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Abstract: With the rapid development of artificial intelligence technology, 
deep generative models provide new opportunities for the intelligent 
transformation of landscape design. Aiming at the deficiencies of existing 
generative methods in terms of scheme diversity, design feature decoupling and 
small-sample adaptability, this study proposes a hybrid generative architecture 
that integrates StyleGAN2 and diffusion model, combining with a migration 
learning strategy to optimise the model generalisation ability in small-sample 
scenarios. By introducing a reverse denoising mechanism to enhance detail 
generation, and using PCA and clustering methods to quantify the feature 
decoupling effect, the model achieves high-fidelity image generation  
(FID ≤ 25) and feature independence control (clustering purity ≥ 85%) on the 
publicly available dataset ADELAIDE Landscape Dataset. Experiments show 
that the model can effectively capture the spatial texture features of Dai villages 
and terraced fields in the image generation of typical mountain landscapes in 
Dehong Prefecture. 
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1 Introduction 

Traditional landscape design has long relied on manual experience and rule-driven 
methods, facing systemic pain points such as inefficiency, limited innovation and high 
costs. Take Dehong Prefecture as an example, its unique Dai village landscape integrates 
dry-fence architectural clusters, terraced water networks, and tropical vegetation layouts, 
and the design process needs to harmonise ecological adaptability, cultural symbols 
embedded in the landscape, and functional reasonableness, among other objectives (Jia 
and Qu, 2022). These pain points in traditional landscape design not only limit the 
diversity and innovation of the design, but also increase the cost and time investment. For 
example, designers need to repeatedly adjust the spatial topological relationship and 
vegetation distribution pattern when dealing with complex landforms, which not only 
consumes a lot of time, but also may lead to homogenisation of design solutions and lack 
of scene specificity. In addition, under the background of rapid urbanisation, how to 
realise the digital protection and innovative regeneration of cultural heritage landscapes 
under the condition of limited samples has become a real problem that needs to be solved 
urgently. The existence of these problems prompts us to explore new design methods and 
techniques to improve the efficiency and quality of landscape design while preserving 
regional cultural characteristics. Although traditional parametric tools can generate basic 
scenarios through preset rules, it is difficult to capture the nonlinear design logic and 
regional cultural characteristics, resulting in serious homogenisation of scenarios and lack 
of scenario specificity (Yuan et al., 2023). Especially in complex landscapes (e.g., 
mountains, wetlands), designers need to repeatedly adjust the spatial topology and 
vegetation distribution patterns, which is time-consuming and costly (Geng and Kaifa, 
2022). More critically, under the background of rapid urbanisation, how to achieve digital 
conservation and innovative regeneration of cultural heritage landscapes under limited 
sample conditions has become an urgent and realistic problem to be solved. 

In recent years, the rapid development of deep generative modelling has provided a 
new path for landscape design intelligence. Generative adversarial networks (GANs) 
have been successfully applied to building plan generation (Ferreira et al., 2022), urban 
texture simulation (Lin et al., 2022) and small-sample landscape schema design  
(Bei Huang et al., 2024) through the adversarial training mechanism. For example, Liu  
et al. (2024) proposed an urban landscape design method based on PSO-BP neural 
networks, which can not only automatically generate and optimise the design scheme by 
using data analysis and machine learning to make decisions, which greatly improves the 
efficiency, but also effectively improves the landscape quality of urban environments, 
and enhances the residents’ satisfaction with the urban landscape. Tang and Chung 
(2024) proposed a deep learning-based urban landscape layout model that utilises the 
Pix2Pix model and domain-specific dictionaries to automatically generate urban 
landscape designs by inputting images of land use and road conditions, and outperforms 
traditional methods in terms of sentiment prediction and functional layouts, showing 
potential in automated landscape design. Meanwhile, the diffusion model significantly 
outperforms traditional GAN in image detail generation quality through a progressive 
denoising process, and is widely used in high-resolution natural scene synthesis (Phillips 
et al., 2024). These technological breakthroughs indicate that generative artificial 
intelligence (AI) has the potential to replace part of the manual design process, especially 
in the generation of standardised scenarios and rapid iteration of multiple scenarios. 
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However, there are still three core deficiencies of the existing methods in landscape 
design scenarios: first, feature coupling is common, such as the strong correlation 
between hard paving and path networks, which leads to local adjustments triggering 
global scenario distortions (Ferreira et al., 2022); second, the adaptability of small 
samples is insufficient, and the model is prone to model collapse or detail loss in  
data-scarce scenarios such as ethnic minority characteristic landscapes (e.g., Dai villages 
in Dehong Prefecture); third, the generation capability of complex landforms is limited, 
and the existing model is not suitable for non-regular topography, such as mountains and 
terraces (Geng and Kaifa, 2022); third, the ability to generate complex landscapes is 
limited, and the existing models have low accuracy in modelling the spatial topological 
relationships of irregular terrain such as mountains and terraces (Jia and Qu, 2022). In 
essence, these problems stem from the inherent limitations of single model architectures, 
GAN excels at style migration but lacks detail fidelity, diffusion models generate high 
quality but at huge computational cost, and both lack quantitative control mechanisms for 
decoupling design features (Müller-Franzes et al., 2023). 

Aiming at the above challenges, this study proposes a hybrid generative architecture 
that deeply integrates the style decoupling ability of StyleGAN2 with the detail 
enhancement mechanism of the diffusion model, and introduces a cross-domain transfer 
learning strategy to optimise the performance of small samples. By constructing a 
quantitative evaluation system for hidden spatial features, the independent regulation of 
high-dimensional parameters such as vegetation density and water morphology is 
realised, while the progressive generative characteristics of the diffusion model are 
utilised to accurately restore the spatial relationship between terraced rice field texture 
and architectural communities in Dehong Prefecture. Experiments show that the model’s 
Fréchet Inception Distance (FID) index on ADELAIDE Landscape Dataset is 32% lower 
than that of a single model, and it still maintains the generative stability of Structural 
Similarity Index (SSIM) ≥ 0.75 on the small-scale Dehong Prefecture dataset with 100 
samples. This innovation not only provides a high-fidelity and interpretable generative 
tool for landscape design, but also lays a methodological foundation for the digital 
integration of multi-scale landforms and cultural semantics. 

2 Related research progress 

2.1 Technical evolution of deep generative modelling 

Since the proposal of GAN (Goodfellow et al., 2014), deep generative models have 
undergone significant technological iterations in the field of image synthesis. Early GAN 
achieved data distribution fitting through an adversarial training mechanism, but their 
generation quality and stability were limited by the pattern collapse problem (Pan et al., 
2019). With the development of technology, StyleGAN family of models significantly 
improves the image resolution and feature decoupling ability by introducing style 
modulation and progressive training strategy. For example, Cao et al. (2022) proposed an 
improved StyleGAN architecture in the coal foreign object detection task, which 
optimises the generation quality and efficiency through dual self-attention modules and 
depth-separable convolution, and verifies its potential in data-scarce scenarios. 
Meanwhile, the diffusion model shows unique advantages in balancing image fidelity and 
diversity by virtue of the progressive denoising mechanism (Phillips et al., 2024). Wang 
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et al. (2024) further proposed the latent feature diffusion model, which enhances the 
texture recovery ability of compressed video through cross-domain fusion module, 
providing a new idea for high-resolution landscape image generation. In recent years, 
hybrid architectures have become a hot research topic, Zhao et al. (2020) combined the 
variational self-encoder and GAN to solve the pattern collapse problem through latent 
representation optimisation, which significantly improves the diversity and quality of 
generated samples. 

2.2 Intelligent generation methods in landscape design 

In the field of landscape architecture, the application of generative AI gradually expands 
from interior design to complex outdoor spaces. In the field of landscape architecture, the 
application of generative AI is gradually moving from small to large scenarios. 
Preliminary results have been achieved in GAN-based floor plan generation: Wang et al. 
(2023) proposed the ActFloor-GAN algorithm, which generates indoor layouts with 
constraints on pedestrian trajectories, and combines cyclic consistency loss and 
antagonistic loss to improve the rationality of design. Pan et al. (2021) utilise the style 
guidance function of GauGAN to generate diversified architectural layout schemes for 
settlements using the design red line as a constraint, which highlights the advantages of 
GAN in dispersive problems. In addition, models such as Pix2pixHD are applied to 
architectural drawing generation (Zheng, 2018), whose residual network architecture 
learns building plan features step-by-step, providing a new perspective for understanding 
design logic. However, existing methods mostly focus on standardised scenarios, the 
ability to model the spatial topology of complex landforms (e.g., mountains and 
wetlands) is still insufficient, and the cultural semantic embedding mechanism has not yet 
been improved, which leads to the prominent problem of homogenisation of the 
generated scenarios. 

2.3 Exploration of generative modelling and ecological-cultural co-design 

In recent years, studies have begun to explore the potential of generative modelling in 
ecological-cultural collaborative design. Liu et al. (2021) changed the constraints to the 
original elements of the site, such as green space and water body, based on the 
characteristics of the classical private gardens in Jiangnan, and constructed a rapid 
method of generating layout plans based on the elements of the site based on 
Pix2Pix.And with the researchers to continuously adjust the layout label, artificial 
guidance to generate the program so as to be closer to the design law. This object has 
strong regularity, similar design style, and the private garden in Jiangnan is more closed, 
so the layout of the garden has less relationship with the external environment, and all 
these features support the feasibility of GAN application. In addition, Ye et al. (2021) 
prototype CycleGAN-based AI algorithm is proposed for intelligent rendering of urban 
master plans. By processing about 5,000 master plan samples from Pinterest, the trained 
model (called MASTERPLANAN) can render an uncoloured AutoCAD input file into a 
colour rendering in a matter of seconds, and quantitative and qualitative validation shows 
that the method is effective in saving time for urban designers and planners and 
advancing urban design methodologies. These works show that generative modelling is 
shifting from single visual synthesis to multi-dimensional design optimisation, but it still 
faces challenges in collaborative modelling of ecological parameters (e.g., vegetation 
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distribution, terrain adaptation) and cultural symbols (e.g., ethnic patterns, architectural 
styles). Especially in data-scarce scenarios, the models are prone to detail loss or 
distortion of cultural features (Geng and Kaifa, 2022), and there is an urgent need to 
enhance the generalisation ability through migration learning and feature decoupling 
mechanisms. 

3 Hybrid model architecture and feature decoupling approach 

3.1 Hybrid generative model architecture 

In this study, we propose a hybrid architecture combining StyleGAN2 and diffusion 
modelling, as shown in Figure 1, to achieve high-fidelity garden landscape image 
generation through the synergistic mechanism of style decoupling and progressive  
in-noise. The overall process is divided into three phases: the data pre-processing phase 
performs semantic segmentation and feature encoding on the input images to extract 
multimodal labels such as terrain elevation, vegetation types, cultural symbols, etc.; the 
hybrid model training phase jointly optimises the antagonistic loss of the StyleGAN2 and 
the denoising loss of the diffusion model; and the feature decoupling analysis phase 
quantifies the design parameter independency by using the hidden-space mapping and 
clustering algorithm. 

Figure 1 Flowchart of the hybrid generative model architecture (see online version for colours) 

 

The StyleGAN2 module employs a hierarchical style injection strategy with a mapping 
network that converts random noise z ∈ R512 into decoupled hidden vectors w ∈ R18×512, 
and controls the generation of the network’s features at each level through adaptive 
instance normalisation: 

( )mapw f z=  (1) 

( ) ( )
( ), ,, i i

i i i scale i bias
i

x μ xAdaIN z w w w
σ x
−= ⋅ +  (2) 

where fmap is an eight-layer fully connected network and xi is the layer i feature map of 
the generative network. 
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The diffusion module is based on the denoising diffusion probabilistic model 
(DDPM) (Zhang and Dong, 2023), which reconstructs the image details step by step 
through an inverse process. Given a time step t, the noisy image xi is denoised by a noise 
prediction network ∈θ [equation (3)]: 

( )1
1 , , (1, )

1
t

t t θ t t
t t

x x x t σ ξ ξ N I
a

−
 = − ∈ + ∼  − 

β

α
 (3) 

where αt, βt are noise scheduling parameters and σt controls the randomness intensity. 
The diffusion module receives the intermediate feature maps generated by StyleGAN2 as 
conditional inputs, and enhances the local consistency of the terrain texture with the 
cultural symbols through the cross-modal attention mechanism. The training data of the 
diffusion module is more demanding and needs to contain noisy images at different time 
steps and the corresponding denoising results. In practice, in order to improve the training 
efficiency and generation quality of the model, we can use data enhancement techniques, 
such as rotation, translation and scaling, to expand the training dataset. In addition, the 
training process of the diffusion module requires a large amount of computational 
resources and time, so the application of optimisation algorithms and hardware 
acceleration techniques is also crucial. By these methods, we can improve the 
performance of the diffusion module so that it can work better with the StyleGAN2 
module to generate high-quality garden landscape images. 

3.2 Migration learning and small sample optimisation 

For small sample scenarios such as Dehong Prefecture, a two-stage transfer learning 
strategy is designed: the pre-training stage uses the ADELAIDE dataset (5,000 
generalised garden images) to train the hybrid model and learn the basic spatial layout 
and ecological features; the fine-tuning stage freezes the shallow network of StyleGAN2, 
and updates only the parameters of the diffusion module and the high-level style layer 
[equation (4)]: 

( )2
2arg minfinetune diff pretrain

θ
θ L λ θ θ= + −  (4) 

where Ldiff is the diffusion loss and λ is the regularisation coefficient to suppress 
overfitting. With this strategy, the model can still maintain the accuracy of generating 
roof curves and terraced cascading structures of Dai buildings with only 100 samples 
from Dehong Prefecture, as shown in Figure 2. 

3.3 Feature decoupling and interpretability analysis 

In order to realise the independent regulation of design parameters, a decoupling 
evaluation framework based on the geometry of the hidden space is proposed. First, the 
hidden vector w is subjected to principal component analysis (PCA) dimensionality 
reduction [equations (5)–(6)] to extract the main feature directions: 

T
PCA k kk

W U V=   (5) 

10k =  (6) 
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where Uk, Σk, Vk are the results of the singular value decomposition of the hidden vector 
matrix W. Subsequently, feature independence is quantified by K-means clustering: 

2
2

1 i

K

cluster i
i w C

J w u
= ∈

= −  (7) 

Figure 2 Comparison of the effects of transfer learning strategies on the dataset of Dehong 
Prefecture (see online version for colours) 

 

Notes: After fine-tuning, the model is close to the real data in SSIM, FID, and vegetation 
density. 

Cluster purity, defined as the percentage of dominant feature samples in each category, 
was used to assess the decoupling effect (Table 1). Experiments showed that the 
decoupling ability of this model for vegetation density (purity = 87%) and water body 
morphology (purity = 82%) was significantly better than a single model. 
Table 1 Comparison of generation quality and feature decoupling performance of different 

models 

Model FID SSIM User rating (terraced 
field texture) 

User rating (naturalness 
of vegetation) 

Clustering 
purity (%) 

Pix2Pix 42.5 0.68 3.1 3.4 58.3 
StyleGAN2 35.2 0.75 3.8 4.0 72.4 
DDPM 29.1 0.78 4.0 4.2 65.8 
Hybrid model 23.7 0.82 4.3 4.5 87.2 

3.4 Multi-objective loss function design 

The model is trained using a joint loss function, which balances generation quality, 
feature independence, and small-sample stability: 

total adv diff disL L γL ηL= + +  (8) 
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• Adversarial loss Ladv: A non-saturation loss based on StyleGAN2 that encourages the 
generation of distributions that approximate the real data distribution. 

• Diffusion loss Ldis: Minimises the noise prediction error: 

( )0

2
, , 2

,diff x t θ tL E x t∈
 = ∈ − ∈   (9) 

• Decoupling regular terms Ldis: Suppressing feature coupling through mutual 
information minimisation: 

( ) ( )
( ) ( )

,
; log i j

dis i j
i ji j i j

p w w
L I w w

p w p w≠ ≠

= ≈   (10) 

where ϒ = 0.5, η = 0.1 are equilibrium hyperparameters, determined by grid search. 

4 Experimental design and generation performance validation 

4.1 Dataset and experimental setup 

The experiments are based on the public dataset ADELAIDE Landscape Dataset 
(containing 5,000 high-resolution landscape plans covering ten types of scenes such as 
parks, squares, wetlands, etc.) and the Dehong Prefecture Characteristic Landscape 
Dataset (100 aerial photographs of Dai villages and terraced fields with topographic 
elevation and vegetation type annotation). Data pre-processing includes the following 
steps: 

1 Semantic segmentation: Semantic masks such as vegetation, water bodies, hard 
paving, etc. are extracted using DeepLabv3+ (Memon et al., 2022) and encoded as 
RGB labelled maps. 

2 Feature normalisation: Terrain elevation is normalised to [0, 1], and cultural symbols 
(e.g., Dai patterns) are encoded as 32-dimensional vectors. 

3 Data enhancement: Randomly applying rotation (±15°), mirroring and colour 
dithering to the ADELAIDE dataset to improve model generalisation. 

The model training was performed using NVIDIA A100 GPU, and the hybrid model 
parameters were configured as follows: the StyleGAN2 generator resolution was  
1,024 × 1,024, the diffusion module used the DDPM framework (Zhang and Dong, 
2023), the time step T = 1,000, and the noise scheduling used the cosine rule. The 
optimiser chooses with an initial learning rate of 2 × 10–4 and a batch size of 16. 

4.2 Generating quality assessments 

To quantify the generation effect, four models are compared: the Pix2Pix (Li et al., 
2022), StyleGAN2 (Park and Shin, 2024), the DDPM and the hybrid model  
(hybrid-GAN) in this study. The evaluation metrics include: 

1 FID: Measures the similarity between the generated distribution and the real 
distribution. 
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2 SSIM: Assesses the structural consistency of the generated image with the real one. 

3 User rating: Ten landscape architects were invited to rate the rationality and 
aesthetics of the generated solutions on a subjective scale of 1–5. 

As shown in Table 1, the hybrid model achieved FID = 23.7 on the ADELAIDE dataset, 
which was 32.7% and 18.6% higher than StyleGAN2 (FID = 35.2) and DDPM  
(FID = 29.1), respectively, and SSIM = 0.82 was also better than the baseline model. 
Among the user scores, the hybrid model performed best in the indicators of ‘terrace 
texture restoration’ (4.3 points) and ‘vegetation community naturalness’ (4.5 points) 
(Figure 3). Further analysis shows that the diffusion module effectively repairs the fuzzy 
boundaries generated by StyleGAN2 (e.g., water body-land transition zone) through 
progressive denoising, while the hidden spatial control of StyleGAN2 guarantees the 
rationality of the macroscopic layout (e.g., road network topology and building 
orientation). 

Figure 3 Comparison of user rating radar maps of different models (see online version  
for colours) 

3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

Fidelity of
cultural symbols

The rationality of hard pavement

The naturalness of
vegetation community

Terraced texture
reduction degree

Hybrid model
StyleGAN2
DDPM

 

To verify the model’s adaptability to complex landforms, this study refers to the Dehong 
Prefecture Wilderness Index Map (Figure 4), which quantifies the wilderness quality 
levels (levels I–IV) through the multi-Indicator evaluation method. The model 
incorporates such geospatial feature data during the training process to enhance the 
ability to generate irregular terrain such as mountains and terraces. Experiments show 
that the model’s FID metrics are significantly optimised on the Dehong Prefecture dataset 
after the introduction of geographic feature constraints (8.3% decrease), which verifies 
the enhancement of generative fidelity by the fusion of multi-source data. 
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4.3 Feature decoupling performance analysis 

To verify the model’s ability to independently regulate the design parameters, 10 
principal components were extracted from the hidden space (PCA dimensionality 
reduction) and the correlation coefficients between each component and the semantic 
features were calculated. As shown in Figure. 5, the first principal component (PC1) was 
significantly correlated with vegetation density (r = 0.76), and the second principal 
component (PC2) dominated the change of water body area (r = 0.68), indicating that the 
model can effectively decouple ecological elements. K-mean clustering (K = 5) was 
further used to quantify feature independence, and the clustering purity of the hybrid 
model reached 87.2%, which was significantly higher than StyleGAN2 (72.4%) and 
DDPM (65.8%). 

Figure 4 Wilderness Index Map of Dehong Prefecture (see online version for colours) 
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Figure 5 The design parameters are independently regulated based on the principal components 
of the hidden space (see online version for colours) 

 

4.4 Small sample scenario validation 

The performance of the transfer learning strategy is tested on the Dehong Prefecture 
dataset. After fine-tuning using only 100 samples, the model generates results with  
SSIM = 0.78, which is a 27.9% improvement over direct training (SSIM = 0.61). As 
shown in Figure 6, the fine-tuned model accurately captures the overhanging roof 
structure of the Dai dry-landed buildings in relation to the terraced field hierarchy  
(FID = 28.5), while the unfine-tuned model appears to have a flattening of building roofs 
and broken field ridges. In addition, the model performed well in terms of  
vegetation-topography fitness: in the area with slope >25°, the generated tree distribution 
density (12 trees/ha) was close to the real data (10 trees/ha), which was significantly 
better than that of Pix2Pix (25 trees/ha). 

4.5 Computational efficiency and limitations 

The hybrid model consumes an average of 3.2 seconds for single image generation (0.8 
seconds for StyleGAN2 and 12.5 seconds for DDPM), which is higher than the pure 
GAN architecture, but can be compressed to 1.5 seconds and FID rises by only 8.3% with 
the early stopping strategy of the diffusion process (T = 200).The current limitations are: 
the generation of extreme terrain (e.g., steep-slope canyons in Dehong Prefecture) still 
suffers from path network distortions (user rating of 3.2), and the resolution of local 
details of cultural symbols (e.g., Dai totems) is insufficient (SSIM = 0.68). 
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Figure 6 Comparison of the formation effect of mountain landscapes in Dehong Prefecture  
(see online version for colours) 

 

5 Multidimensional analysis of model effectiveness and reconstruction of 
ecological-cultural design paradigm 

This study has made an important breakthrough in the field of landscape generation by 
integrating the hybrid architecture of StyleGAN2 and diffusion model, whose theoretical 
value and practical significance need to be scrutinised in the intersection context of 
generative AI and landscape architecture disciplines. From the theoretical level, existing 
generative models are mostly limited by the inherent shortcomings of a single 
architecture, GAN is good at style decoupling but lacks detail fidelity, and diffusion 
model generates excellent quality but lacks an efficient feature control mechanism 
(Ferreira et al., 2022; Phillips et al., 2024). This model achieves a synergistic 
optimisation of macroscopic layout rationality and microscopic texture richness by 
injecting StyleGAN2’s hidden space vectors into the diffusion module’s inverse 
denoising process across the modal attention layer (Figure 1). This design verifies the 
feasibility of the theory of ‘heterogeneous generator synergy’ in complex scenarios (Liu 
et al., 2021), especially in the terraced landscape of Dehong Prefecture, which is coupled 
with geomorphology and culture, the model-generated terraced field cascade structure 
(the error of average ridge width is ≤0.5 m) and the orientation of dry-fence style building 
clusters (deviation angle is ≤3°) both meet the standard for engineering applications, as 
shown in Figure 6, and their accuracy significantly exceeds that of the traditional 
parameterisation tool (Zheng, 2018). 

By comparing the land use distribution of Dehong Prefecture in 2020, as shown in 
Figure 7 with the Dai village layout output from the generative model, it is found that the 
two are highly consistent in terms of the cultivated land-forested land boundary transition 
(SSIM = 0.82) and the expansion trend of construction land. This result indicates that the 
deep generative model not only captures the fine-grained features of cultural symbols, but 
also effectively integrates geospatial constraints (e.g., slope inhibition on vegetation 
distribution) through the transfer learning strategy, which provides technical validation of 
ecological-cultural synergistic design under complex landscapes. In the digital 
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conservation and innovative regeneration of cultural heritage landscapes, the potential of 
generative AI is not only reflected in the efficiency enhancement, but also in its 
compatibility with multicultural features. Taking the multi-ethnic settlement area in 
Dehong Prefecture as an example, the model is able to encode the proportionality of Dai 
dry-structure (e.g., height-to-span ratio of 1:2.5) and the geometric features of Jingpo 
traditional patterns (e.g., symmetry of diamond-shaped totem) at the same time through 
the mechanism of cryptic spatial feature decoupling and realise the independent 
regulation of the two types of cultural symbols. Experiments show that in the mixed 
village scenario generation, the model can generate a scenario where Dai and Jingpo 
architectural styles coexist under the same spatial layout (SSIM = 0.79) by adjusting the 
principal components related to cultural symbols in the hidden vector (PC3, variance 
contribution rate of 15%), and the density of the vegetation distribution (error ≤2 
plants/ha) is highly consistent with the terrain slope constraints. This capability not only 
supports the protection of single cultural heritage, but also provides a technical path for 
the digital reconstruction of multi-ethnic cultural symbiosis landscape. For example, in 
the generation of terraced rice field texture, the model can not only retain the cascading 
topology of the Dai irrigation system (error of ridge width ≤0.5 m), but also incorporate 
the spatial axial characteristics of the Jingpo ceremonial sites (deviation angle of 
orientation ≤2°), which reflects the flexibility and inclusiveness of technological tools in 
the protection of cultural diversity. More critically, the decoupled evaluation framework 
based on hidden spatial geometry provides quantitative indicators for the interpretability 
of design features for the first time. For example, the PCA shows that the independence 
of vegetation density (PC1, 38% variance contribution) and water body morphology 
(PC2, 22% variance contribution) is improved by 40% compared to the baseline model, 
which complements the study of Feng and Astell-Burt (2019) and lays a methodological 
foundation for the digital modulation of high-dimensional design parameters. 

In the practical dimension, the model provides a solution with both efficiency and 
precision for the intelligent transformation of landscape design. For the landscape 
protection needs of cultural heritage sites such as Dehong Prefecture, the model’s  
small-sample migration capability (SSIM ≥ 0.75) supports the restoration of the 
symbiotic texture of ‘man-water-field-forest’ in Dai villages under limited data 
conditions, and the generated scheme not only preserves the proportionality of the 
overhanging hilltop buildings (height-to-span ratio of 1:2.5) but also enhances the 
coherence of the terraced irrigation water system through the diffusion module, as shown 
in Figure 6..This result echoes the cross-modal generation framework of Liu et al. (2021), 
but the model further integrates the constraints on vegetation distribution imposed by 
terrain slope (e.g., the density of trees in areas with slopes >25° is automatically lowered 
to 12 trees/ha), which makes the generated scenarios more in line with eco-engineering 
specifications. For conventional design scenarios, designers can adjust the hidden vector 
parameters through the interactive interface in real-time, and obtain the results of  
multi-option comparison within three seconds, which is two orders of magnitude higher 
than the efficiency of the traditional workflow. However, the model still has limitations 
in the fine-grained representation of extreme terrain and cultural symbols: the path 
network topology breakage problem in steep slope canyons (user rating 3.2) requires the 
introduction of a geographic information system-based curvature constraint algorithm 
(Yong et al., 2023), and the resolution of the Dai Wadang pattern (SSIM = 0.68) requires 
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the integration of a super-resolution diffusion model to enhance it (Chan and Rajapakse, 
2023). 

Figure 7 Land use simulation map of Dehong Prefecture in 2020 (see online version for colours) 

 

Based on the above findings, future research should advance along three directions: first, 
developing an open design toolchain that integrates cryptospatial modulation interfaces 
into computer-aided design platforms and supports designers to drive scheme generation 
through natural interactions (e.g., voice commands or sketch input); second, build a 
multi-dimensional labelling system covering ecological indicators (carbon sinks, runoff 
coefficients) and cultural semantics (ethnoglyphs, historical atlases) to provide fine 
condition inputs for the generation model; third, establish an interdisciplinary 
collaborative design mechanism to jointly develop multi-criteria evaluation standards 
among landscape architects, ecologists, and anthropologists to ensure that the technical 
tools can be applied to the ecologically-culturally sensitive landscapes such as Dehong 
Prefecture. Thirdly, an interdisciplinary collaborative design mechanism is established to 
combine landscape architects, ecologists and anthropologists to formulate multi-criteria 
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evaluation standards for the generated scenarios, so as to ensure that the technological 
tools can balance innovation, sustainability and cultural authenticity in the application of 
the ecologically and culturally sensitive areas such as Dehong Prefecture. These 
explorations will not only expand the boundaries of generative AI in landscape 
architecture, but also reshape the design paradigm of ‘human-machine collaboration’, 
providing new methodological support for planning and designing high-complexity and 
multi-constraint scenarios. 

6 Conclusions 

The hybrid generative model constructed in this study shows significant advantages in the 
task of automatic generation of landscape images, which integrates the style control 
ability of StyleGAN2 and the detail enhancement mechanism of diffusion model, 
effectively solving the bottleneck of the traditional method in the expression of complex 
features and the adaptability of small samples. Through the validation in the ADELAIDE 
dataset and the case of mountain landscape in Dehong Prefecture, the model is not only 
capable of generating Dai village layouts with regional cultural characteristics (e.g., the 
relationship between terraced field hierarchy and architectural clusters), but also can 
independently regulate the high-dimensional design parameters, such as the density of 
vegetation and the morphology of the water body, through the feature decoupling 
algorithm. However, the model still has limitations in generating extreme terrain (e.g., 
steep slopes and canyons), and the feature coupling phenomenon has not been completely 
eliminated in the relationship between hard pavement and path topology. Future research 
will explore the combination of multimodal inputs (e.g., textual descriptions and  
hand-drawn sketches) and 3D generation techniques to further expand the depth of 
application of AI in planning and design of ecologically sensitive areas (e.g., tropical 
rainforest landscapes in Dehong Prefecture). 
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