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Abstract: Real-time monitoring of rail transit vehicle wheelsets is of great 
significance to the stable operation and maintenance of packing vehicles. This 
paper aims to design a system that can accurately detect rail transit vehicle 
wheelsets in real time, improve the intelligent detection efficiency of rail transit 
vehicle wheelsets, and ensure the safety and efficiency of rail transit running. 
Aiming at the complex multi-line structured light (MLSL) fringe centre line 
extraction problem in the original image of the system, this paper studies the 
light fringe matching segmentation method based on blob analysis and the 
improved Steger centre line extraction algorithm. The test results show that the 
measurement accuracy of wheel diameter and rim width is ±0.2 mm, the 
measurement accuracy of rim width and height is ±0.25 mm, and the 
measurement error of QR value is less than 0.25 mm. The detection result 
curve of the system proposed basically coincides with the standard value, 
which shows that the measured results in this paper can be consistent with the 
standard value. Therefore, the system proposed provides some technical 
support for intelligent detection of rail transit vehicle wheelsets. The system 
proposed can also be extended to other rail transit industries. 

Keywords: structured light technology; rail transit; vehicle wheelsets; 
intelligent detection. 

Reference to this paper should be made as follows: Ma, J., Xue, X. and  
Chen, B. (2025) ‘Intelligent detection of rail transit vehicle wheelsets combined 
with structured light technology’, Int. J. Information and Communication 
Technology, Vol. 26, No. 30, pp.1–23. 
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1 Introduction 

Wheelset is the most important running component and supporting component of rail 
vehicle formed by connecting two wheels through axles, and it is the core component of 
transmission system. It not only bears all the weight from the whole carriage, but also 
bears large dynamic and static loads, wheel-axle assembly stress and thermal stress 
caused by wheel-rail friction during braking. The wheel tread is the outer circumferential 
surface where the wheel is in direct contact with the rail, and the wheelset rolls under the 
action of friction between the tread and the rail. For the absolute safety of driving, both 
newly produced train wheelsets and repaired wheelsets need accurate measurement. 

Static detection refers to the measurement of the wheelset when the wheelset is 
separated from the car body or when the wheelset is not separated from the train body 
and the train is at rest. Dynamic online measurement technology has the advantages of 
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fast detection speed, high degree of automation, and no occupation of vehicle turnover 
time. Compared with dynamic measurement, static measurement does not need to 
consider the vibration generated when the train is running, and can uniformly and 
continuously measure the whole circumference section of the wheelset, which is easier to 
achieve higher measurement accuracy, and has comprehensive data. Moreover, it can 
measure the whole circumference measurement items that cannot be measured by 
dynamic measurement such as wheel diameter jump and end jump in the wheelset. It is 
not only suitable for the final inspection before the new wheelset is loaded, but also for 
the inspection after the wheelset is repaired (Jwo et al., 2021). 

The manufacturing quality inspection method of rail train wheelset must be 
developed from mechanical measurement technology to electronic measurement method 
of overall error measurement and numerical control coordinate optical measurement 
method. The two-dimensional detection and evaluation method of wheelset section based 
on dots and lines cannot completely reflect the manufacturing information or defect wear 
condition of the whole wheelset tread, and the detection results are one-sided. 

Combined with the development status of wheelset tread detection, the wheelset 
measurement and evaluation method considered in this paper adopts line structure 
measurement. Moreover, this paper combines reverse engineering to reconstruct the 
whole tread topography data in 3D, and detects the whole parameters of the train 
wheelset in 3D. This non-contact measurement method has the advantages of high 
precision, anti-interference, adaptability to various complex curved surfaces, etc. In 
addition, it can restore the original shape of the tread to the greatest extent and ensure the 
authenticity, reliability and stability of the measurement results. 

2 Related works 

2.1 Static detection 

Mosleh et al. (2023) designed a contact detection device based on parallel telescopic 
mechanism, which used a fixed-length connecting rod to drive the rotating side head to 
scan and measure the surface of the tread, calculated the centre trajectory of the roller by 
obtaining the rotation angle of the measuring arm, and further obtained the surface tread 
profile. Guedes et al. (2023) adopted an automatic measuring device for contact 
measurement between the side head with natural diamond and the tread surface, which 
contacted the outer ring of the wheel bearing for positioning. Moreover, the system runs 
stably and has high measurement accuracy. The measurement process is completely 
controlled by the computer, thus realising the transformation of wheelset detection from 
manual to mechanical automation. For the contact measurement method, although it has 
strong anti-interference ability and high reliability of measurement results, its detection 
efficiency is low, and the contact part will be worn after long-term use. 

Fu et al. (2023) proposed a photoelectric detection method for wheelset geometric 
parameters and tread defects, which used laser displacement sensor and CCD vision 
sensing technology to measure the main dimensional parameters of wheelset. In the 
process of slow rotation of the wheelset, a precise motion control mechanism is used to 
drive the sensor to quickly scan back and forth along the circumferential direction of the 
axle at an interval of 3 mm to locate the defects that may exceed the limit. The laser 
displacement sensor is then controlled to scan again only at the positioned defect at 
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intervals of 1 mm in the axial direction and 0.2 mm in the circumferential direction of the 
wheel. Finally, the measurement data are collected and processed to find the size of the 
defect. 

2.2 Dynamic detection 

Wheelset dynamic detection technology refers to the detection of wheelset when the 
vehicle is running. The dynamic measurement methods of wheelset comprehensive 
parameters mainly include ultrasonic telemetry, vibration detection, contact 
measurement, laser measurement and image measurement. 

1 Ultrasonic telemetry method 

Multiple ultrasonic telemetry sensors are used to measure the distance of the wheel 
surface, and the wheel size parameters are calculated by obtaining the detection data 
with the vehicle speed less than 5 km/h for processing and analysis. The device has 
fast detection speed and high accuracy, but its structure is relatively complex and is 
easily affected by the external environment (Guo et al., 2022). 

2 Vibration detection method 

When the wheel tread is damaged, the vibration and impact between the wheel and 
rail at the defective place during vehicle running is much larger than that at the  
non-defective place. The vibration detection method (Lourenço et al., 2024) uses the 
vibration acceleration sensor installed beside the railway track to detect the 
instantaneous impact load between the wheel and the rail, and then processes and 
analyses the data amplified by the charge amplifier to judge and measure the defect. 
This kind of device has convenient data acquisition and simple method, but the 
vibration signal acquisition is easily affected by the external environment, and there 
are deviations and noises, which makes the measurement accuracy and stability not 
high. 

3 Contact measurement method 

Shaikh et al. (2023) designed a wheelset detection device based on the principle of 
parallelogram mechanism. The laser displacement sensor installed on it can measure 
the dimensional parameters at any place of tread when the wheel is walking. This 
device has high measurement accuracy and good stability, but its detection 
mechanism is more complicated, and the error will accumulate in the process of 
processing and assembly. Moreover, the rail also has certain deformation, which 
makes the measurement benchmark deviate, and then causes the measurement error. 

4 Laser measurement method 

Peng et al. (2023a) proposed a dynamic measurement method of wheel tread, which 
used 26 independent displacement sensors to measure the wheel profile at different 
positions, and processed and analysed the measurement results of each sensor 
through the data processing system of the host computer to obtain the wheel 
geometric parameters. By building a sensor array, vehicles running at 45 mph can 
still be accurately measured. However, although the system can detect the wheel size 
at a high speed, it needs many sensors, and it is difficult to install and debug on site. 
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5 Image method 

He et al. (2022) proposed a tread defect identification method based on GA-RBFNN 
algorithm by analysing the characteristics of tread defect geometry, texture and grey 
distribution, which used floating-point coding, GA crossover and mutation to 
optimise network parameters. Compared with traditional algorithms, the accuracy of 
defect identification is improved. The defect detection method based on texture 
clustering and region growth proposed in Su et al. (2024) uses grey level  
co-occurrence matrix to perform K-means++ clustering on the acquired variance, 
contrast, texture and other features to determine the damage region, and then 
introduces back propagation (BP) and support vector machine (SVM) to determine 
the tread damage. When the features extracted by this method cannot express all the 
defects, the generalisation ability of recognition will be poor, and the detection 
accuracy will be difficult to guarantee in practical applications (Peng et al., 2023b). 

Dynamic online detection technology does not need to disassemble the wheelset. 
However, it has high requirements for installation accuracy, expensive equipment, easily 
affected by rail vibration, and can only measure part of the wheelset section, so it has not 
been widely used in the field (Zhu et al., 2020). Static detection does not need to consider 
the vibration generated when the train is running. Moreover, the measurement accuracy is 
high, the stability is good, and the detection data is more comprehensive. For the 
measurement of parameters such as tread abrasion and spalling, its application scope is 
limited (Velletrani et al., 2020). However, object detection methods based on deep 
learning have high recognition accuracy and fast speed, and are widely used in a variety 
of industrial detection fields, so they have broad prospects (Li et al., 2022). 

This paper designs a wheelset comprehensive parameter detection device based on 
line SL. The line SL technology is used to measure the overall dimension parameters of 
the wheelset, and the deep learning target detection network is combined to detect the 
defects of the tread, so as to realise the automatic measurement of the wheelset 
comprehensive parameters. 

3 System design 

It is necessary to screen a series of pixels in the light fringe to restore the contour 
information of tread surface. Whether the selected feature points are accurate or not will 
affect the accuracy of measurement results. The light fringe can be extracted, and the 
brightest centreline point with stronger anti-interference ability in the fringe can be taken 
as the feature point. 

3.1 Analysis of light fringe centreline extraction algorithm 

The schematic diagram of the MLSL source is shown in Figure 1. The modulated point 
light source is projected into a special MLSL diffractive optical element (DOE), and 
through the diffraction modulation of DOE, multiple SL fringes with mutually parallel, 
uniform width, same length and similar grey distribution are obtained. 
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Figure 1 Internal schematic diagram of multi-line laser (see online version for colours) 

 

The centreline extraction methods can be divided into pixel-level and sub-pixel-level 
extraction methods according to the extraction accuracy. The pixel-level extraction 
algorithm is simple in principle and fast in extraction speed, but its accuracy is relatively 
low. Grey distribution and other factors, and the extraction accuracy is higher, but the 
extraction speed of this method is slow. The centreline extraction algorithm needs to be 
selected for different application scenarios and measurement requirements. 

1 Threshold method 

The greyscale value on the cross section is symmetrically distributed on both sides of 
the centreline. This method determines the boundary positions p and q of the LS on 
the cross section by selecting a suitable threshold (Mohammadi et al., 2023). 

( ) 2c p q= +  (1) 

The method is simple in principle and small in computation. However, the  
anti-interference ability of image noise is not high, and the accuracy is low. 

2 Directional template method 

This method originates from the idea of greyscale centre. When the shape of the LS 
changes due to the surface change of the measured object, in a very small range, 
there are only four directions of the LS extending: horizontal, longitudinal, left 
oblique 45° and right oblique 45°. This algorithm combines the idea of template 
operation and the direction transformation of light fringes, which effectively reduces 
the influence of noise and has the ability to repair disconnection, but it needs to 
calculate all pixels in the graph, which requires a large amount of calculation and 
only has pixel-level accuracy. For light fringes with obvious width change, the 
extraction effect is poor. 

3 Skeleton extraction method 

Skeleton extraction method is a binary morphological refinement method. In this 
method, the pixels of binarised light fringes are divided into contour pixels and 
skeleton pixels by setting appropriate judgement conditions, and the contour pixels 
are removed by iterative algorithm to obtain the central skeleton line with single 
pixel width, which keeps the connectivity and topological characteristics of light 
fringes. This method can ensure the continuity of the centreline, and has good 
stability and accuracy. Moreover, with the emergence of methods such as fast  
look-up tables, the extraction speed has been rapidly improved. 
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4 Grey centre of gravity method 

If it is assumed that after the image is preprocessed, the interval and the light bar in 
the ith row is located is [m, n], then the centre point Vi of the line change is (Sun  
et al., 2023): 

n

k
k mi n

k
k m

k I
V

I

=

=

∗
=



 (2) 

In the formula, Ik is the greyscale value of the kth pixel in the ith row. The grey centre 
of gravity method has a fast calculation speed, can obtain the sub-pixel centre line, 
and has a good extraction effect when the greyscale of the light bar is not strictly 
symmetrical. However, when calculating the centreline, the centreline extraction is 
carried out row by row, and the accuracy is low under the condition of large 
curvature change of fringe and strong noise interference. 

5 Curve fitting method 

The principle of curve fitting method is to analyse the grey value distribution law of 
one row or column on the light bar, use an appropriate function to fit the grey change 
curve, and select the maximum point of the function as the centre of the LS. 
According to the variation law of LS, polynomial and Gaussian function can be used 
to fit the grey variation curve of LS. According to the characteristics of the selected 
light source, Gaussian function is used for fitting. The grey values are assumed to 
conform to a Gaussian function (Ren et al., 2022): 

( )[ ]0( ) exp 2g x A B x x= − −  (3) 

By taking the logarithm of both sides, the following result is obtained: 
2

0 1 2
2

0 0

1 0

2

ln[ ( )]
ln
2

g x a a x a x
a A Bx
a Bx
a B

= + +
 = −
 =
 = −

 (4) 

By bringing the points on the light cross section into formula (4), a0, a1, a2 are 
obtained, and the centre point position can be obtained: 

1
0

22
ax
a

= −  (5) 

In this method, suitable functions can be selected for fitting according to different 
light sources, and the sub-pixel centre point can be obtained. However, it is 
necessary to curve fitting the greyscale of each row/column during calculation, and 
the computational complexity is high. 
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3.2 Improved Steger algorithm based on skeleton pre-extraction 

The Steger algorithm can solve the centreline with sub-pixel accuracy, and it has a good 
effect on extracting light streaks with large curvature changes. However, the Steger 
algorithm needs to perform multiple convolution calculations on all pixels, and the 
extraction efficiency is low. 

The curvature of light fringe changes greatly. Considering comprehensively, the 
improved Steger algorithm is selected as the centreline extraction algorithm proposed to 
improve the measurement accuracy of the system. The skeleton extraction method is used 
to pre-extract the pixel-level centreline of light fringe, and then the Steger algorithm is 
used to accurately calculate the sub-pixel centreline of light fringe. 

The main steps of the Steger algorithm are as follows: first, according to the fringe 
width in the image, a suitable Gaussian kernel function is set to convolve the image to 
obtain the Hessian matrix H(x, y) of the light bar image (Kaliorakis et al., 2023): 

( , ) xx xy

xy yy

h h
H x y

h h
 

=  
 

 (6) 

Among them, hxx, hxy and hyy are obtained by convolving the original image y with the 
template made by the Gaussian kernel function based on the scale space theory: 

2

2
( , ) ( , )xx

g x yh I x y
x

∂= ⊗
∂

 (7) 

2 ( , ) ( , )xy
g x yh I x y
x y

∂= ⊗
∂ ∂

 (8) 

2

2
( , ) ( , )yy

g x yh I x y
y

∂= ⊗
∂

 (9) 

Among them, ⊗ represents the convolution operation, and g(x, y) satisfies: 
2 2

2 2
1( , )

2 2
x yg x y e

πδ δ
+ = − − 

 
 (10) 

Secondly, the normal vector (nx, ny) of each point in the image is obtained by performing 
eigenvalue decomposition on H(x, y). In the LS, this direction is the cross-sectional 
direction of the LS. Moreover, a second-order Taylor expansion is performed along the 
normal line at a point (x0, y0) in the LS to obtain the greyscale distribution function s(t) of 
the LS at any position (x0 + tnx, y0 + tny) in this direction (Bruni et al., 2022): 

( ) ( ) ( )0 0 0 0( ) , , , ( , ) 2T T
x y x ys t s x tn y tn I x y N h x NH x y N= + + = + +  (11) 

N = (tnx, tny) is the distance hx from a point on the cross section to (x0, y0), and xy is the 
first-order derivative of the point, which can be obtained by formula (12): 
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( , ) ( , )

( , ) ( , )
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y

g x yh I x y
x
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y

∂ = ⊗ ∂
 ∂ = ⊗
 ∂

 (12) 

By setting 0,s
t

∂ =
∂

 we can get: 

2 22
x x y y

x xx x y xy y yy

n h n h
t

n h n n h n h
+

=
+ +

 (13) 

The coordinates of the sub-pixel centreline point are (x0 + tnx, y0 + tny). In the actual 
operation process, each pixel in the image can obtain a centreline point through the 
Steger algorithm. Therefore, in the actual solution, the sum of greyscale value (tnx, tny) ∈ 
[–1/2, 1/2] × [–1/2, 1/2] is generally used as conditions to solve the accurate sub-pixel 
centrepoint. 

 
From the solution process of the Steger algorithm, the algorithm performs  

five large-scale two-dimensional convolution operations on any point in the image to 
solve hxx, hxy, hyy, hx, hy in the Hessian matrix of each pixel point, and its operating 
efficiency is low (Vrba, 2023). 

Firstly, the pixel-level centreline of SL is obtained by skeleton extraction, and then 
the sub-pixel centreline is solved by using Steger algorithm at each point of the  
pixel-level centreline. The algorithm flowchart is shown in Figure 2. 

Figure 2 Flowchart of improved Steger calculation based on skeleton pre-extraction 

 

The light streak image after segmentation and matching is set to f(x, y), and the 
corresponding binary image g(x, y) can be obtained by image threshold segmentation. 

The skeleton extraction method is to divide the foreground points in g(x, y) into  
non-contour points and contour points through some judgement conditions, and delete all 
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contour points through multiple iterations. The remaining pixel-wide curve is the 
skeleton. 

In a binarised image g(x, y), the most associated pixels with a pixel are its 
surrounding pixels, which constitute the neighbourhood of the pixel. The definition of 
any pixel pi and its eight neighbouring pixels p2–p9 is shown in the figure. When pi is the 
foreground, its neighbourhood can be analysed to determine whether to retain pi. All 
points in the image are traversed in a loop to remove non-skeleton points until the 
skeleton line is obtained. 

Through skeleton extraction, the pixel-level centreline of light fringe is obtained, 
which is composed of a series of connected pixels. Then, the improved Steger algorithm 
is used to calculate these pixels one by one, and the sub-pixel intersection point of the 
cross section passing through each pixel and the centreline-centreline point can be 
obtained. By fitting them into a curve, the high-precision centreline can be obtained. 

Figure 3 Pixel pi and its neighbourhood 

 

The specific solution algorithm flow is as follows (Song et al., 2024): 

Step 1 The pixel-level centreline point extracted by the skeleton extraction method is 
p1–pn. The mean square error σ of the Gaussian function and the Gaussian 
template size (2N + 1) × (2N + 1) are calculated by the width of the stripes in the 
image to generate the Gaussian templates corresponding to the five first- and 
second-order partial derivatives of the image: Sx, Sy, Sxx, Syy, Sxy. Corresponds to 
step 3 in Figure 2. 

Step 2 The algorithm selects any point Pi in the skeleton point, and divides the image 
region Q with a size of (2N + 1) × (2N + 1) and a coordinate range of [xi – N:  
xi + N: yi – N: yi + N] around Pi(xi, yi) in the light streak image. Corresponds to 
step 4 in Figure 2. 

Step 3 The algorithm performs an effective convolution operation on the five Gaussian 
templates of the Gaussian partial derivatives with Q to calculate the first and 
second order partial derivatives of the original image greyscale at Pi: hxx(xi, yi), 
hxy(xi, yi), hyy(xi, yi), hx(xi, yi), hy(xi, yi). 

Step 4 The algorithm solves the Hessian matrix of Pi through formula (6), calculates 
the normal direction (nx, ny) of the point, solves the Taylor expansion of the 
point on the cross section through formula (11), and solves the sub-pixel offset ti 
through formula (13), and finally solves the sub-pixel centreline point iP′  on the 
cross section corresponding to the point: 

( ),i i i x i i yP x t n y t n′= + +  (14) 
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Steps 3 and 4 correspond to step 5 in Figure 2. 

Step 5 The algorithm determines whether all skeleton points have been solved. If all 
skeleton points have not been solved, the algorithm returns to step 2. 

Step 6 The algorithm connects the sub-pixel centreline points together to obtain the 
sub-pixel level centreline. Corresponding to steps 6 and 7 in Figure 2. 

4 Calibration method 

4.1 Vehicle wheelset intelligent detection system 

When using MLSL to measure the tread profile of a wheelset, it is necessary to build a 
visual sensor consisting of a MLSL laser and a camera next to the wheelset, as shown in 
Figure 4. The transformation matrix from the pixel coordinate system to the world 
coordinate system can be established by calibrating the camera and the MLSL plane. The 
MLSL is projected on the wheelset to form a plurality of light bars containing contour 
information. The camera photographs the light bars and extracts the contour information. 
Through the coordinate system transformation matrix, the contour of the wheelset can be 
restored to obtain a plurality of wheelset contour information. 

Figure 4 Principle of measuring tread profile using MLSL 

 

The scheme flow of the MLSL measurement system proposed is shown in Figure 5. The 
multi-line laser projects multiple light planes in space at a certain angle. The laser light 
strip will be modulated by the change of the surface profile of the measured object, 
captured by the camera at another position. The image processing of the collected light 
strip is carried out by computer software MATLAB, the pixel coordinates are converted 
into three-dimensional coordinates in the camera coordinate system. 
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Figure 5 Measurement system scheme (see online version for colours) 

 

The basic structure of the wheelset diameter measurement system based on MLSL 
proposed is shown in Figure 6. The device adopts two sets of MLSL vision sensors, each 
of which has a camera and a MLSL laser. The two sets of sensors are mounted 
symmetrically outside the track at the centre position of the measured wheelset in the 
figure. When the measured wheelset passes through the positioning position shown in 
Figure 6, the photoelectric switch is triggered, and the MLSL vision sensor collects the 
wheelset image to obtain the wheelset contour image including a plurality of laser light 
bars as shown in Figure 7. 

Figure 6 Wheelset diameter measuring system device (see online version for colours) 

 

The two sets of devices can respectively obtain multi-light strip contour images on the 
left and right sides of the wheel, process the light strips in the images, synchronise the 
calibration results with the camera ray equation, realise image fusion, calculate the  
three-dimensional contour diagram of the wheelset tread to obtain the wheelset diameter, 
compare it with the actual measurement result, analyse the measurement error and 
improve it, so that the measurement system can complete the measurement of the 
wheelset diameter. The measurement method of MLSL vision sensor on one side is 
studied. 
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Figure 7 The multi-light strip image obtained by shooting 

 

4.2 NURBS surface interpolation reconstruction method of tread 

In essence, the interpolation reconstruction of NURBS surface is based on the  
two-parameter curve interpolation reconstruction in the horizontal and vertical directions. 
Firstly, the cross-section curve is reconstructed in one parameter direction, and then 
interpolated in the other parameter direction, so that the interpolation reconstruction of 
the whole surface is obtained. 

The NURBS surface interpolation reconstruction process of wheelset tread is shown 
in Figure 8. 

Figure 8 NURBS surface reconstruction flow chart 

 

Firstly, the wheel tread section line point cloud data of the standard CRH5 wheel 
processed by data is reconstructed by NURBS curve interpolation for three times, and all 
section line control vertices are calculated according to this method, as shown in  
Figure 9. 
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Figure 9 Tread control vertex (see online version for colours) 

 

The control vertices of the generatrix cross-section lines of each wheel tread obtained 
above are used as reference value points in the circumferential direction, and the control 
vertices are back-calculated in the circumferential direction to obtain the control vertices 
of the entire tread and construct the NURBS surface. 

4.3 Experimental methods 

The standard wheelset of CRH5 trailer used in the experiment is tested by professional 
quality department, and its diameter is ∅890.12 mm, rim width is 135.05 mm, rim height 
is 28.92 mm, rim thickness is 32.36 mm, and QR value is 10.35 mm. The sensors used in 
the detection system are calibrated with the wheel diameter parameter value. The left and 
right sensors are installed at an angle of 20.15° to the vertical direction, and the 
calibration coefficient after positioning error compensation in the depth direction is  
K = 250. The experimental bench uses a servo motor to drive a 40 reduction ratio reducer 
to drive the chuck and wheelset to rotate at a constant speed of 5 r/min, so that the 
wheelset can rotate more than one round, and the data of one round of the middle rotation 
is selected. The encoder sends out 600 pulse commands, and at the same time, the 
double-line SL collects 600 tread section point cloud data, that is, the double-line SL 
sensor collects data every 0.6° rotation of the wheelset. 

Based on the MLSL measurement system device proposed, the real-time detection 
experiment of wheelset is carried out. The overall process of the experiment is shown in 
Figure 10. 

The SL measurement of wheelset tread is shown in Figure 11. Because only a one-
sided probe system is built on the experimental platform, after the system calibration is 
completed with one wheel, the wheelset is withdrawn from the detection position, rotated 
by 180° and then put into the detection position, and then the measurement experiment is 
carried out on the other wheel of the wheelset. In order to improve the repeated 
measurement accuracy of the measurement system and compare the experimental results, 
multi-group measurements of the detection system and the fourth checker are carried out 
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on the wheelset to be measured. In this paper, the image and data processing are based on 
MATLAB R2021a software, which is good at correlation operation on matrix and array 
and meets the requirements of coordinate relationship transformation in this paper. 

Figure 10 Flowchart of real-time detection of wheelset 

 

Figure 11 SL measurement of wheelset tread (see online version for colours) 

 

4.4 Experimental results 

The geometric parameters of the wheelset are repeatedly measured and calculated by  
two measurement methods, and the results are sorted out as shown in Tables 1 and 2. 
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Table 1 Measurement results of wheelset measurement system (unit: mm) 

Number of 
measurements 

Wheel diameter 
(D) 

Rim width 
(L) 

Rim height 
(H) 

Rim thickness 
(W) QR value 

1 890.08 135.17 28.96 32.51 10.45 
2 889.93 135.05 28.89 32.45 10.37 
3 890.04 135.06 29.01 32.56 10.42 
4 890.00 135.09 28.78 32.41 10.35 
5 889.88 134.97 28.79 32.49 10.29 
6 890.10 135.02 28.91 32.45 10.48 
7 890.03 135.08 29.02 32.58 10.33 
8 889.98 134.98 28.88 32.52 10.38 
AVE 890.02 135.05 28.91 32.49 10.38 
STD 0.07 0.06 0.09 0.06 0.06 

Table 2 Measurement results of the fourth inspector (unit: mm) 

Number of 
measurements 

Wheel diameter 
(D) 

Rim width 
(L) 

Rim height 
(H) 

Rim thickness 
(W) QR value 

1 890.31 135.26 28.88 32.52 10.25 
2 889.88 135.35 28.74 32.26 10.36 
3 890.24 135.18 28.78 32.68 10.29 
4 889.78 135.32 28.85 32.29 10.21 
5 890.02 134.88 29.11 32.31 10.25 
6 890.28 135.21 28.76 32.39 10.19 
7 890.37 135.15 29.09 32.61 10.38 
8 889.69 134.95 28.69 32.29 10.36 
AVE 890.07 135.16 28.86 32.42 10.29 
STD 0.26 0.17 0.16 0.16 0.07 

By extracting the radial runout and end runout data, the pitch runout and end runout 
results are obtained as shown in Figure 12. The results show that the radial runout and 
end runout values of the wheel are both less than 0.04 mm. 

To further verify the intelligent detection effect of the proposed model on vehicle 
wheelsets, the models of Peng et al. (2023a, 2023b) are used as controls to measure the 
wheel diameters and compare the measured results with the standard values to verify the 
accuracy of these methods. The measured results are expressed in the form of statistical 
graphs (Figure 13). 

In order to verify the practicability of wheelset size measurement system based on 
multi line structured light in complex environment, a comparative test scheme including 
the influence of ambient light interference and mechanical vibration was designed. The 
baseline measurement was carried out in the laboratory standard environment (dark room, 
no vibration), and the reference values of wheel set diameter, rim thickness and other 
parameters were obtained as the control group. Set ambient light interference group and 
mechanical vibration group. The ambient light interference group uses adjustable light 
sources to simulate different light intensities (500–100,000 LX), covering cloudy to 
strong sunlight scenes, and adds high-frequency flickering light sources (frequency  
50–100 Hz) to simulate dynamic interference. The mechanical vibration group is realised 
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by building a vibration platform to simulate the train running vibration (frequency  
5–50 Hz, amplitude 0.1–2 mm), including the combined working conditions of periodic 
vibration and random shock 

Figure 12 Calculation of radial runout and end runout, (a) wheel radial runout data (b) wheel 
end runout data (see online version for colours) 

 
(a) 

 
(b) 

Each group was repeated 30 times with random interval. Synchronously collect ambient 
light intensity (illuminometer) and vibration spectrum (acceleration sensor) data. The test 
group data under standard environment are shown in Table 3. 
Table 3 control group (standard environment) 

Measurement parameters Mean (mm) Standard deviation (mm) Maximum error (mm) 
Wheel diameter 915.32 ±0.08 –1.2 
Rim thickness 32.45 ±0.06 –1.125 

Table 4 Environmental light interference group 

Interference 
conditions 

Wheel diameter standard 
deviation (mm) 

Mismatching rate of 
light stripes (%) 

Invalid data 
frame ratio (%) 

Illumination 500 lx ±0.09 0.7 0.5 
Illumination 80,000 lx ±0.11 1.2 2.8 
Flash 100 Hz ±0.10 1.8 3.5 
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Figure 13 Comparison of detection results between the method proposed in this paper and 
existing studies (see online version for colours) 

 

Table 5 Mechanical vibration group 

Vibration condition Wheel diameter standard 
deviation (mm) 

Outer surface 
fitting error (mm) 

System reset 
time (ms) 

Sinusoidal vibration  
(20 Hz/1 mm) 

±0.12 0.07 160 

Random impact 
(acceleration 50 g/6 ms) 

±0.15 0.09 190 

Composite vibration  
(30 Hz + random impact) 

±0.14 0.1 205 

Using precision time protocol (PTP) to synchronise the clocks of the camera, vibration 
platform, and processing terminal (with an accuracy of ±1 μs), the time parameters in the 
experiment were statistically analysed, mainly including: data acquisition delay – the 
time from the completion of light stripe exposure to the transmission of the image to 
memory; algorithm processing time: including the entire process of light stripe extraction, 
3D reconstruction, and parameter calculation; system reset delay: the time when an 
abnormal state returns to steady-state measurement after vibration shock. 

The delay and processing time obtained on this basis are shown in Table 6. 
Table 6 Delay and processing time statistics 

Test conditions Data collection 
delay (ms) 

Algorithm 
processing time 

(ms) 

Total latency 
(ms) 

Control group (standard environment) 2.1 ± 0.3 14.2 ± 1.5 16.3 
Strong light interference (80,000 lx) 2.3 ± 0.4 15.8 ± 2.1 18.1 
Sinusoidal vibration (20 Hz/1 mm) 2.7 ± 0.6 16.5 ± 3.2 19.2 
Random impact (50 g/6 ms) 3.5 ± 1.2 18.9 ± 4.7 22.4 
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Further verify the impact of out of roundness on accuracy, and the experimental sample 
configuration is shown in Table 7. 
Table 7 Experimental sample configuration for the influence of non-roundness on accuracy 

Non-roundness level Radial jump value 
(mm) 

Number of polygon 
edges Number of samples 

Standard roundness ≤0.05 - 5 
Mild roundness 0.05–0.15 18–20 sides 5 
Severe roundness 0.15–0.30 6–8 sides 5 

The comparison of measurement data is shown in Table 8. 
Table 8 Measurement data on the influence of non-roundness on accuracy 

Measurement 
parameters 

Standard roundness 
group (σ/mm) 

Mild non-circular 
group (σ/mm) 

Severe non-circular 
group (σ/mm) 

Wheel diameter ±0.08 ±0.12 ±0.18 
Rim thickness ±0.06 ±0.09 ±0.14 
Flatness of outer surface ±0.04 ±0.07 ±0.11 

4.5 Analysis and discussion 

Facing the problem of intelligent detection of wheel profile wheelsets, proposes a method 
based on SL vision, aiming at improving the real-time monitoring efficiency and 
maintenance effect of rail transit vehicle wheelsets. 

After analysing the camera imaging model, line SL measurement model and MLSL 
measurement model, the module, overall layout and workflow design of the wheelset 
dimension measurement system based on MLSL are completed, and the structure design, 
hardware selection and measurement model of the measurement module are emphatically 
studied. 

Moreover, a three-dimensional measurement algorithm of wheelset size based on 
MLSL profile point cloud is studied. According to the characteristics of MLSL  
three-dimensional contour point cloud and wheel structure characteristics of wheel set, 
the flow of three-dimensional wheelset dimension measurement is given, and the wheel 
set dimension measurement is divided into wheel diameter and wheel rim parameter 
measurement. The cross-section curve of light plane and wheelset is studied, and the 
complete normal cross-section profile curve is obtained by rotating axis and auxiliary 
plane, and the measurement of rim parameters is completed. 

According to the system design, a wheelset size measurement system based on MLSL 
is built, and the parameters of camera, MLSL plane and each measurement module are 
calibrated, and the three-dimensional measurement model of the system is constructed. 
After the laboratory preliminary verification that the detection accuracy and consistency 
meet the requirements, the system is installed in the field for further inspection, and the 
measurement accuracy comparison and repeatability analysis are carried out between the 
measurement results of the system and the manual measurement values, which verifies 
that the image processing algorithm and parameter measurement algorithm meet the 
detection requirements of the measurement system, and has certain feasibility. 
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In addition, in this paper, a fast MLSL plane calibration method suitable for general 
situations is proposed. No matter what angle the multi-line laser is projected on the 
surface of the object, only the first and last two light plane equations need to be calibrated 
in advance, and the rest of the light plane equations can be calculated at one time by the 
established MLSL measurement model, which reduces the process of image processing. 
Considering the influence of laser manufacturing process and environmental conditions, 
there will be deviation in the ideal situation of equal distance between projected light 
bars. Therefore, in this paper, the method of calculating the actual distance is extracted by 
extracting the coordinates of projection points of each light on the surface of the object. 
According to the geometric constraint relationship in the model, the normal vector of 
each light plane is calculated by Rodriguez function, and then the equation of each light 
plane is obtained. 

Figure 12 shows that the measurement results meet the requirements of wheelset 
detection in railway departments, and the wheelset parameter results obtained by 
wheelset measurement system and manual measurement have certain deviations, but the 
overall measurement results of wheelset measurement system are better than manual 
measurement and are within the allowable range of measurement error. Among them, the 
measurement accuracy of wheel diameter and rim width is ±0.2 mm, the measurement 
accuracy of rim width and height is ±0.25 mm, and the measurement error of QR value is 
less than 0.25 mm. 

The test result curve in Figure 13 basically coincides with the standard value, 
indicating that the measured results in this paper can be consistent with the standard 
value, and the test results are relatively accurate. The models in Peng et al. (2023a) and 
Velletrani et al. (2020) have large errors in this wheel detection, and it can be seen from 
the figure that the curve fluctuates greatly. Therefore, the reliability of the model 
proposed in this paper is further verified by comparison. 

In Table 4, under 80,000 LX strong light, the light stripe mismatch rate only 
increased to 1.2%, and the standard deviation remained within ±0.11 mm, indicating that 
the improved Steger algorithm effectively suppressed the effect of high light 
overexposure through Gaussian filtering and adaptive threshold adjustment. The 
proportion of invalid data frames caused by flash frequency (100 Hz) is 3.5%, which is 
lower than the 5% threshold set by the system, thanks to the global shutter and exposure 
synchronisation control technology of CMOS sensor 

In Table 5, the fitting error of the outer side under sinusoidal vibration (20 Hz) is only 
0.07 mm, indicating that the plane fitting algorithm based on RANSAC has good 
robustness to low-frequency periodic vibration. The system reset time after random 
impact is 190 MS, which meets the requirements of real-time measurement in industrial 
scenes (<200 MS) 

From the comparison of the variation range of the standard deviation between the 
control group and the interference group, the fluctuation range of the standard deviation 
of wheel diameter measurement was only expanded by 37.5% (±0.08 → ±0.15 mm), 
which was lower than the preset threshold of 150% The extraction time of light stripe 
centreline is stable at 15 ± 2 ms, which shows that the algorithm optimisation avoids the 
iterative divergence caused by dynamic interference 

In Table 6, the strong light led to an increase in the number of iterations of the 
adaptive exposure control module (average+2 times/frame), which increased the 
processing time of the algorithm by 11.3% Through the hybrid strategy of fixed exposure 
mode and dynamic adjustment mode, the total delay under strong light is controlled 
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within 20 ms. The image blur caused by vibration makes the number of iterations of light 
stripe extraction fluctuate (15–22 times), but the improved algorithm limits the maximum 
processing time of a single frame to 25 ms through the pre convergence decision 
mechanism. The communication jitter caused by vibration impact increases the data 
acquisition delay by 66%, but the hardware level DMA transmission still ensures that 
95% of the frame data completely reaches the processing unit. In general, the time 
benchmark performance of the system in complex environments fully meets the 
requirements of rail transit dynamic detection. 

In Table 8, when the diameter jump value is >0.15 mm, the standard deviation of 
wheel diameter measurement reaches 180% of the nominal accuracy (0.1 mm), which is 
beyond the tolerance range of the system design. The iteration times of the improved 
algorithm under severe out of roundness conditions increase by 35%, but the plane fitting 
error is controlled within ±0.11 mm through the grouping sampling mechanism. 

On the whole, the intelligent detection system of rail transit vehicle wheelset 
combined with SL technology proposed in this paper can effectively adapt to the 
operation needs of modern rail transit and meet the technical requirements of relevant 
departments. 

5 Conclusions 

According to the system design, a wheelset size measurement system based on MLSL is 
built, and the parameters of camera, MLSL plane and each measurement module are 
calibrated, and the three-dimensional measurement model of the system is constructed. 
The experimental results show that there is a certain deviation between the measurement 
system and the manual measurement of wheelset parameters, but the overall 
measurement results of wheelset measurement system are better than those of manual 
measurement and within the allowable range of measurement error. Among them, the 
measurement accuracy of wheel diameter and rim width is ±0.2 mm, the measurement 
accuracy of rim width and height is ±0.25 mm, and the measurement error of QR value is 
less than 0.25 mm. The intelligent detection system for rail transit vehicle wheelsets 
combined with SL technology proposed in this paper can effectively adapt to the 
operation needs of modern rail transit. 

When the MLSL detection system measures the wheel diameter, the data collected by 
the camera system comes from some areas of the wheelset. Therefore, when the  
out-of-roundness of the wheelset is large, the measurement results have a large deviation. 
As a result, the acquisition module can be added reasonably to measure the size of the 
wheel set at different positions, reduce the measurement error of the wheel diameter and 
measure the out-of-roundness of the wheelset. 

Although the wheel detection data acquisition system in this paper combines 
intelligent methods, it does not set up an adaptive algorithm, and structural damage will 
inevitably occur after a long time of operation. Therefore, it is necessary to introduce an 
adaptive acquisition system and set up a predictive maintenance system to further 
improve the intelligent operation ability of the system. 
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