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Abstract: The conservation and optimisation of traditional villages has 
progressively been a major focus for intelligent applications with the fast 
development of artificial intelligence and information technology. Combining 
spatial multi-dimensional constraints to intelligibly optimise the layout of 
traditional villages through the adversarial training of generators and 
discriminators, this paper proposes a traditional village element layout 
optimisation method GAN-PLS based on generative adversarial network 
(GAN) model. Introduced into the GAN-PLS model, the gradient penalty 
technique helps to increase the stability of the training process and optimisation 
effect. Particularly outperforming conventional optimisation techniques in 
terms of convergence speed, generation effect and stability, the GAN-PLS 
model shows good performance in spatial layout optimisation, cultural element 
retention and ecological conservation by means of comparison studies. At last, 
this work addresses the shortcomings of the model and suggests future 
directions like dataset expansion, computational efficiency enhancement, and 
multi-dimensional constraints addition. 
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1 Introduction 

1.1 Background of study 

Generative adversarial network (GAN), as a novel machine learning model, has 
progressively drawn great interest in academia and business as information technology, 
especially the broad application of deep learning and artificial intelligence technology, 
develops rapidly. By building the adversarial process between the generator and the 
discriminator, GAN can efficiently create realistic images, text, audio and other kinds of 
data (Dash et al., 2023). It has been applied in the domains of image generation, image 
restoration, data enhancement and other spheres. But the possibilities of GANs extend 
much beyond this; their use in spatial design and planning particularly in the optimisation 
of traditional villages has not yet been properly investigated. 

Traditional villages have a special spatial layout and cultural significance since they 
are a significant type of human residence bearing historical legacy and local features.  
But as modernism accelerates, traditional communities are experiencing a few issues 
including population decline, resource depletion and slow removal of traditional 
characteristics (Li et al., 2023). Thus, given the preservation of the core of traditional 
culture, how best to maximise the spatial layout and resource allocation of villages using 
modern technologies. Conventional approaches of layout optimisation can depend on 
empirical design or rule-based algorithms, which lack flexibility and intelligence and are 
challenging to reach exact optimisation objectives. 

GAN’s great generative capacity has been progressively used in many design and 
planning disciplines in recent years, particularly in architectural design and urban 
planning and which offers special benefits. The intelligent optimisation strategy of GAN 
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allows a layout plan that satisfies the features of traditional villages to be automatically 
produced based on historical data, spatial layout needs and cultural elements, so ensuring 
accurate spatial optimisation and resource allocation. Consequently, the intelligent 
optimisation of the layout of conventional village elements depending on GAN has 
become a subject of tremendous research relevance and practical promise. 

1.2 Significance of study 

This work provides an intelligent optimisation model based on GAN, i.e., GAN-PLS, and 
investigates the application of GAN in the optimising of the layout of traditional village 
components. The study has theoretical and pragmatic importance as follows: 

1 Promote the application of GAN in spatial layout optimisation: Though GAN has 
been extensively applied in domains including picture production, studies on spatial 
layout optimisation of traditional villages are still in their early years. GAN-PLS not 
only stretches the possibilities of the application of GAN but also offers a creative 
answer for the field of spatial design by merging GAN with village plan optimisation 
(Alam, 2024). 

2 Promote the cultural protection and inheritance of traditional villages: Apart from 
their rich historical legacy and geographical features, traditional communities also 
show the particular social structure and way of life. Modern spatial optimisation can 
be accomplished while preserving the core of traditional culture by means of 
intelligent optimisation of GAN-PLS, therefore enabling the inheritance and 
development of traditional villages. 

3 Enhance the efficiency and accuracy of layout optimisation: Usually depending on 
manual experience or regular algorithms, the layout optimisation of traditional 
villages is less efficient and lacks personalism. Learning historical data and spatial 
requirements helps GAN-PLS to automatically create optimal layout solutions that 
satisfy traditional cultural traits, so considerably improving the accuracy and 
efficiency of optimisation and satisfying the needs of every village. 

4 Promote the construction of smart villages and sustainable development: Given the 
idea of smart cities and sustainable development, smart optimisation of classic 
villages is especially crucial. In terms of resource allocation, ecological environment 
and cultural protection, GAN-PLS presents fresh solution routes for the sustainable 
development of rural regions and a data-driven spatial optimisation means for the 
building of smart villages. 

In general, the application of GAN-PLS in the layout optimisation of traditional village 
elements not only promotes the development of GAN technology but also offers creative 
solutions for cultural heritage protection and village space optimisation, which has 
significant academic value and practical relevance. 

1.3 Methodology of study 

This work presents GAN-based layout optimisation model for conventional village 
components, GAN-PLS. Three main phases define the research approach: data collecting 
and pre-processing; model building and training; layout optimisation strategy design. 
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First, the study created a multi-dimensional dataset by compiling information on 
geographic location, architectural layout and historical background together with data on 
the spatial arrangement and cultural features of traditional communities. To give correct 
data support for model training, all data were preprocessed to guarantee consistent format 
and noise elimination. 

The generator and the discriminator make up the two components of the GAN-PLS 
model then. Based on historical layout data, the generator creates a spatial layout scheme 
that satisfies the optimisation goal; the discriminator assesses whether the produced 
layout conforms to the cultural traits and spatial rationality. Adversarial training lets the 
generator, and the discriminator iterate with one other to always maximise the layout 
generating impact (Karras et al., 2020). 

Finally, a set of spatial layout optimisation techniques is meant to guarantee that the 
produced layouts satisfy contemporary spatial challenges and satisfy conventional 
cultural needs. These techniques involve imposing physical and cultural limitations to 
guarantee that the produced layouts maintain conventional village features and improve 
the quality of life. Including a feedback system helps designers to adjust the produced 
outcomes to maximise the layout plan. 

2 Generative adversarial networks 

Comprising two neural networks, GAN is a novel deep learning paradigm whereby the 
two networks interact adversally during training to reach optimisation. GAN’s design 
concept is that the generator is progressively made capable of producing pseudo-data 
quite similar to the distribution of the real data while the discriminator tries to 
differentiate between the generated data and the real data by means of adversarial training 
between the generator and the discriminator. 

GAN’s basic mechanism is a zero-sum game, in which the generator and the 
discriminator are rivals in the training process driving one another forward  
(Mohebbi Moghaddam et al., 2023). With the intention of fooling the discriminator such 
that the created data cannot be distinguished from the real data, the generator seeks to 
constantly maximise the produced false data to make it closer and closer to the 
distribution of the genuine data. Conversely, the discriminator aims to raise its capacity to 
differentiate produced data from actual data to appropriately identify which of the created 
data are real and which are phony ones produced by the generator. Whereas the 
discriminator keeps raising its discriminating accuracy, the game between the two makes 
the generator keep producing more real data. Eventually, after training, the generator and 
the discriminator find a state of equilibrium whereby the produced data nearly matches 
the real data. 

Usually, a GAN’s training method consists in optimising the generator and the 
discriminator’s loss functions. The objectives of the discriminator are to increase its 
capacity to identify actual data and reduce the chance of misclassification of the produced 
data; so, the loss functions of the generator and the discriminator are connected. One may 
write the discriminator’s loss function as: 

[ ] ( )( )~ ( ) ~ ( )log ( ) log 1 ( )data zD x p x z p zL D x D G z = − − −    (1) 
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where G(z) is the fake data created by the generator by inputting the noise z; D(x) is the 
outcome of the discriminator’s judgement that the input data x is real data; x denotes a 
sample taken from the real data distribution pdata, z denotes a random vector sampled 
from the noise distribution pz. The discriminator keeps becoming better in discriminating 
between genuine and produced data by means of optimisation of its loss function (Tian  
et al., 2022). 

Conversely, the generator aims to maximise the probability of misjudging the 
produced data by producing data as realistic as feasible, hence guiding the discriminator 
to believe that the produced data is real. The generator’s loss function is: 

( )~ ( ) log ( )zG z p zL D G z =    (2) 

where D(G(z)) is the outcome of the discriminator’s evaluation on the generated fake data 
G(z) by the generator. Maximising this loss function helps the generator to produce 
phony data as near to the distribution of the genuine data, therefore misleading the 
discriminator. By alternately changing the parameters of both the generator and the 
discriminator, the two-way game that is their optimisation process finally results in a 
Nash equilibrium condition (Ma et al., 2022). 

The generator and the discriminator change their parameters correspondingly using 
the back-propagation technique during the training period. While the discriminator 
continuously improves its judgement ability by minimising the loss function, the 
generator progressively changes its parameters to generate more and more realistic fake 
data. By encouraging the cooperative development of the generator and the discriminator, 
adversarial training helps the generator to progressively learn the possible distribution of 
real data and create high-quality fake data without clearly identifying the data. 

GAN has the benefit in not requiring conventional supervised learning of labels; the 
generator can automatically learn the fundamental data structure just by training against 
the discriminator. GANs therefore can produce unexpected outcomes in many fields, 
particularly in tasks including picture generating, image restoration, style migration, etc. 
(Gan et al., 2024). The success of GANs also offers fresh concepts for unsupervised 
learning, particularly in the lack of labelled data, where GANs are nevertheless able to 
self-optimise via the adversarial process, producing quite strong data generating results. 

Nevertheless, the GAN training process has certain difficulties as well, particularly in 
the unstable training process and the game between the generator and the discriminator 
may cause one of the models to be too strong for the other model to learn effectively, so 
hindering the convergence of the training. Researchers have suggested several better 
approaches to address these issues, including Wasserstein generative adversarial network 
(WGAN) and deep convolutional generative adversarial network (DCGAN), which by 
changing the loss function or adding new network architectures enhance the training 
stability and generative impact of GANs (Man et al., 2022). 

All things considered, GAN’s achievement has not only altered the field of generative 
modelling but also given strong instruments for addressing useful challenges. From 
image generation to speech synthesis, text generation, to cross-modal data production and 
other domains, GAN shows significant promise and possibilities as GAN technology 
develops constantly. Many new GAN variations have been presented, and the application 
scenarios have been increased. 
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3 Layout of traditional village elements 

3.1 Spatial layout characteristics of traditional villages 

The interaction of the geographical, cultural, social, and environmental surroundings 
shapes the spatial arrangement of traditional communities. Because of their distinct 
geography and temperature, villages all around exhibit different layouts. Whereas 
southern villages are typically open, with timber buildings, emphasising air and light, 
northern communities are mostly enclosed, with brick buildings, suited to the cold. The 
way the community is laid not only captures the features of the nearby natural 
surroundings but also the distinctiveness of the regional culture. 

The social structure and culture are strongly reflected in the design of traditional 
villages (Chen et al., 2020). Many communities have a rigid clan or family system, with 
the arrangement of homes and courtyards based on blood ties or social status, therefore 
representing kinship unity and social order. With the orientation of buildings and the 
arrangement of courtyards following ideas to guarantee comfortable and safe living, some 
villages also have a tight relationship with the idea of feng shui. One of the main features 
of traditional communities is this cultural one. 

The functional zoning of the village is somewhat flexible while its spatial division is 
based on the demands of life and the logical utilisation of natural resources. Usually, the 
most significant street or plaza in the town, the central axis, links public activity areas 
including markets and temples with residential sections, therefore enclosing the hamlet. 
Integrated with one another, agricultural, home, and public activity venues show the 
harmonic cohabitation of man and nature, and man and man. This practical design shows 
how well resources are used and how carefully traditional villages arrange their daily life. 

Traditional village layouts also consider the cooperation of the surroundings and 
ecology. Many towns exploit their local natural resources to reach self-sufficiency by 
means of sensible layout and spatial planning. The efficient management of water 
resources is reflected in the design of water conservancy facilities including wells and 
ditches; likewise, the design of green areas, courtyards, and agricultural fields in villages 
not only satisfies the demands of local production and life but also advances ecological 
balance and sustainable development. This ecological design offers great ecological 
understanding and shows the adaptability and sustainability of classic settlements. 
Traditional villages’ spatial arrangement is a complete mirror of history, culture, and 
society and deserves preservation and study during the modernising process. 

3.2 Review of intelligent optimisation of traditional village element layout 

Concerning space use, resource allocation, and environmental protection among other 
things, traditional village layouts present difficulties. More and more algorithms have 
been used in this field attempting to increase the efficiency, usefulness and sustainability 
of conventional village layout with the fast development of intelligent optimisation 
technology. Using these algorithms not only enhances the conventional layout strategies 
but also offers creative solutions for the challenges experienced by conventional 
communities during the modernising process. Several typical intelligent methods in 
conventional village layout optimisation are reviewed here together with their application 
effects, advantages and drawbacks. 
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Widely applied in traditional village design, particularly in the issues of space usage 
and resource allocation, genetic algorithm (GA) is an optimising tool based on biological 
evolution mechanism. GA is widely employed in the optimisation of functional areas 
including construction sites, road networks and public spaces in conventional village 
planning. For instance, the use of GA helps to optimise village road networks so 
enhancing road access efficiency and lowering traffic congestion issues (Dikshit et al., 
2023). GA suffers from sluggish convergence, nevertheless, particularly in challenging, 
multi-constraint layout problems that could call for significant processing time. 

Appropriate for handling path optimisation problems, ant colony algorithm (ACO) is 
an optimisation method that models the foraging activity of ants. ACO is typically 
employed in conventional village layouts for issues of resource allocation and 
transportation network design. Typical traditional village layouts are complicated and 
erratic, thus ACO can maximise the road design by means of local search to minimise 
space waste and traffic congestion and enhance traffic flow (Boubedra et al., 2023). ACO 
has the drawback, too, in that it is possible to fall into optimal local solutions, particularly 
in relation to large-scale complicated problems, which could produce undesirable 
optimising outcomes. 

By simulating the activity of a flock of birds feeding or a school of fish swimming, 
particle swarm optimisation (PSO) searches for the best solution via group cooperation 
and local search. When addressing the spatial layout of traditional villages, PSO may 
efficiently maximise the building spacing, the layout of the public area, and change the 
density and shape of the road network, so enhancing the spatial utilisation rate and the 
quality of life of the residents (Tang et al., 2018). PSO does, nonetheless, also have 
certain restrictions. PSO is prone to slip into local optimal solutions when confronted 
with very complicated and nonlinear layout issues, particularly in cases when the search 
space of the problem is somewhat big and the search path of the particles may not be able 
to completely cover the whole optimisation space. 

By progressively lowering the temperature, simulated annealing (SA) replics the 
physical annealing process to identify the best global solution (Liu et al., 2022). In 
conventional village design, SA is mostly applied in the optimisation of public space 
distribution, building layout, etc. SA’s global search capacity is its advantage since it 
allows one to leap out of the local optimal solution and identify a layout scheme nearer 
the global optimal solution. SA’s convergence speed is slow, nevertheless, particularly in 
cases of large-scale optimisation challenges that can call for more computing time. 
Furthermore, SA is more sensitive to the choice of the starting solution, hence the 
outcome of final optimisation could change. 

Deep learning and neural network methods have progressively taken front stage in 
conventional village design in recent years. Particularly convolutional neural networks 
(CNNs) and long short-term memory (LSTM) networks, deep learning models may 
provide effective layout solutions and discover intricate patterns from large-scale data 
(Alzubaidi et al., 2021). CNNs can be used, for instance, to extract spatial elements of 
villages from satellite photos, and LSTMs can be used to examine the dynamic activity 
patterns of the residents and so optimise the building and traffic flow path distribution 
inside communities. Deep learning algorithms’ strength resides in their capacity to solve 
large-scale, challenging nonlinear problems and yield quite accurate optimisation 
outcomes. Deep learning approaches have certain difficulties, though. First, deep learning 
models typically depend on strong computational resources, and the training process is 
long and complicated, which may restrict their application in the optimisation of 
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traditional village layouts. Besides, these models depend mostly on a great volume of 
high-quality training data, which is often lacking or of poor quality related to traditional 
villages. 

Emerging as a deep learning model, GAN has lately been used in the optimisation of 
conventional village design. GAN may optimise the site of buildings, the direction of 
roads, the distribution of public space, etc.; it can also replicate the layout of ancient 
villages in many historical periods and cultural settings. GAN has the benefit in that it 
can automatically create a layout design satisfying the requirements free from human 
involvement. Particularly in terms of preservation of local culture and historical 
inheritance, GAN can offer imaginative and culturally significant village layouts. 

All things considered, the optimisation issue of conventional village design has grown 
to be a major focus for investigation of intelligent optimisation methods. While new 
algorithms, including deep learning, have showed great promise in creative layout and 
data-driven optimisation, conventional optimisation techniques, such GA, ACO, PSO, 
SA, etc., have achieved spectacular outcomes in spatial planning and resource allocation. 

3.3 The need for optimisation in the layout of traditional villages 

The spatial use, natural environment, cultural legacy, and infrastructure of traditional 
villages suffer several difficulties as modernism advances. While traditional villages have 
great historical and cultural significance, how to reach their sensible optimisation in the 
framework of modernisation has become a pressing problem. While satisfying the needs 
of modern society for the protection and development of traditional culture, intelligent 
optimisation not only increases the efficiency of space utilisation but also improves the 
living environment and boosts ecological sustainability. 

Low space use efficiency and scattered building designs of traditional villages make it 
challenging to adjust with population increase and functional needs. Concurrently with 
these developments in the external environment and human activities, the ecological 
environment has suffered damage; issues including water resource scarcity and 
vegetation degradation have grown ever more important. By means of data analysis and 
model prediction, intelligent optimisation may rationally modify the building plan and 
increase land use efficiency; use IoT and artificial intelligence technologies to monitor 
environmental data in real time, optimise and repair the ecosystem and guarantee 
ecological sustainability (Miller et al., 2025). 

Another difficult task for traditional communities is striking the equilibrium between 
functional requirements and cultural legacy. Many communities have seen a slow erosion 
of cultural traits as modern lifestyles become more prevalent. By means of artificial 
intelligence algorithms and massive data analysis, intelligent optimisation can forecast 
resident demands and create spatial layout solutions that satisfy contemporary life while 
conserving traditional culture. Furthermore, unable to satisfy modern society’s needs are 
the infrastructure and traffic of old settlements. By use of traffic flow analysis and 
intelligent resource management systems, intelligent optimisation can maximise the road 
network and infrastructure, so improving the general operational efficiency of villages. 

All things considered, traditional communities desperately need clever optimisation 
technology to undergo change. Intelligent optimisation can offer creative ideas to help 
traditional villages to increase the efficiency of space use, improve the ecological 
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environment, protect the cultural legacy, and optimise the traffic and infrastructure in the 
process of modernisation, to achieve sustainable development. 

4 Intelligent optimisation model based on GANs 

This work presents GAN-based layout optimisation model for conventional village 
components, GAN-PLS. See Figure 1 for three main steps: data collecting and  
pre-processing, model creation and training, and layout optimisation strategy design; the 
model performs intelligent optimisation of traditional village layout. 

Figure 1 GAN-PLS model architecture (see online version for colours) 
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4.1 Data collection and pre-processing 

Data collecting and pre-processing form the foundation for effective training and model 
optimisation prior to the GAN-PLS model construction. Traditional village layouts and 
associated cultural element data contain complicated multidimensional qualities spanning 
geography, architecture, history, culture and other elements. Thus, the main steps to reach 
layout optimisation are correct pre-processing of the data and precise and thorough 
collecting of pertinent data. 

Common issues in the gathered raw data are inconsistent format, missing numbers, 
and noise interference. Comprehensive preparation of the data is necessary to raise the 
quality of the data and the efficacy of the training paradigm. Data pre-processing includes 
actions in data format standardisation, data cleansing, feature extraction and selection, as 
well as data normalisation and standardisation. First, all the geographic information, 
building layout data, and cultural aspects data need to be standardised if we are to unite 
the form of the heterogeneous data from several sources. Z-score normalisation approach 
with the following formula handles data normalisation: 

norm
X μX
σ
−=  (3) 
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where X is the original data; Xnorm is the normalised data; μ and σ are respectively the 
mean and standard deviation of the data. 

K-nearest neighbours (KNN) algorithm fills in missing values during data cleaning 
(Lee and Styczynski, 2018). By means of similar data points and mean values of adjacent 
points, KNN algorithm fills in the missing data. The computation is: 

,
1

1 K

filled neighbour i
i

X X
K =

=   (4) 

where Xfilled is the filled data; Xneighbour,i is the ith eigenvalue of the K surrounding points;  
K is the number of chosen neighbours. 

Important further phases in data preparation are feature extraction and selection. By 
means of key feature extraction from a vast volume of raw data, the study concentrates on 
extracting geographic features (topographic slope, land use type, etc.), architectural 
features (building height, distance between buildings, etc.), and cultural features (location 
of historical sites, areas of folklore activities, etc.). Training of the GAN-PLS model will 
use these characteristics as input data. All data must also be normalised and normalised if 
we are to increase the training effect; this model employs the min-max normalisation 
approach with the formula: 

min

max min
norm

X XX
X X

−=
−

 (5) 

where Xmin and Xmax are the minimum and maximum values of the features in the dataset 
correspondingly, Xnorm is the normalised data. 

By means of these data pretreatment techniques, the study guaranteed a high-quality, 
homogeneous, uniformly formatted and information-rich dataset for the GAN-PLS 
model. This lays a strong basis for later model development and conventional village 
planning enhancement. The improved data can improve the effect of layout optimisation 
and help the generator to thoroughly examine the geographical features and cultural 
connotations in layout production. 

4.2 Model construction 

The GAN-PLS model is built with the design of the generator and discriminator of the 
GAN, the definition of the optimisation objective and the adversarial training of the two. 
By means of adversarial training between the generator and the discriminator, the model 
is able to attain the optimisation of the spatial layout of conventional villages and develop 
a traditional village layout plan that satisfies the optimisation target. 

The key component of the GAN-PLS model is the generator, whose job is to create a 
conventional village layout plan satisfying the optimisation goal depending on the input 
historical layout data and cultural element data. Multi-dimensional data including 
architectural layout data, geography information, cultural element data, etc. forms the 
generator’s inputs. By means of deep neural networks, the generator creates a layout 
satisfying both spatial and cultural needs. To reach this aim, the generator uses a structure 
combining CNN and LSTM. While LSTM can capture the time-series links in the layout 
data, which is especially appropriate for characterising the laws of traditional village 
layout evolution over time (Yang et al., 2019), CNN can efficiently extract local features 
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in spatial layouts. Usually shown as a hypothetical layout scheme, the generator 
produces: 

( ) ˆ; GG z θ X=  (6) 

where the generator is G; the input potential vector or noise is z; the generator’s 
parameter is θG; the produced layout scheme is ˆ .X  The generator’s output has to satisfy 
ecological preservation, cultural legacy, and spatial rationality standards. 

The discriminator’s job is to assess if the produced layout scheme follows actual 
traditional village layout statistics. Its purpose is to evaluate the produced layout against 
the actual layout and provide input to the generator via the discriminator therefore 
fostering its optimisation. The discriminator evaluates the environmental and cultural 
adaptation as well as the spatial rationality of the design. Using multi-layer convolutional 
processes, the discriminator gathers features from layout images using a deep 
convolutional neural network (DCNN) architecture, therefore judging the legitimacy of 
the layout scheme (Dargan et al., 2020). Apart from depending just on spatial 
characteristics, the discriminator examines the retention of cultural aspects holistically. 
For instance, whether the design can mirror architectural components in ancient towns, 
cultural activity venues and historical relics. One may represent the discriminator’s 
output as: 

( ) ( )ˆ ˆ; DD X θ p X=  (7) 

where D is the discriminator; X̂  is the produced layout; θD is the discriminator’s 
parameter; ˆ( )p X  is the authenticity probability of the layout scheme, thereby indicating 
if the layout adheres to the features of the authentic layout. 

The GAN-PLS model’s goal is to create a conventional village plan that fits both 
cultural features and spatial rationality. Several optimisation loss functions are created to 
reach this aim covering the features of spatial rationality of layout, retention of cultural 
elements and protection of the environment. The spatial rationality loss function is used 
to measure the location of buildings, the smoothness of the road network, and the 
effective use of public space in the generated layout; the cultural heritage loss function is 
used to measure the degree of retention of elements such as historical sites, cultural 
activity areas, and traditional buildings in the layout; and the ecological environment loss 
function focuses on the environmental impacts of the generated layout, such as the green 
space area and the density of the buildings, etc. Comprising the elements of the 
optimisation function, the final total optimisation loss function defines. 

The weighted sum of every component of the final total loss function defines it; the 
expression is: 

1 2 3space culture ecologyL λ L λ L λ L= + +  (8) 

where Lspace is the loss of spatial reason; Lculture is the loss of cultural legacy; Lecology is the 
loss of protection of the ecology; λ1, λ2 and λ3 are the weights of each loss function. 

The generator and discriminator are continuously changed in the training process 
using this loss function formulation to get intelligent traditional village plan design 
(Yuanliang and Zhe, 2024). 
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4.3 Training and layout optimisation strategies 

The training program mainly uses generative confrontation training, in which the 
generator and discriminator are updated to maximise the layout. This method uses a 
gradient penalty technique to stabilise the training process therefore avoiding issues 
including pattern collapse and gradient vanishing. By limiting the discriminator’s 
gradient, the gradient penalty helps to prevent instability in the training process so 
guarantee that the output of the discriminator stays smooth throughout the sample space 
(Lei et al., 2024). 

By penalising the gradient deviation between the generated samples and the 
discriminator, the gradient penalty guarantees that the gradient of the discriminator stays 
smooth over the data distribution. The gradient penalty term LGP is computed especially 
as follows: 

( )( )ˆ

2
ˆ~ 2ˆ 1xGP x P xL D x = ∇ −   (9) 

where ˆ ˆ( )x D x∇  is the gradient of the discriminator over this sample; ||·||2 signifies the 
two-parameter number; ˆ~ xx P  is the expectation over all interpolated samples; x̂  is the 
sample acquired by means of interpolation between the real and produced data 
distributions. This loss function guarantees that the discriminator’s gradient keeps near to 
1 over the data space, therefore enabling stable generator and discriminator training. 

Combining the gradient penalty term with the adversarial loss of the generator and 
discriminator will help to maximise the final loss function. Using weighted summation, 
the resultant loss function is: 

1 - -final space culture ecologyL λ L=  (10) 

Among them, Lspace-culture-ecology is a loss function that combines spatial rationality, cultural 
legacy and ecological protection, λ1 and λ2 are the weights of each part of the loss 
function respectively, which are used to balance the influence of spatial, cultural and 
ecological factor with gradient penalty. 

While the discriminator can more precisely evaluate the rationality and authenticity of 
the layout, the generator is able to create a more optimal traditional village layout in 
every round of training by means of this loss function optimisation. 

First, the design of the generator considers the integration of modernism needs, so 
enabling the generated traditional village layout to not only preserve the traditional 
cultural qualities but also fit the demands of modern life. First, the road system in the 
layout adopts modern traffic demand prediction methods in order to optimise the road 
planning of the traditional village, so resulting in a smoother traffic flow and a high 
degree of access efficiency; second, the building distribution and green space design take 
into account the principle of ecological protection, so avoiding over-development and 
increasing the area of green space, so enhancing the eco-friendliness of the village. 
Furthermore, given particular attention is the protection of historical sites to guarantee the 
efficient preservation of the cultural legacy and that some pragmatic issues in the 
framework of modernism are resolved by means of the rational spatial distribution (Wen 
et al., 2023). 

Strategic design of the optimisation process guarantees that the conventional village 
plan is balanced between spatial rationality, cultural legacy and ecological preservation. 
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By means of a feedback mechanism, the designers can fine-tune the produced layout 
scheme, enabling multiple iterations to progressively maximise the layout results in 
multiple iterations, so ensuring that the generated layout meets the spatial requirements, 
but also effectively transmits the culture and protects the environmental surroundings to 
the maximum extent. 

By using these intelligent optimisation procedures, the final model is able to provide a 
conventional village layout that satisfies spatial rationality, cultural legacy, and 
ecological protection, thereby offering an intelligent optimisation tool for the protection 
and planning of traditional communities. Apart from enhancing the design efficiency of 
conventional village layout, this intelligent optimisation model offers technical support 
and creative ideas for the sustainable development of communities. 

5 Experiments and analysis of results 

5.1 Experimental data 

The fundamental data source for the traditional village layout optimisation model in this 
work is OpenStreetMap (OSM) dataset. Globally open-source geographic information 
system (GIS) OSM provides a broad spectrum of geographic aspects in cities and towns, 
including road networks, building distribution, natural landscapes, cultural heritage 
locations, transportation facilities, etc. With great degree of openness and global 
coverage, OSM data are extensively applied in GISs, urban planning, navigation systems, 
etc. 

In this work, the geographical data supplied by OSM will be utilised for intelligent 
optimisation of conventional village plans by aggregating the cultural and ecological 
aspects of conventional villages. Table 1 compiles the fundamental details of the OSM 
dataset applied in this work. 
Table 1 OSM dataset 

Dataset name OpenStreetMap (OSM) 
Data type Geographic dataset, including roads, buildings, green spaces, landmarks 

and natural landscapes 
Data source User-contributed, open data platform 
Coverage Global (with the option to extract data from specific regions) 
Data format XML (.osm), PBF (.osm.pbf), GeoJSON, Shapefile, etc. 
Tools used Overpass API, OSM website, Geofabrik, etc. 
Update frequency Continuous updates (data is updated in real time based on user 

contributions) 
Application areas GIS, urban planning, transportation management, environmental analysis, 

etc. 

This work will extract spatial layout information of traditional communities using an 
OSM dataset. More especially, we will concentrate on applying the following statistics: 
road layout, including main streets, alleys, trails, etc., to provide data support for 
optimising the traffic flow in traditional villages; building distribution, including 
architectural information such as residences, stores, cultural sites, etc., which will be used 
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to generate the location and structure of the buildings in the layout; natural landscapes, 
such parks, green areas, lakes, etc., which will be used as a basis for ecological 
environmental protection; cultural sites, including historical sites, cultural landmarks, 
etc., which will be used to help maintain the cultural characteristics of traditional villages. 
Processing and analysis of this data will help the GAN-PLS model to give data assistance 
for intelligent layout optimisation of conventional villages. 

5.2 Experimental setup 

For this experiment, a high-performance computer cluster with multi-core CPUs and 
NVIDIA GPUs provides the computing environment to guarantee effective model 
training (Ravikumar and Sriraman, 2023). Table 2 shows the running system as  
Ubuntu 20.04 and the deep learning framework as PyTorch 1.10.0. 
Table 2 Experimental hardware configuration environment 

Hardware Description 
CPU Intel Xeon 2.4 GHz (16 cores) 
GPU NVIDIA Tesla V100 16 GB 
Memory 64 GB 
Storage 1 TB SSD 
OS Ubuntu 20.04 

Table 3 shows the collection of the following important hyperparameters during the 
model training procedure. 
Table 3 Experimental parameter settings 

Hyperparameter Value 
Batch size 32 
Learning rate 0.0002 
Generator hidden layers 128 
Discriminator hidden layers 128 
Epochs 1,000 
Optimiser Adam (β1 = 0.5, β2 = 0.999) 

5.3 Comparative experiments with traditional layout optimisation models 

This experiment intends to confirm in traditional village layout optimisation the 
performance difference between GAN-PLS model and conventional layout optimisation 
models (e.g., GA, SA, PSO). Every one of these methods is extensively applied in 
conventional layout optimisation and has greater global optimisation capacity. Examining 
spatial rationality, cultural legacy, ecological preservation, training stability, and 
convergence speed helps one to fully weigh the benefits and drawbacks of various 
optimising techniques. 

The two models’ optimisation effect is evaluated in this paper using the following 
assessment indices. 
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By means of the arrangement of buildings, road planning, and public space use, 
spatial rationality gauges if the produced layout satisfies the actual demands of traditional 
communities. Cultural legacy evaluates if the produced design preserves the historical 
sites, traditional architectural forms, etc. of the old community. Ecological environmental 
protection gauges the area of green space, building density, and ecological coordination 
of the produced design. Quantifying the stability of the training process helps one to 
assign a value of 0 to 1. This helps notably to avoid issues such disappearing gradients 
and model collapse by 1 representing a stable training process and 0 reflecting instability. 
With values from 0 to 1 reflecting the speed of convergence, convergence speed is to 
evaluate the speed of convergence of the model; 1 indicates fast convergence and 0 
indicates slow convergence. Figure 2 shows the experimental outcomes. 

Figure 2 Comparison experiment of different layout optimisation models (see online version  
for colours) 

0.5

0.6

0.7

0.8

0.9

1.0  Spatial Rationality

0.5

0.6

0.7

0.8

0.9

1.0
 Cultural Heritage

GAN-PLS GA SA PSO
0.5

0.6

0.7

0.8

0.9

1.0  Ecological Protection

GAN-PLS GA SA PSO
0.5

0.6

0.7

0.8

0.9

1.0
 Training Stability

 Convergence Speed

 

With a score of 0.90, the GAN-PLS model showed the best spatial rationality. This 
approach generates extremely optimal layouts in terms of building distribution, road 
planning and public space use, therefore guaranteeing effective use of space devoid of 
waste. Though they also performed better in terms of spatial structure, GA (0.80), SA 
(0.82), and PSO (0.84), failed to completely optimise space, thereby producing some 
wasted space and illogical distribution in the design. PSO improves spatial rationality 
more than GA and SA, although its optimisation accuracy is still not like that of  
GAN-PLS. 

Regarding cultural legacy, GAN-PLS’s performance stands out as excellent, with 
0.85. Crucially important to preserving the cultural integrity of villages, the approach can 
effectively conserve the cultural elements of traditional towns including the conservation 
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of historical places and the integration of traditional architectural forms. On cultural 
transmission, GA, SA, and PSO are less successful, in comparison. These conventional 
optimisation techniques lack cultural elements, which results in produced layouts that fail 
to fully reflect the cultural traits of traditional villages, particularly in the lack of 
performance in the design of historical heritage protection areas and cultural activity 
areas. Although they are able of global optimisation. 

Regarding environmental preservation, GAN-PLS showed outstanding optimisation 
capacity with 0.88. The model guarantees that the plan satisfies the criteria of ecological 
protection by optimising green areas, building density, and ecological compatibility 
during designing. On ecological preservation, GA (0.78), SA (0.80), and PSO (0.82) did 
rather poorly. These algorithms optimise the plan, but they neglect to completely include 
ecological protection, thereby producing layouts with issues with green space allocation 
and environmental coordination and fail to attain an optimal ecological balance. 

GAN-PLS obtained a high score of 0.95, indicating great training stability, and the 
gradient penalty approach avoids the typical problems of gradient disappearance and 
pattern collapse during training. Conversely, especially in large-scale data processing, 
which is prone to gradient instability or non-convergence of the training process,  
GA (0.70), SA (0.65) and PSO (0.75) have rather low training stability. GAN-PLS is 
more efficient in producing the ideal layout as, in terms of the convergence speed, it has 
0.90, far faster than the other algorithms (GA: 0.60, SA: 0.55, PSO: 0.80). 

GAN-PLS performs well in many dimensions, including spatial rationality, cultural 
legacy, ecological protection, etc., and its training stability and convergence speed are 
much higher than those of conventional optimisation techniques when compared with 
GA, SA and PSO approaches. This shows the efficiency and creativity of applying GAN 
(particularly the gradient penalty-introducing training method) for conventional village 
layout improvement. 

5.4 Impact of different optimisation strategies on the effectiveness of layout 
optimisation 

Aiming to investigate the impact of several limitations, such spatial rationality, cultural 
legacy, and ecological conservation, four distinct optimisation procedures are setup in 
this experiment. First, to guarantee the spatial rationality and seamless flow of the layout, 
the spatial optimisation approach (GAN-PLS-Space) concentrates on improving building 
distribution, road planning and public space. Second, GAN-PLS-Culture stresses the 
preservation of historical monuments, traditional architectural styles and cultural activity 
areas to guarantee that the layout corresponds with the cultural traits of the conventional 
village. Focusing on the coordination of green space, building density and ecological 
environment to satisfy the objectives of ecological protection, the ecological optimisation 
approach (GAN-Pls-Ecology) At last, the complete optimisation strategy (GAN-PLS) 
integrates the spatial, cultural, and ecological optimisation goals to improve all facets of 
the layout in an integrated manner, so ensuring that the produced layout satisfies the 
spatial rationality and maintains the cultural features while so preserving the ecological 
environment. 

The exact experimental results of this experiment are displayed in Figure 3; its 
evaluation index is the same as that of Experiment 1. 
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Figure 3 Comparison of optimisation effect of different optimisation strategies (see online 
version for colours) 
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With a score of 0.85 GAN-PLS-Space excels in terms of spatial rationalities. This 
approach guarantees appropriate spatial structure and flow design by concentrating on the 
best possible placement of buildings, road planning and public areas. Conversely,  
GAN-PLS-Culture (0.75) and GAN-PLS-Ecology (0.80) perform somewhat worse in 
terms of spatial rationality mostly because both methods concentrate more on cultural 
components and ecological conservation demands than on spatial layout as the major 
optimisation target. 

With 0.90, GAN-PLS-Culture excels in terms of cultural legacy. The approach 
stresses the preservation of cultural elements in traditional villages, including historical 
places, traditional architectural styles and areas for cultural events, therefore allowing the 
produced layout to properly pass on traditional culture. Given their optimisation focus  
did not offer in-depth design around cultural features, GAN-PLS-Space (0.70) and  
GAN-PLS-Ecology (0.65) scored weakly in terms of cultural legacy. 

GAN-PLS-Ecology scored 0.90 to show best in terms of ecological preservation. The 
approach provided more of a contribution to maximising the area of green space, building 
density and compatibility with the natural surroundings, therefore guaranteeing that the 
produced designs better fit needs for ecological preservation. Lower ecological protection 
scores for GAN-PLS-Space (0.75) and GAN-PLS-Culture (0.70) indicate that the designs 
produced under a single strategy fail to balance ecological protection with other variables 
well. 

With scores of spatial rationality (0.90), cultural legacy (0.85), and ecological 
protection (0.88), GAN-PLS shows overall good performance in all evaluation criteria. 
This outcome confirms the benefits of the integrated optimisation technique under several 
limitations, thereby balancing the spatial, cultural, and ecological needs to provide a 
traditional village plan that satisfies the real requirements. In terms of training stability 
(0.95) and convergence speed (0.90), GAN-PLS also shows great flexibility of the model 
under challenging challenges. 
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6 Conclusions 

6.1 Summary and shortcomings of the study 

In this work, an intelligent optimisation model GAN-PLS is suggested to optimise the 
arrangement of conventional village parts depending on GAN. To attain the intelligent 
optimisation of the layout of traditional villages, the model is trained via adversarial 
training of generator and discriminator and integrates numerous constraints including 
spatial rationality, cultural inheritance and ecological conservation. Specifically, the 
gradient penalty approach is implemented into the GAN-PLS model and helps to avoid 
issues including gradient disappearance and pattern collapse, so improving the stability of 
the training process and hence the training efficiency and generating quality of the model. 
By means of data collecting, model training and layout optimisation strategy design, the 
GAN-PLS model is able to keep the cultural features of traditional villages based on 
assuring the rationality of spatial layout, thereby meeting the needs of ecological 
preservation and preserving the cultural traits of traditional villages. The experimental 
findings reveal that in terms of spatial rationality, cultural inheritance, and ecological 
preservation the model delivers a more desirable optimisation impact. GAN-PLS shows 
the significant possibilities of the model in real applications since it performs well in all 
the evaluation measures. 

There are still certain flaws even if the outcomes of this study have certain validity in 
theory and practice. First of all, the model mostly concentrates on the conventional 
village layout data in particular areas, hence having some restrictions in terms of the 
diversity and breadth of the dataset. Second, in very complicated and large-scale layout 
optimisation challenges, the training time and computing cost of the model may still be 
considerable notwithstanding a steady training process. Furthermore, this study mostly 
addresses the optimisation of spatial, cultural, and ecological features of traditional 
villages; but the intelligent optimisation of traditional village layouts goes much beyond 
that. 

6.2 Directions for future research 

Future study can be conducted in the following ways depending on the given constraints: 

1 Extending the diversity and coverage of the dataset: By incorporating more kinds of 
traditional village data, including villages with various geographic settings, cultural 
backgrounds and historical periods, future study can improve the generalisation 
capacity of the model. This will not only maximise the model’s adaptability but also 
make it valuable in more various application contexts. 

2 Improving training efficiency and computational resource optimisation: Future 
studies can concentrate on maximising the computational efficiency of the model, for 
example, by means of methods such as model pruning and quantisation, lowering the 
demand for hardware resources and hence the amount of computation during the 
training process, so improving the operability of the model in practical applications. 

3 Introduce more dimensional constraints: Combining economic rewards, social 
requirements, sustainable development, and other elements will help the practicality 
and comprehensiveness of the model to be much enhanced in the future (Breuer  



   

 

   

   
 

   

   

 

   

   78 B. Yu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

et al., 2018). By means of multi-objective optimisation techniques, considering 
additional dimensional limitations, it can create conventional village layouts more in 
line with pragmatic demands. 

4 Strengthening the model’s adaptive ability and dynamic adjustment mechanism: 
Future studies can investigate how to make the model adaptable and automatically 
change the optimisation objectives depending on real-time data during the process of 
creating layout plans (Lăzăroiu et al., 2022). This will improve the long-term 
sustainability of conventional village layouts and help create more adaptable and 
changeable ones. 

5 Extension to cross-domain applications: Future studies can investigate how to 
expand the model to these fields and evaluate the use in several kinds of spatial 
layout optimisation chores. This will not only improve the applications scenarios of 
GAN in spatial optimisation but also offer intelligent solutions for several kinds of 
architectural planning and design. 

All things considered, this work advances the use of GAN in the field of spatial 
optimisation and offers a fresh concept and approach for the preservation and planning of 
traditional communities. Notwithstanding certain constraints, the GAN-PLS model is 
projected to be more important in the optimisation of the layout of conventional villages 
and the larger area of building design as the technology is always developing and 
optimising. 
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