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Abstract: This paper presents a stochastic analytical model for the
discrete-time EOQ (DT-EOQ) with lost sales, where both consumption and
supply processes are modelled as Bernoulli trials. This approach allows for
the representation of binomial daily demand and geometrically distributed
lead time, capturing various demand patterns, including smooth, intermittent,
or rare occurrences. The study provides a comprehensive mathematical
derivation of the closed-form expression for the steady-state probabilities of
on-hand inventory levels. This leads to concise and exact formulations for key
performance measures such as the average inventory level, inventory cycle
length, stock-outs per cycle, and fill rate. Notably, the proposed estimator
for the average inventory level shows improved accuracy over existing
formulas. Finally, some numerical examples are provided to demonstrate the
effectiveness of the proposed modelling approach.
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1 Introduction

Inventory control is a fundamental problem with extensive real-world implications,
forming the basis of decades of analytical modelling and decision-making research in
operations management (Axsater, 2015).

In the domain of inventory control, two main review mechanisms are recognised:
continuous and periodic review policies (see, e.g., Ivanov et al., 2021). Periodic review
policies fix the length of the inventory cycle to a specific value, known as the ‘inventory
period’, which dictates when decisions about the quantity of items to be ordered
are made. These quantities generally vary from period to period. Recent reviews by
Perera and Sethi (2023a, 2023b) provide a comprehensive classification of decades of
research in this field. Conversely, the continuous review policy, that sees its canonical
implementation in the economic order quantity (EOQ) policy (Harris, 1913), involves
placing a fixed-size order () each time the inventory position, which is continuously
monitored, falls to or below a reorder point r. As a result, the inventory period is not
fixed and typically varies from cycle to cycle when demand and/or lead time are affected
by stochastic phenomena.
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The EOQ model has evolved over the years to address more complex, real-world
problems, such as stochastic demand and lead time. Examples are works assuming
compound Poisson demand patterns (see, e.g., Matheus and Gelders, 2000) or
addressing safety stock management under controllable lead time and batch shipments
in multi-stage supply chains (Castellano et al., 2024). However, these approaches
often require iterative solutions, which can be computationally intensive, and lack
exact estimators for key performance measures. Recent research has expanded the
EOQ framework to incorporate features such as perishable products (see, e.g., Boxma
et al., 2022), quality issues (see, e.g., Khan et al., 2011), time discounting (see, e.g.,
Roy and Chaudhuri, 2011), environmental aspects (see, e.g., Taleizadeh et al., 2020),
supply disruptions (see, e.g., Babai et al., 2023) and integrated inventory models
for multi-product, multi-level supply chains with joint replenishment and loss sharing
(Sultanov and Hasanov, 2024). Despite these advances, the authors of this paper
emphasise the need for further exploration of the classical EOQ model under stochastic
demand and stochastic lead time assumptions, particularly to develop more accurate
estimators for key performance metrics, such as the average inventory level. This
need remains highly relevant even in the context of Industry 4.0/5.0, where supply
chain management increasingly integrates Al-enabled planning systems and digital
twin technologies. In these environments, analytical stochastic models continue to play
a critical role: they provide interpretable, computationally efficient estimations that
support decision-making and serve as foundational components for model validation and
hybrid simulation frameworks, as also emphasised in recent resilience-focused supply
chain studies (Ivanov, 2025). For instance, the model proposed in this work can be
incorporated into digital twin architectures to describe discrete inventory dynamics
under uncertainty, or used to benchmark data-driven inventory policies, especially in the
presence of intermittent demand.

This challenge is especially pronounced in the lost sales scenario, which introduces
additional complexity compared to the backorder case in a stochastic environment. In
lost sales scenarios, demand that goes unmet during an inventory cycle creates additional
inventory availability in the next cycle, influencing holding costs and extending the
inventory cycle length. As a result, inventory control under the lost sales assumption
is widely regarded as one of the most challenging cases to model, especially when
considering continuous review policies, as highlighted by Bijvank and Vis (2011). To the
best of the authors’ knowledge, few studies in the literature offer exact metrics for the
EOQ policy with lost sales under stochastic conditions. Moreover, these studies typically
focus on continuous-time, continuous-state models (see, e.g., Mohebbi and Posner, 1998,
which become less applicable when addressing intermittent demand, as they assume a
continuous inventory level, reducing accuracy when inventory levels are low.

Although the classical EOQ model assumes continuous time, recent advancements
by Ang et al. (2013) and Lagodimos et al. (2018) have introduced a discrete-time EOQ
(DT-EOQ) model, which aligns more closely with real-world applications where time
and inventory changes are discrete. In the DT-EOQ model, time is discretised such that
information about the inventory position is available at the end of any time unit and then
the review can take place. As a result, the concept of continuous review still applies, but
reviews occur regularly at the end of each time unit (which is a fraction of the inventory
cycle length). The authors demonstrated an equivalence between the DT-EOQ and the
(S, T) periodic review model and, assuming backordering, showed that the optimal
policy in the continuous-time framework does not hold in the discrete-time framework.
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In this work, the DT-EOQ model is applied under the assumptions of lost sales,
binomial daily demand, and geometric lead time. By modelling the inventory system
as a Markov chain, the closed-form solution for the steady-state probability distribution
of on-hand inventory levels is derived. This result yields a set of exact, compact
formulas for key performance measures, including the average inventory level, which is
particularly challenging to estimate in lost sales scenarios. The new estimator proposed
for the average inventory level has demonstrated greater accuracy and precision
compared to the classical formulas used in the literature. Additionally, this metric is
expressed in terms of average lead time demand, fill rate, and expected stock-out per
cycle, introducing a generalised form that is potentially adaptable to various demand
and lead time distributions.

The remainder of this paper is structured as follows: Section 2 outlines the problem
statement and assumptions. Section 3 details the modelling approach, while Section 4
derives the closed-form solution for the system state probabilities. Sections 5 and 6
present the performance measure calculations and application insights, respectively.
Finally, Section 7 offers concluding remarks and directions for future research.

2 Problem statement

This paper presents a DT-EOQ model with lost sales which is solved in an exact
analytical way by providing a closed-form solution for the probability distribution of
the on-hand inventory level and compact formulas for the main performance measures.

Under the DT-EOQ model (see Lagodimos et al., 2018), time forms a sequence
of indivisible time units which are used to measure the passing of time in a discrete
manner. The inventory cycle length 7" is then split in a number of time units, each of
them accounting for a fraction of the cumulative demand in the inventory cycle.

This discrete-time framework is here applied by properly defining the length of the
time unit so that the fraction of the cumulative demand per time unit cannot exceed
1 item. Specifically, that demand is here assumed to take discrete values, 0 or 1,
according to a Bernoulli trial with a fixed consumption probability denoted as p, in the
following. Although the consumption probability ps is assumed to be constant within
each scenario, the resulting demand per day is not fixed. Since demand is modelled as
a sequence of Bernoulli trials over the time units of a day, the daily demand follows
a binomial distribution, and thus retains inherent stochastic variability. This allows the
model to realistically capture intermittent or variable demand patterns (see Section 6.1
for deeper details). The proposed model also considers a positive stochastic lead time.
Specifically, at the very time unit in which the inventory level reaches the reorder
point r, a replenishment order for the fixed quantity () is triggered. The order quantity
@ is assumed to arrive after a number of time units (the lead time) determined by a
geometrical distribution of parameter p;, called supply probability in the following. As
an example, a setting of p; = 0.1 generates a geometric lead time with mean value of
- = 51 = 10 time units.

The aforementioned assumptions, i.e., binomial daily demand and geometrically
distributed lead time, although they may seem restrictive, are motivated by the following
considerations. First, these assumptions are justified in real-world applications where
items undergo intermittent/rare demand and the supply process is unreliable. These
situations are common in modern supply chains where the responsive part results in
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a single inventory location that has the role of absorbing the most of the demand
variability (e.g., e-commerce sector with a large variety of products, automotive spare
parts aftermarket sector, etc.) and sees an unreliable supply process. This latter is
because low volume items typically wait in the order queue at the manufacturer’s level
for an economic batch size to be reached until being released into production, thus
resulting in less predictable and unreliable lead times.

Moreover, those assumptions allows us to model the inventory system as a
discrete-time discrete-state Markov chain and to provide an exact closed-form solution
for the probability distribution of the on-hand inventory level for the EOQ policy with
lost sales where the inventory level is a discrete variable. At the best of the Authors’
knowledge, the proposed model is the first one available in the literature achieving
this result, thus representing a significant leap forward in the extent of stochastic EOQ
modelling. Along this direction, further research may be carried out by generalising the
distribution form of demand and lead time, as well as by adding new model features
(e.g., inventory decay, multiple items, etc.).

Figure 1 A sample of the on hand inventory level generated by the simulator with p; = 0.1,
p2 =04, r =15, and @ = 8 (see online version for colours)
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Figure 1 shows a sample of the on-hand inventory over time generated by a simulation
model which works according to the aforementioned assumptions. The simulator moves
over time in discrete steps, i.e., the time units, keeping trace of the current state of the
system in terms of on-hand inventory; transitions are evaluated in each time unit as a
function of the current system state and by applying the consumption probability p, and
the supply probability p;. As can be seen by looking at Figure 1 (related to the setting
p1 = 0.1, po =04, r =5, and @ = 8), the dynamics of a continuous-review system
is cleary generated by the proposed DT-EOQ model, as different inventory cycles have
different time lengths (C;) and different lead times (L;) while maintaining the same
supply lot of fixed size @. It can also be noticed that, when a supply lot of ) = 8 arrives
in a time unit, the on-hand inventory can increase by either 8 or 7 items depending on
the non-occurrence or the occurrence of a consumption event in the same time unit,
respectively.



6 E. Gebennini et al.

Similarly as in Lagodimos et al. (2018), also here a dualism exists between the
continuous-review DT-EOQ model and the periodic-review (s, S) model. Specifically,
as regards the latter, let us consider the particular case in which the review period is
one time unit and the demand in the period can be either 0 or 1. In this condition, the
inventory level at the beginning of the review period cannot be less than s and so, the
replenishment lot is always the same and equal to @) = S — s.

3 Modelling approach

The DT-EOQ model with lost sales is here modelled as a discrete-state discrete-time
Markov process whose transition graph is depicted in Figure 2. The system states
correspond to the on-hand inventory levels, denoted as n = 0,1, ..., @ + r, representing
the number of items available in stock. The maximum inventory level is () + r), where
r is the reorder point, i.e., the highest level at which a replenishment can take place,
and (@ is the fixed order size.

Figure 2 Transition graph for the single-echelon inventory system with (r, Q) inventory
policy and lost sales (see online version for colours)
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The model is formulated according to the assumption that @@ > r + 1. At the end of
Subsection 4.3 it will be shown that this constraint can be relaxed to @ > r. This
assumption, together with the lost sale behaviour, guarantees that there can not be more
than one order in queue, as it is commonly accepted in the literature (Hill and Johansen,
2006). The generalisation of the model to cases in which @ < r is not considered a
priority at this development stage and is left for future research.

As shown in Figure 2, when the system is in state (Q + r) it can only transit in
(Q +r—1) if a consumption occurs with probability ps in the current time unit, or
remain in state (@) + r) with probability (1 — p2). This behaviour holds for every state
between (r 4+ 1) and (@ + r) determining a reduction over time of the inventory level
towards the reorder point r driven by the stochastic demand. At a certain time unit, the
system will enter state (r) indicating that the inventory position has reached the reorder
point. According to the EOQ policy, an order of size () is placed and the corresponding
replenishment lot will arrive after a positive lead time. The proposed Markov chain
models the lead time as a geometric process with parameter p;. Consequently, in any
state (n) with n = 0, ..., r, the supply event related to the order placed at state (r) occurs
with a constant probability p; and fails to do so with probability (1 — p;).

At each time unit, the system state gradually decreases toward n = 0 based on the
consumption probability ps until a supply event occurs. In the very time unit in which



Discrete-time EOQ with lost sales 7

the supply event occurs, the lot of size () is received and the on-hand inventory increases
by a quantity of @, if in the same time unit no consumption takes place, or a quantity of
Q — 1 if a consumption takes place. So, for any state (n) with n = 0,1, ..., r, the system
transits to either state (n + Q) or state (n + @ — 1) with probability p;(1 — p2) and
p1, P2, respectively. Note that the system can remain in states (n) with n =0,1,....r
with a probability that is scaled by the factor (1 — p;), being this the probability of not
receiving the supply lot in the generic time unit. When the system reaches state n = 0,
it is unable to fulfill any further demand, resulting in lost sales since no backlog is
maintained. The system stays in this state with probability (1 — p;) and exits only when
a replenishment event takes place, which occurs with probability p;.

The discrete Markov chain of Figure 2 can be solved numerically by calculating
the state probabilities for given parameter values. However, as the state space grows,
numerical methods become increasingly impractical. A closed-form solution is therefore
crucial for ensuring efficient and rapid computations, particularly when comparing
different scenarios. Moreover, such an approach allows for the derivation of compact
and simple formulas for key performance indicators commonly used to evaluate supply
systems, such as average inventory, cycle time, and service level. Therefore, this study
aims to provide a detailed mathematical derivation of the closed-form expressions for
state probabilities (detailed in Section 4) and the corresponding performance measures,
which are ultimately provided as concise formulas in Section 5.

Table 1 Notation correspondence

Symbol Description
r Reorder point
Q Order size
D1 Supply probability
D2 Consumption probability
n System state (inventory position), n = 0,1,...,Q +
m Partition probability of partition [¢] ‘in isolation’
P (n)[i] Steady-state probability ‘in isolation’ of state n belonging
to the sub-chain related to partition [¢] ‘in isolation’
P(n) Steady-state probability of state n
o =1+ pil, supplementary parameter
(1 —p1)p2
=1+ p72, supplementary parameter
(1 —p2)p
¥ = ! =P 21— p 1), supplementary parameter
a—1 D1

Table 1 summarises the notation used throughout the paper, while the proposed approach
is based on the partitioning technique described in the sequel.

3.1 Partitioning technique

The partitioning technique was first introduced in Gebennini et al. (2013, 2017) where
it was applied to a Markov model of a two-machine one-buffer production line. Here,
the technique is implemented to derive the closed-form solution of the inventory system
under analysis described by the transition graph of Figure 2.
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The transition graph of Figure 2 can be exploded into the equivalent transition graph
depicted in Figure 3. This approach is particularly useful as it enables the recognition
of homogeneous behavioural patterns. Specifically, it allows for the identification of
distinct state partitions, each corresponding to smaller (and simpler) sub-chains, thereby
simplifying the overall mathematical manipulation.

In the equivalent transition graph the inventory level reached after the replenishment
[see states (n), with n =Q — 1,Q,...,Q + r] is emphasised. Note that the inventory
level reached after the replenishment depends on both the inventory position at the
beginning of the time unit when a replenishment occurs and the consumption process.
For example, state (()) can be reached either from state (0) if a replenishment takes place
and no consumption occurs or from state (1) if both a replenishment and a consumption
occur.

Figure 3 Exploded transition graph with r + 2 state-partitions (see online version for colours)
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As a consequence, in Figure 3 any state (n), with n > r, is exploded in a number of
sub-states. As an example, state (r + 1) in the original transition graph (Figure 2) is
split into r + 1 sub-states. This is because, independently on the inventory level reached
after the replenishment, the inventory level must drop down to state (r + 1) before
another order can be placed. The same happens for states (n) withn =r+1,...,Q — 1.
Conversely, states (n) with n > @ — 1 are split into a lower number of sub-states. This
is because the system can reach and stay at those states only if the replenishment occurs
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at specific inventory positions. For example, state (@) in the original transition graph
is split into r (instead of 7 + 1) sub-states because it is not possible for the system
to enter state (Q) if the replenishment occurs at state (0) and a consumption occurs
in the same time unit (leading to a maximum inventory after the replenishment equal
to Q —1). By applying the same reasoning, state (¢ + 1) in the original transition
graph is split into r — 1 sub-states, state (@ + 2) in the original transition graph is split
into r — 2 sub-states, and so on. The last state () + r) is a single state also in the
equivalent transition graph since the system enters that state only if the replenishment
takes place at the reorder point and no consumption occurs. As mentioned above, the
equivalent transition graph of Figure 3 shows some homogeneous kinds of behaviour
which correspond to the state partitions.

The first state partition consists of states (n) with n =0, 1,...,r, which represent
the states where a replenishment event can occur. This sub-chain is called ‘partition
[r]> in the sequel. Other r 4 1 state partitions (and the corresponding sub-chains) can
be identified on the right side of the graph of Figure 3. These partitions, denoted as
‘partitions [¢]’, are indexed by ¢, where i = Q — 1, ...,Q + r, indicating the inventory
level reached after a replenishment occurs.

Hence, a total of r + 2 partitions can be identified and it is possible to apply the
so-called partitioning technique with the aim of facilitating the mathematical treatment
of the problem. The fundamental concept is that, in a steady-state system, the probability
of entering a partition must be equal to the probability of leaving it. Since these
partitions are mutually exclusive, each one can be treated separately, allowing it to be
‘isolated’ and analysed independently. As a result, the corresponding (simpler) sub-chain
can be solved as if it were independent of the others. This approach enables the
computation of the state probabilities ‘in isolation’. We denote as P (n)m the probability
‘in isolation” of state (n) belonging to the sub-chain related to partitions [¢] ‘in isolation’.

Specifically, partition [r] ‘in isolation’ can be depicted by the transition graph in
Figure 4. In this representation, the probability of leaving the partition, given by the
probability of being in any state (n) (where n = 0,1, ...,7) and a replenishment occurs,
is equal to the probability of entering the partition, which happens exclusively at state

(r).

Figure 4 Partition-[r] ‘in isolation’
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As shown in Figure 4, the sub-chain corresponding to partition [r| ‘in isolation’ is simple
and can be described by the following transition equations:

PO = (1= p) PO + (1 = p1) poP (D 0
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P(n)" = (1= p1) (1= p2) P ()"
+(1=p)pP(n+ D" wn=1,..r-1 ©)
r—1
P = (1 —pat+pip2) P ()" + ZplP ()" (3)
n=0
ZP (n)[r] =1 4)

n=0

Partitions [i] withi = @ — 1, ...,Q + r, depicted on the right side of the transition graph
of Figure 3, show the same (simple) schema in terms of transition probabilities when
taken ‘in isolation’. The generic partition [¢] ‘in isolation’ is represented in the transition
graph of Figure 5, where the index ¢ indicates the inventory level reached immediately
after replenishment, corresponding to the highest inventory level within that partition.

Figure 5 Partition-[¢] ‘in isolation’, with i = Q — 1, ..., Q@ +r

(1-p2) (1-p2) (1-p2)

The transition equations which describe the generic partitions [¢7] ‘in isolation’ are as
follows:

P(n)[i] =(1—p2) P(n)m +poP(n+ 1)[2’} Vn=r+1.,i—1
Vi=Q—-1,...,Q+r (5)
S pml=1 Vi=Q—-1,..,Q+r (6)
n=r+1
Given that the r + 2 partitions of the original model can be analysed ‘in isolation’,
the next step is to determine the probability for the system to be in each partition
in a time unit. This requires calculating the so-called partition probabilities: 11 =
{ﬂ-T‘a 7TQ—1a 7TQ7 7TQ+T'}
First, let us consider partition [r]. By introducing the partition probability 7., the
steady-state probability of any state (n) (where n =0,...,7) in the original system,
denoted as P(n), can be expressed as the product of 77,7 and the probability ‘in isolation’

of that state (P(n)["l). More formally,

P(n) = 7r[,ﬁ]P(n)[7']7 n=0,..r. @)
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Similarly, by introducing the partition probability j;), with ¢ = Q — 1, ..., Q + r, which
represents the probability for the original system to be in partition [i], the steady-state
probability of any state (n) with n =7+ 1,...,Q + r can be expressed as:

Q+r 4
S omPm, n=r+1,.,Q-1

P(n)=q 52" ®)

ZW[Z]P(n)[l]) n:Q7"'7Q+T

i=n
The interpretation of equation (8) is as follows:

e States (n) withn =r+1,...,Q — 1 are included in all partitions [i] with

i=Q—1,...,Q+r.

e States (n) with n = @, ..., @ + r are not present in all partitions [i] but only in a
subset of them. Specifically, they belong only to partitions [¢] with
i=m,...,Q + r. For instance, state (()) belongs to partitions [i] with
i=0Q,...,Q + r but it does not belong to partition [Q — 1], which represents the
partition entered when the inventory level is at zero and both a consumption event
and a replenishment take place in the same time unit.

To sum up, the application of the partitioning technique to the transition graph of
Figure 3 is based on the following steps:

1 Solution of partition [r]| ‘in isolation’.

2 Solution of partition [i], with i = Q — 1,...,@Q + r, ‘in isolation’.

3 Determination of the partition probabilities IT = {m(,), g _1], T[] - T[Q+r] }-
4

Determination of the state probabilities for the original system at the steady-state.

As described in the subsequent section, the application of the aforementioned steps leads
to simple and compact closed-form expressions of the state probabilities for the Markov
process representing the DT-EOQ model with lost sales.

4 Closed-form solution for state probabilities

The objective of this section is to provide the reader with simple closed-form
expressions of the state probabilities for the model described in Section 3. These
relationships are formalised in equation (20), where the probability P(n) of any state (n)
(forn=0,1,...,Q + r) can be directly expressed as a function of the system parameters
p1, P2, 7, and @. The approach that has led to the closed-form solution is based on the
steps of the partitioning technique described in Section 3.1 and applied in the sequel.

4.1 Solution of partition [r] in isolation

Partition [r] comprises states (n) with n =0,1,...,7. When taken ‘in isolation’ it is
represented according to the transition graph depicted in Figure 4 and the transition
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equations (1)—(4) where the notation P(n)[r] denotes the probability ‘in isolation’ for
state (n) belonging to partition [r].
From equation (1) we have:
P = P poylrl.
® (1—p1)p2

From equation (2) we have:

+ (1= p1)p2
P Nl — P T PUP2 5 ] —-1....r—-1

or, in terms of P(0)I"! only,

p1+(1— p1)p2)(n_1)p1
(L —p1)"p}
It may be convenient at this stage to introduce the parameter a, depending on p; and
po according to the following relationship:
P
(I —pi)p2

mmmz( PO vn=1,..r )

a=1+ (10)

Following the mathematical steps outlined in Appendix Al, the solution of partition [r]
‘in isolation’ is as follows:

1
M _ ) ar n=0
P(n)" =4 & 1 (11)

[e%

4.2 Solution of partitions [i] with i = Q — 1, ..., Q + r in isolation

Partitions [i] with i =@ — 1,...,Q + r, depicted on the right side of the transition
graph of Figure 3, show the same (simple) schema in terms of transition probabilities
when taken ‘in isolation’. The reader may refer to the transition graph in Figure 5,
which show the generic partitions [¢] in isolation, and to the corresponding transition
equations (5)—(6). We recall here that the index ¢ represents the inventory level attained
immediately after replenishment, which corresponds to the highest state within each
partition.
For the generic partitions [i] ‘in isolation’, from equation (5) we have:

P =P+ 1) WVn=r+1,..0i-1.

In words, all the states belonging to the same partition [i] ‘in isolation’ have the same
probability. By considering the normalisation equation (6), the state probabilities ‘in
isolation’ basically depend on the number of states constituting the partition [] under

analysis. Specifically, the solution for the generic partition [¢] ‘in isolation’ is as follows:
; 1
Pl =— vn=r+1,.i
i—r
Vi=@Q—-1,...,.Q+r (12)

where the term (i — r) represents the number of states constituting partition [i] (i.e.,
states (n) with n =7+ 1,7 + 2, ...,9).
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4.3 Determination of the partition probabilities

In order to find the expressions for the partition probabilities it is necessary to analyse
the transitions which occur between the different partitions of the original system as
represented in the transition graph of Figure 3. It can be noted that partition [Q — 1] can
be entered only from state (0) if a consumption occurs during the same time unit when
the replenishment quantity arrives. In addition, no other partition can be entered from
state (0) if a consumption occurs during the replenishment. This means that, at the steady
state, the probability of leaving partition [r] from state (0) given that a consumption
has occurred during the replenishment must equal the probability of entering partition
[@ — 1]. Recall also that the probability of entering partition [() — 1] must equal the
probability of leaving that partition. This is because the partition can be entered from
one state only, i.e., state () — 1), and left from one state only, i.e., state ( + 1). Hence,
the probability of leaving partition [r] from state (0) given that a consumption has
occurred during the replenishment (given by W[T]P(O)[T] p1p2) must equal the probability
of leaving partition [ — 1] which occurs if the system is in state (r + 1) of that partition

and a consumption occurs (i.e., mg_1 P (7 + 1)[Q_1]p2). Formally,

W[T]P(O)[T]pﬂ)z — ﬂ-[Q_l]P (r+ 1)[Q_1]p2. (13)

On the other extreme, partition [ + r] can be entered only from state (r) if no
consumption occurs during the replenishment, and that partition is the only one that can
be entered from that state under those conditions. Hence,

7 P()pL (1= pa) = migm P (r+ 1)1y (14)
Any other partition [i] with ¢ = @, ..., @ + r — 1 can be reached:

e from state (i — @), belonging to partition [r] by definition, if no consumption
occurs during the replenishment

e from state (i — @ + 1), still belonging to partition [r], if the consumption occurs
during the replenishment.

So,

TP — Q)pi (1 — pa) + 1P — Q + 1)"pipy
=P (r+ Dy, i=Q, Q41— 1. (15)

Finally, since the system can be in one and only one partition at any time unit, the sum
of the partition probabilities must equal 1. So,

Q+r
T+ Y, T =1 (16)
i=Q—1

The problem is then reduced to a set of r + 3 linear equations, of which r + 2 are
independent linear equations, in 7 + 2 unknowns.

The proposed solution, after some mathematical manipulations which are reported
in Appendix A2, is as follows:
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I

e .

1—p+QEar’ a
_1Z

p1(Q plT) 7 i=Q—1

l-p+ Q7 ar

(@—r)(a—p1—1) .

0= 1o+ QBar i=Q (17)

(a —1)° (i—7r)at, i=Q+1,..,Q+r—1

aQ+1(17p1+Q1p%ar) ) - g ey

Q p1 a’

Bpal—pi+QBar’
where « is from equation (10), and

b2

ﬂ:1+(1—p2)p1'

(18)

It can be noticed that when Q = r + 1 the probability of partition [Q) — 1] becomes
zero, meaning that the sufficient condition to assure that there is not more than one
order in queue is

Q> (19)

Moreover, looking at equations (11) and (12), it is clear that the model can also work in
the case » = 0. Even the extreme situation (r, Q) = (0,1) can be represented, since in
this case Q = r + 1 and then the probability of partition [() — 1] is zero as previously
stated [this is required for eliminating the case ¢ = Q — 1 = 0 in equation (12)].

4.4 Determination of the state probabilities

The closed-form expression for the steady-state probability of each state n, where n =
0,1,...,Q +r, in the original system is given by P(n) and is formulated as follows:

o b0
pi(y+Qar)’
b2 a” n=1,..,r
(v + (v +Qa") Y
o
- — n=r+1,..,0Q—1
P(n) ¥ Qar Q (20)
o — P2
ST n=
v+ Qar “
« b2 —-Q
— a" % n=Q+1,...,.Q+r
Y+ Qo  pi(y+1)(v+Qar)
where « is from equation (10), and
1 p2(l —p1
R 1)

a—1 P1

The mathematical derivation of equation (20) is reported in Appendix A3.
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Here, it can also be further verified that the model can handle the case (r,Q) =
(0,1). Considering, in equation (20), the terms for the only admissible states (n) with
n =0 and n = @ (this latter representing the state n = 1 in this specific case), it can
be observed that

D2 _l-p
PO) = gy )= =1 PO, (22)

Equation (20) represents a relevant result since it makes it possible to compute the state
probabilities for any values of the system parameters p;, po, r, and @ without the need
of explicit state-space enumeration. This is a useful result by itself, allowing to quickly
find the probability distribution without computation efforts and delays. In addition, the
closed-form solution of equation (20) allows us to obtain exact formulas for a number
of fundamental performance measures, as described in Section 5.

5 Performance measures

This section reports the closed-form expressions of the most relevant performance
measures, whose computation is based on the state probabilities at the steady-state [see
equation (20)]. The derivation of the compacted formulas is left to the reader since a
simplification approach similar to the one seen in Appendix A2 is adopted.

5.1 Length of the inventory cycle

The length of the inventory cycle is the average time between two consecutive order
arrivals. This is equal to the reciprocal of the probability that an order @) arrives, i.e.,
the reciprocal of the probability that the inventory position is equal to or less than the
reorder point 7 and a supply occurs. Formally,

1
_Q + LT [time units]. (23)

o S oP@) p2 pea

It can be noted that the length of the inventory cycle is composed of two terms: the

first one (%) represents the average time interval related to the working stock, while

C

the second term is the additional contribution generated by the average stock-out which,
in the lost sale case, translates in an unsold quantity that determines an additional stock
availability. At this stage, it can already be guessed that the average amount of stock-out
per cycle is actually .

5.2 Stock-out probability per time unit

The stock-out probability per time unit is the probability of not satisfying a demand
during a generic time unit. This occurs when the inventory level is zero, a consumption
occurs but no replenishment takes place. Hence,

_ _ _ D2y
Pso = p2(1 —p1)P(0) = oo (24)
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5.3 Average amount of stock-out per cycle

This performance measure represents the expected demand that cannot be satisfied
during a generic inventory cycle. Formally, this is equal to the product of the stockout
probability per time unit and the lenght of the inventory cycle in time units. So,

SOC:ORw:i%[Mmﬂ (25)

As expected, this measure does not depend on the order size @), but only on the reorder
point r and the probabilistic parameters p; and py according to the expressions of « and
~. The order size (), affecting the length of the inventory cycle and then the average
number of inventory cycles per years, impacts the expected stock-out per year.

5.4 Service level per demanded unit (fill rate)

The fill rate represents the fraction of demand that is satisfied in an inventory cycle
with the available stock that, in the lost-sale case, must also account for the average
stock-out per cycle.

SO¢ 5y Qa"

_ =1— = . 26
Q+S80c T i+Qa  y+Qar 20

SLy =1

5.5 Average inventory level

By definition, the average inventory level is the mean of the random variable
representing the inventory level. So,

Q+r
S b (O ) Qe
n—;zP(Z)—Q ( 5 r+p1)7+Qof [items]. 7)

Let us now introduce M as the random variable representing the lead time demand. It
is clear that, from the model assumptions, the mean value of M is

=" (28)
b1

With some mathematical steps, equation (27) can be rewritten as
Q

1450
S Py S

5 5 SLy, 29

where SO¢ and SLy are from equations (25) and (26), respectively.

Equation (29), being expressed in terms of steady state average performance
measures, can be accounted as a generalised estimator of the average inventory level
for the lost sales case. Notice that it is different from the one commonly adopted by the
scientific community, that is

ﬁc:§+r—M+SOc. (30)
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Hence, equation (30) cannot be considered an exact estimator for the average inventory
level in the case of lost sales, and further studies are needed to prove if equation (29)
can effectively be assumed as the exact generalised one. Remaining within the scope of
this paper, the reader may refer to Subsection 6.2 for a numerical comparison between
equations (29) and (30).

5.6 Average inventory level at the beginning of the cycle

In order to compute this measure, it is necessary to observe the average inventory level
at the occurrence of a generic supply event (i.e., the first time unit at the beginning of
a cycle) and re-scale it to the length C of the cycle. Hence,

fig = C (Z (i+Q—1D)pipeP(i) + > (i+Q)pi(1 —pz)P(i)>

=0 =0
=L+ Qtr— (2 +7) (31
Since
prty="2 =M,
b1

and considering equation (25), equation (31) can be rewritten as
no=Q+r—M+ SOc, (32)

resulting in the classical formulaec commonly adopted by the scientific community to
compute the average inventory level at the beginning of the cycle in the lost sales case.

5.7 Total cost
Let us consider the following parameters:

e wu: the unit purchase cost [$/item]
e a: the cost per order [$/order]
e h: the cost of holding a unit in stock for an entire year [$/unit/year]

e s: the unit stock-out cost [$/item], which corresponds to the loss of money when
a lost sale occurs

e N: number of time units per day

e w: working days per year.

The derivation of the purchase cost (PC), holding cost (HC'), ordering cost (OC') and
stock-out cost (SC) is:

PC = UQ% [$/year], (33)
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0C = "2 [s/year] (34)
HC = hn [$/year], (35)
SC = sSOC% [$/year], (36)

where C' is the lenght of the inventory cycle expressed in number of time units according
to equation (23), 7 is the average inventory according to equation (27), and SO¢ is the
average stock-out per cycle according to equation (25). Hence, the total annual cost 7'C
results as follows:

TC(r,Q) = PC+OC+ HC + SC [$/year]. 37

The optimal inventory control policy is defined by the values (r°, Q°') which
minimise the total annual cost T'C), as given by equation (37). It can be noted that the
equation of 7'C' is transcendent in r, thus it is not possible to invert it to directly find
the values (r°f', Q°'). However, a numerical search procedure can be carried out in
order to find the optimal values (r°', Q°"") similarly as in Mohebbi and Posner (1998).

It is worth noting that the cost structure adopted in this study follows a classical
EOQ-based modelling approach, particularly suited to single-echelon inventory systems
under stochastic demand and lost sales conditions. While broader cost formulations,
such as those proposed in Ivanov and Rozhkov (2020), include additional components
like transportation, manufacturing, and write-off costs, these are typically associated
with multi-echelon or production-integrated models. In our setting, such factors are
either constant, external to the inventory decision process, or subsumed within the unit
purchase cost. Nonetheless, the proposed model remains flexible and could be extended
to accommodate a more comprehensive cost structure in future research.

6 Application insights

In this section, some insights about how to derive the probabilistic parameters as a
function of the daily demand signal and the average lead time are presented and clarified
with some numerical examples.

6.1 Probabilistic parameters definition

The proposed model, as it is conceived, makes it possible to represent a daily demand
of binomial form, with certain limitations, by opportunely tuning the time unit size and
the probability p,. The lead time has a geometric distribution with parameter p;.

Hence, the time unit size (or, better, the number of time units per day), as well as
p1 and po, can be computed with respect to the actual problem to be represented. To do
this, let us consider the scheme reported in Figure 6, where the number of time units
per day is represented by the variable V.

Suppose now that we want to model a daily demand with mean D and variance o2,
Since the proposed model draws a single item (i.e. unit of demand) with probability po
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in each time unit, and there are IV time units per day, the daily demand is modelled as
a binomial distribution with
D = Np,, (38)
0p = Np2 (1 —ps). 39)

Figure 6 Example of time line discretisation with 1 day composed of N = 5 time units

1 day, N time units

[ [ [ | HEEEEEEEEEEE -

time unit

time

By means of equation (39), the number of time units per day /N and the probability p,
to see a unit of demand in a time unit can be uniquely computed given the wanted daily
demand signal with mean D and variance 0%, settling for the assumption that the daily
demand can be conveniently assumed to be of binomial form. Hence,

2
g
p2=1- 3]3, (40)
D2
N=z2 (41)

Note that N € R and can be less than one in the case a very rare daily demand needs
to be represented. In this case, there will be more days covered by the single time unit.
Being 0 < po < 1, the following conditions must be verified:

2 _
1-22 >0 2 <D

LR “2)
1-% <1 L

While the second condition in equation (42) is implicitly satisfied by the fact that the
demand is positive, the first condition actually imposes a boundary on the variability of
the daily demand that the model can handle. Specifically:

DCVE < 1, (43)

where CV3 = %—% is the squared coefficient of variation of the daily demand.

As can be deduced from Table 2 reporting the maximum mean value of the demand
that can be modelled with respect to the squared coefficient of variation as expressed by
equation (43), the proposed model well suits cases in which the demand is intermittent
and even rare (here one time unit can cover more days). Cases of greater average daily
demand can be modelled provided that the degree of variability becomes progressively
low, meaning that the proposed model cannot handle daily demand signals characterised
by both high average value and high variance. This does not appear to be excessively

limiting in modern market scenarios where cases of high variation in daily demand
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mainly refer to lumpy phenomena, that are mathematically addressed in different way
(see, e.g., Janssen et al., 1998) and are out of the scope of the proposed model.

Table 2 Upper bound of the daily demand mean value as a function of CV3

Gaussian like Smooth Intermittent Rare
CcV3 .. 0.1 02 < 09 1 < 40 50 ¢« ...
Dumax [items/day] ... +— 10 5.0 «—— 1.1 1 «<— 0.025 0.020 <— ...

Cases in which a vendor serves a number z of buyers with a high responsive service
can be addressed as well. This situation is common, e.g., in the Ho.Re.Ca. sector when
shipments are carried out on a daily basis or in some other highly responsive supply
chains. Let us consider the case in which all the buyers have the same daily demand,
represented by a random variable d so that:

di=d=d
03, =04, =03 o Vii=lzi#] (44)
CVE=CV} =CV}=%

and that the demands are independent of each other. The vendor will then see a demand
represented by a random variable D so that, from the central limit theorem:

D= Z d=zd, (45)
i=1
o2 = i 02 = 203, (46)
i=1
and then
covp= i~ Lovy (47)

By imposing the condition of equation (43) we have
_ -1 -
DCVj = zd;C’VdZ =dOV}; <1, (48)

meaning that such condition is satisfied as long as the demand of the individual buyer
satisfies it. Thus, the applicability of the model is independent of the number of buyers.
So, the presented model can be used for any aggregation of identical (similar) and
independent buyers whose individual daily demand satisfies equation (43) provided that
the resulting aggregated daily demand can be reasonably assumed binomial, or at least
that the binomial form is not discarded. When buyers daily demands are different, i.e.,
there are some dominant buyers, equation (43) must be specifically verified.

Defining L as the average order lead time expressed in days, the parameter p; can
be derived as follows:

1

p1= NI (49)
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Table 3 Application examples with different daily demand form
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Table 3 Application examples with different daily demand form (continued)
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Table 3 Application examples with different daily demand form (continued)
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Table 4 Comparison between analytical and simulated scenarios
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Table 4 Comparison between analytical and simulated scenarios (continued)
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As the model is conceived, the lead time assumes a geometric distribution and p;
determines its scale factor. Looking at Figure 3, it points out that partition [r],
that models the lead time effect, behaves as a phase-type distribution; this opens
opportunities to model more complex lead time forms by extending its structure. Here
the challenge is to find the right structures permitting the mathematical simplifications
to obtain closed-form solutions.

In addition to equation (43), the other constraint to be accomplished with is @ > r,
as shown in equation (19).

6.2 Numerical examples

Table 3 presents three illustrative application scenarios constructed to demonstrate the
flexibility and applicability of the proposed inventory model under different demand
conditions. While these examples are not derived from specific company data, they are
simulation-based case studies reflecting realistic inventory situations commonly found
in industry.

e The rare demand case (D = 0.05 [items/day]) emulates low-rotation items such as
spare parts in industrial maintenance or aerospace logistics.

e  The intermittent demand case (D = 0.4 [items/day]) reflects irregular but recurring
consumption patterns typical in service operations or niche product categories.

e The smooth demand case (D = 6 [items/day]) represents high-volume,
stable-demand products frequently found in fast-moving consumer goods supply
chains.

In all three scenarios, a geometrically distributed lead time with an expected value of ten
days is assumed. This highlights the impact of supply-side uncertainty, which remains a
key challenge in modern supply chains even when demand is predictable.

For each scenario, different combinations of reorder point r and order quantity @)
are evaluated, and the corresponding values of key performance measures are computed:
average inventory level (), average cycle length (C), average stock-out per cycle
(SO¢), and unit service level (SLy).

From a practical perspective, the table provides several managerial insights:

e In rare and intermittent demand environments, increasing r significantly improves
the service level, though the marginal gain decreases as r increases.

e In the smooth demand scenario, although demand variability is low, the
uncertainty in lead time has a major effect on service level performance.
Achieving high service levels still requires substantial reorder points due to this
supply-side variability.

e  The ability to compute these indicators quickly and accurately allows practitioners
to perform ‘what-if” analyses, evaluate different service level targets, and identify
suitable (r, Q) configurations without relying on extensive simulation or historical
data.
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Table 5 Precision analysis of the average inventory level computed by the new equation [7,

equation (29)] and the classical one [1°, equation (30)]

Analytical Simulated A%
p1 p2 r Q n ne 7 B .
[items] [items] [items] " "
0.05 0.2 0 1 0.1667 0.3000 0.1667 0.0082% 80.01%
6 2.0204 2.8000 2.0204 —0.0009% 38.58%
16 6.7071 7.8000 6.7071 —0.0001% 16.30%
5 6 4.7468 5.1817 4.7480 —0.0250% 9.13%
16 9.9470 10.1817 9.9464 0.0062% 2.37%
15 16 19.4752 19.1143 19.4757 —0.0029% -1.86%
0.4 0 1 0.0698 0.1000 0.0698 —0.0067% 43.32%
6 1.3676 2.6000 1.3679 —0.0195% 90.07%

16 5.4915 7.6000 5.4912 0.0066% 38.40%
5 6 2.7315 4.0963 2.7308 0.0233% 50.00%
16 7.6402 9.0963 7.6393 0.0129% 19.07%
15 16 15.5346 16.1900 15.5359 —0.0080% 4.21%

0.6 0 1 0.0323 —0.1000 0.0323 —0.0021%  —409.99%
6 1.0000 2.4000 1.0000 —0.0021% 139.99%

16 4.6131 7.4000 4.6137 —0.0120% 60.39%

5 6 1.7738 3.4872 1.7735 0.0149% 96.63%

16 6.1223 8.4872 6.1215 0.0126% 38.65%
0.6 15 16 12.2558 14.2296 12.2560 —0.0021% 16.10%
0.1 0.2 0 1 0.2857 0.3000 0.2857 0.0040% 5.00%

6 2.5385 2.8000 2.5386 —0.0073% 10.30%
16 7.4607 7.8000 7.4607 0.0003% 4.55%
5 6 6.4841 6.1976 6.4838 0.0037% —4.41%
16 11.5549 11.1976 11.5551 —0.0016% -3.09%
15 16 21.4992  21.0024 21.4998 —0.0031% -2.31%
0.4 0 1 0.1304 0.1000 0.1304 —0.0018% -23.33%
6 1.9375 2.6000 1.9373 0.0103% 34.21%
16 6.6122 7.6000 6.6125 —0.0038% 14.93%
5 6 4.7246 5.0569 4.7246 0.0011% 7.03%
16 9.9028 10.0569 9.9036 —0.0086% 1.55%
15 16 19.4802 19.0911 19.4797 0.0024% —2.00%

0.6 0 1 0.0625 —0.1000 0.0625 0.0150% —260.02%
6 1.5263 2.4000 1.5263 0.0008% 57.24%
16 5.9065 7.4000 5.9064 0.0029% 25.29%

5 6 3.4727 4.3092 3.4734 —0.0208% 24.06%
16 8.5720 9.3092 8.5711 0.0109% 8.61%
15 16 17.4614 17.4223 17.4617 —0.0014% —0.23%

Note: A% is against the simulated results.

These examples illustrate how the model can serve as a decision-support tool for
inventory control in diverse operational settings, offering both speed and accuracy
in evaluating policy performance and in identifying the best combination of (7, Q).
Moreover, by incorporating cost parameters, as discussed in Section 5, the model also
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enables the determination of the combination of reorder point r and order quantity
(@ that minimises total inventory cost. It is worth noting that the optimal ) obtained
through this process corresponds to the classical EOQ only when derived from cost
minimisation; otherwise, () can be treated as a configurable parameter to support
scenario analysis or service-level targeting.

Finally, for the sake of completeness, a simulation tool was developed in Python
programming language to reproduce the same behaviour and assumptions of the
modelled inventory policy. Simulations were carried out for some settings of pi, po,
r, and @ executing, for each scenario, a single long run of 10° time units. The
results, reported in Table 4, show a very good alignment between the analytical and the
simulated values, definitely excluding errors in the mathematical formulation.

In addition, Table 5 focuses on the estimation of the average inventory level. It
can be noted that the exact formulae here developed always produces precise results,
while the classical formulae so far adopted by the scientific community presents
large estimation errors especially in the cases in which the stock-out per cycle is not
negligible, thus affecting the actual possibility to correctly estimate the holding cost.

7 Conclusions and further research

This paper presents an exact closed-form analytical solution for the steady-state
probability distribution of the on-hand inventory level under a DT-EOQ model with lost
sales. The inventory system is modelled as a discrete-time, discrete-state Markov chain,
where both the consumption and supply processes are described as Bernoulli trials.

The proposed analytical approach enables the derivation of simple and compact
expressions for key performance measures. In particular, the paper introduces a new,
exact, and generalised formula for computing the average inventory level in the lost
sales scenario. This result also demonstrates that the classical approximations widely
adopted in the literature are not exact under stochastic lead times and discrete demand.

The model is well suited for practical applications involving intermittent or rare
demand, as well as more stable demand environments where the supply process remains
unreliable. These conditions are commonly observed in modern supply chains, where
a central inventory location is often responsible for absorbing most of the demand
variability (e.g., in e-commerce fulfillment centres or spare parts logistics).

Beyond its immediate analytical contributions, the model opens up several promising
avenues for future research. First, the framework can be extended by generalising the
assumptions on demand and lead time distributions. In particular, the use of phase-type
distributions could allow for a more flexible representation of lead time variability,
while compound demand processes would offer a better fit for erratic demand patterns,
characterised by burstiness, low predictability, and high variance. These extensions
are especially relevant in the context of maintenance and spare parts management,
as emphasised by Cavalieri et al. (2008), where demand behaviour often deviates
significantly from standard stochastic assumptions.

In addition, the model could be enriched by incorporating other practical features
such as inventory decay, stock limits, budget constraints, and multi-item systems. From
a methodological perspective, the exact analytical approach proposed here may serve
as a foundation for developing a broader class of discrete-time inventory models with
tractable and interpretable solutions.
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Appendix

Al Determination of solution of partition [r| in isolation

By recalling equation (9) and the normalisation equation (4), the following relationship
can be obtained where the only unknown is P(0)["!:

r

3 (p1+ (1= p1)p2)"
(1 —p1)"ph

P(0)" 4 P(O) =1. (50)

n=1
Since the parameter « is expressed according to Equation (10), it can be noted that:

n—1
(p1+ (1 —pl)pg)( 'y _a-l,

(1= p1)p2)" a
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By substituting in equation (50), we have:

P(O)l" (1 Mint ia”) —1,

(e

n=1
or, by recalling that >, _, o™ is a well known summation,

1
PO = —
O = —
Based on equation (9), the solution of partition [r] ‘in isolation’ can be expressed as
follows:
1

[r] — n=~0
P(n)" =481

n—r

« n=1,...r

«

A2 Determination of partition probabilities

Consider equations (13), (14), (15) and (16).

By recalling the expressions of the probabilities in isolation according to
equations (11) and (12), it is possible to express all partition probabilities 7(;, with
i =1Q —1,...,Q +r as functions of the partition probability 7.

Specifically, from equation (13) the partition probability mp_1; can be simply
expressed as a function of 7(,] as follows:

p1(Q—1~—r)

ar

Q-1 = Tr- G

Equation (14) leads to the following relationship between 74, and 7,

a—1pi(1—p9) B a—1
el pz T QO&(/B - 1)

where similarly as the definition of «a, the parameter 5 has been introduced as follows:

TiQ+r] = @ s (52)

D2

B=1+—12__ (53)
(1= p2)p1
1
As regards equation (15), it can be noted that if i = @Q then P(i — Q)l") = P(0)I"l = —
aT
-1
and P(i — Q + 1)1 = P(1)l"] = aar , so that the relationship between 7 and [,
simplifies as follows:
a—p;—1
Q) = 70; (Q - T)W[T]. (54)

Fori=Q+1,...,Q +r — 1, equation (15) can be generalised as follows:

a—1/pi(1—p2) ;_o_, i—Q+1—r 1
T, ( (pQ ) 4@ +pra ) =y —,

1—=T

that, after some algebraic manipulations, results in:
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(a—1)

i = W(zfr)ai”wm, i=Q+1,....Q+r—1. (55)

Finally, by substituing into the normalisation equation given by equation (16), we obtain:

(@Q—r)

[e% a”

11— o —1
7T[rl(lerl(Q o, e-m

N2 e g e 56
Z%:ﬂ aar (e *Qaw—l)) 6)

where the only unknown is 7).
After some basic mathematical manipulations the equation can be rewritten as:

oa—1 —7)—p1
S (ERECELES:

aT
Q+r—1
(a — 1)2 : i—r a—1 _
+i:%:+170é@+1 (i —r)a +Qa(5_1)>_1 (57)

Let us consider the term:
‘Clla-12
> g (i-na

i=Q+1

By applying the index change j = ¢ — r, we can rewrite it to:

Q+r—1 Q-1
Z (Oé — 1)2 (Z _ T’)Oéiir _ (Ol — 1)2 Z .Oéj
aQ+1 T et J
i=Q+1 J=Q-r+1

From the summation theory we know that:

. 1— n n+1
Zixl:x(l_i)z—qx_m with = #1

So,

(1 _ xnkarl) (n'rnfk%»l —k 4 1))

n n k—1
i C i ik
z;x_;x_gx_x< e -
Inourcase, k=Q —r+landn=Q—-1,son—k+1=r—1and

Q-1 .

(a—1)2 Z .Oéj:(oz—l)zoéerJrl 1—a™!

PYoREI J PYoXS] 1—a)?
J=Q-r+1

—1)a" "t — r —a" !t a— o — —-r
Qb o@uary 1o sl ) (asb@-n

a” « a”
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Hence, equation (57) can be simplified to:
1—p a—1 p
=1
W[T]( ar +Q a B-1
Recalling e and § from equations (10) and (53), respectively, we note that:
Bla—1)
-1

that bring us to the final form:

p1 1
=ala—1)(1- d(1-—p)="22
a(a —1)(1—p1) and (1 —p1) P

T

«

M) = ——————————
[] 1_pl+Q%a7

(58)

The remaining partition probabilities can be obtained by substituting equation (58) in
equations (51), (52), (54) and (55).

A3 Determination of state probabilities

It may be convenient to introduce the parameter y which is related to o [see
equation (10)] as follows:

1 p(l—p1)
a—1 1

’Y:

By merging equations (7) and (8) and by substituting according to equations (11) and
(12), we have:

1
W[T]P(O)[T] = W[T]J’ n=20
—1
”[T]P(n)m = W[r]aa ammr, n=1,..r
P ={ S~ T 1
= 3 ! == ; = —
42 )P (n) .Z Ty n=r+l., Q-1
i=Q—1 i=Q—1
Q+r i Q+r 1
Z”[i]P(")Z = Zﬂmm, n=0@Q,..Q0+r

where P(n) denotes the steady-state probability of any state (n) withn =0,1,...,Q +r
in the original system. By substituting according to the expressions of the partition
probabilities [see equation (17)], the following can be derived.

For the state (0):

1 P2
PO) =7y — = — L2
O =m5 pi(y+Qa”)
For the states (n), with n = 1,...,7:

-1 . -1
P(n) = ] e - 5 Q" = a a” = P2 "

Tal-pmrQEa)” T m( D+ Qan)”
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For the states (n), withn=r+1,...,Q — 1:

Q+r

1 1 1
P(n)—iz%zl =y TR T =, PRI,
Q+r—1
+ Z i 7+7TQ+7“§
1=Q+1

_ p(Q—1-—r) 1 +(Q—7“)(oz—p1—1) 1
l=p1+QBarQ—-1-r l—p1+QBar Q—r

Q+r—1 2
(a—1) . ;1
+ i—7r)al-
Z§1QQ+1 1_p1+Q1’1ar)( ) i—r
Qp1 a” 1
5p21—p1+Qp1@’"Q
Q+r—1
1 ( (@ —1) i | ot
= oma ot g o't
l-p+Q adtt p2f

o < p1 1> . ar
1—p1+QFar 2B a) v+ Qar

having considered that, from the summation theory,

Q+r—1 .
rm — $n+ ) ; aQ+1 _ aQ+7
Z:c — with © # 1, andthen'z o=
i=Q+1
and that,
I m
1+ - =5
p25 o P2
For the state (Q):
Q+r 1 1 Q+r—1 1 1
PQ) = My, =Talg—, + D i, tTewlg
i=Q i=Q+1
Q+r—1
: ( (o — 1) i | ot
=T oma\¢ Pl Z a'+
1-p1+@Qpa a® it P23
1 a—1)2 @@t _ oQ@+r a’
S — a—p1—1+( 1) p1
L=p+@par a@t 1-a p2f
P @ —p " —pa

T l-p+QEar 4+ Qar
For the states (n), withn =Q +1,...,Q + r:
Q+r 1 Q+r—1 1 1
P(n) =D miys— = > m;— + TR+ g

i=n i=n




Discrete-time EOQ with lost sales

_ 1 (a—1) Qg‘:lai L et
l—p1+QBar\ ottt P2

B 1 (@ —1)2am —a@tr n pra”
Cl-pi+QBar\ @t 1-a P2
_ a” _ D2 o=@
(y+Qa")  pr(1+7)(y+Qa")
By summarising:
b2
) n=~0
pi(y +Qar)
P2 am n=1,..,r
pi(y + Dy +Qar)
@
- — n=r+1,..,0Q —1
o — P2
- = n =
v+ Qar ¢
e} P2 -Q
— a" % n=Q+1,...,Q+r
Y+Qam pi(y+1)(y+Qa”)
where
1 1-—
a=1+ P1 and v = :p2( LY
(1 —p1)p2 1 D1



