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Abstract: With the rapid development of artificial intelligence technology,
deep generative models provide new opportunities for the intelligent
transformation of landscape design. Aiming at the deficiencies of existing
generative methods in terms of scheme diversity, design feature decoupling and
small-sample adaptability, this study proposes a hybrid generative architecture
that integrates StyleGAN2 and diffusion model, combining with a migration
learning strategy to optimise the model generalisation ability in small-sample
scenarios. By introducing a reverse denoising mechanism to enhance detail
generation, and using PCA and clustering methods to quantify the feature
decoupling effect, the model achieves high-fidelity image generation
(FID < 25) and feature independence control (clustering purity > 85%) on the
publicly available dataset ADELAIDE Landscape Dataset. Experiments show
that the model can effectively capture the spatial texture features of Dai villages
and terraced fields in the image generation of typical mountain landscapes in

Dehong Prefecture.
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1 Introduction

Traditional landscape design has long relied on manua experience and rule-driven
methods, facing systemic pain points such as inefficiency, limited innovation and high
costs. Take Dehong Prefecture as an example, its unique Dai village landscape integrates
dry-fence architectural clusters, terraced water networks, and tropical vegetation layouts,
and the design process needs to harmonise ecological adaptability, cultura symbols
embedded in the landscape, and functional reasonableness, among other objectives (Jia
and Qu, 2022). These pain points in traditional landscape design not only limit the
diversity and innovation of the design, but also increase the cost and time investment. For
example, designers need to repeatedly adjust the spatial topological relationship and
vegetation distribution pattern when dealing with complex landforms, which not only
consumes a lot of time, but also may lead to homogenisation of design solutions and lack
of scene specificity. In addition, under the background of rapid urbanisation, how to
realise the digital protection and innovative regeneration of cultura heritage landscapes
under the condition of limited samples has become areal problem that needs to be solved
urgently. The existence of these problems prompts us to explore new design methods and
techniques to improve the efficiency and quality of landscape design while preserving
regional cultural characteristics. Although traditional parametric tools can generate basic
scenarios through preset rules, it is difficult to capture the nonlinear design logic and
regional cultural characteristics, resulting in serious homogenisation of scenarios and lack
of scenario specificity (Yuan et a., 2023). Especialy in complex landscapes (e.g.,
mountains, wetlands), designers need to repeatedly adjust the spatial topology and
vegetation distribution patterns, which is time-consuming and costly (Geng and Kaifa,
2022). More critically, under the background of rapid urbanisation, how to achieve digital
conservation and innovative regeneration of cultural heritage landscapes under limited
sample conditions has become an urgent and realistic problem to be solved.

In recent years, the rapid development of deep generative modelling has provided a
new path for landscape design intelligence. Generative adversaria networks (GANS)
have been successfully applied to building plan generation (Ferreira et al., 2022), urban
texture simulation (Lin et a., 2022) and small-sample landscape schema design
(Bei Huang et al., 2024) through the adversaria training mechanism. For example, Liu
et a. (2024) proposed an urban landscape design method based on PSO-BP neura
networks, which can not only automatically generate and optimise the design scheme by
using data analysis and machine learning to make decisions, which greatly improves the
efficiency, but aso effectively improves the landscape quality of urban environments,
and enhances the residents satisfaction with the urban landscape. Tang and Chung
(2024) proposed a deep learning-based urban landscape layout model that utilises the
Pix2Pix model and domain-specific dictionaries to automatically generate urban
landscape designs by inputting images of land use and road conditions, and outperforms
traditional methods in terms of sentiment prediction and functional layouts, showing
potential in automated landscape design. Meanwhile, the diffusion model significantly
outperforms traditional GAN in image detail generation quality through a progressive
denoising process, and is widely used in high-resolution natural scene synthesis (Phillips
et a., 2024). These technological breakthroughs indicate that generative artificial
intelligence (Al) has the potential to replace part of the manual design process, especially
in the generation of standardised scenarios and rapid iteration of multiple scenarios.
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However, there are till three core deficiencies of the existing methods in landscape
design scenarios: first, feature coupling is common, such as the strong correlation
between hard paving and path networks, which leads to local adjustments triggering
globa scenario distortions (Ferreira et al., 2022); second, the adaptability of small
samples is insufficient, and the model is prone to model collapse or detail loss in
data-scarce scenarios such as ethnic minority characteristic landscapes (e.g., Dai villages
in Dehong Prefecture); third, the generation capability of complex landforms is limited,
and the existing model is not suitable for non-regular topography, such as mountains and
terraces (Geng and Kaifa, 2022); third, the ability to generate complex landscapes is
limited, and the existing models have low accuracy in modelling the spatial topological
relationships of irregular terrain such as mountains and terraces (Jia and Qu, 2022). In
essence, these problems stem from the inherent limitations of single model architectures,
GAN excels at style migration but lacks detail fidelity, diffusion models generate high
quality but at huge computational cost, and both lack quantitative control mechanisms for
decoupling design features (M iller-Franzes et al., 2023).

Aiming at the above challenges, this study proposes a hybrid generative architecture
that deeply integrates the style decoupling ability of StyleGAN2 with the detail
enhancement mechanism of the diffusion model, and introduces a cross-domain transfer
learning strategy to optimise the performance of small samples. By constructing a
guantitative evaluation system for hidden spatial features, the independent regulation of
high-dimensional parameters such as vegetation density and water morphology is
realised, while the progressive generative characteristics of the diffusion model are
utilised to accurately restore the spatial relationship between terraced rice field texture
and architectural communities in Dehong Prefecture. Experiments show that the model’s
Fréchet Inception Distance (FID) index on ADELAIDE Landscape Dataset is 32% lower
than that of a single model, and it still maintains the generative stability of Structural
Similarity Index (SSIM) > 0.75 on the small-scale Dehong Prefecture dataset with 100
samples. This innovation not only provides a high-fidelity and interpretable generative
tool for landscape design, but also lays a methodological foundation for the digital
integration of multi-scale landforms and cultural semantics.

2 Related research progress

2.1 Technical evolution of deep generative modelling

Since the proposa of GAN (Goodfellow et al., 2014), deep generative models have
undergone significant technological iterations in the field of image synthesis. Early GAN
achieved data distribution fitting through an adversarial training mechanism, but their
generation quality and stability were limited by the pattern collapse problem (Pan et d .,
2019). With the development of technology, StyleGAN family of models significantly
improves the image resolution and feature decoupling ability by introducing style
modulation and progressive training strategy. For example, Cao et al. (2022) proposed an
improved StyleGAN architecture in the coal foreign object detection task, which
optimises the generation quality and efficiency through dual self-attention modules and
depth-separable convolution, and verifies its potential in data-scarce scenarios.
Meanwhile, the diffusion model shows unique advantages in balancing image fidelity and
diversity by virtue of the progressive denoising mechanism (Phillips et a., 2024). Wang
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et a. (2024) further proposed the latent feature diffusion model, which enhances the
texture recovery ability of compressed video through cross-domain fusion module,
providing a new idea for high-resolution landscape image generation. In recent years,
hybrid architectures have become a hot research topic, Zhao et a. (2020) combined the
variational self-encoder and GAN to solve the pattern collapse problem through latent
representation optimisation, which significantly improves the diversity and quality of
generated samples.

2.2 Intelligent generation methods in landscape design

In the field of landscape architecture, the application of generative Al gradually expands
from interior design to complex outdoor spaces. In the field of landscape architecture, the
application of generative Al is gradualy moving from small to large scenarios.
Preliminary results have been achieved in GAN-based floor plan generation: Wang et a.
(2023) proposed the ActFloor-GAN agorithm, which generates indoor layouts with
constraints on pedestrian trajectories, and combines cyclic consistency loss and
antagonistic loss to improve the rationality of design. Pan et a. (2021) utilise the style
guidance function of GauGAN to generate diversified architectural layout schemes for
settlements using the design red line as a constraint, which highlights the advantages of
GAN in dispersive problems. In addition, models such as Pix2pixHD are applied to
architectural drawing generation (Zheng, 2018), whose residual network architecture
learns building plan features step-by-step, providing a new perspective for understanding
design logic. However, existing methods mostly focus on standardised scenarios, the
ability to model the spatia topology of complex landforms (e.g., mountains and
wetlands) is till insufficient, and the cultural semantic embedding mechanism has not yet
been improved, which leads to the prominent problem of homogenisation of the
generated scenarios.

2.3 Exploration of generative modelling and ecological-cultural co-design

In recent years, studies have begun to explore the potential of generative modelling in
ecological-cultural collaborative design. Liu et al. (2021) changed the constraints to the
original elements of the site, such as green space and water body, based on the
characteristics of the classical private gardens in Jiangnan, and constructed a rapid
method of generating layout plans based on the elements of the site based on
Pix2Pix.And with the researchers to continuously adjust the layout label, artificia
guidance to generate the program so as to be closer to the design law. This object has
strong regularity, similar design style, and the private garden in Jiangnan is more closed,
so the layout of the garden has less relationship with the external environment, and all
these features support the feasibility of GAN application. In addition, Ye et al. (2021)
prototype CycleGAN-based Al algorithm is proposed for intelligent rendering of urban
master plans. By processing about 5,000 master plan samples from Pinterest, the trained
model (called MASTERPLANAN) can render an uncoloured AutoCAD input file into a
colour rendering in a matter of seconds, and quantitative and qualitative validation shows
that the method is effective in saving time for urban designers and planners and
advancing urban design methodologies. These works show that generative modelling is
shifting from single visual synthesis to multi-dimensional design optimisation, but it till
faces challenges in collaborative modelling of ecological parameters (e.g., vegetation
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distribution, terrain adaptation) and cultural symbols (e.g., ethnic patterns, architectural
styles). Especially in data-scarce scenarios, the models are prone to detail loss or
distortion of cultural features (Geng and Kaifa, 2022), and there is an urgent need to
enhance the generdisation ability through migration learning and feature decoupling
mechanisms.

3 Hybrid model architecture and featur e decoupling approach

3.1 Hybrid generative model architecture

In this study, we propose a hybrid architecture combining StyleGAN2 and diffusion
modelling, as shown in Figure 1, to achieve high-fidelity garden landscape image
generation through the synergistic mechanism of style decoupling and progressive
in-noise. The overall process is divided into three phases: the data pre-processing phase
performs semantic segmentation and feature encoding on the input images to extract
multimodal labels such as terrain elevation, vegetation types, cultural symbols, etc.; the
hybrid model training phase jointly optimises the antagonistic loss of the StyleGAN2 and
the denoising loss of the diffusion model; and the feature decoupling analysis phase
guantifies the design parameter independency by using the hidden-space mapping and
clustering algorithm.

Figurel Flowchart of the hybrid generative model architecture (see online version for colours)

Image input Hidden space PCA
StyleGAN2 dimension reduction
| module | i l
i | ——  Joint loss X
segmentation | function I K-means clustering
Diffusion 1 l
module
Quantification of
Feature feature independence
coding

The StyleGAN2 module employs a hierarchical style injection strategy with a mapping
network that converts random noise z € R®2 into decoupled hidden vectors w € R18<512,
and controls the generation of the network’s features at each level through adaptive
instance normalisation:

W= frp(2) 1
% — (%)
o(x)

where frgp is an eight-layer fully connected network and x; is the layer i feature map of
the generative network.

AdalN (z, W ) = W gae +W pias @)
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The diffusion module is based on the denoising diffusion probabilistic model
(DDPM) (Zhang and Dong, 2023), which reconstructs the image details step by step
through an inverse process. Given atime step t, the noisy image x; is denoised by a noise
prediction network €, [equation (3)]:

Xt—lzi(xt_ b €y ()([,t)]+at§,§~N(l,|) ©)

Vi-o

where ¢, £ are noise scheduling parameters and o; controls the randomness intensity.
The diffusion module receives the intermediate feature maps generated by StyleGAN2 as
conditional inputs, and enhances the loca consistency of the terrain texture with the
cultural symbols through the crosss-modal attention mechanism. The training data of the
diffusion module is more demanding and needs to contain noisy images at different time
steps and the corresponding denoising results. In practice, in order to improve the training
efficiency and generation quality of the model, we can use data enhancement techniques,
such as rotation, translation and scaling, to expand the training dataset. In addition, the
training process of the diffusion module requires a large amount of computational
resources and time, so the application of optimisation agorithms and hardware
acceleration techniques is also crucia. By these methods, we can improve the
performance of the diffusion module so that it can work better with the StyleGAN2
module to generate high-quality garden landscape images.

3.2 Migration learning and small sample optimisation

For small sample scenarios such as Dehong Prefecture, a two-stage transfer learning
strategy is designed: the pre-training stage uses the ADELAIDE dataset (5,000
generalised garden images) to train the hybrid model and learn the basic spatial layout
and ecological features; the fine-tuning stage freezes the shallow network of StyleGAN2,
and updates only the parameters of the diffusion module and the high-level style layer
[equation (4)]:

Ofinetune = arg Wgn(l‘diﬁ +/1||9—9pretrajn”§) @)

where Lg is the diffusion loss and A is the regularisation coefficient to suppress
overfitting. With this strategy, the model can still maintain the accuracy of generating
roof curves and terraced cascading structures of Dai buildings with only 100 samples
from Dehong Prefecture, as shown in Figure 2.

3.3 Feature decoupling and interpretability analysis

In order to realise the independent regulation of design parameters, a decoupling
evaluation framework based on the geometry of the hidden space is proposed. First, the
hidden vector w is subjected to principal component analysis (PCA) dimensionality
reduction [equations (5)—(6)] to extract the main feature directions:

Whca = UkaVkT (5)

k =10 (6)
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where Uy, Z, Vi are the results of the singular value decomposition of the hidden vector
matrix W. Subsequently, feature independence is quantified by K-means clustering:

K

Jcluster = Z Z "W_ U "; (7)

i=1 weC;

Figure2 Comparison of the effects of transfer learning strategies on the dataset of Dehong
Prefecture (see online version for colours)

Notes: After fine-tuning, the model is close to the real datain SSIM, FID, and vegetation
density.

Cluster purity, defined as the percentage of dominant feature samples in each category,
was used to assess the decoupling effect (Table 1). Experiments showed that the
decoupling ability of this model for vegetation density (purity = 87%) and water body
morphology (purity = 82%) was significantly better than a single model.

Tablel Comparison of generation quality and feature decoupling performance of different

models
Mode FID SIS e ofvegeaon | purity (09
Pix2Pix 425 0.68 31 34 58.3
StyleGAN2 352 075 3.8 4.0 724
DDPM 29.1 0.78 4.0 4.2 65.8
Hybrid model 23.7 0.82 4.3 45 87.2

3.4 Multi-objective loss function design

The modd is trained using a joint loss function, which balances generation quality,
feature independence, and small-sampl e stability:

Liota = Laav + yLairr +77lais (8)
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e Adversarial loss Lagv: A non-saturation loss based on StyleGAN2 that encourages the
generation of distributions that approximate the real data distribution.

e Diffusion loss Lgs: Minimises the noise prediction error:

e —co (%0 ] €)

e Decoupling regular terms Lgs: Suppressing feature coupling through mutual
information minimisation:

Las = Y1 (W w;) Zlog e ) (10)
l

i#] i#]

Laitt = Exorte [

where Y = 0.5, # = 0.1 are equilibrium hyperparameters, determined by grid search.

4 Experimental design and generation performance validation

4.1 Dataset and experimental setup

The experiments are based on the public dataset ADELAIDE Landscape Dataset
(containing 5,000 high-resolution landscape plans covering ten types of scenes such as
parks, squares, wetlands, etc.) and the Dehong Prefecture Characteristic Landscape
Dataset (100 aerial photographs of Dai villages and terraced fields with topographic
elevation and vegetation type annotation). Data pre-processing includes the following
steps:

1 Semantic segmentation: Semantic masks such as vegetation, water bodies, hard
paving, etc. are extracted using Deepl abv3+ (Memon et al., 2022) and encoded as
RGB labelled maps.

2 Feature normalisation: Terrain elevation is normalised to [0, 1], and cultural symbols
(e.g., Dai patterns) are encoded as 32-dimensional vectors.

3 Dataenhancement: Randomly applying rotation (£15°), mirroring and colour
dithering to the ADELAIDE dataset to improve model generalisation.

The model training was performed using NVIDIA A100 GPU, and the hybrid model
parameters were configured as follows: the StyleGAN2 generator resolution was
1,024 x 1,024, the diffusion module used the DDPM framework (Zhang and Dong,
2023), the time step T = 1,000, and the noise scheduling used the cosine rule. The
optimiser chooses with an initial learning rate of 2 x 10~ and a batch size of 16.

4.2 Generating quality assessments

To quantify the generation effect, four models are compared: the Pix2Pix (Li et al.,
2022), StyleGAN2 (Park and Shin, 2024), the DDPM and the hybrid model
(hybrid-GAN) in this study. The evaluation metricsinclude:

1 FID: Measuresthe similarity between the generated distribution and the real
distribution.
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2 SSIM: Assesses the structural consistency of the generated image with the real one.

3 User rating: Ten landscape architects were invited to rate the rationality and
aesthetics of the generated solutions on a subjective scale of 1-5.

As shown in Table 1, the hybrid model achieved FID = 23.7 on the ADELAIDE dataset,
which was 32.7% and 18.6% higher than StyleGAN2 (FID = 35.2) and DDPM
(FID = 29.1), respectively, and SSIM = 0.82 was aso better than the baseline model.
Among the user scores, the hybrid model performed best in the indicators of ‘terrace
texture restoration’ (4.3 points) and ‘vegetation community naturalness (4.5 points)
(Figure 3). Further analysis shows that the diffusion module effectively repairs the fuzzy
boundaries generated by StyleGAN2 (e.g., water body-land transition zone) through
progressive denoising, while the hidden spatial control of StyleGAN2 guarantees the
rationality of the macroscopic layout (e.g., road network topology and building
orientation).

Figure3 Comparison of user rating radar maps of different models (see online version
for colours)

Terraced texture
reduction degree

The natural ness of
vegetation community|

Fidelity of
cultural symbols

—=—Hybrid model
—eo—StyleGAN2
——DDPM

Therationality of hard pavement

To verify the model’ s adaptability to complex landforms, this study refers to the Dehong
Prefecture Wilderness Index Map (Figure 4), which quantifies the wilderness quality
levels (levels V) through the multi-Indicator evaluation method. The model
incorporates such geospatial feature data during the training process to enhance the
ability to generate irregular terrain such as mountains and terraces. Experiments show
that the model’s FID metrics are significantly optimised on the Dehong Prefecture dataset
after the introduction of geographic feature constraints (8.3% decrease), which verifies
the enhancement of generative fidelity by the fusion of multi-source data.
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4.3 Feature decoupling performance analysis

To verify the model’s ability to independently regulate the design parameters, 10
principal components were extracted from the hidden space (PCA dimensionality
reduction) and the correlation coefficients between each component and the semantic
features were calculated. As shown in Figure. 5, the first principal component (PC1) was
significantly correlated with vegetation density (r = 0.76), and the second principal
component (PC2) dominated the change of water body area (r = 0.68), indicating that the
model can effectively decouple ecological elements. K-mean clustering (K = 5) was
further used to quantify feature independence, and the clustering purity of the hybrid
model reached 87.2%, which was significantly higher than StyleGAN2 (72.4%) and
DDPM (65.8%).

Figure4 Wilderness Index Map of Dehong Prefecture (see online version for colours)
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Figure5 The design parameters are independently regulated based on the principal components
of the hidden space (see online version for colours)

4.4 Small sample scenario validation

The performance of the transfer learning strategy is tested on the Dehong Prefecture
dataset. After fine-tuning using only 100 samples, the model generates results with
SSIM = 0.78, which is a 27.9% improvement over direct training (SSIM = 0.61). As
shown in Figure 6, the fine-tuned model accurately captures the overhanging roof
structure of the Da dry-landed buildings in relation to the terraced field hierarchy
(FID = 28.5), while the unfine-tuned model appears to have a flattening of building roofs
and broken field ridges. In addition, the mode performed well in terms of
vegetation-topography fitness: in the area with slope >25°, the generated tree distribution
density (12 trees’/ha) was close to the real data (10 trees’ha), which was significantly
better than that of Pix2Pix (25 trees’ha).

4.5 Computational efficiency and limitations

The hybrid model consumes an average of 3.2 seconds for single image generation (0.8
seconds for StyleGAN2 and 12.5 seconds for DDPM), which is higher than the pure
GAN architecture, but can be compressed to 1.5 seconds and FID rises by only 8.3% with
the early stopping strategy of the diffusion process (T = 200).The current limitations are:
the generation of extreme terrain (e.g., steep-slope canyons in Dehong Prefecture) still
suffers from path network distortions (user rating of 3.2), and the resolution of local
details of cultural symbols (e.g., Dai totems) isinsufficient (SSIM = 0.68).



54 D. Gao and Y. Zhang

Figure6 Comparison of the formation effect of mountain landscapes in Dehong Prefecture
(see online version for colours)

Al LLIREAE VLT

annotated key structures ( ridge width error <
0.5m, building oricniation deviation<3 *).

5 Multidimensional analysis of model effectiveness and reconstruction of
ecological-cultural design paradigm

This study has made an important breakthrough in the field of landscape generation by
integrating the hybrid architecture of StyleGANZ2 and diffusion model, whose theoretical
value and practical significance need to be scrutinised in the intersection context of
generative Al and landscape architecture disciplines. From the theoretical level, existing
generative models are mostly limited by the inherent shortcomings of a single
architecture, GAN is good at style decoupling but lacks detail fidelity, and diffusion
model generates excellent quality but lacks an efficient feature control mechanism
(Ferreira et al., 2022; Phillips et a., 2024). This model achieves a synergistic
optimisation of macroscopic layout rationality and microscopic texture richness by
injecting StyleGAN2's hidden space vectors into the diffusion module's inverse
denoising process across the modal attention layer (Figure 1). This design verifies the
feasibility of the theory of ‘heterogeneous generator synergy’ in complex scenarios (Liu
et al., 2021), especially in the terraced landscape of Dehong Prefecture, which is coupled
with geomorphology and culture, the model-generated terraced field cascade structure
(the error of average ridge width is<0.5 m) and the orientation of dry-fence style building
clusters (deviation angle is <3°) both meet the standard for engineering applications, as
shown in Figure 6, and their accuracy significantly exceeds that of the traditional
parameterisation tool (Zheng, 2018).

By comparing the land use distribution of Dehong Prefecture in 2020, as shown in
Figure 7 with the Dai village layout output from the generative model, it is found that the
two are highly consistent in terms of the cultivated land-forested land boundary transition
(SSIM = 0.82) and the expansion trend of construction land. This result indicates that the
deep generative model not only captures the fine-grained features of cultural symbols, but
also effectively integrates geospatial constraints (e.g., sope inhibition on vegetation
distribution) through the transfer learning strategy, which provides technical validation of
ecological-cultural  synergistic design under complex landscapes. In the digita
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conservation and innovative regeneration of cultural heritage landscapes, the potential of
generative Al is not only reflected in the efficiency enhancement, but aso in its
compatibility with multicultural features. Taking the multi-ethnic settlement area in
Dehong Prefecture as an example, the model is able to encode the proportiondity of Dai
dry-structure (e.g., height-to-span ratio of 1:2.5) and the geometric features of Jingpo
traditional patterns (e.g., symmetry of diamond-shaped totem) at the same time through
the mechanism of cryptic spatial feature decoupling and realise the independent
regulation of the two types of cultural symbols. Experiments show that in the mixed
village scenario generation, the model can generate a scenario where Dai and Jingpo
architectural styles coexist under the same spatial layout (SSIM = 0.79) by adjusting the
principal components related to cultural symbols in the hidden vector (PC3, variance
contribution rate of 15%), and the density of the vegetation distribution (error <2
plants/ha) is highly consistent with the terrain slope constraints. This capability not only
supports the protection of single cultural heritage, but also provides a technical path for
the digital reconstruction of multi-ethnic cultural symbiosis landscape. For example, in
the generation of terraced rice field texture, the model can not only retain the cascading
topology of the Dai irrigation system (error of ridge width <0.5 m), but also incorporate
the spatial axial characteristics of the Jingpo ceremonial sites (deviation angle of
orientation <2°), which reflects the flexibility and inclusiveness of technological tools in
the protection of cultural diversity. More critically, the decoupled evaluation framework
based on hidden spatial geometry provides quantitative indicators for the interpretability
of design features for the first time. For example, the PCA shows that the independence
of vegetation density (PC1, 38% variance contribution) and water body morphology
(PC2, 22% variance contribution) is improved by 40% compared to the baseline model,
which complements the study of Feng and Astell-Burt (2019) and lays a methodological
foundation for the digital modulation of high-dimensional design parameters.

In the practical dimension, the model provides a solution with both efficiency and
precision for the intelligent transformation of landscape design. For the landscape
protection needs of cultural heritage sites such as Dehong Prefecture, the model’s
small-sample migration capability (SSIM > 0.75) supports the restoration of the
symbiotic texture of ‘man-water-field-forest’ in Da villages under limited data
conditions, and the generated scheme not only preserves the proportionality of the
overhanging hilltop buildings (height-to-span ratio of 1:2.5) but also enhances the
coherence of the terraced irrigation water system through the diffusion module, as shown
in Figure 6..This result echoes the cross-modal generation framework of Liu et al. (2021),
but the model further integrates the constraints on vegetation distribution imposed by
terrain slope (e.g., the density of trees in areas with slopes >25° is automatically lowered
to 12 trees’ha), which makes the generated scenarios more in line with eco-engineering
specifications. For conventional design scenarios, designers can adjust the hidden vector
parameters through the interactive interface in real-time, and obtain the results of
multi-option comparison within three seconds, which is two orders of magnitude higher
than the efficiency of the traditional workflow. However, the model still has limitations
in the fine-grained representation of extreme terrain and cultural symbols. the path
network topology breakage problem in steep slope canyons (user rating 3.2) requires the
introduction of a geographic information system-based curvature constraint algorithm
(Yong et a., 2023), and the resolution of the Dai Wadang pattern (SSIM = 0.68) requires
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the integration of a super-resolution diffusion model to enhance it (Chan and Rajapakse,
2023).

Figure7 Land use simulation map of Dehong Prefecture in 2020 (see online version for colours)

Based on the above findings, future research should advance along three directions: first,
developing an open design toolchain that integrates cryptospatial modulation interfaces
into computer-aided design platforms and supports designers to drive scheme generation
through natural interactions (e.g., voice commands or sketch input); second, build a
multi-dimensional labelling system covering ecologica indicators (carbon sinks, runoff
coefficients) and cultural semantics (ethnoglyphs, historical atlases) to provide fine
condition inputs for the generation model; third, establish an interdisciplinary
collaborative design mechanism to jointly develop multi-criteria evaluation standards
among landscape architects, ecologists, and anthropologists to ensure that the technical
tools can be applied to the ecologically-culturally sensitive landscapes such as Dehong
Prefecture. Thirdly, an interdisciplinary collaborative design mechanism is established to
combine landscape architects, ecologists and anthropologists to formulate multi-criteria
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evauation standards for the generated scenarios, so as to ensure that the technological
tools can balance innovation, sustainability and cultural authenticity in the application of
the ecologically and culturally sensitive areas such as Dehong Prefecture. These
explorations will not only expand the boundaries of generative Al in landscape
architecture, but also reshape the design paradigm of ‘human-machine collaboration’,
providing new methodological support for planning and designing high-complexity and
multi-constraint scenarios.

6 Conclusions

The hybrid generative model constructed in this study shows significant advantagesin the
task of automatic generation of landscape images, which integrates the style control
ability of StyleGAN2 and the detail enhancement mechanism of diffusion model,
effectively solving the bottleneck of the traditional method in the expression of complex
features and the adaptability of small samples. Through the validation in the ADELAIDE
dataset and the case of mountain landscape in Dehong Prefecture, the model is not only
capable of generating Dai village layouts with regional cultura characteristics (e.g., the
relationship between terraced field hierarchy and architectural clusters), but also can
independently regulate the high-dimensional design parameters, such as the density of
vegetation and the morphology of the water body, through the feature decoupling
algorithm. However, the model still has limitations in generating extreme terrain (e.g.,
steep slopes and canyons), and the feature coupling phenomenon has not been completely
eliminated in the relationship between hard pavement and path topology. Future research
will explore the combination of multimodal inputs (e.g., textual descriptions and
hand-drawn sketches) and 3D generation techniques to further expand the depth of
application of Al in planning and design of ecologically sensitive areas (e.g., tropical
rainforest landscapes in Dehong Prefecture).

Acknowledgements

This work is supported by the Yunnan Provincial Department of Education ‘2021
Yunnan Provincia Professional Degree Graduate Case Library Construction Project
Nationa Garden (Traditional Village Protection Planning) Teaching Case Library’
(No. Yunnan Degree [2021] 18th).

Declarations

All authors declare that they have no conflicts of interest.



58 D. Gao and Y. Zhang

References

Bel Huang, L.M., Tang, X. and Luo, L. (2024) ‘Application of style transfer algorithm in the
integration of traditional garden and modern design elements, PLoS One, 5 December,
Vol. 19, No. 12, p.e0313909.

Cao, X., Wei, H., Wang, P., Zhang, C., Huang, S. and Li, H. (2022) ‘High quality coal foreign
object image generation method based on StyleGAN-DSAD’, Sensors, Vol. 23, No. 1, p.374.

Chan, T.J. and Rajapakse, C.S. (2023) ‘A super-resolution diffusion model for recovering bone
microstructure from CT images', Radiology: Artificial Intelligence, Vol. 5, No. 6, p.e220251.

Feng, X. and Astell-Burt, T. (2019) ‘ Can green space quantity and quality help prevent postpartum
weight gain? A longitudinal study’, Journal of Epidemiology and Community Health, Vol. 73,
No. 4, pp.295-302.

Ferreira, 1., Ochoa, L. and Koeshidayatullah, A. (2022) ‘On the generation of realistic synthetic
petrographic datasets using a style-based GAN’, Scientific Reports, Vol. 12, No. 1, p.12845.

Geng, X. and Kaifa, Z. (2022) ‘ Retracted: protection-oriented landscape design based on ecological
priority under the concept of ecological environment monitoring’, Journal of Environmental
and Public Health, Vol. 2022, No. 1, p.9823460.

Goodfellow, 1.JJP-AM.M., Xu, B., Warde-Farley, D., Ozairy, S. and Yoshua Bengioz, A.C.
(2014) ‘Generative adversarial nets, Advances in Neural Information Processing Systems,
Vol. 14, pp.2672-2680.

Jig, Z. and Qu, Z. (2022) ‘Garden landscape design method in public health urban planning based
on big data analysis technology’, Journal of Environmental and Public Health, Vol. 2022,
No. 1, p.2721247.

Li, H-A., Zhang, M., Yu, Z., Li, Z. and Li, N. (2022) ‘ An improved Pix2Pix model based on Gabor
filter for robust color image rendering’, Mathematical Biosciences and Engineering, Vol. 19,
No. 1, pp.86-101.

Lin, Z., Wang, Y., Song, Y., Huang, T., Gan, F. and Ye, X. (2022) ‘Research on ecological
landscape design and healing effect based on 3D roaming technology’, International Journal
of Environmental Research and Public Health, VVol. 19, No. 18, p.11406.

Liu, Y., Fan, L. and Wang, L. (2024) ‘Urban virtual environment landscape design and system
based on PSO-BP neural network’, Scientific Reports, Vol. 14, No. 1, p.13747.

Liu, Y., Luo, Y., Deng, Q. and Zhou, X. (2021) ‘Exploration of campus layout based on generative
adversarial network’, Proceedings of the 2020 Digital Futures, Vol. 12, No. 12, pp.169-178.

Memon, M.M., Hashmani, M.A., Jungjo, A.Z., Rizvi, SS. and Raza, K. (2022) ‘Unified
DeepL abV 3+ for semi-dark image semantic segmentation’, Sensors, Vol. 22, No. 14, p.5312.

Miller-Franzes, G., Niehues, JM., Khader, F., Arasteh, S.T., Haarburger, C., Kuhl, C., Wang, T.,
Han, T., Nolte, T., Nebelung, S., Kather, JN. and Truhn, D. (2023) ‘A multimoda comparison
of latent denoising diffusion probabilistic models and generative adversarial networks for
medical image synthesis', Scientific Reports, Vol. 13, No. 1, p.12098.

Pan, Y., Qian, J. and Hu, Y. (2021) ‘A preliminary study on the formation of the general layouts on
the northern neighborhood community based on GauGAN diversity output generator’,
Proceedings of the 2020 Digital Futures, Vol. 13, pp.179-188.

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F. and Zheng, Y. (2019) ‘Recent progress on generative
adversarial networks (GANS): asurvey’, IEEE Access, Vol. 7, pp.36322-36333.

Park, S. and Shin, Y-G. (2024) ‘Rethinking image skip connections in StyleGAN2', |IEEE
Transactions on Neural Networks and Learning Systems, Vol. 49, pp.1-9.

Phillips, C., Jiao, J. and Clubb, E. (2024) ‘Testing the capability of Al art tools for urban design’,
|EEE Computer Graphics and Applications, Vol. 44, No. 2, pp.37—45.

Tang, X. and Chung, W-J. (2024) ‘Automated urban landscape design: an Al-driven model for
emotion-based layout generation and appraisal’, PeerJ Computer Science, Vol. 10, p.e2426.



Automatic generation of landscape images 59

Wang, S., Zeng, W., Chen, X., Ye, Y. Qiao, Y. and Fu, C-W. (2023) ‘ActFloor-GAN:
activity-guided adversarial networks for human-centric floorplan design’, |EEE Transactions
on Visualization and Computer Graphics, Vol. 29, No. 3, pp.1610-1624.

Wang, W., Jing, M., Fan, Y. and Weng, W. (2024) ‘PixRevive: latent feature diffusion model for
compressed video quality enhancement’, Sensors, Vol. 24, No. 6, p.1907.

Ye, X.,Du, J. and Ye, Y. (2021) ‘MasterplanGAN: facilitating the smart rendering of urban master
plans via generative adversarial networks', Environment and Planning B: Urban Analytics and
City Science, Vol. 49, No. 3, pp.794-814.

Yong, X., Lee, S. and Choi, Y. (2023) ‘Curvature-based interface restoration algorithm using
phase-field equations’, PLoS One, Vol. 18, No. 12, p.e0295527.

Yuan, J., Zhang, L. and Kim, C-S. (2023) ‘Multimodal interaction of MU plant landscape design in
marine urban based on computer vision technology’, Plants, Vol. 12, No. 7, p.1431.

Zhang, D. and Dong, Y. (2023) ‘Adv-BDPM: adversarial attack based on boundary diffusion
probability model’, Neural Networks, Vol. 167, pp.730-740.

Zhao, H., Li, T., Xiao, Y. and Wang, Y. (2020) ‘Improving multi-agent generative adversaria nets
with variational latent representation’, Entropy, Vol. 22, No. 9, p.1055.

Zheng, W.H.H. (2018) ‘Architectural drawings recognition and generation through machine
learning’, Association for Computer-Aided Architectural Design Research in Adia, Vol. 12,
No. 12, p.1563.



