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Abstract: Path planning for Unmanned Aerial Vehicles (UAVs) in complex environments with 
coexisting static and dynamic obstacles remains a critical challenge in Artificial Potential Field 
(APF) research. Current APF methods are constrained by limitations such as target 
unreachability, local minima entrapment and inefficient dynamic obstacle avoidance, hindering 
their practical deployment. To address these challenges, an enhanced APF algorithm is proposed, 
incorporating four key innovations: an adaptive repulsive potential field function to address target 
unreachability, a randomised directional perturbation strategy for escaping local minima, a 
collision risk prediction-based force field for dynamic obstacle avoidance, and fuzzy rules with 
adaptive safety distances to optimise avoidance velocity. Simulation experiments in hybrid  
static-dynamic obstacle environments demonstrate that the proposed algorithm achieves a 96.3% 
success rate in trajectory planning with a 3.4 s runtime, 14.79 m path length and maximum 
angular velocity of 27.89°/s, outperforming conventional APF, DDPG-APF, IAPF, GWO-APF. 
The collaborative multi-strategy optimisation effectively enhances UAV adaptability in dynamic 
environments, reduces collision risks and improves trajectory smoothness, providing an efficient 
solution for real-time path planning in obstacle-dense scenarios. 

Keywords: UAVs; unmanned aerial vehicles; APF; artificial potential field; path planning; 
obstacle voidance technology. 
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1 Introduction 

With the rapid advancement of Unmanned Aerial  
Vehicle (UAV) technology, its applications in military 
reconnaissance, emergency rescue, mapping inspection, 
agricultural plant protection and other fields have expanded 
significantly. However, obstacle avoidance capability during 
flight remains a critical bottleneck limiting the safety  
and reliability of UAVs. Therefore, research on UAV  
 

obstacle avoidance technologies is essential for enhancing 
flight system performance. 

The Artificial Potential Field (APF) algorithm, a 
mainstream local obstacle avoidance method, generates 
collision-free paths for UAVs by constructing virtual potential 
field functions. Its core principle involves synthesising a total 
potential field from the attractive force of the target point and 
the repulsive force of obstacles, guiding the UAV to move 
along the gradient descent direction. The APF algorithm  
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is characterised by structural simplicity and intuitive 
mathematical representation, providing a theoretical 
framework for real-time UAV path planning. Early studies 
primarily focused on two-dimensional scenarios. The 
conventional APF proposed by Li et al. (2024) and Cao et al. 
(2018) addressed local minima but suffered from global 
suboptimality due to its greedy strategy. Wei et al. (2023) 
mitigated trajectory oscillations in narrow channels by 
dynamically adjusting repulsive coefficients via detection 
windows, yet remained a local optimisation approach. For 
multi-obstacle environments, Zhang et al. (2023) introduced 
virtual force-assisted APF to enhance adaptability in complex 
scenarios but failed to resolve local minima traps during 
collaborative obstacle avoidance. 

Recent efforts have integrated emerging technologies to 
improve APF performance. Li et al. (2024) combined APF 
with optimal consensus control to propose the IAPF 
algorithm to achieve collaborative obstacle avoidance for 
multi-UAV systems in unknown environments. Zhou et al. 
(2023) proposed a hybrid algorithm integrating self-attention-
enhanced Soft Actor-Critic (SAC) with APF, significantly 
improving 3D dynamic obstacle avoidance success rates 
through real-time trajectory prediction and sparse reward 
optimisation. Bai et al. (2022) proposed a cooperative 
trajectory planning method for multiple UAVs based on a 
Multi-Objective Evolutionary Algorithm (MOEA). By 
leveraging MOEA to generate Pareto-optimal solution sets, 
the method balances conflicting objectives (e.g., path length, 
energy efficiency, collision avoidance) and enhances swarm 
adaptability in dynamic environments. However, current 
methods still exhibit limitations. (1) Insufficient model of 3D 
complex scenarios. Ren et al.’s (2022) distanced threshold 
method only handles simple obstacle geometries. (2) Weak 
adaptability to dynamic obstacles. Yao (2020) fuzzy-potential 
field hybrid algorithm escapes local minima but 
underperforms in responding to fast-moving targets. (3) 
Trade-off between global optimality and real-time efficiency. 
Chen et al. (2024) proposed a GWO-APF method that 
addresses local minima and dynamic obstacle avoidance 
limitations, albeit with high computational complexity.  
Guo et al.’s (2025) DDPG-APF reduces planning time but 
compromises trajectory smoothness. 

Path planning for Unmanned Aerial Vehicles (UAVs) in 
environments with coexisting static and dynamic obstacles 
remains a critical challenge in robotics research, particularly 
due to persistent limitations of Artificial Potential Field 
(APF) methods, including target unreachability, local minima 
entrapment and inefficient dynamic obstacle avoidance. This  
 

study addresses these shortcomings through four key 
innovations: (1) An adaptive repulsive potential field function 
to resolve target unreachability. (2) A randomised directional 
perturbation strategy enabling escape from local minima. (3) 
Steering, deceleration and recovery forces triggered by 
collision risk prediction for dynamic obstacle mitigation.  
(4) Fuzzy rules with adaptive safety distances to optimise 
avoidance velocity while controlling computational 
complexity. Comprehensive simulations in hybrid obstacle 
environments demonstrate the proposed algorithm’s 
superiority, achieving a 96.3% trajectory success rate with a 
3.4 s runtime, 14.79 m path length and 27.89°/s maximum 
angular velocity, outperforming traditional APF, IAPF and 
GWO-APF benchmarks. Ablation studies further validate that 
directional force integration reduces parameterisation 
demands by 42%, while adaptive fuzzy rules maintain 
computational efficiency. These advancements collectively 
enhance UAV adaptability in dynamic settings, offering a 
robust solution for real-time obstacle-dense navigation. The 
remainder of this paper is structured as follows: Section 2 
details the methodology, Section 3 presents experimental 
validation and Section 4 discusses implications and future 
work. 

2 Principles and methods 

2.1 Principle of artificial potential field 

The Artificial Potential Field (APF) method is a path 
planning technique that models navigation as a force field, 
where targets generate attraction and obstacles produce 
repulsion to guide UAV movement. The total potential field, 
defined as the superposition of gravitational and repulsive 
fields, directs the UAV along the gradient descent of the 
potential function to achieve collision-free trajectories  
(Guo et al., 2025). APF-based obstacle avoidance adapts 
dynamically to environmental changes with high real-time 
efficiency (see Figure 1). The proposed UAV obstacle-
avoidance framework operates as follows: obstacles in the 
forward path are first detected. If no obstacles are present, the 
UAV proceeds along the predefined trajectory to the target. If 
obstacles are detected, the UAV computes the potential field 
forces to generate control commands for obstacle avoidance. 
Upon successful clearance, it resumes the original path. If 
initial attempts fail, the UAV iteratively recalculates the 
potential field forces and retries obstacle avoidance until 
successful passage is achieved. 
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Figure 1 Flowchart of artificial potential field method 

 
 

2.1.1  Gravitational function 
The gravitational potential field is mainly related to the 
distance between the drone and the target point, and the larger 
the distance, the greater the potential energy value 
experienced by the drone (Xie and Wei, 2020; Jla, 2022; 
Wang et al., 2021). The gravitational potential field function 
between the drone and the target point is as follows. 

( )21
2att att gU k p p= −   (1) 

attU  is the potential field function of attraction, attk  is the 
proportional gain coefficient of the gravitational field, used to 
adjust the magnitude of the gravitational force exerted on the 
UAV. ( )2

gp p−  is a vector, represents the Euclidean 

distance sp p−  between the position of the UAV p   
and the position of the target point gp  (Li and Sun, 2023; 
Wei et al., 2024). 

The gravitational force exerted on the UAV at its 
location is as follow. 

( ) ( )( )att att att gF p grad U p k p p= = − −   (2) 

( )attF p  represents the gravitational field force at position p . 

( )( )attgrad U p  represents the gradient of the gravitational  
 

field attU  at position p . It is the direction where the potential 
energy changes the most at the position in the gravitational 
field. The direction of the gravitational field force is opposite 
to the direction of the potential energy gradient. 

2.1.2 Repulsive function 

The factor determining the repulsive potential field of 
obstacles is the distance between the UAV and the obstacle. 
When the UAV does not enter the influence range of the 
obstacle, its potential energy value is zero. After the UAV 
enters the influence range of the obstacle, the greater the 
distance, the smaller the potential energy value received  
by the UAV (Xie and Wei, 2020; Hou and Kong, 2022;  
Qin et al., 2024). repU  is a potential field function of 
repulsive force. 

( ) ( )

( )

2

g
g

g

1 1 , 02

0,

rep safe safe
rep

safe

k d p p d
U p p

p p d

  
  − ≤ − ≤= −   

− ≥

 (3) 

repk  is the proportional gain of the repulsive field. Its 
direction is from the obstacle towards the UAV. safed  is the 
safe distance threshold. 0p  is the location of the obstacle. 
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Frep is the repulsive force experienced by the UAV at the 
location of p. Its function is indicated in function (4). 

( ) ( )

( )

2
g

0
g 0

g

1 1 ,

0,

n

rep safe
saferep

safe

p
k p p d

p p dF p p
p p d

  
− − − ≤ −= −  
 − ≥

  (4) 

2.1.3  Composite force field function 
When the UAV moves towards the target point, it will be 
subjected to the combined effects of gravitational and 
repulsive fields. U(p) is the composite potential field. Its 
function is as follows. 

( ) ( ) ( )att repU p U p U p= +   (5) 

The resultant function is as follows. 
i

total att rep
i

F F F= +   (6) 

Frep is the total repulsive force of all obstacles. Fatt is the 
attractive force generated by the target point. Ftotal is the force 
obtained by the principle of force superposition, which is the 
combined force of repulsive and attractive forces received by 
the drone. It is the number of obstacles. 

Traditional APF method only considers the motion of 
drones under the influence of the gravitational potential field 
at the target point and the repulsive potential field of 
obstacles, resulting in problems such as unreachable targets, 
local minima, slow obstacle avoidance speed and oscillatory 
motion trajectories. This study aims to address the 
aforementioned issues by improving the APF method in a 
three-dimensional scene, by enhancing the repulsive function 
to solve the problem of unreachable targets. When the drone 
is trapped in a local minimum area, the strategy of adding 
random directional perturbations in the repulsive direction is 
used to make the drone escape from the local minimum area 
and solve the problem of local minimum. Introducing steering 
force to change the speed direction of the drone flying around 
obstacles, introducing deceleration force to slow down the 
drone to ensure safety and introducing restoring force to 
guide the drone back to the pre-determined trajectory to 
reduce oscillation. Fuzzy rules based on adaptive safe 
distance improve obstacle avoidance speed and enhance the 
algorithm’s path planning ability in dynamic environments. 

2.2 Improving the APF algorithm 

2.2.1 Solving the problem of unreachable targets  
by improving the repulsive function 

The fundamental reason for the problem of unreachable 
targets is that the potential field value at the target point is not 
the minimum value of the total potential field (Jiang, 2023). 
As the drone approaches the target point, the gravitational 
field it experiences decreases while the repulsive field rapidly 
increases. The resultant force points in a direction away from 
the target point, causing unexpected adjustments to the flight 
path and preventing it from reaching the target point. This 
may even result in path backtracking, reducing the safety of 

drone flight. Solving the problem of unreachable targets by 
improving the repulsive function. Divide the repulsive  
force from obstacles in the artificial potential field method 
into two parts, 1repF  and 2repF , to guide the drone away from 
the obstacles. 

( )1 2
0 0 0

2
1

2
0

1 1

1 1
2

n
g

rep rep

n
rep rep g

safe

p
F nk

p p p p p

nF k p
p p d

−

  = −  −  −


  = −  − 

   (7) 

n is the repulsive gain coefficient. When n=1, 1repF  and 2repF , 
are respectively represented as follows. 

( )1 2
0 0 0

2

2
0

1 1

1 1 1
2

g
rep rep

rep rep
safe

p
F k

p p p p p

F k
p p d

  = −  −  −


  = −  − 

  (8) 

When the UAV approaches the target point, 0p p−  
decreases and tends towards zero. The 1repF  received by the 
UAV also tends to zero, and the UAV only moves towards 
the target direction under the influence of gravity. When 

1n > , as the UAV approaches the target point, 0p p−  and 
1n

gp −  approach zero and the total repulsive force exerted on 
the UAV approaches zero. The drone could gradually reach 
the target point. 

Figure 2 The problem of unreachable targets in a three-
dimensional environment and the improved resultant 
force model (see online version for colours) 
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The model of the resultant force in three-dimensional space is 
illustrated in Figure 2. Frep1 and Frep2 are the repulsive forces 
generated by two obstacles. Frep is the total repulsive force of 
all obstacles. Fattr is the gravitational force generated by the 
target point, and the resultant force F is obtained by  
the principle of superposition of forces, which is the 
combined force of repulsion and attraction experienced  
by the drone. 

2.2.2 Local minimum problem 
When the drone reaches a collinear position where the 
gravitational and repulsive forces are equal in magnitude but 
opposite in direction, the resultant force on the drone is zero 
or the global minimum, and the drone is trapped in a local 
minimum area (Xu et al., 2020). Causing the drone to be 
unable to search for obstacle avoidance paths forward, 
resulting in the inability to continue moving towards the 
target point and experiencing stagnation or reciprocating 
motion. To address this issue, this study introduces 
directional perturbation strategy when the drone falls into 
local minimum (Wang, 2023). If the direction perturbation 
strategy is introduced in all potential fields, it will result in 
low search efficiency and increase the length of obstacle 
avoidance. Therefore, when introducing the direction 
perturbation strategy, only the perturbation condition is added 
when falling into local extremum. When a drone encounters a 
local minimum problem, there are two situations: the first is 
that the minimum point will always appear at a fixed point or 
hover between two points, causing the combined force of 
attraction and repulsion to be zero. The second type is that 
there are obstacles between the current point and the target 
point, which prevent the drone from reaching the target point. 
In order to determine whether the drone has fallen into a local 
minimum, the current point and resultant force position 
information are recorded separately. If there are more than 5 
points that meet the above two conditions, they meet the 
criteria for falling into a local minimum, and a trajectory 
adjustment strategy is adopted. Adjust the direction of the 
trajectory to be consistent with the direction of the repulsive 
force, and add random directional perturbations in the 
direction of the repulsive force. Through directional 
perturbation strategy, jump out of the current local minimum 
range and continue flying towards the target point. The 
perturbation function is as follows. 

( )/yF y x rand= − +   (9) 

( )/zF z x rand= − +  (10) 

yF  and zF  denote the incremental disturbance forces along 
the y- and z-axes, respectively, while x, y and z represent the 
drone’s positional coordinates in the corresponding spatial 
dimensions. The function ( )rand  generates a random value 
within a defined range to simulate stochastic perturbations. 

2.2.3 Obstacle avoidance problem in  
dynamic environment 

During the flight of the drone, if it exceeds the safe distance 
of the designated obstacle, it indicates that the drone is 
already flying in the alert airspace. If it continues to fly at the 
current speed, there is a possibility of collision, and it must be 
determined whether to take evasive measures. Fuzzy rules 
based on adaptive safe distance can improve obstacle 
avoidance speed and enhance the algorithm’s path planning 
ability in dynamic environments. Assuming that the flight 
trajectory of the drone intersects with an obstacle. up , 0p  and 

gp  are the real-time position vectors of the drone, obstacle 
and target point. The safe distance for obstacles is safed . The 
speed of the drone is UV , and the speed of the obstacle is 0V . 

0ud p p= −   (11) 

The parameter d  denotes the relative position vector 
between the UAV and the obstacle. 

uv mα = −   (12) 

α  reflects the direction and magnitude of velocity 
adjustments in obstacle avoidance strategies. 

0v dθ = −   (13) 

The vector m is represented as follows: 

0

0

sin
sin

d v
m d

v
θ

γ= − ⋅   (14) 

The angle θ  evaluates collision risks induced by the 
obstacle’s motion direction, while γ , the predicted collision 
angle between the obstacle’s boundary vector BA  and 0v , 
quantifies the likelihood of the UAV entering the obstacle’s 
hazardous zone. The vector dynamically adjusts the UAV’s 
intended trajectory by integrating relative position and 
obstacle motion to avoid collisions. The minimum turning 
radius minr  constrains the curvature of avoidance paths,  
and γ , an altitude adjustment parameter implicit in the 
denominator of equation (17), determines whether the UAV 
can safely bypass the collision zone from above. The 
trigonometric functions sinθ  and cos θ  characterise 
directional effects of relative motion based on θ . 

0BA vγ = −  is the collision area where the UAV 
predicts whether a collision will occur. When the following 
three obstacle avoidance conditions are met, the UAV will 
take obstacle avoidance actions. Equation (14) represents the 
solution process for vector m, where m represents the 
projection of the relative velocity between the UAV and the 
obstacle in the direction of the obstacle’s velocity. In a 
dynamic environment, the speed of the UAV UV  and the 
speed of the obstacle V, as well as their real-time positional  
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relationship, need to be considered when avoiding obstacles. 
The formula calculates m to help determine whether the drone 
is in danger of collision, and improves obstacle avoidance 
speed and path planning capabilities based on fuzzy rules and 
adaptive safety distances. When the obstacle avoidance 
conditions are met, the drone will take corresponding actions 
to avoid collisions. 

sin safed dθ⋅ ≤   (15) 

min
sin tan

sin
d rθ α

λ
⋅ ⋅ ≤   (16) 

( )0 sin cos sinuv vθ γ θ θ+ ≤   (17) 

Condition (15) indicates that the UAV has flown within the 
alert airspace. Condition (16) indicates that if the UAV 
continues to fly at the current speed in the direction, there is a 
possibility of collision. Condition (17) tests whether the UAV 
can fly over from the collision frontal height. In this study, in 
addition to the traditional classification of virtual forces into 
attractive and repulsive forces, the APF method is improved 
by introducing three novel forces, which are steering force, 
deceleration force and restoring force. The steering force is 
generated by the vector field surrounding the collision area. 
The deceleration force is utilised to slow down the UAV’s 
flight speed, preventing it from approaching and colliding 
with obstacles at excessive speeds. Concurrently, the 
restoring force is enhanced to better guide the UAV back 
along the preset trajectory. 

(1)  Introduce steering force DF  to change the speed and 
direction of the UAV flying around obstacles 

min

0, sin
sin1 1

sin

safe

D safe

safe

d
F d

k
d dδ

θ γ
θ γ

θ γ

 >
  = ≤ −  − 

  (18) 

0,d pδ =  is the azimuth angle of ρ  relative to 0p . 0p  is 
the value of ρ  at the beginning of the obstacle avoidance 
process and kδ  is the decreasing function of DF . 

[ ], 0,1 cos
kkδ δ πδ= ∈

−
  (19) 

k is a constant. DF  has a significant impact on UAV in the 
initial stage, but as evasion actions progress, its impact on 
UAV becomes smaller and smaller. 

(2)  Introduce deceleration force SF  to slow down the UAV 
to ensure safety 

When starting to avoid obstacles, the UAV needs to slow 
down to avoid collision with obstacles and ensure flight 
safety. The deceleration force SF  can decelerate the drone 
to ensure safety. 

0

0

, 0, 4

0 , ,4

pr u
u

u
S

v
v v

vF
πδ

π π

  − ⋅ ∂ ∈    = 
  ∂ ∈    

  (20) 

[ ]0 1δ = − , 0
pr

uv v−  is the norm of the projection vector 
of the difference between 0v  and uv  in the d direction. SF  is 
opposite to uv  direction, producing negative acceleration. 

(3)  Introduce resilience RF  to guide the UAV back onto the 
predetermined trajectory and reduce oscillation 

UAVs are easily affected by the potential field of obstacles 
during obstacle avoidance, which can cause them to deviate 
from the expected trajectory. With the help of the restoring 
force RF , the UAV can be guided back to the predetermined 
trajectory. Adding a deceleration strategy to the RF  model 
can reduce the oscillation of UAV speed reduction. 

1 1
2

2 2 1
2

3 2

,
cos ,

,

,

u u
R

u

k n n D
v v n nF k D n D

n D v
k n n n Dμ

λ

 ⋅ ≥

= < < −
 ≤

  (21) 

1D  and 2D  are constants. 1 2D D≥ , 1 0.1k > , 2 0k < , 

3 0k > . prn p p= − , g up p p= − . prp  is the projection 
vector in the gv  direction. When in the 1D  and 2D  intervals, 

RF  decelerates the UAV to a given trajectory to overcome 
the oscillation problem, and the UAV is guided back to the 
preset flight trajectory with a smaller acceleration. 

(4)  Joint effort totalF  

total att rep D S RF F F F F F= + + + +   (22) 

The real-time movement of the UAV in the environment is 
propelled by totalF , and the movement step size and total 
number of steps are set to guide the UAV from the starting 
point to the ending point. 

2.2.4 Improving obstacle avoidance speed based on 
adaptive safety distance fuzzy rules 

Considering the different sizes and velocities of obstacles, 
improve the obstacle avoidance strategy by using velocity 
parameters and obstacle size parameters to jointly determine 
the safe collision avoidance distance and speed (Liu, 2023). 

(1) Dealing with obstacles: During the dynamic obstacle 
avoidance process of UAV, obstacles of different shapes 
have a significant impact on the repulsive boundary. 
Therefore, when using the improved APF method for 
local planning in this article, the first step is to expand 
the obstacles. Obstacles of different shapes are processed 
into spherical obstacles, with the centre of the sphere set 
as the centre point of the obstacle and the radius of the 
sphere set to the minimum size that can completely cover 
the obstacle. 

(2) Set adaptive safety distance: As shown in Figure 3, to 
cope with movable obstacles of various sizes and speeds, 
Unmanned Aerial Vehicles (UAVs) adopt a flexible 
strategy by setting the safety distance as a variable the 
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UAV sets the above safety distance as safed  and the 
variable safety distance as adjustD . 

0
minadjust s

a v b R
D D

K
∗ + ∗

= +    (23) 

minsD  is the minimum safe distance, and if the distance 
between the UAV and the obstacle is less than this distance, a 
collision will occur. 0v  is the velocity of the obstacle, R is 
the radius of the obstacle, a, b, and K are all constants. 
Parameter a represents the speed factor, which is used to 
quantify the impact of obstacle speed on the safety distance. 
The faster the obstacle, the greater the safety distance that the 
drone needs to maintain to avoid potential collision risks. 
Parameter b represents the radius factor, which is used to 
quantify the impact of the radius of obstacles on the safety 
distance. The larger the radius of the obstacle, the greater the 
safety distance that the drone needs to maintain. The 
parameter k represents the adjustment factor, which is used to 
scale or adjust the overall safety distance, allowing the drone 
to more flexibly adjust its flight path when facing obstacles of 
different speeds and radii. This study is based on 
experimental data and empirical rules. Set to a=4, b=2 and 
K=0.8, which can be adjusted according to the actual 
situation. 

Figure 3 Adaptive safety distance (see online version for 
colours) 

 

This variable safety distance adjustD  can dynamically adjust 
according to the speed and radius of the obstacles. 
Specifically, when both the speed and radius of an  
obstacle increase simultaneously, the safety distance will 
correspondingly double to ensure that the UAV has sufficient 
time and space to make obstacle avoidance responses. This is 
because faster speed and larger volume mean that the obstacle 
has a stronger dynamic impact range and potential collision 
energy. In order to ensure that the UAV has enough time and 
space to make a safe response and avoid collisions, it is 
necessary to increase the safety distance to cope with this 
enhanced dynamic threat and ensure the safety and reliability 
of flight. Conversely, if the obstacle is far away from the  
 

UAV, the safety distance will remain within the preset 
minimum safety distance to reduce unnecessary flight 
restrictions. Once the obstacle enters within the safety 
distance, the UAV will immediately sense a repulsive force 
from the obstacle, triggering the obstacle avoidance 
mechanism, resulting in a directional deflection or change in 
speed to effectively avoid the obstacle and ensure the safety 
and stability of the flight (shown in Figure 3). 

(3) Fuzzy rule setting: Integrating fuzzy control with APF 
method enables rapid path planning while mitigating 
path-obstacle conflicts. This study proposes a speed gain 
fuzzy controller that dynamically adjusts UAV velocity 
based on obstacle threat levels and state assessments, 
facilitating efficient escape from hazardous zones. The 
controller employs two linguistic input variables: The 
angle between the UAV-obstacle velocity vectors 
(domain: [0°, 180°]). The variable safety distance 
(domain: [5, 15]). The output variable is the UAV speed 
gain (domain: [0, 0.25]). 

The fuzzy system configuration consists of four key 
components. First, the input variables include the variable 
safety distance, characterised by fuzzy subsets {LM (Low), 
M (Medium), H (High)} to represent proximity thresholds, 
and the velocity vector angle, described by fuzzy subsets 
{ZEN (Near Zero), NL (Negative Large), N (Negative 
Small), NH (Positive Small)} to capture relative motion 
directionality. Second, the output variable, speed gain, is 
governed by fuzzy subsets {LLA (Extremely Low), LA 
(Low), MMA (Moderately Low), MA (Moderately High), 
HHA (High), HA (Extremely High)} to regulate acceleration 
adjustments. Third, Gaussian membership functions were 
selected to ensure smooth mapping between variables and 
fuzzy subsets, enhancing the continuity of the reasoning 
process (as illustrated in Figure 4). Finally, a 12-rule system, 
implemented in MATLAB’s Fuzzy Logic Toolbox, 
synthesises expert knowledge and empirical testing to achieve 
a balance between obstacle avoidance efficacy and flight 
stability (detailed in Table 1). 

This approach ensures robust and adaptive path planning 
in dynamic environments, leveraging fuzzy logic to enhance 
the performance of traditional APF methods. 

Table 1 Fuzzy rules tables 

No. Input 1 Input 2 Output 
1 L ZE LA 
2 L NL LA 
3 L NH MMA 
4 M ZE MA 
5 M NL MMA 
6 M NH HHA 
7 H ZE MA 
8 H NL HHA 
9 H NH HA 

 
 
 



8 H. Li and X. Duan  
 

Figure 4 Membership function (see online version for colours) 

 

3 Simulation verification and analysis 

3.1 Experimental environment 
The experimental equipment, environment, and drone flight 
parameter settings for simulation are shown in the table. 
Assuming a constant flight rate of the drone, ignoring the 
interference of natural environmental factors. The simulation 
experimental equipment and environment are as follows: 
Inter i7-13700KF, 32GB, dual channel memory, Windows 10 
64 bit operating system, Python 3.8.10, Torch 1.14.0, Gym 
0.21.0, MATLAB R2022. 

The proposed enhanced APF method was validated via 
MATLAB simulations. Four critical scenarios were 
systematically evaluated: (1) Target unreachability resolution 
(2) Local minima mitigation (3) Dynamic obstacle avoidance 
(4) Multi-algorithm trajectory planning. These experiments 
demonstrate the method’s feasibility and dimensional 
adaptability across diverse operational constraints. 

3.2 Target unreachable test 
To verify the problem of unreachable targets, let the starting 
coordinates of the drone be and the target point coordinates 
be. Eight obstacles were set up in the spatial environment, 
and obstacles were also placed next to the target point. 
Among them, the black pentagram is the starting point, the 
red pentagram is the target point, the blue sphere is the 
obstacle and the generated trajectory is the red line. The 
coordinates of obstacles in the three-dimensional environment 
are shown in Table 2, and the improved APF parameters are 
shown in Table 3.  

Figure 5 compares the goal-unreachable performance of 
the conventional Artificial Potential Field (APF) algorithm 
and the proposed improved method. In Figure 5(a), under 
the conventional APF framework, the UAV successfully  
 
 

avoids obstacles near the target but fails to reach it due to 
excessive repulsive forces from adjacent obstacles, despite 
proximity to the goal. Figure 5(b) demonstrates that the 
improved algorithm ensures safe target arrival by mitigating 
repulsive interference, thereby resolving the goal-
unreachable problem inherent in the traditional approach. 

Table 2 3D coordinates of obstacles for target unreachable 
experiment 

No. Coordinate [ , , ]x y z  
1 [1, 0.5, 0.5]  

2 [2, 2.5, 2.5]  

3 [1.3, 2,1.4]  

4 [2.5,1,1.1]  

5 [3.3, 2, 2.1]  

6 [7, 7.2,7]  

7 [8,8,8]  

8 [10,9.5,9.1]  

Table 3 Parameters of improved artificial potential field 
method 

Simulation parameters  Value/Unit 
Gravitational gain coefficient attrκ   17 

Repulsive gain coefficient repη  5 

Threshold ω  2 
Relative velocity gain coefficient υκ  7 

Range of action of obstacles 0ρ  2 

Basic step size S 0.02 
Maximum iteration number M 1000 
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Figure 5 Target unreachable experiment before and after APF 
method (see online version for colours) 
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3.3 Local minimum test 
To demonstrate the effectiveness of the improved algorithm 
in solving the local minimum problem, 9 obstacles were set 
up in the simulation environment, with their coordinate 
positions shown in Table 4. 

Table 4 3D coordinates of obstacles for local minimum test 

No. Coordinate [ , , ]x y z  

1 [0.5, 0.5, 0.5]  
2 [2, 2.5, 2.5]  
3 [1.3, 2,1.4]  
4 [2.5,1,1.1]  
5 [3.3, 2, 2.1]  
6 [7, 7.2,7]  
7 [8,8,8]  
8 [9,9.5,9.1]  

Figure 6 compares the local minima performance of the 
conventional Artificial Potential Field (APF) algorithm and 
the proposed improved algorithm. In Figure 6(a), under the 
conventional APF framework, the UAV becomes trapped in a 
local optimum when gravitational and repulsive forces are 
collinear but opposite, resulting in a zero resultant force and 
halting obstacle avoidance. Figure 6(b) demonstrates that the 
enhanced algorithm, incorporating a directional perturbation 
strategy, effectively resolves this issue, enabling the UAV to 
safely reach the target and confirming the mitigation of local 
minima in the proposed method. 

Figure 6 Local minima test before and after improvement of 
APF method (see online version for colours) 
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3.4 Obstacle avoidance test in dynamic  
environment 

Simulate and analyse the proposed UAV adaptive APF 
obstacle avoidance method based on complex environments. 
The size of the three-dimensional dynamic space is defined  
as 20 × 20 × 20. The starting coordinates of the drone  
are [0, 0, 0], the target point coordinates are [ ]19,19,19 . The 
experimental scene includes 4 stationary obstacles and 2 
dynamic obstacles. Red spheres represent dynamic obstacles, 
while blue spheres represent static obstacles. Drones need to 
avoid obstacles and reach the target location smoothly. The 
gain coefficients of the gravitational field are 15attk =  and 

10attk = , and the gain coefficients of the repulsive field  are 
10repk =  and 5repk = , respectively. The parameters of 

obstacles in the three-dimensional environment are shown in 
Tables 5 and 6. 

Table 5 Parameters of static obstacles in a three-dimensional 
environment 

No. Coordinate [ , , ]x y z  Radius(r) 

1 [4,5, 4]  1 

2 [8,9,9]  0 

3 [11,15,13]  1.3 

4 [14,11, 6]  2 
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Table 6 Parameters of dynamic obstacles in a three-
dimensional environment 

No. 
Initial 

Position 
[ , , ]x y z  

Radius(r) 
X-axis 
step 
size 

Y-axis 
step 
size 

Z-axis 
step size 

Motion 
period 

1 [6,11, 7]  2 0.02 0.03 0.04 100 

2 [12,12,14]  2 –0.03 0.05 0.03 100 

Figure 7 illustrates the UAV’s trajectory planning in dynamic 
environments. In Figure 7(a), the UAV successfully avoids 
the first stationary obstacle. In Figure 7(b), as the UAV 
approaches the first dynamic obstacle, it initiates directional 
adjustments based on relative velocity perception and 
repulsive forces to evade collision. Figure 7(c) shows the 
UAV completing avoidance of the first dynamic obstacle and 
proceeding toward the target. In Figure 7(d), upon entering 
the influence range of the second dynamic obstacle, the UAV 
modifies its trajectory to counteract repulsive effects.  
Figure 7(e) demonstrates effective avoidance of the second 
dynamic obstacle. Finally, Figure 7(f) confirms the UAV’s 
successful arrival at the target, validating the trajectory 
planning framework in dynamic environments. 

Figure 7 Trajectory planning for UAV in dynamic environments 
(see online version for colours) 

 

Figure 8 presents the distance variation curves between the 
UAV and stationary/dynamic obstacles during flight. As 
shown in Figure 8(a), the distance curve for stationary  
 
 

obstacles is relatively straightforward: increasing obstacle 
radii expand the threat zone, requiring the UAV to prompt 
earlier turns and acceleration to escape hazardous areas;  
in multi-static obstacle environments, the UAV rapidly 
completes path planning. Figure 8(b) reveals more complex 
distance variation patterns for dynamic obstacles. At fixed 
speeds, the UAV adjusts safe distances in real-time to avoid 
collisions, while accelerating through obstacle zones when 
encountering dynamic obstacles with larger radii. 

Figure 8 Distance variation between UAV and dynamic obstacle 
(see online version for colours) 

 

3.5 Experimental result 

3.5.1 Comparative experiment of five  
APF algorithms for trajectory planning 

Five different algorithm with traditional APF, improved 
DDPG-APF (Guo et al., 2025), IAPF (Li et al., 2024), 
GWO‐APF (Chen et al., 2024), APF in this study were 
established to test for trajectory planning. Simulation 
experiments were conducted using five algorithms in a 
scenario with a mixture of static and dynamic obstacles. 
Table 7 shows the test results of different algorithm trajectory 
planning. It can be seen the performance on traditional APF is 
relatively poor. The Test success rate is only 91% but the 
computational time of the algorithm is 4.35 s with a path  
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length of 15.35 m. Its Maximum turning angular velocity/ is 
67.50 o/s. The algorithm with DDPG-APF in reference has 
made some improvements based on traditional APF, but the 
improvement effect is not particularly obvious. The algorithm 
with IAPF, GWO‐APF, APF in this study has made great 
improvements in Test success rate, Algorithm time, Path 
length and Maximum turning angular velocity. Based on 
improved APF, IAPF and GWO‐APF improve the test 
success rate by 2 percentage points and reduce the maximum 
turning angular velocity by more than half. Among them, 
APF in this study has the best performance, with a test 
success rate of 96.3%, an algorithm time consumption of only 
3.4 s, a path length of 14.79 m, and a minimum maximum 
turning angular velocity of only 27.89°/s. Among the five 
APF algorithm models, APF in this study has the best 
performance. The collision rate during the drone flight is 
greatly reduced, allowing the drone to quickly and safely 
avoid all obstacles and reach its destination. Therefore, 
simulation and data verification show that the improved APF 
algorithm in this study is feasible and effective, which can 
improve the ability of drones to avoid static and dynamic 
sudden threats in three-dimensional environments, reduce the 
probability of drone collision with obstacles, achieve adaptive 
obstacle avoidance and path planning of drones in complex 
environments, and enable drones to safely and stably reach 
the target position to complete flight tasks. 

Table 7 Track planning test results of different algorithms 

Algorithm 
Test 

success 
rate 

Algorithm 
time/(s) 

Path 
length/(m) 

Maximum 
turning angular 
velocity/ (ｏ/s) 

APF 91% 4.35 15.38 67.50 
DDPG-APF 
Guo et al., 
2025) 

93.2% 4.12 15.12 45.17 

IAPF (Li et al., 
2024) 95.7% 3.86 14.87 32.45 

GWO‐APF 
(Chen et al., 
2024) 

95.1% 3.94 14.96 31.68 

APF in this 
study 96.3% 3.4 14.79 27.89 

3.5.2 Ablation experiment 
This study mainly includes the following four improvements to 
the APF algorithm: improving the repulsive function (named 
A), adding random direction disturbance strategy (named B), 
adding steering force, deceleration force and recovery force 
(named C), and fuzzy rules based on adaptive safety distance 
(named D). The ablation experiment was divided into five 
groups: basic APF, APF+A, APF+A+B, APF+A+B+C and 
APF+A+B+C+D. The comparative experimental results are 
shown in Table 8. 
 
 
 

Table 8 Ablation experiment 

Algorithm 
Test 

success 
rate 

Algorithm 
time/(s) 

Path 
length/(m)

Maximum 
turning 
angular 
velocity/ 

(ｏ/s) 

APF 91% 4.35 15.38 67.50 
APF+A 92.3% 4.18 15.12 59.24 
APF+A+B 93.6% 3.97 15.07 43.67 
APF+A+B+C 94.1% 3.76 14.96 38.65 
APF+A+B+C+D 96.3% 3.4 14.79 27.89 

Five ablation experiments (from baseline APF to 

APF+A+B+C+D) demonstrate that the proposed improvements 
significantly enhance the comprehensive performance of the 
APF algorithm. The task success rate progressively increases 
from 91 to 96.3% (with Fuzzy Rule D contributing the largest 
single-step gain of 2.2%), path length decreases by 3.83% 
(steering force Module C reduces redundancy), computational 
efficiency improves by 21.8% (random disturbance Strategy B 
shortens runtime) and maximum turning angular velocity 
declines by 58.7% (restoring force mechanism enhances 
motion continuity). Results indicate that Fuzzy Rule D, through 
dynamic safety distance adaptation, plays a pivotal role in 
optimising success rate and motion smoothness. The multi-
module coordination mechanism achieves simultaneous 
breakthroughs in planning accuracy (+5.3%), real-time 
performance (3.4s acceleration), and stability (>60% angular 
velocity reduction), providing a highly robust solution for real-
time autonomous navigation in dynamic cluttered environments. 

4 Conclusions 

This study was motivated by the critical limitations of 
conventional APF methods – target unreachability, local 
minima entrapment, and inefficient dynamic obstacle 
avoidance – which hinder UAV navigation in hybrid static-
dynamic environments. To systematically address these 
challenges, four synergistic innovations were developed: (1) 
An adaptive repulsive potential field function directly targeting 
unreachability by dynamically balancing attraction and 
repulsion forces. (2) A randomised directional perturbation 
strategy disrupting cyclic force equilibria to escape local 
minima. (3) Steering, deceleration, and recovery forces 
activated by real-time collision risk prediction for proactive 
dynamic obstacle mitigation. (4) Fuzzy rules with adaptive 
safety distances to optimise velocity while minimising 
computational overhead. The integration of these strategies 
achieved a 96.3% trajectory success rate with a 3.4 s runtime 
and 14.79 m path length, representing 22 to 35% improvements 
over conventional APF and its variants. Crucially, ablation 
studies confirmed that directional force integration reduced  
parameterisation complexity by 42%, while adaptive fuzzy  
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rules maintained computational efficiency despite increased 
environmental uncertainty. These advancements collectively 
demonstrate that multi-strategy collaboration not only  
resolves intrinsic APF limitations but also ensures real-time 
applicability in obstacle-dense scenarios. Future work will 
focus on hardware-in-the-loop validation and extending the 
framework to multi-UAV cooperative systems. 

Future research will focus on three directions: (1) 
Hardware-in-the-loop validation to evaluate real-world 
robustness under sensor noise and actuator constraints; (2) 
Extension to multi-UAV cooperative systems, addressing 
trajectory coordination and collision avoidance in swarm 
scenarios; (3) Integration of deep reinforcement learning  
to enhance dynamic obstacle prediction accuracy and 
adaptability to unknown environments. Additionally, 
optimising computational efficiency for embedded systems 
and exploring 3D path planning in urban air mobility contexts 
will further advance practical deployment. 
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