusion, graph structure modelling, and resource optimisation strategies used 
in this study work together to make intelligent educational resource allocation better. The 
model provides efficient and intelligent resource scheduling while taking into account 
numerous objectives. The resource utilisation efficiency is 0.87, the fairness index and 
personalisation score are both over 0.8, and the response rate is also good. 

Second, the model’s performance drops a lot when the multimodal fusion layer is left 
out. For example, the personalisation score drops from 0.90 to 0.72. This shows that 
multimodal fusion is very important for getting the rich information between users and 
resources and making personalised allocation possible. The reduction in resource 
utilisation efficiency and reaction rate also indicates the assisting influence of the fusion 
layer on overall decision accuracy and system agility. 

Again, the version without the graph structure modelling layer shows a small drop in 
fairness and response rate metrics. This shows that GNN is necessary for modelling  
user-resource interaction networks and showing how different types of relationships 
work, which helps the model allocate resources fairly and respond quickly. 

Finally, the experimental version without the resource allocation optimisation layer 
performs equally poorly, suggesting that the multi-objective optimisation strategy plays a 
significant role in balancing justice, customisation and timeliness. Without this layer, the 
resource allocation approach is less precise, and the system doesn’t respond well to 
complicated educational needs. 
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Figure 4 Ablation experiment results of MFRE model (see online version for colours) 
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In short, the ablation experiment shows that each module of the MFRE model is 
necessary and useful. It also shows the benefits of combining multimodal fusion, graph 
structure modelling, and resource optimisation strategies in intelligent educational 
resource allocation. Finally, it gives theoretical and practical support for improving and 
promoting the next model. 

5 Study summary and future prospects 

5.1 Summary of study 

This research looks at the issue of optimising the allocation of intelligent educational 
resources via multimodal feature fusion. It suggests an MFRE model that combines a 
transformer structure, a graph neural network, and a multi-objective optimisation 
technique. The approach gets a full picture of the learner’s status, instructional materials, 
and environmental elements by deeply mining and effectively combining multimodal 
heterogeneous data. This makes educational resources much more useful. 

Experiment 1 shows that the MFRE model can adapt and schedule educational 
resources intelligently in real-life situations. Experiment 2 shows that the MFRE model 
can adapt to personalised recommendations. The ablation experiment, which is the main 
part of experiment 3, shows that the three key modules of the MFRE model are 
irreplaceable. Each module plays a significant role in enhancing the indexes of fairness 
and response speed, which supports the scientificity and necessity of module co-design. 
In general, the work in this paper not only makes a big step forward in theory and 
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methodology, but it also gives strong support for the intelligence, dynamics, and 
personalisation of the smart education resource allocation system. This sets the stage for 
more optimisation and promotion of its use. 

5.2 Limitations of study 

The MFRE model suggested in this study has made a lot of progress in several areas, but 
there are still some problems that need to be solved: 

1 The heterogeneity and quality issues of multimodal data are still the bottleneck for 
model performance improvement: different data sources have considerable variances 
in format, distribution and information expression, and missing data and noise will 
certainly occur in the actual collecting process. This not only impairs the model’s 
successful fusing of multimodal data but also restricts its stability and generalisation 
capacity in complex and changing educational situations. 

2 The diversity and dynamic changes of educational scenarios put forward higher 
requirements on the migration ability of the model: there are big disparities between 
areas, schools, and ways of teaching. The model is not yet flexible enough to cover 
all real-world situations, so it needs to be made more versatile and adaptable to be 
used in a wide range of situations. 

3  The objective design of resource allocation optimisation is not comprehensive 
enough: the evaluation right now mostly looks at fairness, personalisation, and 
timeliness. However, the distribution of educational resources also involves more 
complicated factors, like keeping an eye on the quality of teaching, the level of 
professionalism of teachers, changes in subject demand, and other multi-dimensional 
information that have not yet been added to the model’s optimisation framework. 

4 Lack of long-term application practice in large-scale real education system: this 
paper’s experimental validation is based on public datasets, which are not always 
complete or representative and cannot properly capture how complicated the real 
educational environment is. 

5.3 Suggestions for improvement 

To address the limitations in the above research, future work should be improved and 
optimised in the following areas: 

1 Improve the quality and fusion capability of multimodal data: to make sure the data 
is accurate and consistent, you should add more data sources, make the dataset 
bigger, and make the process of cleaning and completing the data better in the future. 
At the same time, make the model more stable and able to generalise in complicated 
settings by making the multimodal fusion methods stronger, making the model more 
tolerant of missing data and noise, and making the model more stable. 

2 Reduce the computational complexity of the model and improve computing 
efficiency: in the future, model compression methods like weight pruning, low-rank 
decomposition, and knowledge distillation will be used to improve the architecture 
of the network structure so that it is lighter. At the same time, heterogeneous 



   

 

   

   
 

   

   

 

   

   124 J. Hao    
 

    
 
 

   

   
 

   

   

 

   

       
 

computing resources and distributed training are used to speed up model training and 
reasoning, decrease the hardware threshold, and make it easier for intelligent 
education systems to be used in real-world settings. 

3 Enhance the adaptability and migration ability of models: in the future, use both 
online learning and meta-learning methods together. This will allow the model to 
swiftly adapt to varied educational situations and teaching environments that change 
over time (Zhou et al., 2021). It will also allow for smart resource allocation across 
regions and platforms. Set up a way for the model to update itself and improve itself 
over time to make sure it works steadily for a long time. 

4 Construct a multi-dimensional resource allocation optimisation target system: 
include things like the quality of teaching, the level of professionalism of the 
teachers, the mental state of the pupils, and other factors in the optimisation 
framework. Then, create a multi-objective optimisation algorithm that achieves the 
goals of science, accuracy, and fairness in resource allocation. Make personalised 
allocation plans with changeable criteria to match the specific demands of each topic 
in school. 

5 Strengthen experimental verification and application promotion in real environment: 
work more closely with schools and colleges and do big, long-term studies in  
real-life situations. Improve the system’s usefulness and dependability by getting 
input from teachers and students and combining operational data with ongoing 
iterative optimisation of model performance and user experience (Chen, 2023). This 
will help the widespread use of intelligent educational resource allocation 
technology. 
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