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Abstract: The signal of intelligent nursing bed is easily polluted by noise 
during the acquisition process, so it is necessary to study the noise reduction 
processing algorithm of the signal. This paper uses deep learning to optimise 
the bowel sound feature extractor, takes the edge computing system with GPU 
configuration as the implementation object, and proposes a pre-defecation 
prediction based on Mobilenet-RF. This paper proposes to use the random 
forest algorithm to classify the bowel sound signal features extracted by 
Mobilenet to achieve early classification and prediction of patient 
characteristics. Furthermore, this paper uses bowel sound signal processing and 
pre-defecation prediction as cases for experimental analysis. The experimental 
results show that the Mobilenet-RF algorithm proposed in this paper achieves 
the highest accuracy of 95.68%. Then, this paper verifies the generalisation 
ability of the model through multi-dataset experiments, proving the superiority 
of using random forest for classification. 
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1 Introduction 

With the development of sensor technology, Internet technology, and big data 
technology, people have put forward higher requirements for intelligent and  
service-oriented medical equipment, which has triggered the technological innovation of 
unfettered monitoring of physiological signals in the field of medical equipment. At 
present, many smart devices have been developed. For example, the vest-type respiratory 
induction plethysmography system uses a pulsed time-sharing excitation solution to solve 
the contradiction between high signal-to-noise ratio and low system power  
consumption in polysomnography respiratory induction plethysmography technology. A 
wristwatch-type sleep monitoring system uses the relationship between blood oxygen 
saturation, pulse wave, manual signal and respiratory events to indirectly monitor 
abnormal sleep time and sleep quality. In addition, the belt-type multi-parameter 
physiological signal monitoring system uses accelerometers, microphones, pressure 
sensors, ECG electrodes and other acquisition technologies to realise the detection and 
identification of coughing events during sleep (Akbari et al., 2021). The cap-type 
wearable physiological information monitoring system monitors physiological 
information based on reflective blood oxygen, pulse, temperature, acceleration, altitude 
and other acquisition technologies. Its characteristic is that it uses the same-side blood 
oxygen transmission monitoring method to replace the bilateral fingernail-type blood 
oxygen meter monitoring. The micro-motion sensitive mattress-type sleep monitoring 
system integrates the key technologies of the above systems to achieve long-term, 
unrestrained sleep monitoring (Che et al., 2021). However, the unrestrained intelligent 
nursing bed makes up for the shortcomings of the four systems other than the  
micro-motion sensitive mattress sleep monitoring system, which cause a sense of restraint 
on the human body and are not conducive to long-term monitoring. In addition, it 
eliminates the phenomenon of belt slipping and connector falling off during the 
polysomnography monitoring of respiratory signals. This new unrestrained extraction 
method can replace the polysomnography, a device that measures the gold standard of 
sleep quality, to monitor sleep quality, which is convenient for hospitals and families to 
use, and has a great role in promoting patients’ sleep quality monitoring and family 
healthcare for sleep quality (Harpale and Bairagi, 2021). 

It is of great significance to study a signal characteristic analysis equipment combined 
with intelligent nursing bed for patients’ disease treatment and nursing. The project 
studied a intelligent nursing bed sleep quality monitoring system that can extract 
physiological signals without restraint. It can monitor respiratory signals and identify 
sleep apnea, and use the motor of the intelligent nursing bed to generate weak head 
movements to improve airway obstruction. By identifying the lying position and 
monitoring the time the same lying position is maintained, it controls the intelligent 
nursing bed to assist in turning over, getting up, etc., to reduce the occurrence of bedsores 
and reduce the difficulty of nursing staff. At the same time, it can monitor the activities in 
the bed and realise the identification and alarm of emergency situations such as 
accidental falls and no vital signs (Hassan et al., 2023). Furthermore, using physiological 
signals such as respiration, heart rate, and blood pressure to monitor sleep quality is of 
great significance for preventing the occurrence of major diseases and improving 
people’s quality of life. Intelligent nursing beds can achieve comprehensive monitoring 
functions using fewer types of sensors, which has certain engineering application value in 
reducing the manufacturing cost of intelligent nursing beds. At the same time, the 
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developed smart bed monitoring system can effectively reduce the nursing workload of 
the guardian and realise the detection of the elderly and disabled people. Different from 
the remote active monitoring of network cameras, it provides timely and effective 
protection for the safety of the guardian (Jiang et al., 2021). 

This paper uses deep learning to optimise the bowel sound feature extractor, takes the 
edge computing system with GPU configuration as the implementation object, and 
proposes a pre-defecation prediction based on Mobilenet-RF, so as to improve the signal 
processing efficiency and prediction classification effect of intelligent nursing bed. In 
response to the needs of patient feature extraction, this paper proposes two different 
bowel sound noise reduction methods based on multi-level filtering and wavelet 
threshold, and uses different noise reduction methods to process the same bowel sound 
signal. Moreover, this paper proposes to use the random forest algorithm to classify the 
bowel sound signal features extracted by Mobilenet to achieve early classification and 
prediction of patient characteristics. Furthermore, this paper uses bowel sound signal 
processing and pre-defecation prediction as cases for experimental analysis. 

2 Related works 

2.1 Research status of intelligent nursing bed 

The research of intelligent nursing bed can be divided into two categories, one is to study 
the mechanical structure design to assist patients in completing various actions, and the 
other is to use sensor technology to detect the physiological state of human body, 
including physiological parameters such as heart rate, body temperature and posture 
movements, etc. 

With the development and progress of technology, multifunctional nursing beds have 
gradually appeared and developed rapidly, and have begun to occupy a place in medical 
care in developed countries. The intelligent nursing bed produced by Metrocare Company 
of the United States realises the functions of automatic back lifting and leg bending 
through the mechanism and size design of each part of the bed body, and has good 
comfort and functionality. The multifunctional rehabilitation nursing bed produced by 
HILL-ROM Company of the United States is driven by multiple motors, adopts a 
detachable guardrail design, and is equipped with functions such as button control, voice 
control and liquid crystal display. Meanwhile, the original back-knee linkage function 
can be very convenient to adjust the lying posture of the human body (Khare et al., 2021). 
Under normal state, the nursing bed is no different from the general nursing bed, but 
when necessary, the bed body can be changed into a wheelchair, which saves the trouble 
of frequent movement of the user and facilitates the activities of the patient. 

In terms of using sensor technology to monitor the physiological state of the human 
body, in response to the temperature changes during the formation of pressure sores, 
Khare et al. (2021) designed an intelligent low-cost nursing bed based on FPGA 
(piezoelectric material sensor) by monitoring the temperature changes between the 
patient and the nursing bed. It can be used to prevent pressure sores in clinical 
environments. Loh et al. (2022) designed an intelligent nursing bed robot system that 
uses mattresses covered with sensors to recognise posture, which is used for health status 
monitoring and rehabilitation status evaluation. 
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The research of unrestrained intelligent nursing bed is particularly important. In view 
of the current research results and the monitoring needs of the elderly and disabled 
people, a variety of monitoring methods can be integrated into the electric nursing bed in 
the smart home environment, so that the multi-functional nursing bed can become a 
device in the smart home through the network and improve its intelligence. 

2.2 Study on physiological signal characteristics 

Deep learning is a technology that enables computers to determine nonlinear information 
from datasets and make corresponding decisions. Due to its strong learning ability and 
nonlinear feature extraction performance, deep learning models reduce the dependence 
on manual feature extraction and expert knowledge, which greatly promotes the 
development of intelligent diagnosis. In medical research, deep learning algorithms have 
been widely used to diagnose diseases and predict patient physiological conditions. In 
addition, deep learning algorithms commonly used for medical signal processing can be 
divided into recurrent neural networks (RNN), autoencoders (AE), and convolutional 
neural networks (CNN), etc. (Loh et al., 2021). 

RNN is a neural network model with memory capabilities that can process sequence 
data and learn the relationships between sequences. Mahmud et al. (2022) applied the 
perceptron RNN to the original EEG signal and the corresponding wavelet decomposition 
features to predict seizures, which proved that this method was feasible. Miltiadous et al. 
(2021) used Levenberg-Marquardt algorithm to extract ECG features to train RNN to 
classify normal ECG, congestive heart failure ECG, ventricular tachyarrhythmia ECG 
and atrial fibrillation ECG, and obtained a classification accuracy of more than 94%. 

AE and its variants (denoising autoencoder DAE and sparse autoencoder SAE) are 
widely used in tasks such as data dimensionality reduction, feature extraction, data 
denoising, etc. Omidvar et al. (2021) applied stacked sparse autoencoder (SSAE) to EMG 
control. SSAE can significantly improve the performance of EMG control scheme based 
on pattern recognition, and has the ability to extract hidden depth information in EMG 
data, and its performance is better than linear discriminant analysis (LDA) classifier. The 
ECG automatic processing technique uses DAE to denoise the raw ECG signal, then uses 
AE to extract features from the denoised data, and finally classifies them by deep neural 
network DNN. Although it has the problems of long training time and low efficiency, it 
has achieved good performance in terms of accuracy and sensitivity (Priya et al., 2021). 

CNN is a kind of neural network with good local feature extraction and spatial 
relationship modelling ability. The proposed model is a complete end-to-end structure 
that classifies EEG signals without any feature extraction (Sharma and Acharya, 2021). 
The system developed by Subramani and BD (2023) can detect abnormal EEG signals 
with 79.34% accuracy, 79.64% precision and 78.71% sensitivity. Ullah et al. (2021) 
proposed a 2D CNN classification network based on ECG time-frequency map, and 
verified that the CNN classifier using ECG time-frequency map as input can achieve an 
average accuracy of 99.00% without additional manual preprocessing of ECG signals. 

Usman et al. (2021) proposed a method to detect patient feature information using a 
hybrid convolutional and recurrent neural network, and its accuracy is greater than 93%. 
Vijayakumar et al. (2021) proposed a CNN to identify patient feature information, and 
then used Laplacian hidden semi-Markov model to optimise the classification. This 
method can effectively detect intestinal sounds. Wang et al. (2024) extracted MFCC 
features from patient feature information data and used them to train neural networks 
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based on LSTM. It is proved for the first time that it is feasible to apply speech 
recognition methods to intestinal sound detection. 

However, due to the variability and complexity of patient feature information, it is 
more difficult to effectively classify patient feature information than to identify patient 
feature information. To perform high-precision bowel movement prediction, it is also 
necessary to develop suitable deep learning algorithms to achieve correct classification of 
patient feature information. 

3 Model construction 

3.1 Patient signal feature extraction 

The patient characteristic information sound signal is a typical non-stationary signal with 
sudden characteristics. This section analyses the patient characteristic information sound 
signal collected in the experiment, and proposes two different patient characteristic 
information sound denoising methods based on multi-level filtering and wavelet 
threshold to meet the noise reduction needs of patient characteristic information sound 
signals in different situations. For the convenience of the following analysis, the collected 
patient characteristic information sound signal is defined as: 

( ), 1, 2, ...,x n n N=  (1) 

Among them, N is the number of data points of signal x(n). Since the sampling frequency 
is 4,000 Hz and the collection time of each segment of patient characteristic information 
sound data is 1 minute, N is 240,000. 

3.1.1 Multi-stage filtering noise reduction method 
A method based on multi-stage filtering is proposed to denoise the patient characteristic 
information sound signal. The low-pass filter has the function of passing low frequency 
and resisting high frequency. The low-pass filter with a cutoff frequency of 1,000 Hz is 
selected to complete the denoising of the high-frequency noise signal. The filtered signal 
can be expressed as: 

( ) ( ) (1 ) ( 1)Y N x N Y nα α= + − −  (2) 

Among them, α is the filter coefficient, x(n) is the sampled patient characteristic 
information sound signal, and Y(n – 1) is the last filtered output value. According to the 
signal characteristics of patient characteristic information tone, a second-order 
Butterworth high-pass filter with cutoff frequency of 100 Hz is selected to complete  
low-frequency noise reduction. The Butterworth high-pass filter only needs to be 
characterised by two parameters, namely filter order and cutoff frequency, and its 
amplitude square function can be expressed as: 

2
2

1( )
1

N

c

H jω
ω
ω

=
 +  
 

 (3) 
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Among them, N is the order of the filter, ωc is the cutoff frequency, and ω is the 
frequency domain parameter of the patient characteristic information sound signal x(n). A 
three-parameter notch filter is selected to reduce the noise of the patient characteristic 
information tone, and the processed signal can be expressed as: 

2 2
2

2 2
1

2( ) ( )
2

n n

n n

s k ω s ωY s x s
s k ω s ω

+ +=
+ +

 (4) 

Among them, x(s) is the patient characteristic information sound signal in the frequency 
domain, k1 and k2 are notch factors, and ωn is the notch frequency. 

3.1.2 Noise reduction of patient characteristic information sound signal based 
on wavelet threshold 

Wavelet transform analysis of patient characteristic information sound signal can be 
expressed as: 

1( , ) ( )Ψ n τWT a τ x n dn
aa

∞

−∞

− =  
   (5) 

Among them, a is the frequency expansion of the wavelet function, τ is the time shift, and 
x(n) is the patient’s characteristic information sound signal. The wavelet transform does 
not use the idea of adding windows, but uses a and τ to provide a ‘time-frequency’ 
window that changes with the frequency to achieve localised analysis of the signal. It can 
not only obtain the information of each frequency component in the signal, but also 
obtain the time when each component appears. 

Figure 1 Wavelet threshold denoising flow chart 

 

Wavelet transform is used to de-noise the patient characteristic information sound signal, 
and the processing process is shown in Figure 1. Firstly, the wavelet basis function and 
the number of decomposition layers used by wavelet transform are determined, and the 



   

 

   

   
 

   

   

 

   

    Patient signal feature extraction technology for intelligent nursing bed 7    
 

    
 
 

   

   
 

   

   

 

   

       
 

acquired signal is decomposed. Then, the decomposed wavelet coefficients are processed 
by setting a suitable min value. Finally, based on the processed wavelet coefficients, the 
effective signal after noise reduction is obtained by reconstruction and restoration. 

Common threshold selection methods include fixed threshold estimation and extreme 
threshold estimation. The method of using a fixed threshold is selected here, which can 
be expressed as: 

2 log( )λ N=  (6) 

Among them, λ is the fixed threshold value and N is the signal length. 
The hard threshold denoising method is shown in formula (7). When the threshold 

coefficient of the collected signal is greater than the set threshold, the part of the signal 
remains unchanged. If it is less than the set threshold, it is set to zero. In terms of mean 
square error, the hard threshold denoising method is better than the soft threshold, but the 
denoising signal is prone to oscillation and lacks smoothness. 

0λ
x x λ

x
x λ

 ≥
=  <

 (7) 

Among them, x is the wavelet coefficient and λ is the threshold value. 
The noise reduction method of soft threshold is shown in formula (8). When the 

wavelet coefficient of the collected signal is less than the set threshold, the signal part 
remains unchanged. If it is greater than the set threshold, the set threshold is subtracted 
from it. Compared with the hard threshold denoising method, the overall smoothness of 
the signal after soft threshold processing is better and no additional oscillation will be 
generated, but a certain deviation will be generated, which will affect the reconstruction 
of the patient’s characteristic information sound signal and cause signal distortion. 

( )( )
0

λ
sign x x λ x λx

x λ
 − ≥= 

<
 (8) 

Among them, x is the wavelet coefficient, λ is the threshold value, and sign() is the sign 
function. The above two threshold functions are used to reduce the noise of the patient 
characteristic information sound signal. 

3.2 Automatic feature extraction of patient feature information signals based on 
Mobilenet 

As a typical deep learning algorithm, CNN requires a large number of patient feature 
information data samples for training in order to effectively perform network functions. 
However, the sample size of the patient characteristic information dataset is limited by 
time and volunteer recruitment conditions, and the sample size is difficult to meet the 
requirements. Mobilenet series algorithms are a high-performance and lightweight way to 
create neural networks. By lightweighting the model, it can effectively reduce the amount 
of parameters and calculations of the model and reduce deployment costs. The efficient 
architecture of the Mobilenet network enables it to operate with Real-time applications in 
GPU-configured edge computing systems. Therefore, this section studies the model 
structure of Mobilenet network and its lightweight design method. 
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3.2.1 Mobilenet-V1 network architecture 
Mobilenet is a lightweight neural network that has undergone three iterative development 
processes to greatly reduce the amount of calculation and model volume while 
maintaining high accuracy. The convolution method is very similar to the traditional 
convolution, except that the convolution kernel size of each channel is determined to be  
1 × 1 × m, where m is the number of channels of the input signal. If the dimension of the 
patient feature information input signal is 5 × 5 × 3, and there are three channels in total, 
then the dimension of the convolution kernel of the point-by-point convolution is  
1 × 1 × 3 × n, where N is the variable of dimension increase or decrease, which can 
determine the number of channels of the output signal. 

Figure 2 Comparison of traditional convolution and deeply separable convolution structures 

 

As shown in Figure 2, the left side is the traditional convolution method, and the right 
half is the combination of deep convolution and point-by-point convolution. Among 
them, batch normalisation (BN) can normalise model parameters, making the network 
easier to converge. ReLU is an activation function, which can enhance the ability of 
nonlinear fitting of the network. As can be seen from Table 1, except for the first layer 
and the fully connected layer portion, Mobilenet-V1 network structure mainly adopts 
deep separable convolution to reduce the number of model parameters and the amount of 
calculation. The entire network framework can be regarded as consisting of multiple 
deeply separable convolutional layers, and BN operation and ReLU activation function 
are applied after each convolutional layer to accelerate training and improve model 
performance. 
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3.2.2 Mobilenet-V2 network architecture 
On the basis of Mobilenet-V1, Mobilenet-V2 mainly introduces the reverse residual 
structure to further optimise the network structure. By using the reverse residual 
structure, we can not only deepen the number of network layers and enhance the feature 
expression ability, but also effectively reduce the number of parameters, reduce the 
computational complexity and improve the running speed and accuracy of the model. 

Figure 3 Residual structure (see online version for colours) 

 

The idea of residual error is introduced to solve the problems of gradient disappearance 
and gradient explosion during model training. It is also applied in other deep learning 
networks, the most typical of which is the ResNet network. As shown in Figure 3, the 
residual network structure used by ResNet is a bottleneck structure, which contains three 
layers of convolution. From the low layer to the high layer, 1 × 1 convolution, 3 × 3 
convolution and 1 × 1 convolution are used respectively. The convolution of the first 
layer realises the dimensionality reduction of the signal, and the convolution of the 
second layer maintains the signal dimension. 

Figure 4 Reverse residual structure 
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The third layer of convolution realises the dimensionality increase of the signal, and the 
entire network structure presents a large shape at both ends and a small shape in the 
middle. The ordinary residual structure is not applicable, so the reverse residual structure 
is proposed, as shown in Figure 4. The structure also contains three layers of convolution, 
using point-by-point convolution, depth convolution and point-by-point convolution from 
the low layer to the high layer. First, the first layer of point-by-point convolution uses a 
convolution kernel of 1 × 1 × N to increase the dimension of the signal, N is the 
dimension after the increase, and then a convolution kernel of 3 × 3 × N is used to 
perform deep convolution processing on the signal. Finally, it uses a convolution kernel 
of 1 × 1 × M to reduce the dimension, and M is the dimension after the reduction. Since 
this processing method is exactly the opposite of the ordinary residual structure, it is 
called the reverse residual structure. 

3.2.3 Principle of signal feature extraction based on Mobilenet-V3 
Figure 5 is a schematic diagram of the network structure of Mobilenet-V3. In  
Mobilenet-V3, a calibration mechanism is used to extract patient feature information 
signal features by accurately modelling the interaction relationship between 
convolutional feature channels. In addition, a squeeze-and-excitation module (SE), 
referred to as SE module for short, is also proposed in Mobilenet-V3. As shown in  
Figure 6, the SE module includes three steps: compression, excitation, and scaling, and 
the compression method uses global average pooling. If the size of the input signal is  
W × H × C, the dimension after compression is 1 × 1 × C. The excitation can be seen as 
consisting of two fully connected layers, which enhance the correlation between the 
signal features of each layer, and still obtain the output of 1 × 1 × C. The scaling 
operation is the multiplication of channel weights. The channel weights calculated by the 
SE module are multiplied by the two-dimensional matrix of the corresponding channel in 
the original feature map. By introducing the SE module, Mobilenet-V3 can better 
improve the model performance while reducing network parameters. 

Figure 5 Schematic diagram of Mobilenet-V3 network structure 

 

In the process of studying Mobilenet-V3, it is found that swish activation function can 
effectively improve the accuracy of the network, but swish is too computational and is 
not suitable for lightweight neural networks. Therefore, Mobilenet-V3 found an 
alternative activation function h-swish that is similar to the swish activation function but 
requires much less computation. The calculation formula of this function is as follows: 
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[ ] ( )Re 6 ( ) 3
( ) ( )

6
LU x n

h swish x n x n
+

− =  (9) 

This activation function not only maintains the nonlinear ability and runs fast, but also 
avoids the loss of numerical accuracy, making it more suitable for use on platforms with 
average computing power. 

Figure 6 SE module in Mobilenet-V3 

 

3.3 RF-based patient feature information signal feature classification algorithm 

RF is an ensemble learning algorithm that uses self-service resampling technology to 
build multiple decision tree models based on training data, and summarises the results of 
these decision trees through majority voting or averaging for classification or regression. 

3.3.1 Decision tree classification principle 
Decision tree is the foundation of RF algorithm, and the learning goal of decision tree is 
to construct a classification model that can complete the correct partition of instance 
objects and perform the best performance in the sense of loss function. 

3.3.1.1 Information entropy and information gain 
Decision tree classifies batch data according to information characteristics. Through 
classification, unordered data can become more ordered. The decision tree defines the 
information entropy to evaluate the confusion degree of information, which can be 
expressed by the formula: 

( )2
1

( ) log
n

i i
i

H x p p
=

= −  (10) 

In the formula, x is the subclass of information classification, n is the number of feature 
subclasses, and pi is the probability that information is classified into x. If all 
classifications have been completed, that is, each piece of information has been classified 
into its own subclass, then the information entropy can be expressed as: 

2
1

( ) log
n

i i

i

c cH D
D D=

 = −  
 

  (11) 
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In the formula, D is the training dataset, | D | is the number of training data, and ci is the 
number of patient feature information signals classified into subclass xi. At this time, 
H(D) is called empirical entropy. 

In order to evaluate whether the classification method is effective and distinguish the 
changes in information before and after classification, the concept of information gain is 
defined. That is, the information entropy difference between feature A and the patient’s 
feature information signal before and after classification can be expressed as: 

( )( , ) ( )g D A H D H D A= −  (12) 

g(D, A) is the information gain of information feature A to dataset D, H(D | A) is the 
conditional entropy, which refers to the information entropy of the classification of 
feature A in dataset D under given conditions, which can be expressed as: 

( )
1

( )
n

i i
i

H D A p H D A x
=

= =  (13) 

pi is the probability that feature A is classified into subclass xi. 
There is no relative comparison relationship between the information gains of 

different datasets, and the information gain ratio can effectively avoid the above 
problems, which is more beneficial as the basis for selecting nodes in the process of 
decision tree generation, and can be expressed as: 

( , )( , )
( )R

g D Ag D A
H D

=  (14) 

3.3.1.2 Generation of decision tree 
The decision tree selects the best classification method from multiple classification 
features to divide data, forming two or more leaf nodes, and then continues to classify 
from each leaf node in the same classification method until it can’t continue to classify. 

3.3.1.3 Decision tree pruning 
The problem of over-fitting is essentially over-classification of the training dataset, and 
pruning and transformation operations are performed on the basis of decision tree 
generation, thus reducing the complexity of the tree. 

In order to express the complexity of decision tree, the loss function of decision tree 
is introduced, which is beneficial to the realisation of pruning. The loss function of the 
decision tree can be defined as: 

1

( ) ( )
T

t t
t

C T N H T Tα α
=

= +  (15) 

Among them, T is the leaf node of this sub-tree, | T | is the number of leaf nodes, Nt is the 
number of training samples contained in the leaf node, Ht(T) is the entropy of the ith leaf 
node, and α is the penalty factor. The loss function can also be expressed as: 

( ) ( )C T C T Tα α= +  (16) 
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Among them, C(T) represents the fitting degree of the decision tree to the training 
samples: 

1

( ) ( ) log
T T K

ik
i i ik

ii i i i k

NC T N H t N
N= = =

== = −   (17) 

The loss function can be expressed as: 

1

( ) log
T K

ik
ik

ii i k

NC T N T
Nα α

= =

= − +  (18) 

After determining the penalty factor α, the model with the smallest loss function is 
selected. Pruning the decision tree by the loss function can balance the overfitting and 
underfitting, and obtain a decision tree with appropriate fitting degree. 

3.3.2 RF algorithm based on decision tree construction 
RF algorithm is a typical ensemble learning algorithm based on bagging ensemble 
framework with decision tree as learner. Figure 7 shows the construction process of RF. 
Based on the self-service sampling method, sub-samples are selected from the sample 
pool and can be used for the training and learning of each decision tree. In RF algorithm, 
the learning between all decision trees is independent of each other and processed in 
parallel. The output results of all decision trees are summarised by voting method. Voting 
methods are divided into soft voting and hard voting. In soft voting, the output results of 
their respective decision trees are weighted and averaged, while the hard voting results 
follow the rule that the minority obeys the majority. This paper chooses to adopt hard 
voting for summary. 

Figure 7 Construction process of RF 

 

3.4 Mobilenet-RF-based pre-defecation prediction algorithm 

Mobilenet is a lightweight designed neural network that can be directly used to achieve 
classification, but the performance of the model is difficult to optimise and adjust after 
training. Combining Mobilenet and RF, a pre-defecation prediction algorithm based on 
Mobilenet-RF is designed. The overall architecture is shown in Figure 8. 
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Figure 8 Overall architecture of Mobilenet-RF 

 

Figure 9 Flowchart of pre-defecation prediction algorithm based on Mobilenet-RF 
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A pre-defecation prediction algorithm based on Mobilenet-RF is proposed (Figure 9): 

Step 1 Each patient characteristic information data is divided into 6 segments, each 
segment of patient characteristic information signal is 10 seconds long, and each 
data is constructed as a matrix of 200 × 200 to construct a sample dataset. 

Step 2 The patient characteristic information dataset is divided into a source dataset and 
a target dataset. The source dataset consists entirely of characteristic information 
signals of patients without defecation urge, which are labelled as ‘0’, and the 
target dataset consists of characteristic information data of patients with and 
without defecation urge with balanced sample sizes, where the characteristic 
information signal of patients without defecation urge is labelled as ‘0’ and the 
characteristic information signal of patients with defecation urge is labelled as 
‘1’. 

Step 3 The Mobilenet network is trained based on samples in the source dataset to build 
an automatic feature extractor for patient characteristic information signals. 

Step 4 While keeping the network parameters of Mobilenet unchanged, it is migrated to 
the target dataset, and the input vector of the Softmax layer in the Mobilenet 
network is used as the extracted patient feature information feature to construct a 
feature set for pre-defecation prediction. 

Step 5 The patient feature information extracted by Mobilenet is input into the RF 
model to achieve pre-defecation prediction. The RF algorithm has the 
advantages of strong anti-interference ability, fast training speed, and good 
classification effect, which can further improve the accuracy and robustness of 
pre-defecation prediction. 

The necessity of intelligent nursing beds is reflected in their breakthrough of the 
application limitations of traditional medical equipment through multimodal sensorless 
monitoring technology: compared with contact devices, based on the depth pressure 
sensing matrix (a non-contact sensing system fused with millimetre wave radar, 
combined with dynamic baseline calibration algorithm, it can achieve micrometer level 
body motion capture within a suspension detection distance of 0.5–2 cm. Combined with 
the transfer learning model of the patient’s exclusive physiological feature library, even 
in the face of the signal-to-noise ratio loss caused by indirect sensor contact, it can still 
extract the phase synchronisation features of heart rate variability through spatiotemporal 
feature fusion technology. Its continuous monitoring mode can capture early 
compensatory signs that are easily missed by traditional devices. This all-weather, 
interference free intelligent monitoring not only avoids the risk of skin damage caused by 
electrode patches, but also achieves early warning value that traditional single parameter 
devices cannot achieve through multidimensional sign correlation analysis. 

4 Test 

4.1 Test methods 

The data processing algorithm is compiled in MATLAB R2019b software, and the 
running environment is Intel (R) Xeon (R) CPU, 96GB RAM, and Windows 10 system. 
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The overall architecture of the defecation nursing experimental platform built in this 
paper is shown in Figure 10, including physiological signal acquisition system, actuator 
system and software control system. Among them, the software control system can 
control the physiological signal acquisition system in real time, communicate with the 
sensor that collects physiological signals through Bluetooth, control the start and stop of 
signal acquisition, and carry out noise reduction processing and consciousness change on 
the collected physiological signals. 

Figure 10 Nursing experimental platform (see online version for colours) 

 

To address the modelling challenges caused by individual signal differences, the 
intelligent nursing bed system can adopt an evolutionary architecture of ‘federated meta 
learning + dynamic feature decoupling’ to achieve adaptive optimisation: 

1 Hierarchical feature modelling: universal feature layer: aggregating data from 
multiple medical institutions through a federated learning framework (with privacy 
preserving model parameter transmission), training a transformer-based meta feature 
extractor, and capturing time-frequency common patterns of signal features across 
patients. 

 Build a personalised feature layer using dynamic network technology, deploy 
deformable convolution kernels on edge devices, and automatically adjust feature 
response weights based on real-time monitoring data. 

2 Self supervised calibration mechanism: design a physiological signal decoupling loss 
function, utilising the 24-hour monitoring data during the initial admission period By 
comparing and learning to separate device noise and physiological signals, a 
variational autoencoder (VAE) is constructed to establish a patient specific intestinal 
motion baseline pattern, and an implicit correlation model between pulse wave 
transit time (PTT) and intestinal sounds is developed. 

3 Incremental evolutionary architecture: using neural architecture search (NAS) to 
construct dynamic decision trees, pre training Meta learning models, online 
knowledge distillation modules, continuously absorbing new patient features, setting 
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up feature drift detectors, and triggering model fine-tuning when cosine similarity 
<0.85. 

4 Equipment collaborative verification: establish a multi-sensor cross validation 
mechanism, verify the temporal consistency between body motion signals and 
patient characteristic signals using millimetre wave radar, and detect the energy 
distribution of abdominal deformation through a flexible piezoelectric sensor array. 

The intelligent nursing bed system built in this paper can automate the entire process 
from the collection and monitoring of physiological parameters to the treatment and 
collection of waste, thereby facilitating the operation of the nursing bed by  
non-professionals such as medical staff and family members in clinical auxiliary nursing 
work. 

The dataset s used in this article include: MIMIC-III intensive care dataset, Diabetes 
Diabetes dataset, eICU-demo dataset, and Glioma-MDC2025. Then, the bowel sound 
data of different patient types are analysed to explore the effectiveness and generalisation 
ability of the model. 

In response to the reliability issue of feature extraction caused by physiological signal 
interference in patients, this paper adopts a hybrid optimisation scheme combining 
multimodal signal separation technology and deep learning: firstly, the improved 
FastICA algorithm is used to separate the mixed signal, and the DnCNN network is used 
for end-to-end noise reduction; Then, an enhanced version of the MobileNet RF model is 
constructed, incorporating channel attention mechanism and adversarial training module 
to enhance feature selectivity; Finally, a double-layer stacking classifier (RF+LightGBM) 
is established and an uncertainty quantisation mechanism is introduced to filter  
low-quality predictions through dynamic confidence thresholds. Simultaneously 
developing an online learning system to achieve continuous model optimisation, this 
solution can reduce false alarm rates by over 60% in interference environments while 
maintaining the original 95.68% accuracy. 

To address the bottleneck of multimodal real-time processing for edge devices, a 
collaborative optimisation strategy of ‘computational topology reconstruction + 
spatiotemporal resource scheduling’ is adopted to systematically solve the problem of 
resource constraints. 

Firstly, construct a three-level processing pipeline as follows: 

1 Sensor level preprocessing: deploy CNN-LSTM hybrid model compression to 
FPGA, use OpenCL to achieve < 5 ms delay, adaptively adjust ADC sampling bit 
width based on signal variance (12 bit to 8 bit controllable attenuation). 

2 Edge node feature extraction: construct a multimodal shared base model  
(MM-BERT) to obtain physiological signal modalities through depthwise separable 
convolution and dilated temporal convolution Split the complete model into 
mandatory modules (Always-0n) and on-demand loading modules (On Demand). 

3 Device cluster federated computing: establish a dynamic DAG task scheduler and 
achieve cross bed computing power sharing through ZigBee+UWB dual-mode 
communication for critical path acceleration. Enable GPU hard decoding (NVIDIA 
Jetson Nano) for core indicators such as gastrointestinal motility index. 

Next, perform dynamic scheduling of spatiotemporal resources 
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1 Time dimension optimisation: develop a circadian rhythm perception scheduler that 
automatically switches to low-power mode during non rapid eye movement periods 
Based on the phase space reconstruction prediction algorithm, the resolution of the 
millimetre wave radar is automatically improved (0.5 mm → 0.1 mm) during the 
precursor period of defecation. 

2 Spatial dimension optimisation: deploy a feature gating network based on attention 
mechanism to perform spatial coding on redundant body motion signals (reducing 
computational complexity by 40%) to construct an abdominal quadrant energy map, 
and only perform full precision calculations on high probability activity areas. 

To address the challenges of modelling and clinical verification of low-level signals, a 
collaborative approach of ‘physical sensing enhancement + digital twin verification’ can 
be used. Firstly, a quantum level magnetic shielding array (0.1pT/√ Hz) and a biomimetic 
MEMS sensor (60 dB gain) are used to improve signal quality; Secondly, construct a dual 
channel interpretable model that integrates fluid dynamics simulation and clinical 
auscultation features; Finally, reliability is ensured through a three-level validation 
system (biomimetic model → animal experiment → double-blind clinical trial). 

4.2 Results 

The calculation time spent by the three noise reduction algorithms in three noise 
reduction processes is shown in Table 1. 
Table 1 Comparison of calculation time of three noise reduction algorithms 

Noise reduction algorithm 
Calculation time (s) Average computation  

time (s) 1 2 3 
Multi-stage filtering noise reduction 0.2418 0.2372 0.2262 0.2351 
Hard threshold noise reduction 1.3621 1.349 1.3479 1.353 
Soft threshold noise reduction 1.3252 1.3218 1.3203 1.3224 

Figure 11 Loss diagram of data enhancement (see online version for colours) 

 

In order to achieve small sample bowel sound data enhancement, a total of 200 sets of 
preprocessed bowel sound data are used in the real bowel sound dataset. After  
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200 rounds of training, the 1oss of the network model reaches the minimum, and the loss 
image of the training process is shown in Figure 11. 

Figure 12 Comparison diagram between real data and generated data, (a) group 1 (b) group 2  
(c) group 3 (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

In order to more intuitively compare the real bowel sound data with the data generated by 
the prediction algorithm in this paper, three groups of real data and generated data are 
randomly selected, and their comparison images are shown in Figure 12. 
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In order to visually show the quality of all the data generated in this paper, the 
Pearson correlation coefficients of 200 sets of generated data are plotted into a scatter 
plot, as shown in Figure 13. 

Figure 13 Scatter plot of Pearson correlation coefficient (see online version for colours) 

 

In order to evaluate the performance of the proposed MOBILENET-RF method, a set of 
comparative experiments is designed. This paper uses the MIMIC-III intensive care 
dataset, Diabetes diabetes dataset, eICU-demo dataset, and Glioma-MDC2025 test sets 
into four models for classification, and the learning rate is set to 0.002. 

In order to more intuitively reflect the accuracy change process in network training, 
the classification precision of the four test sets in the four models is shown in Table 2. 
Table 2 Precision of each dataset 

 LSTM CNN CNN+BiGRU MOBILENET-RF 
MIMIC-III 78.71% 80.69% 86.13% 91.08% 
Diabetes 91.08% 79.70% 73.76% 95.04% 
eICU-demo 81.68% 85.14% 72.27% 92.57% 
Glioma-MDC2025 85.64% 82.17% 69.30% 91.58% 
Average value 84.27% 81.92% 75.36% 92.57% 

Specificity and sensitivity tables are shown in Table 3. 
Table 3 Specificity and sensitivity table 

 TP  
quantity 

TN  
quantity 

FP  
quantity 

FN  
quantity Specificity Susceptibility 

MIMIC-III 54 128 12 6 91.43% 90.00% 
Diabetes 55 135 5 5 96.43% 91.67% 
eICU-demo 52 133 7 8 95.00% 86.67% 
Glioma-MDC2025 55 128 12 5 91.43% 91.67% 
Average value 54 131 9 6 93.57% 90.00% 

Since Mobilenet-V3 is divided into two versions, Mobilenet-V3_ Large and  
Mobilenet-V3_Small, the classification precision of the proposed method under the two 
versions is compared. They are compared with directly using Mobilenet-V3 for 
prediction and two commonly used deep learning methods, CNN and LSTM, and the 
results are shown in Table 4. 
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Table 4 Test results of different methods 

Classifier Training set accuracy Test set accuracy 
Large 98.50% 95.45% 
Large+RF 98.90% 95.68% 
Small 96.86% 91.65% 
Small+RF 99.00% 92.37% 
CNN 93.71% 61.82% 
LSTM 95.84% 53.77% 

4.3 Analysis and discussion 

In Table 1, the computational cost of the two denoising algorithms based on wavelet 
threshold is higher than that of the denoising algorithms based on multi-level filtering, 
which shows that the denoising algorithms based on multi-level filtering have better  
real-time performance than the denoising algorithms based on wavelet threshold. 

In practical applications, if better noise reduction effect is needed and the information 
of bowel sound signals needs to be retained as much as possible, and the real-time 
requirements are not particularly high, wavelet noise reduction based on soft threshold 
can be used first. If a stronger noise reduction effect is needed and the real-time 
requirements are not particularly high, wavelet noise reduction based on hard threshold 
can be used first. If the noise reduction effect is not particularly high, but the real-time 
requirements are higher, the filtering noise reduction algorithm can be used first. 

From the comparison chart of real data and generated data, we can see that the 
generated bowel sound data retains most of the morphological features of the real bowel 
sound data, but is not exactly the same as the real data, and has differences in details. 
This is because after the encoder reduces the dimension of the data, the variational 
autoencoder adds a noise regularisation term to the training process. This operation 
enables VAE to not only learn potential attributes in the probability distribution, but also 
avoid overfitting in the training process and ensure that its hidden variables have good 
properties for generating new samples. 

Among the 200 sets of data in Figure 15, the maximum Pearson correlation 
coefficient is 0.9413 and the minimum is 0.701245. The average Pearson correlation 
coefficient of the population is 0.8235, and the overall level is extremely strong 
correlation. Moreover, all the Pearson coefficients are above 0.7. The Pearson coefficient 
diagram of these 200 groups of data shows the performance of the proposed bowel sound 
data increasing algorithm, which shows that the correlation coefficient analysis of the 
four groups randomly selected earlier is reliable, and preliminarily verifies the validity of 
the generated data. 

In Figure 16, the average accuracy of all three comparison methods is lower than that 
of MOBILENET-RF. In this experiment, CNN, LSTM, CNN + BiGRU are not 
satisfactory in the classification of bowel sounds data, and they can’t effectively classify 
bowel sounds with and without bowel intention. In other words, MOBILENET-RF has 
better performance. The average accuracy of this method for all classification tasks is 
about 94.4%. 

In Table 2, the accuracy rate of CNN is relatively stable on different test sets, but the 
highest accuracy rate is not high, only 85.14%. The results of LSTM and CNN + BiGRU 
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are not ideal, and the accuracy fluctuates greatly on the six test sets. However, the 
classification effect of the proposed method in this paper is better than that of the three 
comparison methods on the four test sets. Therefore, the feasibility of using the 
MOBILENET-RF classification method is confirmed. 

The Diabetes dataset has the highest specificity (96.43%), while the eICU-demo 
specificity is slightly less (95.00%). The average specificity is 93.57%, indicating that 
these datasets have high accuracy in judging negative cases as a whole. Sensitivity: The 
Diabetes dataset has the highest Sensitivity (91.67%), followed by MIMIC-III and 
Glioma-MDC202 (both 90.00%), while eICU-demo has the lowest Sensitivity (86.67%). 
Number of TPs and TNs: The number of TPs and TNs is high for all datasets, indicating 
that the model performs well in correctly identifying and classifying positive and 
negative samples. Number of FPs and FNs: The number of FPs and FNs is relatively 
small. In particular, the Diabetes dataset has the least number of FPs (5), indicating fewer 
false positives. Overall, the proposed method has high specificity and sensitivity and is 
more reliable in the problem of bowel sound classification. 

In Table 4, Mobilenet-RF achieves the best classification effect on the test set when 
using Mobilenet-V3 _ Large, which can achieve an accuracy rate of 96.65%. In addition, 
using the random forest algorithm to classify the features extracted by Mobilenet-V3 can 
achieve better classification results than using Mobilenet-V3 directly. 

In general, the automatic feature extraction model of bowel sound signals built using 
the lightweight neural network Mobilenet can effectively avoid overfitting while reducing 
model parameters and improving computational efficiency. By inputting the features 
extracted by Mobilenet into four other classification models, it can be seen that the 
proposed Mobilenet-RF algorithm achieves the highest accuracy of 95.68%, proving the 
superiority of using random forest for classification. 

5 Conclusions 

This paper optimises the bowel sound feature extractor with the help of deep learning, 
and uses an edge computing system with GPU configuration as the implementation 
object, and proposes a pre-defecation prediction based on Mobilenet-RF. This method 
uses the lightweight neural network Mobilenet to establish an automatic feature 
extraction model for bowel sound signals, and inputs the extracted signal features into the 
random forest for classification to complete the pre-defecation prediction function. 
Through experimental analysis, we can see that the automatic feature extraction model of 
bowel sound signals built with lightweight neural network Mobilenet can effectively 
avoid overfitting while reducing model parameters and improving computational 
efficiency. By inputting the features extracted by Mobilenet into four other classification 
models, this paper found that the Mobilenet-RF algorithm proposed in this paper 
achieved the highest accuracy of 96.65%, proving the superiority of using random forest 
for classification. 

Two different bowel sound signal reduction methods proposed in this paper can meet 
the demand of noise reduction in the experimental acquisition process, but in the actual 
bowel sound signal acquisition process, there are more complicated situations that will 
lead to the generation of noise, such as human movement, speech, electromagnetic 
interference of other equipment, etc. These noises will affect the final prediction accuracy 
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before defecation, so further research is needed on bowel sound noise reduction 
algorithms with stronger noise reduction capabilities and better real-time performance. 
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