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Abstract: Deep learning-based music generating techniques have slowly 
shown notable advancement in the area of popular music composition with the 
fast evolution of artificial intelligence technology. This work intends to look at 
how long-short-term memory (LSTM) networks are used in polyphonic pop 
music generation and their performance. An LSTM-based generative model is 
therefore created to properly catch the temporal dependencies in popular music 
and produce melodies and harmonies following the rules of music. 
Experimental findings indicate that, particularly in the coordination between 
several voices, the LSTM network can better preserve the harmony and 
consistency of the song when producing polyphonic music. At last, this study 
offers a perspective for future research considering the constraints of the 
present work; with the ongoing enhancement of dataset diversity and model 
optimisation, smart music composition will become more and more relevant in 
the domain of music composition. 

Keywords: LSTM networks; polyphonic music generation; popular music; 
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1 Introduction 

1.1 Background and significance of the study 

Music generation has slowly moved from experimental investigation to practical 
application in recent years as artificial intelligence and music art have become more 
deeply integrated (Sturm et al., 2019). Generative music technology has become a key 
instrument for encouraging advances in music production techniques, particularly in the 
areas of digital entertainment, intelligent arrangement, and assisted creation. Deep 
learning techniques’ inclusion in this process greatly enhances the quality and variety of 
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music production, hence transforming automated music creation systems from static  
rule-driven to dynamic model learning. LSTM has grown to be one of the most often 
used network models in the music generating sector as a very representational structure in 
sequence modelling because of its capacity to manage complicated dependencies in time 
series. 

Because of its rhythm, melodic simplicity and structural consistency, popular music 
has drawn most interest in music generation studies. Most current automatic generation 
systems, meanwhile, still concentrate on monophonic melodies and lack thorough 
modelling of the synergistic interactions between polyphonic components like harmony 
and accompaniment. Polyphonic pop music, in contrast to monophonic music, not only 
demands obvious melodic logic but also harmony, rhythmic consistency, and stylistic 
coherence across several tracks, which raises more expectations on the timing 
comprehension and structural control capacity of the generation model (Dean and Evans, 
2024). 

LSTM network has achieved remarkable results in melody generation, rhythm 
control, music prediction and other tasks, and can effectively capture long-term 
dependency information in note sequences by virtue of its gating mechanism, so better 
simulating the structural characteristics of music such as repetition, change and 
progression. Further use of LSTM to polyphonic popular music generation suggests that 
the model must handle the synergetic patterns between several parallel tracks 
concurrently, which not only increases the investigation of LSTM in terms of modelling 
capacity but also presents a fresh difficulty for the data representation, network structure 
design, and generation strategy. 

This study aims to provide a framework for automatic synthesis of polyphonic 
popular music based on LSTM networks and to methodically evaluate its performance 
and generative effects in modelling multidimensional music structures. This work, on the 
one hand, can increase the musicality and integrity of the intelligent composition system, 
therefore broadening its practical application value in music creation, education, games, 
and other contexts; on the other hand, by means of the examination of the applicability 
and limits of LSTM in the polyphonic modelling task, it also offers the theoretical 
support and practical foundation for the design of subsequent more complex generative 
models. 

1.2 Current status of domestic and international research 

An important area in the study of intelligent music creation, the polyphonic popular 
music generation job combines several aspects like melodic modelling, harmonic 
coordination, rhythmic control, etc. Deep learning technology is developing quickly, so 
academics have always sought to include several neural network architectures to improve 
the expressiveness of music generating tools. The present available studies can be 
roughly classified as follows. 

Originally developed for image identification, convolutional neural network (CNN) 
has also been utilised for music modelling because of its benefits in local feature 
extraction. Through convolution operations, some research have turned music into 2D 
piano roll images, built grids for pitch and time axis, and pulled out patterns in note 
fragments to seize short-term structures like chords and rhythmic blocks (Siphocly et al., 
2021). CNN-based models, for instance, may simultaneously analyse data from several 
voices, stressing the alignment characteristics of the rhythmic and accompaniment layers, 
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and have performed well in polyphonic style imitation projects. Still, CNNs have some 
constraints when it comes to more organised pop music and little capacity to predict great 
distances in time. 

Especially in enhancing the naturalness and diversity of produced samples, generative 
adversarial network (GAN) has been extensively employed in music generation in recent 
years. Typically, researchers build a generator-discriminator adversarial system in which 
the generator produces music clips and the discriminator decides if these are actual music 
(Wang et al., 2021). Usually, MidiNet creates melodies using a mixed CNN-GAN design, 
hence improving the uniqueness of melodies while preserving stylistic consistency. 
Though GAN has had great success in the picture domain, in polyphonic music 
generation the discrete nature of the note sequences and the intricacy of the music 
structure continue to highlight issues with unstable model training process and imprecise 
assessment criteria. 

Music creation is being opened by the emergence of transformer model and  
self-attention mechanism. Researchers have begun to include the transformer framework 
into polyphonic modelling assignments since it can be long-distance modelling and 
parallel computing (Wu et al., 2023). Music transformer, for instance, can produce 
intricate musical passages with many voices and great performance in preserving 
rhythmic, melodic, and accompaniment coordination by modelling the structural 
relationship between several notes using relative position encoding; OpenAI’s MuseNet 
goes to multi-instrumental, multi-style composite music generation based on the 
transformer model. Though Transformer is more expressive, its architecture is 
complicated, it uses a lot of processing power, and it is very reliant on the number and 
quality of training data. 

Graph neural network (GNN) has also been applied to capture graphical links 
between structures and voice components in music. Treating notes as graph nodes and 
creating edge connections between various voices, rhythms, and chords, some researchers 
have tried to recreate intricate note-to-note interaction patterns (de Lemos Almada and 
Carvalho, 2022). Such techniques are potentially useful in exposing the combinatorial 
logic of music and are particularly appropriate for conveying dynamic coupling 
interactions between several voices. The use of GNN in music production, on the other 
hand, is still exploratory and mostly concerned with assisted generation or structural 
analysis; it is still challenging to produce high-quality music creation independently. 

LSTM networks have a longer history of study in polyphonic music creation than the 
structures and a more developed approach system. Representing recurrent neural 
networks, LSTM uses a gating method to effectively handle the gradient vanishing 
problem of conventional RNN in long-term dependency modelling, hence allowing it to 
seize the temporal logical links between notes. Many research have produced melodic, 
harmonic, and rhythmic data using single-layer or multi-layer LSTM architectures, and 
they have obtained polyphonic outputs using parallel modelling or shared timelines. 
Currently one of the most often employed models in music generation research, LSTM is 
also flexible in tasks like structural control and stylistic migration. Furthermore, LSTM 
network training is consistent and needs low data size, making it especially appropriate 
for fast testing and deployment on small and medium-sized music datasets. 

Though new structures like transformer and GAN show promise in terms of 
representation complexity and generation quality, the usefulness and performance of 
LSTM networks in polyphonic popular music production remain typical. A methodical 
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study of the modelling approach, generation effect, and performance comparison of 
LSTM under this task not only assesses its present benefits but also offers theoretical 
foundation and experimental reference for following multi-model fusion investigation. 

2 Relevant technical basis 

2.1 Characteristics of popular music and polyphonic music 

Pop music is extensively spread in many settings including commercial entertainment, 
film and television soundtracks and network communication as a mainstream genre in 
modern music culture. Its melody is lovely, rhythm is obvious, structure is tight, and it 
has great auditory appeal and general acceptance. From the viewpoint of technical 
modelling, popular music has very formal and repetitive qualities, which offers a basic 
framework for its generative modelling in the domain of artificial intelligence. But the 
modelling complexity of the generating job has grown dramatically with the growth of 
music generation research from monophonic melodies to polyphonic structures, and more 
sophisticated vocal control and semantic alignment techniques are urgently required. 

Structurally speaking, popular music usually has several repeating and symmetrical 
passage forms like verse, chorus, intro, interlude and outro (Okoro, 2021). With obvious 
section borders and melodic directions, most of these structures are based on the 
structuring of periodic time units such eight or sixteen bars. Pop music often uses 
conventional chord progressions to keep harmonic stability in terms of harmonic 
arrangement, augmented by simultaneously, rhythmic or rhythmic variations are added to 
boost auditory diversity. These qualities give pop music algorithmically sound in terms of 
style development, melodic extension and rhythmic imitation. 

Conversely, polyphonic music adds many independent melodic lines over a single 
melody, creating a three-dimensional weaving of pitch, rhythm, and harmony. Common 
voices in polyphonic structures are the primary melody, harmony, bass voice, drum and 
percussion tracks, and special orchestration tracks (e.g., synthesisers, violins, woodwinds, 
etc.). The various voices are synchronised in the time dimension, and at the same time 
they have different functions in terms of musical semantics: the main melody is 
responsible for conveying the theme of the music, the harmony voices reinforce the mood 
and rhythm, the bass voices support the harmonic roots, and the percussion controls the 
overall rhythmic framework. Polyphonic music must handle both vertical coordination 
(harmonic consistency) and horizontal coherence (temporal logic of development) in the 
work of automatic generation given its obvious division of labour and synergistic 
character. 

Technical modelling of polyphonic music presents three fundamental difficulties, the 
first being the complexity of the alignment and coordinating interaction among the 
voices. Though distinct voices must be rhythmically aligned, they frequently vary in 
pitch, rhythmic pattern, beginning and stopping times, etc. For generative systems, the 
key difficulty is to properly model these asymmetric but linked time series connections. 
The key difficulty for the generative system is the efficient representation of these 
asymmetric but connected time series relationships. The second is the great need for 
harmonic plausibility. In the generating outcomes, unreasonable chord progressions or 
intervallic superposition can cause dissonance or perhaps out-of-tune sounds, 
compromising the audibility and beauty of the music. Thus, the model must either 
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explicitly or implicitly grasp the principles of harmonic grammar, including those 
governing the avoidance of discordant intervals and the regulation of fourths and octaves. 
Equally difficult is rhythmic and orchestral control. The rhythmic beat pattern should 
reflect the melody, especially in the drum track and percussion section; different 
instruments should be spread across the frequency domain to prevent overlap; and 
orchestration conventions in the music style (e.g., electro-pop prefers low-frequency 
drums and synthetic underscoring, while jazz prefers brass and bass, etc.) must be 
followed. 

Another significant difficulty is the multimodality of polyphonic music data. Usually 
made up of several MIDI files, polyphonic music features varying note counts as well as 
varying start and end times. When input to the model is a key component of data  
pre-processing in polyphonic modelling, how can multi-track MIDI data be consistently 
encoded to provide consistent temporal alignment and processability (Krause and Müller, 
2023). Finally, the model is also more in demand from the cross-cutting requirements of 
style and mood regulation. Not only the auditory aesthetics and structural consistency of 
the melody should be ensured in popular music generation, but also the conversion 
between various styles (e.g., lyric, electronic, rock, etc.) has to be realised, and even the 
control of emotional development curves, such as the transition from padding to 
outbursts, etc., which puts forward the dual requirements of style recognition and 
generation control capability to the model. 

Unlike conventional single-melody modelling, polyphonic music generation demands 
the model to not only grasp the logic of music unfolding in time but also create a 
hierarchical awareness of the internal structure and generation mechanism. Though early 
music generation techniques were largely focused on template splicing or Markov chains, 
managing the long-term dependency and structural coupling of polyphonic components is 
challenging. Deep learning is now driving more and more studies to build polyphonic 
output using structures with strong sequence modelling capabilities; among these, LSTM 
networks, with their long-term memory mechanism for sequence data, show strong 
adaptability in capturing rhythmic changes, melodic development and polyphonic 
synchronisation, and become one of the important technological routes for music AI 
research. 

2.2 LSTM network structure and principle 

A particular architecture suggested addressing the gradient vanishing and gradient 
explosion issues experienced by conventional RNNs while handling long time 
dependence concerns. By adding several gating mechanisms, LSTM can effectively 
capture and keep long temporal dependencies in sequence data, thereby excelling in tasks 
like speech recognition, natural language processing, and music synthesis (Yu et al., 
2019). When learning long term dependencies, LSTM can better manage information 
flow and memory transfer than conventional RNNs, which makes it especially 
appropriate for handling lengthy time sequence data. 

LSTM’s gating system is its main feature. Every LSTM unit has several gates to 
regulate memory updating and information flow. Specifically, the LSTM network is 
made up of output gates, cell states, input gates, and forgetting gates. Every gate has a 
unique purpose and is meant to enable the network to save and forget data, hence 
preventing information overload or loss. 
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The first gate in the LSTM that governs the flow of information from the previous 
moment to the present one is called the forgetting gate. Based on the present input and 
the concealed state of the prior moment, the forgetting gate determines which information 
should be kept and which should be thrown away. Thus, the LSTM can choose forget 
unnecessary information as required, therefore preventing the gradient vanishing issue 
that might arise in conventional RNNs under long-term dependency concerns. The design 
of the forgetting gate lets the LSTM dynamically adjust the information delivery in  
time-series data without causing the network memory to become too reliant on prior 
inputs. 

Updating the present memory, the input gate then determines which new information 
should be recorded to the cell state of the LSTM. The input gate determines which 
information is significant and should be kept in the long-term memory of the network by 
means of an update value calculated from the current input data and the concealed state 
of the previous moment. The LSTM can constantly update its memory depending on 
fresh data using the input gate, hence enabling it to capture important information at 
various time steps in the sequence and produce more accurate forecasts. 

A key component of the LSTM, the cell state denotes the long-term memory of the 
network. Present throughout the sequence in the network, the cell state transfers 
information across the time dimension and remains stable across time steps (Li et al., 
2019). Unlike conventional RNNs, whose memory may be lost owing to gradient loss, 
the cell state’s architecture lets the LSTM to effectively keep significant information over 
lengthy time spans. The LSTM may constantly change the cell state to keep long-term 
memory while handling complicated time-series data by means of interaction between 
forgetting gates and input gates. 

The output gate computes the LSTM network’s output value at the present instant 
depending on the cell state and the current input. The output gate not only influences the 
present network output but also controls the hidden state update sent to the LSTM cell at 
the following instant. The output gate’s function is to offer information for the prediction 
of the future instant and to make sure the LSTM can produce sensible outputs depending 
on the present inputs and internal memories. 

By means of the design of these gating mechanisms, the LSTM is able to flexibly and 
selectively update or forget the information when processing sequence data, which 
eliminates the limitations of conventional RNNs in handling long term dependencies. 
Particularly in time series, this LSTM architecture allows it to effectively capture long-
term dependencies, which is especially clear in music generating activities. 

LSTM’s benefits are especially clear in polyphonic music production. Polyphonic 
music is the coordination and harmony of several independent voices; LSTM can 
efficiently manage the interdependence between these voices, producing works that 
follow the rules of music and are inventive. LSTM not only catches the melodic 
evolution but also creates harmonic intervals across several voices, hence producing 
intricate harmonic structures. By means of LSTM training, the model can learn to 
coordinate rhythm and harmony across several voices, hence producing musical 
fragments that fit the musical style and emotional expression. 

2.3 Common encoding methods for music generation 

The music generation process depends on how to convert the music data into a format 
appropriate for computer processing. With each note comprising information like its start 
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time, pitch, and intensity, it depicts a musical composition as a chronological succession 
of notes. The time-pitch-velocity triangle, which more succinctly represents the 
fundamental rhythmic and melodic structure of the music, is the most usual form. The 
encoding of the music affects the generation outcomes by means of the model’s 
interpretation and manipulation of the music data during generation. Usually, music 
encoding techniques consist mostly of audio-based spectrum encoding, piano roll 
encoding, and note sequence encoding. 

A simple and natural method of music coding is noting sequence coding. Pitch and 
intensity are shown straight in MIDI encoding; note duration in this encoding is typically 
based on the time data of following notes (Wu et al., 2019). When matched with the 
conventional representation of musical scores, this makes the encoding of note sequences 
very interpretable. 

Note sequence encoding is defined by the formula: 

( )1 1 1 2 2 2( ), , , , ,( , , ,),=  n n nN T P V T P V T P V  (1) 

where Ti indicates the note’s start time, Pi indicates the note’s pitch which is often stated 
in MIDI code, and Vi indicates the note’s strength or loudness. Musical works can thus be 
precisely shown as time sequences appropriate for learning and generation utilising 
sequence modelling techniques. 

Its simplicity and clarity of understanding are benefits of this encoding method, 
especially when handling jobs like melody production. Thus, note data in musical works 
may be precisely represented and instantly applied for sequence modelling. On the other 
hand, this encoding method’s disadvantage is rather clear; especially with complicated 
rhythmic frameworks or polyphonic music, where the note sequences have limited 
expressive power, it does not reflect the continuity between notes very effectively. 
Though note sequence coding is useful for certain straightforward music generating 
chores, piano roll chart coding could be more relevant when confronted with more 
complicated musical works. 

A two-dimensional matrix called piano roll chart encoding shows the temporal 
characteristics of music; the horizontal axis denotes time and the vertical axis pitch 
(Benetos et al., 2018). Every column in the matrix represents a time step; every row 
relates to a pitch. The matrix’s associated element is marked 1 if a note is played at a 
particular moment; if the note is not played, the corresponding matrix position is 0, 
meaning the note is off. Especially in polyphonic music creation, piano roll-up diagrams 
can more easily capture the temporal linkages of notes than note sequence encoding and 
can properly show the interrelationships between several voices. The piano roll diagram 
formula is stated as: 

{ }, ,, 0, 1{ }= ∈i j i jR r r  (2) 

where ri,j indicates if the ith pitch in the piano roll chart is played at the jth time point, 1 
indicates the note is played and 0 indicates the note is not played. By changing the time 
step and pitch range, this matrix can be suited to various musical works. 

The benefits of the piano roll chart are its clear representation of note timing and 
pitch information as well as its ease of representation of complicated rhythmic and 
melodic structures via the matrix form, which makes it especially appropriate for musical 
works with many voices or long-time spans. This method has significant drawbacks, 
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particularly for works with a wide pitch range or extended time spans since the 
dimensions of the matrix may get quite big, creating storage and processing problems. 

Another popular coding method in certain audio generating projects is audio-based 
spectral coding. Unlike symbolic note representations, spectral coding transforms the 
audio signal into a frequency-domain representation by means of spectrum analysis, 
hence capturing timbre, harmony, and other subtle audio characteristics in the audio in 
more depth. Short-time Fourier transform (STFT) and Mel frequency cepstrum 
coefficient (MFCC) are two often employed spectral analysis techniques (Abdul and  
Al-Talabani, 2022). 

A two-dimensional matrix with the horizontal axis denoting time, the vertical axis 
denoting frequency, and every matrix element denoting the magnitude or energy at the 
relevant time and frequency point is a popular depiction of a spectrogram. The following 
formula can represent this matrix: 

2( ), ,( )=S t f X t f  (3) 

where X(t, f) is the complex spectrum produced by Fourier transform; S(t, f) is the 
magnitude spectrum at time t and frequency f; the absolute value squared is the 
magnitude spectrum. Especially for audio signal creation tasks, spectral coding is 
appropriate since it catches the frequency domain qualities of audio signals, particularly 
regarding timbre and harmonic aspects. 

Though spectral coding offers more precise audio data, it struggles with high 
computing and storage requirements. Particularly in the creation of sound, the  
high-dimensional representation of the spectrogram complicates the generation process 
and demands more computing power. 

Apart from the previously stated coding techniques, rhythmic and timbre coding are 
also key factors in music creation. Rhythmic coding often uses beats, beat numbers, and 
note spacing to indicate the rhythmic pattern in music. On the other hand, timbre coding 
allows the generative model to more accurately mimic the timbral qualities of several 
instruments when producing music by means of the spectrum analysis of the audio signal. 

3 Application and implementation of LSTM networks in polyphonic pop 
music generation 

3.1 Data preparation and coding 

The preparation and encoding of input data is vital in polyphonic popular music creation. 
This work encodes music data using piano roll. Every voice is seen as a distinct note 
sequence if one is to be able to create polyphonic music. To help LSTM networks learn 
polyphonic music, the piano roll map data of every voice part is combined in this paper 
into a multi-dimensional matrix, with each dimension signifying a distinct voice part. 
Such a technique has the benefit of guaranteeing independence between each vocal part 
while maintaining their interrelationships in the whole musical structure, which is vital 
for producing coherence and harmony in polyphonic music. 

Moreover, the input data is often sliced using a sliding window to more accurately 
capture the temporal characteristics of the notes. Given a sliding step of 1 and a window 
length T, every input sample can be shown as a succession of notes of length T in a 
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continuous music sequence (Silva et al., 2018). At every time point t, the input data will 
be a vector of notes with T time steps; each vector will include information on the notes 
of the current time step and its prior T time steps. Thus, the LSTM network can 
effectively learn the temporal relationships between sounds and produce constant and 
inventive musical sequences. 

The following formula can show the encoding of the piano roll map: 

1, if note is played at time step
,

0, otherwise                              
( )

    


= 


i t
P t i  (4) 

where P(t, i) indicates the time step t and whether the note i is active or not. The input 
sequence may also be shown as: 

{ }1 2, , ,=  TX x x x  (5) 

where xt indicates the note vector of the tth time step comprising the note information of 
the present time step and its prior T time steps. 

This encoding allows the input data to give the LSTM network sufficient information 
for the model to seize the temporal dependencies of the music and produce polyphonic 
pop music. 

3.2 LSTM network structure 

LSTM networks create melodies and harmonies by learning the relationships between 
note sequences, hence generating polyphonic pop music. LSTM is especially able to 
handle synergistic interactions between several voice parts by using its own memory 
system to capture note sequence properties across long time spans. Specifically, the 
creation of each note depends on previously produced notes and coordinated interactions 
with other voices; the gating mechanism of LSTM allows the network to dynamically 
control the flow of information and memory, therefore guaranteeing that the produced 
music is consistent and harmonic. 

First, LSTM’s forgetting gate decides whether the state information of the prior 
moment should be lost (Wang et al., 2019). The forgetting gate’s function in polyphonic 
pop music creation is to keep those qualities that are useful for the present note 
production and to discard the obsolete information unrelated to the present generation. 
The equation determines it: 

[ ]( )1,−= ⋅ +t f t t ff σ W h x b  (6) 

where ft indicates the output of the forgetting gate at the present time, Wf is the weight 
matrix of the forgetting gate, ht−1 is the hidden state at the prior moment, xt is the input at 
the present time, which indicates the characteristics of the note, bf is the bias term, and σ 
is the sigmoid activation function, which limits the output of the forgetting gate to a range 
between 0 and 1 and controls the degree of information discarded. 

The input gate next decides which new note information should be added to the 
memory of the network to affect the next produced notes. Especially when polyphonic 
music is being created, the input gate determines how the melodies and harmonies of the 
several voices are coordinated with one another to guarantee that the produced notes fit 
the harmony. The input gate is determined by the formula: 
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[ ]( )1,−= ⋅ +t i t t ii σ W h x b  (7) 

where it is the output of the input gate, Wi is the weight matrix of the input gate, and bi is 
a bias term regulating the model’s acceptance of the input note information at the present 
time. 

Simultaneously, LSTM has to provide a candidate memory unit to modify the 
memory state at the present time. The candidate memory unit’s function in polyphonic 
music creation is to determine which note data should be added to the memory while 
preserving a valid time series dependency (Ycart and Benetos, 2020). The candidate 
memory unit is computed using the formula: 

[ ]( )1tanh ,−⋅= +t C t t CW h x bC  (8) 

where tC  is the candidate memory cell at the present time, WC is the weight matrix, bC is 
the bias term regulating the inclusion of incoming information, and tanh is the hyperbolic 
tangent function maintaining the output of the candidate memory cell within the 
appropriate range. 

Updating the memory cells lets the LSTM finally decide the hidden state ht of the 
current moment, which will be sent to the network as the input for the next moment to 
produce the next note. The LSTM in the polyphonic generation task not only creates the 
current note depending on the prior note but also creates the notes of other voices 
depending on the relative positional relationship between each voice, therefore preserving 
the coordination of melody and harmony. 

This structural design allows LSTM to capture intricate time series dependencies 
while guaranteeing harmony and consistency between melody and harmony in the 
polyphonic popular music generation task, hence strongly supporting automatic music 
production. 

3.3 Training process 

The performance of LSTM networks in polyphonic popular music generation depends on 
the training procedure. The LSTM network, which performs well in managing 
complicated music creation activities with its adjustable learning rate and quick 
convergence, is trained using the Adam optimisation method in this work. 

The LSTM network, which can record the intricate temporal correlations between 
notes and between many voices via its gating mechanism, is fed pre-processed data. The 
LSTM network’s aim is specifically to produce melodies and harmonies by learning the 
temporal dependencies of notes and the interactions between various voice components, 
therefore conforming to the laws of music. 

Typically, the loss function of the LSTM network uses mean square error (MSE) to 
gauge the discrepancy between the expected notes and the actual notes during training 
(Edalatifar et al., 2022). Specifically, the loss function is stated as: 

( )2

1

ˆ
=

= −
T

t t
t

L y y  (9) 

where yt is the actual note, ˆty  is the note forecasted by the LSTM network, and T is the 
total note sequence length. The aim of the loss function is to reduce the difference 
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between the expected and actual notes, therefore enhancing the quality of the model’s 
creation. 

The LSTM network updates the parameters using the Adam optimisation technique 
during back propagation (Reyad et al., 2023). The Adam optimisation algorithm’s 
gradient update formula is: 

1
ˆ

ˆ
−= −

+
t

t t
t

mθ θ η
v ò

 (10) 

where θt is the parameter of the present time step, η is the learning rate, ˆ tm  and t̂v  are the 
deviation corrections of the mean and squared mean of the gradient, and ϵ is a small 
constant to avoid the divide-by-zero error. The Adam optimisation technique makes the 
network parameter update more stable and efficient by able to adaptively change the 
learning rate depending on the gradient information of each parameter. 

The training method in this work not only emphasises the creation of individual 
voices but also explicitly addresses the synergistic generation between several voices. 
Sharing the LSTM network’s hidden layer states allows the voice components to preserve 
temporal and pitch coordination throughout the creation process. The generative efficacy 
of the model is assessed after each round of training until convergence. 

The training of the LSTM network consists overall not just of note creation but also 
of harmonic and temporal dependency learning across several voices. Adam’s 
optimisation technique helps the LSTM network to effectively manage the polyphonic 
popular music creation challenge and finally produce musical works with high-quality 
melodies and harmonies. 

3.4 Generation process 

The LSTM network in polyphonic popular music creation runs recursively on temporal 
dependencies and vocal synergy information acquired during training to produce note 
sequences. Starting with an initial note or a starting sequence, the generation process 
produces the first note depending on these inputs; subsequently, using the produced notes 
as inputs for the next step, the network continues to produce the following notes. A whole 
musical fragment is produced by this method. 

Every time step, the LSTM network calculates a new note depending on the present 
input and the prior output. The generation process not only depends on the data of 
individual voices but also includes their interrelationships. For instance, the LSTM 
network must change the melody’s pitch and rhythm to match the harmony part’s notes, 
so guaranteeing the coordination between the melody and the harmony. This generation 
method shows LSTM’s benefit in handling polyphonic pop music; it can seize the time 
link between harmonic notes and coordinate the production of several vocal parts. 

Specifically, at every time step, the LSTM network produces a probability 
distribution showing the generation probability of the next note among the potential 
notes. The LSTM picks the next note and feeds it as input for the next step by sampling 
this probability distribution. The following equation can reflect this procedure: 

( ) ( )1 1, , softmax− = +t t h t hp y y y W h b  (11) 
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where p(yt|yt–1, …, y1) indicates the likelihood of producing the note yt at time t given the 
prior moment’s note sequence yt–1, …, y1; ht is the hidden state of the LSTM network at 
time step t, Wh and bh are the corresponding weight matrices and bias terms, and the 
softmax function converts the output into a probability distribution and selects the most 
likely note as the next generated note. 

LSTM can efficiently combine the previously produced notes with the notes now by 
means of this recursive generation process, therefore guaranteeing that the produced 
polyphonic music not only follows the temporal logic of the music but also preserves the 
harmony and coordination between the voices. 

3.5 Post-processing process 

The produced note sequences have to be fixed and adjusted during post-processing to 
guarantee their harmonic and rhythmic lawfulness. Adjusting the spacing between notes 
helps the harmonic progression to fit the standards of music theory. The timing of the 
notes may be optimised to guarantee rhythmic fluidity and a natural feel to the music by 
examining the location of each note on the timeline. Rhythmic optimisation for 
polyphonic music is not only the modification of separate voices but also the 
consideration of the rhythmic coordination between the voices to prevent awkward 
rhythmic leaps between notes (Barrett, 2022). 

Figure 1 Flow of generating music (see online version for colours) 
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The post-processing algorithm can change the produced outcomes based on the note 
relationship to help this. The timing distribution of the notes can be optimised by 
changing the variances in the timing values of the notes, hence enhancing the smoothness 
of the rhythm. The adjustment procedure can be stated as follows: 

( ), 1 1, ,− −Δ = Δt t t tt smooth y y t  (12) 

where each yt is a note produced at moment t, the smooth function indicates the 
smoothing of note length variations, and Δt is the time value difference between notes. 
This approach helps to minimise artificial rhythmic jumps, hence optimising the 
produced polyphonic music more in rhythmic harmony. 
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All in all, the first five stages span the whole data preparation to final music 
generating process; see Figure 1. 

4 Experiments and performance analysis 

4.1 Dataset introduction and evaluation metrics 

The Lakh MIDI Dataset (LMD), released by a research team at the University of 
California, San Diego (UCSD), was built from audio metadata from the Million Song 
Dataset matched, cleaned, and format normalised with music files from several MIDI 
sharing sites. Especially demonstrating good qualities in terms of polyphonic structure 
and stylistic variety, LMDs are more appropriate for modelling challenges in 
contemporary popular music than conventional classical music datasets. The ‘LMD-
clean’ subset is chosen as the training base and the fragments with unusual lengths, 
extreme note distributions or incomplete structures are further screened out to create a 
high-quality sample set for modelling, thus guaranteeing the quality and 
representativeness of the training data for generating the model. 

Some pop music clips with polyphonic material like the main theme, harmony, and 
accompaniment are chosen, converted to MIDI format, and beat, pitch, duration, and 
other characteristics standardised in this paper to serve as the foundation for the 
generation of input for the following LSTM model. Table 1 displays the dataset 
information. 
Table 1 Dataset summary (Lakh MIDI Dataset – LMD-clean subset) 

Item Description 
Dataset name Lakh MIDI Dataset (LMD-clean subset) 
Total files 21,425 MIDI files (approximately 8,000 used after filtering) 
Musical styles Pop, rock, electronic, jazz, and other modern genres 
Format support Standard MIDI (multi-track, polyphonic structure) 
Source and availability Public and open access (UCSD repository/GitHub) 
Pre-processing steps Pitch normalisation, rhythm quantisation, part separation and 

alignment 

The model can learn and train polyphonic music creation depending on the input of 
melodic, harmonic and rhythmic characteristics, so guaranteeing that the produced 
material has a high degree of consistency and musicality in terms of style, structure and 
rhythm. This work presents two assessment metrics which are measured from the angles 
of note accuracy and melodic diversity respectively, to more objectively assess the 
quality of the produced music and the model performance. 

First, Note Accuracy is used to assess the degree of overlap in pitch and temporal 
value between produced notes and actual notes. 

= matched

generated

NNote accuracy
N

 (13) 
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where Nmatched refers to the number of produced notes that precisely correspond with the 
actual notes; Ngenerated is the model’s entire note count. A higher index indicates that the 
model generation outcomes are closer to the original music structure and that the timing 
learning capacity is better (Briot and Pachet, 2020). 

Pitch class histogram entropy is used next to assess the complexity and diversity of 
the produced music in terms of pitch distribution using the formula below: 

( )
12

2
1

log
=

= − i i
i

H p p  (14) 

where pi is the likelihood of the ith pitch class showing in the entire produced song. A 
significant base for assessing whether the produced music has too much repetition or 
pitch bias, this index can show the richness of the melody and the expressiveness of the 
general musicality. In the music, a higher entropy number indicates a richer pitch 
dispersion and a greater musicality of the produced outcome (Danieli and Frank, 2022). 

The two measures taken together form a quality evaluation system for the produced 
outcomes that will guide future experiments comparing the benefits and drawbacks of the 
produced outcomes under various model parameters and training settings. 

4.2 Effect of the number of LSTM layers on the quality of generation 

This paper investigates in experiment 1 how the number of LSTM model layers 
influences the generation quality of polyphonic pop music. LSTM models with varying 
number of layers were configured for the experiments to help study the relationship 
between model depth and generation outcomes: one-layer LSTM, two-layer LSTM, 
three-layer LSTM, four-layer LSTM, and five-layer LSTM. The goal is to know how the 
model depth influences the temporal consistency and musicality of the produced 
outcomes by changing the number of layers of LSTM. 

By comparing the note accuracy and pitch category histogram entropy of polyphonic 
music produced under various layer configurations, the experiment’s main goal was to 
evaluate the variations in the performance of several model depths in terms of note 
prediction accuracy and melodic diversity. 

Presented via Figure 2, the experimental findings show the note accuracy and pitch 
category histogram entropy for several LSTM layer configurations. 

More LSTM layers raise note accuracy as well as pitch category histogram entropy. 
Specifically, when compared to the one-layer LSTM, the two-layer LSTM raises the note 
accuracy by 2.7 percentage points and the pitch category histogram entropy rises, 
suggesting that the model performs better in note production and melodic diversity. The 
performance of the three-layer and four-layer LSTMs is closer, with a slight rise in note 
accuracy and pitch category histogram entropy, and the four-layer LSTM marginally 
outperforms the three-layer LSTM, suggesting that the model tends to stabilise after a 
particular level of increase in the number of layers. This suggests that the model 
generation effect tends to stabilise after raising the number of layers to a particular level. 

The five-layer LSTM’s findings were, nevertheless, somewhat lower than those of the 
four-layer LSTM, especially in terms of note accuracy, which may suggest that using 
more LSTM layers in this experimental setup could cause overfitting or unstable model 
training. 
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Figure 2 Performance of different LSTM layer configurations (see online version for colours) 
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This study indicates, therefore, that while too many LSTM layers might lower model 
performance, the LSTM model can perform better in polyphonic pop music generation 
with a network architecture of 2 to 4 layers. Appropriate decisions regarding model depth 
must be made. The experimental findings offer a reference point for later model tuning 
and optimisation. 

4.3 Effect of number of input voices on generation effectiveness 

This paper of experiment 2 looks at how the number of input voices influences the 
quality of polyphonic popular music creation. Given the polyphonic music production 
task’s need for co-ordination between melody, harmony, and rhythm, changes in the 
number of input voices greatly influenced the temporal and structural dependencies 
acquired by the model. 

The experimental input setups were defined as: full voice input (main melody, 
harmony, accompaniment, percussion), main melody only, main melody + harmony, 
main melody + accompaniment, and main melody + harmony + accompaniment. Under 
each set of settings, 100 music samples were produced; five judges with musical 
professional backgrounds were asked to rate the samples in three areas: harmony, 
structural integrity, and stylistic consistency; those with an average score of more than 4 
were deemed high-quality samples. Figure 3 displays the experimental findings. 

The experimental findings show that the general quality of the produced music is 
notably influenced by the rising number of input voices. Using just the main melody as 
input, the percentage of high-quality samples is just 19%, suggesting that the model 
struggles to produce well-structured and layered musical material without harmonic and 
rhythmic information. The percentage of high-quality samples rises to 31% and 28% 
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when harmony or accompaniment is added, respectively, suggesting that these two kinds 
of vocal parts help to improve melodic support and complement musical hierarchy, 
especially the harmony part’s contribution to the general harmony of the music. 

Figure 3 Proportion of high-quality samples by input voice configuration (see online version  
for colours) 

 Melody Only
 Melody + Harmony
 Melody + Accompaniment
 Melody + Harmony + Accompaniment
 Melody + Harmony + Accompaniment + Drums

43%

28%

19%

47%

 

Moreover, the percentage of high-quality samples almost doubles to 43% when the input 
includes the primary melody, harmony, and accompaniment components. Moreover, the 
percentage of high-quality samples rises to 47% with the addition of the percussion 
component. This implies that improving musical expression and strengthening artistic 
coherence depend much on rhythmic information. Generally speaking, the better the 
model is to catch the intricate time-dependent and synergistic characteristics of the vocal 
parts the richer the input information, thereby improving the coherence and artistic 
expression of the produced music. 

4.4 Impact of training data size on generation performance 

The performance of polyphonic pop music production is methodically investigated in the 
third set of experiments in this work as influenced by training data size. Given the 
reliance of deep neural networks on the quantity of data, subsets of data of varying sizes 
were created for model training to see the impact of variations in the number of training 
samples on the generation results, while maintaining the LSTM network structure, 
optimiser and learning rate parameters consistently. 

The studies split the training data across seven subsets of varying sizes, each with 
500, 1,000, 2,000, 3,000, 4,000, 6,000 and 8,000 polyphonic pop music samples. Every 
model is rated by five music expert assessors on three aspects which produce 100 



   

 

   

   
 

   

   

 

   

    Application and performance analysis of LSTM networks 35    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

samples on a standard validation set. Judges found samples with an average score of 4.0 
or above to be of good quality; the proportion of high-quality samples produced by each 
group of models was tallied correspondingly. Figure 4 displays the experimental findings. 

Figure 4 High-quality sample proportion under different training data sizes (see online version 
for colours) 
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The general proportion of high-quality samples produced tends to rise as the number of 
training examples rises. The overall performance of the music produced by the model is 
bad when the number of training samples is 500; just 14% of the samples are assessed as 
good quality, suggesting the data volume is insufficient to enable the model to acquire 
complicated polyphonic patterns. The percentage of high-quality samples had climbed to 
30% when the sample size was raised to 2,000, indicating the model’s first understanding 
of musical patterns. 

The percentage of high-quality samples rises to 42% once the data quantity is 
increased to 4,000 songs, suggesting that the model can learn the temporal dependence 
between notes and the coordination law between voices in a more in-depth way as the 
variety of data grows. Between 6,000 and 8,000 tracks, though, the surge tends to level 
off and the percentage of high-quality samples only increases from 45% to 47%, 
implying that the marginal benefit at this point has started to decline. 

Especially at the initial stage, the amount of training data is a key influence on the 
model performance; when considered together, a reasonable extension of the training set 
can greatly enhance the music generation effect. On the other hand, it is demonstrated 
that the constant increase of data does not linearly enhance the model performance; a 
sensible selection of data size together with the optimisation of the model structure will 
be more practically relevant. 
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5 Conclusions 

This research offers a methodical investigation on the use of LSTM networks in 
polyphonic popular music production. First, this article presents the features of 
polyphonic popular music and the benefits of LSTM in handling time series data; 
subsequently, it suggests an LSTM model relevant to polyphonic music generating. This 
work creates and implements a comprehensive generation framework using the LMD-
clean subset dataset, comprising the preparation and encoding of input data, the design of 
LSTM network structure, the training phase, the generation process and the post-
processing stage. 

This work investigates the impact of various number of layers, number of input 
voices, and training data size on the generation effect by means of several sets of 
experiments; the findings indicate that while an increase in the number of input voices 
helps to improve the structural integrity of the music, an increase in the number of 
network layers and data size can significantly improve the quality of the generated music. 
Experimental validation thoroughly demonstrates the LSTM network’s capacity to 
successfully capture the temporal dependencies in polyphonic music and produce 
harmonic melodies and harmonies, hence showing the possibility of LSTM in intelligent 
music production. 

The LSTM network demonstrates great adaptability and generative capacity in 
producing polyphonic popular music, hence offering technological support with practical 
value for smart music creation. 

Though the LSTM network suggested in this paper performs better in the polyphonic 
pop music generating challenge, it still has certain drawbacks. Though the LMD-clean 
subset dataset has a lot of pop music samples, its variety is still constrained, particularly 
in terms of style and complexity, and may not be enough to fully represent all kinds of 
pop music. The collection is mostly drawn from subgroups of popular music and lacks 
samples across eras, cultures, or other popular music styles. Future studies should also 
consider increasing the dataset to incorporate popular music data from other eras and 
areas to improve the generalisation capacity and adaptability of the model. Building 
datasets with different genres and styles also helps LSTM networks to better capture the 
varied characteristics of popular music and increase the expressiveness and diversity of 
the produced music. 

Second, while LSTM offers benefits in capturing time-series dependency, there are 
still certain restrictions in processing dynamic changes and sophisticated musical 
emotional expression. Though the model’s generative impact is sometimes not 
sufficiently subtle when producing complicated, emotionally rich polyphonic music, 
LSTM can efficiently reduce the issue of long-time reliance via its gating mechanism. 
LSTM might not function finely enough, particularly in the creation of rhythmic 
alterations, emotional transitions, and intricate harmonic structures. Future studies could 
thus aim to include more sophisticated model structures like Transformer or generative 
models based on reinforcement learning (Chen et al., 2021). While enhancing the depth 
of emotional expression and musical subtleties, these models can more efficiently capture 
and generate complicated structures with lengthy time spans via self-attentive 
mechanisms or reward signal-driven production. 

Furthermore, while the manual evaluation method utilised in this study guaranteed the 
assessment accuracy of the produced music via a multi-dimensional scoring system, it 
still has some subjectivity and consistency issues. Variations in the aesthetic criteria of 
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the music by various critics could cause scoring discrepancies, therefore influencing the 
assessment of the produced outcomes. Future studies could investigate the addition of 
automated assessment criteria to measure and evaluate the quality of the produced music 
using an automated scoring system, hence enhancing the objectivity of the evaluation 
(Rupp, 2018). Combining deep learning and audio processing methods, applying GAN 
for music evaluation, or creating machine-learning-based music quality assessment 
standards would all help to increase assessment efficiency and lower the impact of human 
factors on the outcomes. 

At last, even if this research has produced some outcomes regarding generative 
quality, there are still restrictions in musical production diversity and creativity. 
Currently, the LSTM model generates following notes using a great deal of historical 
data, hence limiting its creative material to some extent by the patterns found in the data. 

Although polyphonic popular music generating already presents difficulties, future 
studies will open more creative avenues for music production as technology develops. 
Intelligent music production will achieve more major advancements in artistic 
expression, stylistic diversity and creative generation by constantly optimising the 
generation model, enlarging the dataset and adding new assessment systems. Artificial 
intelligence will surely play a bigger part in future music production, therefore providing 
a completely new experience for both musicians and fans. 
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